

$$
\bullet
$$

The Colliery Engineer

METAL MINER.

VOL. XVI.

AUGUST, 1895, TO JULY, 1896.

SCRANTON, PA.:
THE COLLIERY ENGINEER CO.
1896.

INDEX．

EDITORLAL

Accidents from Falls of Roofs and sides
A Denver Offic
Advantagee of a Liberal Mining Education A Mistake in American Coal Mining Laws Ls Engineers＇Club in Chicago
In Important opinion
Sppointment of Penna．Anthracite Mine In－ epectors
Su＝trian Efforts to Prevent Accidents in 3lines
hore Hole Experiencer
Srutal Marder of a Prominent Mine Otficial
Carbon Monoxide as an Element in Dust Explo－ sions
Carbon Monoxide as an Explosive Agent
Certificated Mine Foremen
Coal Dust Explosions in Mine
Coal in Illinoss
Compreved Air as a Motive Poner
Correction
Tavy lampo of James Leiber
Education a Xecessary Qualitication in a Mine Otticial
Electric Mine Locomotives
Failure in Mining
Free Mining Lectares
Illinois Coal Industry
Illinois Coal Mines
Life of the Wyoming Anthracite Coal Field．
Lues of Gold in Bediocing
Mine Equipment Catalogue
Mine Fatalities
Sline Yisiting
Mining Machinery for Jatan
Proposed School of Mines at Butte，Moatana
state Geological Survey．
Technical Elucation
The Coasa Coal Field of Alabama
The Determination of the foking Qualities of Coals The Gas Eingine for Mining Work
The Mineral Necources of Variou－Nitions
The New Presulent of the L．C \＆X．Co
The Pennsylvania Mine Inspevtors Report
The Propesed Amendment to the British Mining
The Use of Explosives in Mines
The Vilization of small sizee of Anthracite
To Mannfactnors and Ealors in Mine Equipusent and sine supplies
To Manufacturers of Mining Machinery and Sup－
Plies Vderground Temperature
Vtilizing Natural Forces in Mining
Wear on Haulage Ropes
What Are Otber Mine Officials Doing？
MNING AND PEFPARATIGN OF COHL AN゙D
A Flase Conxeyor，by B．L．Lloyd，C．E
A Lomisiana salphur Mine
Anthracite Mining at South Wilkes－Barre Colliery
by W．W，Jorms
Coal Mining in Wakhington，by T．B，Cones
Coal Washing，by J．J．Ormsbow
Coke Oven Construction，by R．M
Ellangowan Colliery，by Geo．B．Havesty，E．M
Gold and Kilver Mining，by Francis T．Freeland，
Hot Spring Beposits，How Yegetable firowth， Assist Their Formation and Deposition，by I＇o．． Arthur Lakea
Iron and Mabganere，Tbe Gireat Cebrolla Fiver Depoeits，by Prod．Arthur Laked
Iron Ore Mining，by Charles Dean Wilhiment Iron Ore Mining，by H．H．Stoek
Metal Mining，by Albert Williams，Ir，E．M
Metal Mining Artificial Means of＂verilatic．n，by
Albert Williams，Jr．E．M SHM，
Methods of Mining in Botte
Mlacer Mining，General and specibe by Frof， Placer Xining，
Arthor Jakes
Prospecting，by Prof．Arilour Lakes
I Visit to the Great Leadville Goil Mine，the Ibex or Little Johnui
Prospecting for Macer Gold，by Prof．Arthar Lakek Alma Placer
fold Placers and How They Are v ooked 13， 97 Rosecoe Placer，Clear Creek，Colo 25，41， 33 ， Placers of Norib America
The Irainage of flooded Mines，by Raird Halber－ stadt，E．It
The Gquirrh Mountains，by Irof．Arthur Lakes ？ 4
MINING MACHINEIHY
Aboat Pamps（Laidlaw－Dann－fiordon C\％，）
A frood steam Pump
A fireat Coneventrating Plant｜Frazer \＆© Thalmurn） 231
Air Comprewors（Sormalk 1ron Work－（
A Iarke Air Cotuprecoor Plant I Ingerenll Eergetant Drill Ca）
A Large Electric Mining Plant（General Flectric a Morle
A Moders Steam Ilant for Mines－Hazleton No． 1
I Moot Effective and Inexpensive Pump（E．W

An Aatomatic Mine Doot
A Kew Conveyor（Link Belt Eng．Co，Monobar） A New Electric Coal Trill（Jeffrex M＇Ig．（Co．）
A New Recording Thermometer for Atmospbers Ranges of Temperature
A Xew scoop Buckes－I，dgernood）
A New Type of Rodler（ Cahaill）
An Improved Coke Gven Larry（3tineral Ridg Mreces）
A Novel steel Tipple
A Snecessfal Roiler（Cahal）
Cableways at Coal Strippings（ A ．Flory \＆C α ）
Cableuays for Open－Work Mining（Lidgerwood
Cahall Bonlere
Coal Wrashing Machinery（Stein \＆Bericke）
Combine Boilers
Compressed Air Locomotives
Culver lalves and separaton
Dry Steam（Hibe \＆Roberfan＇s Eeparator
Electric Machinery（Link－Eele Mach＇y Co．
Electric Mine Haalage
Electrienl Mining Machinery
Electrical Mining Machinery at Scott Haven Mines（General Electric Ca．）
Electric Mining Machinery（General Electric（o．） Electric Mining Machines（General Jlectric Co． Electric Portable Hoists（General Electric Co．）
English Wire Rope（Gea，Crudock \＆Co．）
Fighting Mine Fires by Direct Procers（Vajen
Fighting Mine Fires by Direct Process（Vajen d Pader
Garlock Packing
183,186,
High Grade Hoisting Machinery
Hosting Machinery，by Wm．M．Morris
Hont Compling for Trausmission Rope
Immence New Turbine Plant（Leffei \＆Co．）
Important to Jline Managers（Boodreau Dynamm BrashCa．）
Improved Car Door Fastener（Watt Mining Car Wheel Ca．
Ironelad Generators and Stationary Motors（Gem－ eral Electricta）
leffrey Conveying Machinery for Cal Yessels
Large Electric Locomotive
Lidgerwood Cableways for the Panama Camal MeNelly Coal Drills．（W，A．Mectane）
Mentorions Machinery Appreciated（Robinson

Mine Cars（Forest City Car and M＇${ }^{\text {g g．Co）}}$
Mine Harness（H．K．Porter \＆Co．）

Magbetic Attraction of Iron Ores
Methods of Working
Hining Revival in folorada
Jischecous Mining Laxislation
Vova Scotian Examinations
Pamping
Plan for Laying Out a Curne
Removing fias
Reopening a Caved shaft
safety Lamp Experiment
arveying 109
The Fifth or Higher Koots $58,190,1 \times 0,224,282$ g7t The Fifth koot by Arithmetic
The Natnral Phifoeophy of a Ventilating Curment 20 To Extract the Fifth Root by Arithmetic
To Find Any Root
Fentilation．．10，5k，\＆2，10\％，130，156，180，200，224，271 Centilation and Arithmetic 10,
Why Theory Has a Bad Eepute Among Many
Practical Men

MINE LAWS，MINING INSTITUTES，FXAMINA－

TIONs，ETC
An Important Opinion
Inthracite Statistics for $1 \times 0 \%$
Bituminous Coal Statisties Penna， 1805
（Poal in Illinosis（Report of Inspectors，Illinois）
（oal Prodaction in the United States in 1×05
Examination Questions Answered（Mibe For
men，Alabama，October，1814
Examination Questions Answered（Mine Fore－
Wen，Bit．Jennas．，Jan．1815．
$37,61,85,112,150,185,200,251,278$
Maryland Coal Statistics
Mine Inspection in Illinois－Thes Recently Ap－
pointed Inspectors，Their Distriets and Gov．
Altgeld＇s Instruction to Them
Slontaba Mining Slatistics
Xoya Scotinn Examination
Ohio Coal Statistics for 180 d
Tennessee Coal Production in 1 No
The Northweet Mining Aserciation
The＇ennsylvania Jine Inspectors＇Reporte
Western Penna．Central Mining Institute
Western Penna．Central Mining Institute，Decem－
ber， 1825 ，Neeting
West Virginia Mline Inspectors＇Reports

Exponions．

A Disastrous Explosion（Dubose， Pa ．
A Mastrous Explosion in a German Mine
in Ime Foreman Killed of Cal Tust Eureka No－
Explosion of Gas（Dorrance Colliery）
Explusion of Gas（Dorrance Colliery
Mine Explosion Killa Two Men
Femarkable Ferape of Eight Men
The Canse of Mine Explosions，by James Ash worth，ML．E．Nine Explusions，by James Asti－
The Dayton，Tenn．，Disaster，by W，M．Gib－
son，E，M Mare By Raird Halber 25
gadt，E．M
The Vulcun Explosion，by David Griffiths，State

Two soathern Mine Disastere（Camnock， $\mathrm{N}, \mathrm{C}_{7}$ ，

INGENIOUS MINE COXTIEIVANCES

An Automatic Switch，by J．J．Ormebee
Balanced Doors and Iron Air Bridges as Preventa－
tives of Mine Explosions，by Capt．W．M．Morris 19 N
Replacing Jine Cars on Track，by $×$ J．Routledge 196
BOOK HEVIEW $\quad 9,37,50,100,135,150,179,251,275$ PEREOXALS $136,159,194,194,297,251,275$
col Mining in Hanover
Coke，lias and Ammonia

10
4珞空
潞

10
156
10
105
路
w
26
${ }^{85}$ 185
210
$1: 8$ 3

78
\qquad
85
208 $1 \frac{26}{25}$ 190
100

87

5

A Jline Fonetuan Killed，（Thoe．Weat）
Death of James Leibert
Teath of Mr．Nat．W．Prat
PHIZE CONTENT（Ques， 16π to 240 ，Ans 157 to
228） $10,24,58,82,105,120,156,150,200,224,252,276$ TIIE PROGREス 1 N MINING．
A Competitive Trial of Flue－heated Coke Ovens 14，
A Creep in a Fronch Coal Mine
A Creep in a Fronch Coal Mine
A Lecture on Mining，by W．X．Atkinson．
A New Safety Explosive
A Theory in Mine Ventilation
Apparatus for Experimenting nith Fire－damp 205
Ampospheric Prespure as－Xffecting Mine Explosions 1as
Auriferous Ieposits of Xew Zealand，by Heary A．
Cleaning and Concentrating Outcrop Iron Ores

Colliery Exploeions and Coal Dust, by James Ashworth, 31, E.
Concentric Electric Wiring system for Mines, by 8. Mavor

Daraping Coal Dust in Mines
Detonators for shot-firing
Electric Motor Percussion Drill
Memining Tonds fortion prill 11 l
Examining Boards for Mine Inspectors is
Experiments with Explosives
Fatal Aceidents in the Mines and Quarries of
Great Britain in $18 \% 5$
Fire-damp at High Pressure
Fire-damp, the Foremenophone and the Indicat-
ing Safety Lamp
ookly and Frults in Penn'a Anthracite Beds
ierman Trade at Hotbe
Improved Modes of Working Coal
Improvements in Miners' Lamp
Intlammable Gases in Quarries
ton Ore in Cablurna
Iron Ore in Meu Jinig
Iron Ore Mining ou
Toin Ore Mring on the Mesabi Range
ake superior Mining Institute. Address by J.
Manafacture. $\overline{\text { Pes }}$
Harry Are, Cse and Abuse of Dynamite, by
Harry A. Lee
Colliery the Presatare of Gas in Coal at Lieven Mesazaic
Mesteazoic Reptiles
Meteorology and Mining, by Joarph Thompson F. Cambesodles

Mine Mape by Ren. W. Robineon, M
Modern Cal Tipplers by J. J. Preet
Modes of Working Coal, by J. B. Hanford
New Regulations as to Mine Explosives in Germany
Yon-sparking or Palyphase or Aternating Electric Currents for Mine Haulage and Pumping
Notes on Mining in Fortucal
Xotes on the History of Coal Mining in Scotland Doyx Marbles
Open Pit Mining in the Mesabi Range, by F. W. Denton
Recovery of the Karwis' Colliery
Safety Feplosiven
alety Lampsand Sbot Firing in Mines
Sampling, by F. Clarkson, C. E.
pathite in Tenuessee
steel Girders for Mines by E. Thompson
toppings, by Bernard calloghan
The Banket Formation at Johannesburg, Transvaal
The Copper Depocits of Chota-Nagpore, Bengal, India
The Cornwall Ore Hills by J. Birkenbine
The Effects of Different Exploxives on Fire-Damp
The Efficiency of Mine Pumps, by Per Larseon
The Engineering Association of the South
The Korumburra Coal Fields, Victoria, Australia
The Lake Mine Hoisting Machinery, Cleveland Iron Co, Ishpeming Mich
The Limitation of Localization of Colliery Explosions, by James Ashworth, M. E.
The Mines of Elha, by Herbert Scott
The Narnnga Tin Depasit:
The Prevention of Explocions in Mines
The Remuneration of Mine Sarveyore in Germany
The Rock-Phosphate Deposits of Florida
The Spontanecous Ignition of Coal
The tse of Electric Machinery in Coal Mining. Trap Drome for Fan

Catalogues, Etc., Received
Clastifcation of Bituminous Coals, by Bairl Hal-
Classification of Bituminous Coals, by Bairl Halberradt
Classification of Ccal--Correction
Climax Boilers Adopted
Coal and Coke Exhibit at Atlanta
Coal Field- of China
Coal Handling, by James J. Ormebee
Coal in China
Coal Mining in the Transvaal, South Afriea
Compressed Air
Compresed Air Haulage (Susquehanna Cual Co's
Compressors for Haulage Plants (The Norwalk Iron Works (a)
Contractors Methot
Correlation Table
Doors in Mines, by Jamee Blick
Durability of Chalk Mark
Economies in Mining by the Ese of Mechanical
sppliances, by Cyrus Kobinson, M. E.
Electricity in Bitatandous Coal Mining, (by R. ML
Hazletine, Chief Insp, Mines)
Electricity in Powder Mills (General Electric Co.) Electric Plant at Dasen Mines
Electric Pamps
Electric Traction in Belgian Collieries
Explosives for Cox
Exphosives for Coal Mines, by Prof. Yivian B,
Explosiges for Fiery and Duaty Mines
Feed-Water Heating and Purifying Spparatus
Fire-damp, by F. f. Keighley
Fire-Resisting Puint, (Jamieson)
Forvign Onders for American Elestric Pans
We-linghouse Electric and Wf:Coric Plant
Foundations

Graphite Paint

Hercules Wire Rope
High Grade Coals (Berwind-White
Hoisting and Conveying Machinery
Industrial Railways (C. W, Hunt Co.)
Information Wanted
Interesting Books
Immunity of Golliefs from Canor
Iron and steel Roofing, Steel Buildings, Ete
Iron and steel lioofing and siding
Large Boiler Sales
Largest Circulation
Lohg Distance Power Transmiseiob, (Fresno, Cal.)
Mechanical Rubber Goods
Merit Wins success
Mine Equipment
Mine Equipment Maker
Sine surveying, by Edward B. Dorham, E. is
Mine Surveying, by Wm. Hibbs
Mining in Sritinh Columbia
Mining in the Caucasu-
Mining Machinery Ordered
Mining Machinery (Robert Allison)
Mining Nafeguards, by Harry A. Lee
Modern Methods of Xlining and Handling Coal and Ore
Must Not Hold Public Office
Aew Engineering Olfices
Notice to Users of Jamieson Fire-Reeiativg Paints
Novel Plans for River Gold Mising
Vovel Protection Against Fire
Opening a New Coal Tract
Otto-Hoffman Coke Ovens
Packing,
"P. \& B " Paint
Pipe for Mining Purposes (Michigan Pipe Ca)

Resignation of Inspector J. E. Roderick
Epecial Electrical Appliances for Mines
superior Graphite Paint (Detroit Graphite Mann-

The Action of Electric Carrents on Mine Survey-
The By-Products of Coke, by Henry Whitney and
Joseph D. Weeks
The Capell Fan (Letters of W. Fairley and 6. M.
The Care of Boilers (Abendroth \& Root)
The Cause of Mine Explosions, by James Ash-
Tbe Chicago Drainage Canal (Ingersoll-Sergeant
Drill ${ }^{2}$ (
The Columbia Calendar
The Copper Deposits of Michigan, by ML E.
Wad-north, Ph. D
The Dodge System of Coal Storage Chosen by the
Erie Tehigh Valley Conl Co Aheorbe the Ieterate
of I. A. Riley \& C_{0} 號
The Loop Creek, W. Va, Coal Field, by Daniel W. Langdos

The Metamorphism of Coal, by H. Bolton.

The Preservation of Sine Buldinge (Jamienti

The Tennessee Centennial and Industrial Expo
The Westinghouse Electric Co
To Mine Managers
Utilization of Water Power
Ventilating Fans, by F. W. sperr
Yentilation of Fiery Mines
"Ventilation of Mines," by J. T. Bearc
Wentilation of N
Wages
Wanted
Wanted-second-Hand Machinery
What Electricity Can Do
Wire Rope Haulage, by T. F. Hugbes
Wire Rope Haulage, by T. F. Hughes
Wire Rope Transportation (Treaton Iron Ca)
Wire Rope Transportation
Work Macer Mines Carefully
Worth Having
MISCELLANEOUS DEPARTMENT.
A Bed Room "Wind-Curtain"
A Child's Genins for Asking Questions
Action of the Rain
A Few Notes About Coin
Aricas Shite Natives
Alaska Snow Houses
Along the Yukon Hiver
Along the
Ambergris
Ambergris
American Comfort and Luxury
Abong the Rasket Makers
A Yatoral Perar Trap
A Natural bear Trap
An Earthquake Detector
Arabia and Its People
A Werd With the Ductor
Renares the Ancient
lenares the Ancient
Reneath the Finger Nails
Bible Measures
"Buakling" a Book
Burros Find Water
Cable Line to Big Volcano
Catalina's Pigeon Poet
Change of Soene at Home
Chinge Telegraphy
Color Blindnes.
Colors According to Latitude
Commercial Prodncts from Acetylene
Commercial Prolucts Among Animals
Critoe Among Animals
Discipline and Organization on an Ocean Steamer
Doctors in China
Doctor of Machinery
Drarls in the Pyrenees
Educatiog Pomer of Danger
Electricity for High-speed Railrood Trains
Elepbant Workers in langoon
Emery
Engineering by a Mouse
Engineering Tools at Pompeii
Expert London Drivers
Fatigue
Firing a Big Naval Gun
Florida's Allizator Farme
Florida Pearl Fishing
Foolish Ruperstitiong
Hawaii's Burning Moantain
High Altitudes
Hints on Food
History in a Tree
Horse-Power of a Lightning Strokt
"How do youdo"
How Macearoni is Mado
How Mineral Wool is Made
How the Government Borrows Money
How Treaties are Made
In a Rothschild Strong Box
India Paper
Intereeting Facta Regarding Divers
Is Mars Inhabited?
Kexping Fruit Fresh
Late Euppers
Laundered Air
Light and Disease
Lightning
Liquid Air in Commerce
Living and Learning in Olden Times
Making for the Hydrant
Makiog Holes is Glass
Mexior's Floating Gardens
Nature's Plan of Distributing Plants Witbout the Aid of Man
No Book Typographically Correct
Novel Protection Againat Fire
Oat Meal Drink
Odd Prodncts of Utah's Mines
One of Nature's Provisions
Obe River Staree Name
Ontario's Moving Hilla
Ontariós M
Pedicalobes
Pediculocis
Personality
Phenomena of the Hair
Photographa by the Mile
Photographs by the Mil
Prosident and Cabinet
President an
Pure Water
Pure Wa
Raisins
Eeality
Fieality is the Great Educator
Reptiles of the Deact
Residences in Palestine During its Gireatest Proe-

perity

Reversal in Invention
Right on Time
Rbbler Sboes Eixty Years Ago
Scencry of the Mloon
ean Bathing
Senkations Fxperienced in Falling.
shortsightectuess
sok.
17%
179
125
106
109
35
25
3
13
izi
120
$1+8$
125

Trap Doors for Fan Drifts
Water Cartridgee for Blasting, by L. Jaroljmek
Vater-Tube Boilers
Western Penna, Central Mining Institute
West Virginia Mine Inspectors' Reports
Thos. Hall Causes of Mine Explosions? By
Tal

Mscellaneous

Acetylene Gas
Acknowledgement
A Convenient Publication
A Creditable Publication
A Flume Conveyor, by L. \& Ropes
A German Market for American Anthracite
A Good Rope Record (Gieo Cra
A Good system for Your Slore
A Great Electrical Mining Plant (Weatinghouse Electric and Manufacturing Ca
A Handsome Publication
A Handsome Sou
Air Compressors
Air Compressors, Steam Pumps
Large shipment of Electrical Mining Apparatas
Westinghouse lison's Coupor
A Mine Fire Extinguished (Port Royal Mine) by II. K. Gray

An Automatic Switch, by Baird Halberstadt, E.M
An Eificient Type of Boiler (Cahall)
in Inpurction Granted
Anti-Rust
Anthracite Tonnage Allotment
A "Prison" Mine
Artesian Wells and Water Afotor-
A suggestion to Advertior-
A Unique Album
Aatomatic Dump Litigation

Beauties of the Lehigh Valley
Bellis Mine Collars
Blasting in Fiery Mines
Boiler Teets
Cableways on the Chicago Drainage Canal.

4

Snow Shed- of the Central Pacitic Railroad
some Facts About Bullete
come Queer Roats
Some Remarkable Rireas
zomething About Fire Engines
'sparrows' Sagacity
siruck by a Wateropou
Telegraphic Cipher Code
The Art of Breathing
The Bridge of an Ocean Liner
The Broncho
The Care of the Aged
The Case of a Bell
The Codor of Water
The Depths of Space
The Distribution of Animals
The knd of All Things
The Erils of Over-E
The Front Cow bays
The Frontiersman's Riffe
The Great Emergency Man
The Marvelloas Ne
The Moon and the Weather
The Ordinary Farthworm
The Pay of Members of
The Pay of Members of Congress
The Probable Origin of a W
The Probabie Origin of a Well-Known Sea Story
The Right Philoeophy
The Season of Shooting Stars
The Shrimp
The Source of Malaria
The Strength of Ice
The Sar's Heat
The Telegrapher's Ear
The Temperature Under Us
The Tombs of Ancient King:
The Tyranny of the Moon
The I seful Microbes
The World's Holidays
The World's Tallest Structures
"This Indenture'
Tiny Oxen
Tissue Starvation
To Ride in a Crowded Car
Treatment for Flectric shock
Two Long-Dietance Power Transmiseions.
Enderground Water
Tnique Mail Routes
Uses of a Piece of String
Walking Backuard Care for Headache
Warm Feet
What All Boys Should Know
What Causes the Light of the Fin
What Shall We Eat
Where the Presidents Are Buried
Why and How Thread is Numbered
Why sand proats on Water
Why the Winds of March Give Place to Shower-
Why We Are Healtby
ESSY LEPaONS DEPARTMENT.
Emistrix or Misisg.
Electro-Metallurgy of Copper-Electric Polarity
The Action of Comomutators-Electric Impulse
Unite of Electrical Measures-Correct Ideas of Electrical Terms-High and Low Tension. Amperes and Volts-Volume and Inten-ity. The Coulomband Heat Units-Electric Resis-ance-The Tranatriesion of Energy
Electric Xodee of Action
Mis Usod for Illamination-The Behavior of Parning Oils-The Three Ntagee of Combus-fion-The Causes of Smoking-How to Teet Oil- for Rafety Lamps-Thotometric Measore-wents-The Tuo Modes of Measaring Light Shadow Measurement-Measuring Light by Equalization
What Will Be the Future Miners' Lamp-Electric Lampe in Mines-Velocity Testing of Salety Lampe salety Lamp Dimensions Oil and Gas Lights-Gil-Gas Flames-Ideal Safety Lamps-Improwed Safety Lamp*-Tbe Stephebson Larup-The Jack Lamp
The Diffusion of the Tight of a Safot
The Diffusion of the Light of a Sufety Lamp. The Correct Elevation for the Light-The Carrect Angle of Diffusion-The Diameter of the Glass Cylinder-The Lampe Miners Prefer.
Refraction of Light-Good Light in safets thefraction of Light-Good Light in Eafety Lampe
Different Forms of Satety Lamp Glasses-The Dimensions of Lamp Glaseer-The Eurfaces of Glasses-Efiects of Hot Glaes on Light. Fecapitibiation of Facts
The Yertical Paralleliom
The Vertical Paralleliem of Flames-Forms of Lamp Glasees-The Volume in Relation to the surfaces of Giauze ('ylinders-Commendof the Princigal Facts facts Relating to fafes
Shell for a Light-The Claims of i Smanll Elat for is Light-The Claime of a Emall The Heating of Lamp Glasses Should be Pre-vented-General hecapitulation
The Ganze Cylinder of a Safety Lamp-The Admission of Air to a salety Lamp-The of a fafety Jamp Affected by Yentilation Restrict the Supply of Air to a Lamp-The Recapitulation of Facte
bulooy of Coal.
Life Conditions of the Earth
Life of Silarian Times-Carboniferons Foskil.
The Varietics of the Ceplaslopoda-Conifers of the Devonian Period
Period

PaOK.
191
2019

439
118

239
118

180 | 118 |
| :--- |
| 200 |
| 10 |

The Lafe Indices of the Coal Period-Geology a Registering Thermometer-The Pentagonal Chancteristics of Animal Life
Euptures in the Earth's Crust-The Effects of
The Miner's Intereots in Geology-The Origin of Metallic Ores in Veins-The Nature of the The Giret of veins
The Great Land Masses-The Areas of Land and Water Never Vary-The Axes of the Water Dischanges-Recapitalation of Facts. Mixime Anernamenc

Arabic Numerals-Numeration-How to Add Efficiently-Arithmetical Signs
Mintse Macminery.
Velocities on Incliner-Taws of Resistance on Inclines-Times and V tlocities on Inclines
Gyration and Percussion- Ifean Eofective Fadius of a Fan-The Calcolations for Etficiebey. The Mode of Action of Discs and Ricus
The Mode of Action of the Fan-The Piston Analogous to the Fan Blades-Velocities and Densities-Balabcing the Mine Resistance Velocity Into a Vacuum-Preasures and The Blowing Fan-Pumps and the Velocities of Fluide
The Central Orifice of a Fan-The Orifices of a Fan-The Correct Orifice for Measuring Quan tities-The Required Preadth of Fan Blader by Wave Mongth of Fan Bladeg-The Loes Gnerey Due to Intermittent Action- The Best Energy Due fo Vermittent Action-The Best of the Areas of the Fan port The raws the Diameter of a Fan-Recagitolation of the Former Article
The Paths of Cor
The raths of Current Motion-Diffusion of Air Carrents-The Form of Fan Blades-Re-enter Ing Air-overent ing abd Trail of Currents Prosorare Dae to Involute Cases Throbbin Prossomed by Ventilating Machines-Vent lating Pumpe-Recapitulation
Becapitulation of the Principles of Action of
the Centrifugal Fan-The Varsing Detion of Air-To Find the Volume of Air Entering of Fan-The Balance of Mine Resistances-Van-ilating Machine for One Streamrancing Curvatures of Blable
Questions and Answere Abont Fans-The Dimensions of Centrifigal Fans-Velocities of Air Currents Into Depressions-The Area of the Orifices of Intake and Discharge Presenres Die to the Radial Colomink-Quantities and Velocities of the Air INecharged Calculations of the Working Efticiencies of Small and Large Fans-Caleqlations of the Useful Effect of Fans on the First and Second Motion
Mine Drainage-Correction of the Pump Bal ance-Is There Such a Principle as suction The Hydroetatic Balance of Pumpes-Dia grams of Water and Mercury Balance
pump Movements and Resistances-The Kizes of Pump Valves-The "Tail" or Suction Pipes of P'umpes-Recapitalation of Facts
The Hydraulie Main or Delivery Pipe of Pump-The Connection of the Intermittent Flow-Rod and Planger Pampe-Recapitulathon of Fact
The Knock in Pump Yalves-The Halt of the Cormioh Engime-The Double Beat Valve. The Cormbh Yave-The Ihston Nalance Valve-Recapitulation of Fact-
The Principle of Action of the Lift Pamp-The Pressares on the Yalves of a Lift Pump-The Interruptions that Occur in Pump Aetion. Recapitalation of Facts
Mistreg Vermons
Local Ventilation-Prescure in Ventilation
The Velocities of Air Carrents-Measurement of Current Pressure- Water Gauges in Action The Advantages of Tube Gauges-Improved Typess of the Water Gauge-False Reading of
Mechanics of Fluids in Motion-The Water Gaupe-The Difference of Potential-static Air Pipes
The Inertia of Moving Air-The Pressure and Velocities of Air Carrent8-Inertia of Air in the Shafts of Mines-Mcasuring the Force of the Wind-The Pressare of the Wind-Regulator Experimente
High Prosare Ventilation-Terms Used In Ventilating-Potential, Velocity and Press ure-The situation of Mibe shant-Drections of Currents Along the Faces of Work-mge-Favotable Conditions for Ventilation. Rexapitnlation of Facte
Air Coursing in Relation to Hanlage-How the Cars Produce Coal Dast
Accumalations of Gas-How to Approach Aecumnations of Gas-How to Remove Gas Fires in Coal Heap-The. Breathing of a Gob Undengroand Fires-G Themistry and Gies Gob Coderground Fires-Chemisiry and Chemical
 ground Fire in the Workimge-The Elfeet of High Pressure in Giob Fires
What is Coal Dust?
The Revidance Thee to Air-The Diffement Velocities of Falling Bodies-The Effects of Different Suspension Surface:-The Thit for the Velocity of Dost Partirle-What Shoond he the Limiting sizes of Dust Parlicles Recapitulation of Fucts and Principles

Dust Raised by the Wind-How the Clouds are susperded-The Classification of Mine Dust. Recapitulation of Facts
Dust in Felation to Current Velocities-Wetting the Dusty Roads-Wetting the Suspended Dust with a Spray-Should the Intake or Feturn Air be Wetted?-Fine Dust is the Most Intlammable-The Agents that Supply Dast to the dir-Where Beot to Apply a
Water Spray-Recapitalation of Facts

361 NEW INVENTIONS

Air Compreseor
Apparatus for Burning Ccal Du*
Artificial Timber
Automatic Boiler Feeder
Automatic Coal Bin
Automatic Fire Extinguisber
Blasting Cartridges
Boiler Furnace
Boller Furnace
Breaker Tooth
Brake for Mine Car
Cable Grip
Conl Drill
Coal Grinder
Coal Grooving Machine
Coal Grooving Machine
Coal Handling Apparatus
Coal Jig
Coal Wipple
Compensating Pumping Engine
Concentrato
Core Drilling Machine
Coshing Mill
Cutter Wheels for Mining Machine
Developing Power from Steam
Duplex Pump
Duplex Steam Pump
Electric Mine Drill
Electric Mine
Feed for Mining Machines
Feeding Conl Dust
Gas Tarbine
Gate for Coal Chutes
Grate
Grinding Mill
Hand Rock Dril
Heat Engine
Hoisting and Dumping Drum
Hydrasic Air Compressor
Incandescent Oil Light
Jig Box
Lamp Holder
Leghting Kafety Lamps
Loading Conveyor Buckets
Longwall Mining Machine
Labricator
Labricator for Mine Cars
Magnetic Ore Concentrator
Tethod of Generating Steam
Method of Mining Ccal
Method of Sinking Shafts
Mine Car Journal
Mine Door
Mine Drill and Motor
Mining Drill
Mining Machine
24, 47, 71, 119, 143, 169, 170, 183, 217, 242, 265, 266, 290
Mining Reamer
Mining Wedge
Mixer for Airand Coal Dant
Ore Crusher
20
28
Ore Car
Facing Blasting Fases
Pneumatic Hand Drill
Preumatic Pump
Poeumatic Pumping
Preumatic Water Elevator
Power Meter
Pamps
Pompand Engine Valves
Pumping Engine
Pump for Gritty Water
Pamp Piston
Pamp Valve
Raising Water
Reducing Valve und Steam Trap
Rock Core Drill
Rock Drill
Rock Drill
9. 96,143

Rotary Scrien
Safety
Lamp
Safety Lamp
Enfety Lamp Cleaner
Ecreen Segment
Shaft Sinking Apparatus
Shaking Screen
Steam
Steam Blower
Steam Boiler
steam Boiler
Slate Keparator
slate separator
Steam Boiler
Steam Boller
Steam Ore Stamp
Spooning Tool
Spooning Toal
Steam Trap
Sleam Turbint
Superheating Steam Boiler
Thermo-Kxplosive Gariridg
Tubular kocking Gitat
Tunneling Apparatne
Tunneling Machine
Valve for Fock Drills
Valve fiear
Valve Gear for Pumpe
Valve Motion for Kock Drill
Variable Gend firaringrill-
Water Tube Boiler
87
290
217
198
119
194
218
164
289
48, 71, 169, 17
218, $\frac{188}{265}$
120, 265
23, 245
119
120
71 70

0

144,194 165
206
191 194
47

The Colliery Engineer

 IMETAI IVIINER.

Written for Tak Colasay knawess and Meval Mines
ELLANGOWAN COLLIERY.
ONE OF THE MOST EXTENSIVE COAL MINES IN THE WORLD

A Description of The Seams Worked, The Method of Working and the Surface Improvements. (Hy Goo B. Hadenty, Mising Etecincer.)
One of the oldest, Inseest and most productive colHeries owoed and opersisd by the Philadelphin and Readlog Coal and 1roe Company is Ellaugowas. It is astuasted in the Western Mtiddle anthracite coat fleld of Peansylvania, in Schuylkill county, on a libe between
the tomas of Mababoy Clity the tomas of Mabanoy Clty and Shenandosh and about midway between them. The workiogs are pribelpaily on the south dip. to what is classified as the Ellabgowna Basis, (whlch is shown is Figure 1,) and they are
extenalve that they approach extensive hat City and Kolckarbocker collientes, on the north, North Mahaboy and Sufoik colluetses on the east. Suffolk and Mhaple ytul colWest Shenandosh. Turkey Ran and Camberdge collerier on the west.
Ellangowan colliery was dirat the name of Maple Dale by Mr, Jawes Lanolgan, and to this day is called ${ }^{-1 / L a u-}$ nigats" by many of the working people.
its morkinge at that tleue, suse wo up the abuut 1870 consisted of drifts, all above water lovel. on which the colliery is

opered in the middle split of the Mammoth velu, aud driven east and weat and tunuels started from them borth and south, to the underlying and overlying veins. Since that time if any colliery in the Schaylin rese of warliou operution, Ethagowanwas aiso, exopo
 in operation. The yeard that the colnery has besty was the total deatroction of the breaker by lire, on January 5 th, 1878 , fortumately bowever no person was

Grygral Vigw of Ellanoouas Valiey, Looking Sopta
short space of time was again ready for operating. There were three of theso Irob girders and twice as wauy driling wactitics, so that the moric could be executed ks thas as desired or possible. At the point where the shaft was suok, the wash and other goft messures coatiguous tbereto, continued to a depth of 30 ft . below the surface live. To prevent too beavy a strain on the shaft timbers proper, und make as secure a job as posaible, 12 toch round timbers were placed skin to skin atsinte of the spacs required for the regular shast thmbers, io a depth of is fl. Inside of these round timbers位hes вyuare, were placed sin to akis, to a depth of that, telow this point they wete set at 3 feet from coter to center and coothaed at that distance to the bottom of the shaft, exsept is places where more soft messures were met,wben the timber was again set skin to akitu.
The plas of shatt timbera near surface is shown in Pigure 2. On the shaft level, the tunbels driven north cat the bottom split of the Mammoth vein, the skidmore, Neveo Foot and Buck Mountain veins, and the tusuels driver south cut the top split of the Mammoth velb, the Four Foot, Hotmes, Primrose and Orchard veing.
A plane 100 yde. long was driven for split shatway (oast top split gangway, and a the tore chus opececd. the uoderiying veios.
the ubderiying velas.
Owing to the extreme life from the shaft lexel to the water level, is the velos above the top split, and the fact that it would require several planes or counter ghates to work it, a single

 vein 12 ft . thlek. Gangwayg were immediately girders to the point desired for the next bole, sode in a
were opened in each velu, one east and the other weat bratticed so as to ingure a free circulation of alr at the
so that the colliery was a mammant and the other weat the company took charge and began shippting.
Some idea of the magnitude of the operations can be ornsed when we cousider
1et. The veins worked cover a surface ares, sepsately of $32,000,000$ equare feet, of nearly 600 acree.
3d. The extreme run east and west is nearly 8 milea. worked is one humdred and twenty-flive (195) feet This

- स्य प प

is not coanting the same veio on Alfferent levels, but all the velns on one level.
4th. Thereare over thirty (30) milles of gangways, through which coai is passiog every day that the col liery is in operation.
5ith. There are 1390 gards of tunnels through rock and slate, connecting the differeat velas on the various levels.
6th. There are over 900 men and boys, employed in and about the colliery,

7th. Coal is belog mibed in +1 different gangways 8th. Eight handred and eighty wagoes of coal (of 2) toes each) have been dumped ato the breaker is one day of tea hours.
There are few collieries where 8uch a diversity in the wethods of mining is necessary. While our section shows a comparatively evel and regulse pitch (Which is tbe care on the libe of shaft
where section ts taken), yet where section ta taken), yet by the workloga there are by the workinge there are possibly as masy changes in the weins astor there are veius. In order to fally demontrate the different methods, we have thought it well to take them emparately, and by plane, sections and briet rat parks, make them fo plain that their advantages for that their adivastages for verine in which they are und can be readily observed.
Fig. 3 shows one nethod Which was used where the Iip of the vein was about 20 degrees. An ordinary shute 3 yards wide wasdriven frois the gangway to the tirst or "etump" headtog, wbere it was widened out to the width desired for thes
breast. In velus where there
is little rrfuee abd no explosive gases they have no gob, and the sheet iron, which is necessary on this pitch. whe contisued up the center of the breast, sud the coal from the face nod sides easily diverted to It. The plan, bow rver, shows a gob, as it cas be more rendily understood how the brenst woald be worked without the gob.
The first headiag is asanally 8 of 10 gards from the blgh side of the gangway, is driven with the gangway and used as a return airmay to the firat working breast

Fio. s.
(counting from the face of gangway), Where the air is turned and pasbes up the breast to the besding neareat the face. Through thls it phestes to the bext breast outside, and ao on until it reacbes the main retura airway These headiags, which are about 6 ft . wide by 5 ft . high og, sud when a new one ts completed, the next below is
face of brenat.
Fig. 4 shows another method, which, owing to the light pitch on the levels bow working, to used considerably. This method ls considered necessary wbere the pitch is too beavy to run the mine wagons directly into shutes. It is termed amougst anthracite mon sheet iroe shuts.
brenst.

The shute is opened in about the same manoer as de-

Section throuph A B

Ellamowas Combery Shayt-Hean Fbame, -Ready for Start, 6:30 a. M
with the coal, at a reasonable cost. After a cobsultation amongst the officials of the mining department it was decided to experiment with the method described in Fig. 6, whleh prowed very successful and whs contibued The gangway was driven In the Bottom Split, brenst with two ahutes, as deacribed in Fig. 7, wem driven

|1111)

Fia. 4.
from it, and the Bottom Spilit coal mined in that way. On the opposite side of the gangway, midway betwees shutes were driven, on a pitch
of about 30 degreen, through of about 30 degrees, through coal and slate, to the Split veln: from the head Split velin. frow the head of these bsok shutes, narrow staties wlate of the Maddle Sal't, until thes had passed sor, untur they shate in the Bottom split vele below Bottorn full width breasts were opened, and the breast contimued is deseribed in Fig 3 . Ventilation of these dopable breasts was radily oblaiaed by aptitting the current of air at the face of the gangway, nid sllowing part to pess out through the Bottoms Spilt workitg as previously described, the other part passing through the last back shute to the Middle Split breasts and on ont to the return alrway.
Few coillerles bave presented buch varied experitmoes in the mining of anthracite coal, and it has well been sald. "that an boosest sud faithful mas who bad opent the greater part of his time lo the different offelal apacities at Ellangowan colhery was a desitable mau for any coal company to have."
which the regular mine wagon is run directly into the point of work: this method is used very little at present者 the east Holenes velo worling. The brenst is turned from the gangway with an easy curve aboat 16 ft . radius, had driven about 4 yards mide to the first heading, where It is widened to the full brenst width 8 or 10 yards, accorling to circumatabces. The plan shows the wagon track thrown to the left after entering the breant proper, the reason for this is obvioas, as what little dip the velin bus is unturaliy in that direction, and belog the lowest point in the brenst is the best location for the track. Ventilation is procured by usiog the gauguay as the inlet and the headlinge and bevasts as the outlec. Doors are placed in the brenst at the high side of the gangwny. abaroloned hesdings are bratticed with sail cloth or bourds sud in this masoer an uaboterrupted current of alr is secured.
In Fig. 7 we have an entirely different method from any of those alresily described. This method was used Is the sbaft level Bottom Split and Top Split gangways. where the sverage dip of the vein was forty-five (45) degrees. It conisists of a breast with two shated, the gob io the center and beadings every 13 of 20 yards
Where the amonnt of refuse in the vein fo swail aid Where the smount of refuse in the rein is stmail aid
does not ancumulate fast eoough to keep the gob well does not accumulate fast ewough (the keep the gob well structed near the face, 5 or 6 ft . high, at right angles to the picta of the velu, and the fet The is throun over the op of thens to the gob below. These batteries afterWards setve or a stapping for sh sulaithonal cob as the breast aivances. Tasse bovast are ventilated by the air passing up the finsde shute to the face of breast, and lows the outaide shate to the hemding nearest the face, theracs througth thia beading to the next breast outsides and so on to the masin airway. It has proven a very satifnetory method of vestilation.
In the western part of the basin fin the counter or upper Bottoen Sillt of the Mammath Mammoth velu nad the Bottoen Culit of the Stamanoth retil were so close to one

 eplite together and prevent the slate becoming mixed

The followieg table, shows

The reduced sbipments for the last five years are attributable to the forved suspenaion made necessary by the general regtriction in output, In the anthracite coal trade.

Fin. 6.
The P. \& E. C. \& I. Co. has stood faithfally by its agreemests, bot to produce more than a certain percentage of the entire output, and-balf and three fourth their otbers why reducmi
The demand for this coal is such that the colliery could readily have worked fall time had they been allowed to do 50

Sach an exten-ive opeiation with its bumeroas connections to workings on higher levels, espectally to the

Fie. 7

Western portion, where it is connected with the famous Sheuandoah City colliery stripplogs, naturally collecte at ebotmous amount of water, but the ofthelala have wisely provided for sll sucb contingencles and have ample pumpleg machinery in poeition to hasdle a vast amount of water.
The apparatus consists of two (2) large bull pumpa, one with oteam cylivder 00 inches in dinmeter, water
 Duwn Bosk-Hozs.
 tnches dineneter, water cyilidvas 9 laches diameter and all theee nppliances it was barrly poselble to handle the ss inch strake. etch pamp having a eapselty of $1,152,000$ water as fast as it accumulated gallins per twents four bouss.

This givmo usacomhinuil purnjing eapacity of $6,391,000$ mentloned above would be quite opportune.

Fig. 10 -Cal Holet us Plaxe to Bhenger: Tir.
cylinder 20 inches diameter nod a stroke of 120 Inches, sidering that the boisting engines ans capable of boisting having a capacity of $1,173,600$ gallons per twenty four one of these tanks every fifteen secoods, and allowing hours; and another with atean cyllnder 55 inches is diameter, water cylinder 24 incheg is diameter and a atroke of 123 tnchee, baving a capacity of $1,602.000 \mathrm{gal}$.
lons per twenty foar hours.
one of these tanks every fifteen secoods, and allowing
twenty-five becoods for flling and emptying. we have $1,206,000$ zallone pee twenty four bours. They bave algo furnished a large tank, with a caplelty of 1,600 gallons
for use on the slope, which can deliver on the surface

These bult pamps are loented over and in the wat ar compartment of the shaft. A view of the large steam eglinder and its eoneectione is shown in Fig. 11 .
Theres arestao to place is the pump room, Irivep in rock at the foot of the shaft, theve standard P . i if

5ifi,000 gallons of water is twenty four bours: summarising, the apparatus in position and on ham, realy for uses, is eapoble of discharging on the surface $8,198,600$ tallons of water every twentr. four hours. It may seen imposalble that such an amount of water could collect

gallone per twesty four bours with the pumpa rumbing at a menn speed; if forced they are easily capable of punuptig 20 per ceat more fer any
IIl sulstion they bave provided two Lron whter favks with a cappoity of 600 gallons, whlch in eneerges-ina are used in the boisting compartments of the shaft; cos-
${ }^{9}$
These pampe atse used at all of the P, \& It , C, \& I. Co. colliverles, wore desigand and constricterl at their and for and wet equipped sthope at Poetsviles, Pai, equals is their clas.
They areso slmple is construction that any ferseon with a slight iden of mechabics cantpat them together. ran them and keep them in repair, so durabie that they will last as long if not longer thas the moest expersive pamps, and so effective that when is good sobdition, as regards packing, ete, they have been submenged for periods of ten thays to two weoks and contisued running as smooth and regrular and delivered at mach water as ever. When the water had been lowered enough to reach the pumpa, the pistoos were re-packed, a few slight repairs made and the pumpes started up agsin. Having now travereed the insile or mining portion of the colliery, as briefly as conslatency will allow, we will bow follow the coal from the shatt and slope toward und to the bresker. Once landed on the surface, the loaded mine wagons are run by gravity to the foot of the car botat or plsues, shown in Fig. 10, which has two racks for hoirting the losked who, The londed cars one rack for lowering the ermpty cars. The loaded cars are boisted to the top of this planes, cloee to which the breaker tip or dump is located, dumpees sum the returned og pavise, This plane is supplind with three endlepe.
This plane is supplind with three endless car holst chains, ove for escb track, with hooks of catches at the car, go that cars can be holsted or lomered at most any time desired as the machinery ruaning the ehaing is conmected to the braker engine and is is coostant motion while the breaker ls is operation. uotion while the breaker is in operation.
preparation for market now begins, and this colliery preparatiou for market now begins, and this coliery. tion of sbipptog some of the beat prepared coal.
To follow the eoal in its different courses through the breaker, we fear would become too tedious to most renders, so we will described the breaker machleery, Atc, se briefly as posalble.
The breaker is 130 fret long, 90 feet wide and 55 fent high from the rail at loadiog shates, sbown in Fig. 12 and is fitted out with all modern machlnery for the prep-
aration of anthracite coal, some of which is : 4 sets rollers, from 22 to 36 inches in diameter and from 30 to 3 screens 5 feet dimoneter 9 feet long, 4 screens 4 feet diam. eter 6 feet long, 12 woodes jigs with
scrapers, ete. completere, 9 sets of coms and slate elevators, and sll other bocessary appliances, all of which are rus by an engine with an 18 isch cylinder and fol lach stroke.
In sdatition to the brenker there iss sep.
srate jig house, fis srate jig house, 53 feet long, 41 feet wide and 40 feet high. which contsins 8 wooden jige, 9 gereens
from 4 to 5 feet in di. from 4 to 5 feet in diameter and from 6 to
13 feet long, and 2 13 feet long, and
aets of elevatore
50 feet long. This maschisery is run by an engine with eyltnder 16 inches dismeter and 84 incl stroke.
The breaker, jig house and all othet colliery bulldings are bested by stesm, which reguires nearly $3,000 \mathrm{ft}$. of gas pipe from if isch to inches in diameter, and 3 large heaters 30 lbches diamater by 30 feet long. These heaters are ased in the breaker where an extensive heating surface is necespary. The steam gebernting plant consiats of 8 tubular boilers 72 inches diameter by 18 feed loug, capsble of producing 18 cyllider boilers if ing also 18 cyllader bollers in inches diameter by jo feet loog, power each. or a cambined power each, of a combined power The latter of eylis. dee boilers, are gradually being replacill by the tulmis boilers, which are superior in easy ways, atthongh the old eylioder boiler had its adrantages. the pribelpal one being that during the droughts, 90 general in the droughts, 80 peaceal in the neighboring springe are deatroyed by breaches and crop falls, the ackdulated water discharged from the mines could be purifled ebeaply to such a degree that it conld be u8ed for steam purposes in these bollers, but then there was constant danger of neglect in the proger prats. ficatlon of the water. and the company has undoubtedly parsued a wise and ecoborncal course in gradually replacieg theen with the more
modern tubalar bollers, which are capable of producing a greater per cept. of power per ton of fuel cousumed This change, of course, teceseitates as adequate supply of pure spring water, which is furnished by the Anthracite Water Company from their reservoir on Waste House Run, a few mfles north of Ellangowan. To meet the increased demasd, this water company has laid durling the summet of 1804 , uearly 7,000 feet of 10 -inch houtboy pipe, connecting thelr reservoir with those of the Mahanog City water company, wbich owns several reservoirs, and in ablitioe have a pumplog station in the Catawieas Valley on Measor's Run and Nigser Itue, whleh can furnish a supply almost inexhaustible
To close this article without making mention of the Improvements now in progress and the future prospecto
of Ellangowas, would he unjuat alike to the reder of Ellangowas, would be unjuat alike to the realer and the compazy
During the past year or two the slope was extended below the shate ievel a distance of 110 yards, to develop a bew lift, which, by the way, is Elisugowan's limit in the basis. this slope wal ber used as a teader slope for men, feed, tiaber, ete. A double track slope for holst-
ing coas thas also been annk to this level, whieh is now ing coal has also beeti sunk to this level, which is now completed sud in ogeration. On this bew, or Sth lift, gangways are driving in the Holmes vein (14 fuet thick) enat and west, and a tuntiel has been started from the
west Holroes gangway townrd the Brak Mountain veln. west floloues gangway toward the Buack Sountain veln,
which it fa satimated, will lacect at fin yard. The tuopel which it is tetimated, will fecut at +00 yards. The tuovel Split of the Mammoth veln, 12 feet thlek, aud the Mlidule split of the Mammoth vein, 12 feet theck, aud the Midale
cpilit of the Msmmoth vein, 12 feet thicls, and will eut velne aggregsting 43 feet in thlekness. Conslatering the vilbes east and wost and that the veime will yield 00 per rua east and wost and that the reitas will yield bo peer $5,060,000$ tons yet to be produced from this level alone. batimating thst the coal rematoing unmined to the upper lifts mill gield fally se much, givee u8 is roums numbers $10,000,060$ tons to be producad from the whole colliery; then taking an average production for the past five yesrd, we fiod that EHaugowan colliery will bave coal enough to continum operation 25 years more, of a total of 60 years since it was first oppued

In our estimate for the new lift, we have not coasidered soy velus above the Holmes as they are reserved for Slaple Hill colliery on the soutb.
A word in regard to this new slope: When It was dectded to open the new lift it was first proposed to extend the present sloper, with a double track then widen the entire leugth above the shaft
level and have a donble track alope from the surface to the new lift and take the coal to the surface through thls slope.

This plan, however, has so many disudvan tages that it was fiusily alondoned and the slogle track slopen extended, aud proviston made for a double track usderground slope from the shaft level to the new lift. Aftet se. leeting the most availsble location, a narrom shute was driven on line of the propoed slope from the new lift to the shaft level. After this the slope was started from the shaft level, and this chute was used to convey the coal excavated for the becessary width of the slopes, to the fangway below, so that no engines were required to the sinking of the slope The timber was lowered trom the shaft level ha needed by an ordinary band crane and

For varfous reasone it was deemed adrisable to place; The socompanying cuts show riems of this mine inthe engines for this slope on the furface, and bore holes gulator as well as the Jewell Trolley Sling, which is 8 inches in diamoter were bored fona the garface, with s ${ }^{2}$ most frequently used in connection with it.
regular oil mell drill rig, and so accurnte the furvey, thas the duviation from the point desired in the mines, whe scarosly boticesble. placed and enclosed with sand cailing was this pipe mus for one rope sand and cement, this pipe was for one rope. In the other bole, 4 Inch ofl well casing for the other rope, 9 inch gas plpe for spwakling tubee, and if ioch ghs pipe for signal wires, were placed sud the whole enclosed with sand and cement. A
view of the eogime bouse and sheaves for this view of the ebgine bouse an
slopeste shown in Fig. 8 .
When the holes were cor
the slope on the whatt completed, and the landing of । The mive insulator conslata of an outer covering of the slope on the shaft level nearly completed, it was i tither bronze metal or mallenble iron, which is provided with mesans for sttaching it directly to the roof of the mibe by mesns of lag screws or bolts. Thls affords as very thorpagh protection for the Insulating masterial Inside of It, sud effectuaslly prevents any molsture from reaching This inaulator is also de This insulator is also degigned In such a manner that
thece will be bo surface leakage of the carrent, due to age of the current, due to cosl dust or other conducting suhestanoed settiligg upoe it, suif its cothstruction is such
that thetrolley wheel is pres. that the trodley wheel to jrise-
ing uoder the banger cannot strike apainat the insulator. Thls Insulator wis especially designed for one of the largeat companies which largest companies Which
make a specialty of Install. ing electrie rallway planta in mines, and is meetibs with great saccess.
The Jemell Trolley Sling is obe of the lateat designs of trolley wire ears that has been placed upon the tarsket. The wire is simply laid is the concave lip and the projecting lugs sre bent down over it,
found that owing to the plllars in the inamediate vicinity of the slope being very parrow there were indientions of a "equeers" or Bettling which if sllowed to coutinue might eventually ruin the bore boles and damage the votire slope, As the heavy timber alrendy in place gave evidence of the heavy strain it was decided to builit trick and cement walls, and to use steel T rall for lagginge to eupport the roof, this was done and so satis factory were the resalts that we show in Fig- 9 hos the walls were constructed.
In closing, the writer
In closing. the writer wishes to scknowledge the Mr. Goon. \& Clemedes. Misigion. Be. Lutber, Gen'l. Sup't., Mr. Geo. S. Clemene, Division Eagineer aud Mr. John
II. Pollard. Assintant Engluen is charges II. Pollard, Assintant Eaglueer in charges

The Otto-Hoffman Retort Coke Ovens,

We have received from the Otto Coke and Cbemical Co. of Pittsburgh, Pa., an exceedingly hazdsone illusCaked pamphlet deseriptive of the Utto-Iloffanan Retort colling ef sybteta, whets is bs much a treatise on the produg of coate of vartuess grakues sod the saviop of lyyproducts sis it is all sadvertisetmeot of the Octo-iformain continent of Farmpe Fivery ooke ninker or prospective coke maker should rend this mork, whild is prospective application to the company's ottice, Lewis Block, Pittsburgh, Pa .

Surveying Instruments.

We have received from Mesars. F. C. Knight t Co, of 400 and 402 Locust st. Philadelphis, a eopy of their latest catalogue of eugineceting nud burveyling instrysors to the Inte Ealmand Drapor, whoen (ustrumente won world wide ronown for aimplicity and efletebcy. The instruments now mate by thla firm combine all the theat fetures of the Draper fustruments with many marked imporements. The calalogzue which is a liandaune pubilcation is seat to aty adiress, free on appilication.

The log is swiveled in the body of the ear, po that an oecillatory motion is permitted when the trolley wheel passua over 11 . thas preventing the poundtig effect Both theng so much trouble on rigid guapension.
Both these articles are listed to the bew catalogae which the Ohio Brass Co. has recently pat ont to the trade, and we belleve that not ouly these articles, but very many others will be found of latereet to those who are interested in this class of work.

Information Wanted,

Mr. Jos. Quigley of Westrille, Pletou county, Nors Scotia, one of our subecribers, is anxious to kuow the wheresbouts of his brother Jobin Quigley, who was last heard from in Blossburgh, Tiogs vounty, Pa., ten yesrs ago. If any of our readers know of his wherenbouts
they will coofer a favor by futorming. Mr. Job. Quigley they will coofer a fisver
at the above address.

A Unique Alburn

We bave reoelved from the Lak Belt Enginvering Co, of Philalelphis, an album of blue prints showing the scopos and variety of their designs for coal bavding plants. The album contains 34 views ench $8 y^{\prime \prime} \times 6$? of noe faper, the whote betug artisticsily bound in white somest and moset novel publications we have the hand

Mesars. Abenilrotb \& Ftoot Mauufacturing C'ompany makers of the Root Improved Water Tube Boller reoently received a cable order for three one hundred and thir batg, South Africa. Export trade is looking up witb thls company.

PROSPECTING.

WHERE AND HOW TO FIND GOLD AND SILVER DEPOSITS.

Visit to the Great Leadville Gold Mine. The Ibex or Littie Johnnie, and a Desoription of the
 Peculiarities of the Gold as Found

Leaving the town of Leadville on a sleigh, with deep soow all sround us, a temperature of 17 degrees below sevo, and mock sans dimly shining through the frost lades atmosphere, we drove up Stray Horse guleh with the Mosquito range on our left-a dome of snow spotted with fanumberable stamps, of what in the carly
dass of Lesdville was a thlek forrst of plnes, fost peep days of Leadville was a thick forest of plnes, fast peeplog shove above the snowy cabopy. This forest growih has loug since been out and utilized for mine timbent and for charcoal for the smelting furnaces.
On our right were steep hills and banks like sugar
losves of snow. These huge hills of sebris sre the losves of snow. These huge hills of debris are the crowied dumps of the oller Lesdville silver mine
Owing to the IImited ares for dumpleg, they have bad Owing to the Ilmited area for dumplag, they have had three miles ride up the grulch, the ravine widebed a little
elay, resulting perhaps from the decomposition of a porphyty highly charged origiually with iron pyritesSometimes this reddish or yellowish elay is very stiff, and you can see the piok warks of the miners very distinctly on it; where these marks are very distinet it Is a local sign of very good ore. In other placeet the ore body is exceedingly sandy. These sandy portions are sometitmes io poekets and patches, stained with dark toangabese of iron oxide; particles of quartz str muerous, had glaten inke froet krains an torough the ore bearing sand. This sandy material gebetally carrics the ricbest ores, sometimes is the ore body, patches of decompoead kray porphyry appear, khowing tbeir dis. linet spots of fulspar crystals. Again, fongres of sray andecomprosed porpayry come intruse sheets intruded isto the one beds, thut porer probally ano the origionl mosidized portions of the pock Bothe are shiped both oxidized sud unoxidis ifry ore, awd from - to 8 feet in beint beither top bor bothom to the ore is shown, all is in ore of mome or luas value. From phe is sbown, afts ore of ales go in into upper lecels in which large blecks of ofe ane stoped out. The method of timheriog, whllst developing thease wide thich bodles, is by serins of square timber sits pee upon the other. Lke in - flat conl nexam, after it han been exce
a silver-gold belt. A peculinrity of the ore is, that It contales a small per cent. of blamuth. Sonse of the local assajers claim that tellurides are detected in sodae of the gold deposits of Leadville.
The rocks oontaintug the so-cailed "gold belt" dip oft at a moderate angle froen the the line of a grest fruals, beit lies atva occupued by the present discoveriva in the
 Wince fault aud the Heston faul
Wheo the fies of theos faults are wel with deep under ground, deapite that they repreeent great commotion among the rockn, ham in some cece sips off several ubat we mighe have expected, there is no wide puping fisanme, nor eceh sigus of crashed broken welk onp the contrary, the sten of of crabhed brokeo rock: tho the ahle by the ebange in the cearneter of the roek appear Uge on either sile of a giren line, and the the is so barrow and tieht that gou could not drive sour knife blade tate it. When this tivkling line sour koite pened up, the chaeks or toce of the rock os etther stide the faultive are found pollshed as smoeth as glass, by the friction of the gradual slipging movement
At the Company's oftice we saw many beastiful apecimens of free gold taken from thla mine. Goe of its most striking ebsracteristics is its peculiar flake of leaf like form. Betog tarnished slao with a little cop-哖 of somee othar mineral subistance, a grey or brownish int, Like that of a dead or antumnal leaf is given to it, and a saucer full of this free gold reminds obe of a plate full of grey autumn leaves chopped up a little small. These leaves of flakes isaue from little cracks in the rook and stand off from it a haif lnch or more. At other times the rock is full of wire-god or Impreg. bated with specks of grains of gold. At the Carbonate Bank we saw a pile of gold brteks, some nbout the slze of an ordisary brick, others amaller, most of them from this fulut. Thet whole pile repireioted 105,000 dollars to gold. With thesen almo werve katucers full of the chopped autumnal gold leaves we have described, and asrvelously beautifal masses, delicate gnuze ribbons. and rosettes of crybtallized Eold from Breckinridge mined in the adjacent soath Park, sll of the bright pure yellow goll.
Despite the fact that this Lesdrille gold mine carries so banny spectmens of free gold, and despite the oxidized charscter of large portions of the ore, it does not appear to bee a "free-mililing propoeltion." The ore le sent to the smelter in preference to the stamp mill, as the former gives the best returns.
The sott character of the ore body, and its comparative borlonotality renders its development very ensy, the most important expense is that of timbering.

Nova Scotian Examination.

In our lasoe for June, in answerigg some Nova Scotian examination questious setet us by a reader, we misunderstood one queation and abswered it wrongly, and to make It worse, geveral typograptaleal errors crept isto the onswer. So, to prevent our snswer mlsh-ading any student, Te re-publish the question and answer it correctly, giviog the rule for floding the quadrant courses. gone Calculate triponemettically the bearing and Hintance of C from the center of the shaft in the follow. tog traverse.

From the above it is exident that the beariug from the center of the shaft to A is $351^{\circ} 29$, and we will work the queation out of that ascumption, and fosame that the graduation of the Instrument is such that North is 0 or 350°, Enst, 90^{2}; South, 180° and West 820°.
On page 71 of a "Treutise on Mine Surveying," by Bennett H. Brough, we liud the following rule to calculate the bearing
*To the first merldian angle add the best observed horimontal angle. It the sum exceeds 180° dedact that amount from it. If the sum is less than 180° add that amount to it. Ther reault will be the gecond meridian angle, ete."

The trst meridian sugle is $351^{\circ} 299^{\prime}$, or $\mathrm{N}, 8^{*} 31^{\prime} \mathrm{W}$,
$351^{\prime} 29^{\prime}+90^{\circ} 21^{\prime}=441^{\prime} 50^{\prime}-180^{\circ}=261^{\circ} 50^{\prime}$, or $351^{\prime} 29^{\prime}+90^{\circ} 21^{\prime}=441^{\prime} 50^{\prime}-180^{\circ}=261^{\circ} 50^{\prime}$, or
 S. $\stackrel{261^{\circ}}{ } 7^{\circ} 02^{\prime} \stackrel{+}{\mathrm{W}}$.
into a strip called Adelaide Parla, and a little above this, The similar and more elevated strip Is called Idaho Park quarter of a mble in width.
The structure of this little strip of land is intereating and important in consection with the famous gold belt which occuptes its length and breadth. It is a block of ground formed between two coeverging fwalts. The line or side of ooe faalt is repireecoted by the steep slope
descending from the east edge of the park, down into the Bescending from the eust rage of the park, down tato the Big Evan
of Breece Hill on the mest slisle of the park. The little of Breece Hili on the mest side of the park. The little
valley park is dotted over with mining sbifts. At the besd or upper portion of the park are the shaftis of the boex or upper jrorthan of the park are the phatha of them the shaft of the far famed Little Johnnie mine. Lower down the park, the discovertes of the Ibex company at the head, bave stimalated other compsoies to "go leep," and is several lnstanoes thelr shafts have found gevens to be underlald by gold-bearing phorpbyry sheets, and a gold-bearing sobe
The 1 boex company alone has trised its graat ore body these porphyries is calied the pyritiferous porphyry, wher covers the top sud lower elopes of Breechai Park, and acoonding to Mr. Enamons a later intrusion A vent of it is in Califormia gulch, and it probably ex tended south to Long and Derring hills, and weet to Iron and Carbooste hillo. The gray porphyry, througb which the shaft of the Little Johnnle peotrates, appears to be between four hundred and five hundred feet in thickness, and below this again, is the ordinary white Leadville porphyry, which ususily overlies or is associ. sted with the coblact silver lead deposits in the blue or Carbouiferoas limestone. The relation of these in the preaent Instance, will appear in the diagram section copted from the U, S. Geological Sarrey Report by Mr Emmons in Leadville, compared also with a more reoent section from a different polnt made by Mr. A. A Blow. In the latter the peesence of younger intrasive dykes and shects of porphyry is shown by the black
To these porphyriea, especisily to the pyritiferous and gray porphyries, and possibly to the younger intrusive sheets, we appear to be mainly indebted for the existence of the goid belt, which lies amongst them, rait as broad interiesved sheet, than as ssarrow belt. The gold ore sboot has been foumd locally as mach as
is feet in thicknvas, thinsing down on etther side. The oresboot is mot iosanereaflat shape or body, but undulated rising and falling, owelling and pinchiog. At the Little Johanke malae we descended the shaft for 400 feet to the main level. Where we stepped out of the "lift" and coundiags for susetal humdred feet. 'The poft crumbling vatare of the rock, together with the presaure of the hill sbove, require a certaln amount of timbering, with uprigbt atnlls about every five feet, and lagelog on the roof. The walls and roofs of these workinge are all in pay ore.

DEsCCHITLOS OF OHR BODK
The ore body consists of in decomposed ocbreous

pated, the pressure from the roof is great, abd in several along tortuous tunnela and erawls up lablders into stopes and Hats, one beoomes buwildered by the laby rinth. Below this upper set of excavations is a lowe evel, which, being wet, we did not visit, but in which moxidized pyrites werefound, which proved to lue is fairly valuable shipping ore.
Thougb as great a thickness as 78 feet has been found locally for the ore body, this is by no means the avernge mere line. which may the worked and follomed for anome days, till it whens out into thicker bodies. Tbey never howeref, leave of lose these ore of get off Its track, bat follow it through all its varylag thleknesses, turning and wibdings. The present decomposed matter forming the bulk of the ore depoeis appears to bave beed atived from original bodtes of golh-bearing Iron-pyritus, as shown in the lower level, and to the sandy or oxidized portfons little square cavitles are often seen, Whteb were originally oocopied by the pyrite erjatals before at preaent, as to whether the ore body is a replacement of ilmestone at the usual Leadville "Ilne of contact," in other words, a replacement of limestone by ore that plyry, as is often oledrved io aome of the allver lead mines of this region, of whether it is a zooe of re placement and oxidation of portions of the upper gray bataral itse of contad. The fact that the ore body in many cases largely consigts of lead eartronates, contain: lig both sllver and gold, would suggest the replacement to be that of limestone, whilst the highly siliceous cbar acter of portions of the ore bady, might beem derived from a more siliceous rock, like the porphyries. Careful

$8 t$	Asgle.	Quadrant Course ${ }^{\text {' }}$	DVat, in fe.	Nat Cuaine	Not sit.	Lae		Dep.	
						N	\$	E	W.
						6898	8119 16155		
							24.54		156120
						13 63			

analycis of the ore will doutitless soon decide this point. Sy gotioe, the godd belt is cooskered but as is disiant at Iron Hill then allo leal hacing by renson of a grenter
 Hill clanged into a more gold-beariog product
The ore consists of a certain amount of free gold together with bodies of carbonate of lead carrying about 50 ounces of silver to two oubces of gold, in some cases So the socelled gold belt may more atrictly be described

It la sbown alove that station C is 39.67 ft . north abd 136.22 ft . West of the ernter of the shaft.

Now, $V \overline{99.65^{2}+136.52^{2}}=141.98 \mathrm{ft}$
Now, by dividing the latitude by the degartare, we find $\frac{39.033}{12 ; 2}$, or .29124 as the untural tangent of the bearing from C to the center of the sbaft. Now 29124 is the natural tangest of $16^{\circ} 15^{\circ}$, and as O ts northwest the bearing trom C to the shatt is 8. $16^{\prime} 56^{\prime} \mathrm{E}$., aud the distance is 141.88 fl .

THE LUKE FIDLER MINE FIRE

ITS CAUSE AND THE CONDITIONS THAT CAUSED ITS RAPID SPREAD.

A Description of the Methods Employed to Extinguish the Fire and the Difficuities En-

IIy Haird Hallierstnat E. M., Pottavitle, Pa
The Luke Fidler colliery is situated about one mile ast of the tomi of Shamokin, Pa., in the Luke Fidjer sisin of the Western Miblle sotbrscite coal flef
It is operated by the Mineral Railrosil and Mioing Co, and logethes with a aumber of other conlieries in this vicinity, Is under the eflicient sup
Mr. Morris Williams, Mtulog Eugineer.
The operation is 8 lange ones, its shipments is 1893 amounting to 169,009 tone while employment was given to 250 men and boys.

The developarents consist of a whter level tunsei 2.000 feet long, cutting botb dipe of the Orebard and the South dipe of the Primzose. Holme8, and the splite of hee Mammoth coal becds.
In this basin and the Shamokin region geperally the casl beds are known by numbers, beginuigg with the the No. 12, abd the spilts of the Mammoth, the Nos. 8 the N.
and 9.
Three short slopes, two of which are in rock, hawe been sunk from the sarface, A short distance west of where the water level tunbel cuts the Holmes bed, ab
 bed. The top of this shaft is 1.10 feet below the surface From the level of the boutom of this shaft a tumel whe Irlven morthwand gome 1,100 feat to thet No. 4 or Book Mountaln bed.
From the same level, two slopes were sunk on the sblle the No, \& is 1,500 feet. The No, 3 Slope was sunk from water level on the Holmes (No. 10) bed for a Histance of 1,000 feet.
A new shaft (see No, a Shatt Fig. 1) had beell bumb the fire, hal reached at the tume of the breaking out of to be sunk when it will cut the tunsel driven from the lowest gangway on the No. 8 bed.
The coal beds developed at this colliery are the Primrose ($6 \mathrm{ft}, 0 \mathrm{in}$), Holmes (5 ft .6 in), Mammoth two splite 6 ft, to 7 ft . ench), Skidemore (6 ft .6 in.) nod the Buck Moustain (6 ft .). The pitcb varies from 95 to 37 degrees-
The aggregate leogth of gangways is twenty eight (2s) rolles. Conbections are mande with the workigge of the
Hlekory Swamp and Lancaster collieties, also with the aboudsned workings of the Oid Coal Itun colliery
The main fan, a 16 fl . centrifagal veutilator was situated at the mouth of the rock slope A which is 150 feet in length isee Fig. 1.)
The Intake was from the water level tunnel and Coal Run workings. The air travelled down the inside shaft folt at the bottom, passed down the Nod. 1 sod 2 slopes, thence east and west aloug the gangways to the faces returned through besdiogs and bressts to a tumel driven to the No. 8 bed, thence by an alr bridge to the air compartment in the shaft which was connected to the rock slope.
The underground shaft was divided into three compartmunts, two of which were used for hoisting, the third wasqubdicided. Through one of these sub-divisions pissed the strana and colamn pipes to the pomps below, the other formed the refore sirwsy. The air compart ment was securely bratticed of from the others with ioch plank which is tuina were covered with floor boards As might be expected, the heat thrown off by the stenm plpes made the brattice extremely dry: and to guard agaiust fire, the regulations of the colliery required that Io all exnminations, a cloaed lamp of lantern should

On the evening of the 8th of October last, a carpenter mas ordered to examine this air bos and cloee up sach cracks and crevtces as might be found. In direct violathoe of the rule laid down, he used a naked Ilght, though he had a lanters with him. Paseing his lamp close partment and in a few moments the flameg from a fierce ilre reached the top, aud in less than 30 minutes reached and destroyed the fan at the mouth of the rock slope and consequently the entine artificial rebtilstion.

The englines uned In bolstigg from the No, I Shaft were formerly underground, and to accommodate them, a maklog a space 4.5 ft . x 30 ft and 20 ft . in helight. The exoescive betat thrown off by the steam pipes hast cannel con-iderabte sculligg from the top, nind to retain thin, couederabtel builig from the wh, Bhad eribbleg had been erected. This, together witl the husyy timbering on the tumonts, beenme eacy prey to the flames.
At the foot of this shafe thers Were two turnouts, oere 160 feet, the otber 250 feet long, hoth in the No. 8 of beils at this point. The slate betwecll the Now as this has gives away, frithing to the helght of ziffeot wha neces. altated over the gangway timbers on the turnouts
As the tlmbers aud plank, is the shaft burned nwny, the fire haviug etarted about midwsy, they fell to the hottom, sutting fire to the timbering aluost it and estending quickly to the cribbing over the tarnouts just referred to. If it be dillicalt to tmagine. how much raore -0 is it to describe fittingly, the spectacle presented to the gaxe of the herole minens, Ied by Supt
WHiliama, Inapector Brennan and Foremen Herr, Golden and Kohlbraker, when they advanced with pipe and hose to buttle agsinst it.
Picture to yourself if you cas, a shaft of this sise, the mouth of it 150 foet below the murface, heavily timbered, with these loug ahd heavily erlbbed up furnouts above
and below, the whole a roaring nod intensely fleroe mase of fire, with flames shooting in all directions, while demee volumes of smoke, seemiugly rolling abd unrolling themselves, essumed fantastio shaper
No pees cas fully portray the awfalness of the soces. It can be likebed only to a veritable Interno. When the tire broke out some sisty men and boys were at work in varfous parts of the mine, and to re8cue them alive was the first care of the officials.
Volunteers were called for and a number sufficient to form three relief parties responided.
One party descended the new sbaft, anotber gained the interior through the old Coal Ran workings, while a third passed down the timber sbaft and slope, bigh up wers the hillside, bartieg that of the colliery. So successfal wert theat jurtiks that all bat two men were reached: two the relief paty still pushing forwanl thes but, heav. Ing the relief party still pushing forward, they erideoty became bewildered and lost their way, as they never
reached the surface.
To the flisat alarm the elty firemen responded and ren-
tered valuable add is saving from destruction the build-
red, the concuscion from which whe so great that it was red, the concussion from at points 14 milles distant. So great became the volumes of gosoke that notwithstabding toe fuil cirren of air was focced agninst it, the gangways in the fickory Swamp colliery soon became filled with shoke, abd whe tot until
be overcome.

The chances of a successful battle by the direct systemi of fighting, if they ever existed, had now eutirely passed away.
There romalned bat one thing to do-flood the entire workings to save bot ouly this, but other valuable colleries from destruction. Four human beings stive dead or sen they wrasioring about is a becoildered con dition, that was the question to be decided. If there romaine the aliehtent posaibility of their being alive foonling con not be dones. The miativee of the imprtsoned ones, elinging to the bogee that they might set be allive opposed flooding which meant sure death, had it not aiready come.

A couantation mas held at which were present stat Mibe Inspectors Brennan, Stein, and Maguire, Superintendebts Morris Whiliame and George T. Morgan and the writec. The case was fully diaweighed.
The coudition of the mine when the last party of rescuets were Itiven back plainly demonstrated the impossiblity of the imprisoned mea being still alive. At the very outeet superintendent Willinms stated ib most unmistakable terms that be rouk 8 soctifice the eutire
rather than flood it, if the slighter hope of rescue of the men alfve of dead, remained. While the flire burned, the recovery even of their desd bodies was an imposslbility The conclusion srrived at was, tha as every known mesus had loew used to recover the men, and that as all hope was gove, there remained nothing to do but to anve the colliery If possible. To this, all preaent assented.
Preparations mere at once mando to accomplish the desired end Every known opening through which air could reach the fire was thght! bsttened down with plank and clay It was decided to all up the under groand sbaft with calm run in with water through the rope boles from the surface. A track was Isld to the culm bank, plpes were run from the pump, and the house bullt over the gheaves together with the shesre whecls, \#ere removed.
Foor days sfter the fire broke out, October 13th, slushing begran and was completed tec coyd later 2311 cars of culm welighlag 4622 2311 osers of culm weighlog 4628
tons. To drown out the colliery, the waters of Coal Run were ran is through the Coal Run colliery Two \& pumps, obe daplex the other slogle, jumped in water from the all water that could berkur, whlle furnished by the Shamokio Water Co.
Upon the completion of slushing the shaft, the battery is the tunnel to permit an cexamination of the to permit an exnmtantion
This examination revealed fire still burning, and it was theo devaled to floon tbece workfaps to liegght of one humired and twent
lixe (125) feot above mateg tevel To do this the constraction of two dams was necessary, one in the water level tusnel. the second in the bew or No. 2 shaft
The dam in the tuanel (Fig. 3) Was built at a point about 60 feet inslde the No. 11 bed (see FIg. 2) of
ings in the vicinity of the mouth of the roek alope, out of which the flames were shooting 50 feet linto the air. pon the removal of the underground shaft engines some time previously, they were replaced by engitued of the intervening rope holes (8 in.) wern thimed holes at) the water it was possible to obtain was rus.
While the relief parties were still searching, two tinch lines of res pipe were cun down the bew ghaft to the No. I insble alope and up thls to as near the bottom of the shaft as posaible.
Thisse libes completed, the water was turned onto the fire but, powerful as tbese stresus were, they seenbed to have but Little effect, except to make it seem. ingly burn more fiercely, due, no doubt, to the fresh current of air carried in by the watec.
As as vabos was misie, but as the party procecoled. the and fowe the fire beyoud came in on their rear, oved them, making the place utterly untenabie and compel ling a retrest.
The shaft and slopes formerly downcasts had now owisg to the intenae heat, fecotue ugants, and througti the latter came quantitios of firw-damp $\left(C H_{4}\right)$ which had gatbered, sisce the stoppage of the fan, in the work tugs below. The ooly outlet for this gas was through the area now in flames Two terrife explosions occur
brick lald in Portiand vemest and was 5 feet thack. Deep notebes were cut into the rook on thet top, fotkom and
loth ales of the tunnel as showin. Bullt futo the dam were two pipes 8 inches and 22 inches in diameter reapoctively. The diameter of the larger pipe was respectively. The diamoter of the larger pipe was re-
doced, at the outer side, by fittings and valve to 10 ioches. Through thls pipe it Fas poesible for a man to to pass through the dam, to make examinations after the water had been drawn off, making it unnecessary to break through the dam, itself. The utility of this plan is obrious.
The dam in the shaft (Fig. 4.) was constrocted at a point 200 feet below the surface to prevent the escape of water through the workings on the No. 11 bed, to which there was a water level ontlet some distance mest.
At the point notess, the planking on the onter gide of the buntona was removed both above and below for 4 feet and placed of the mbet side as sbrown. The interventog space was rammed with coerctete to prevent the escape of water from the mider,
The lower face or botton was lald with i inch plank, neat 1 loch flooring laid in the oppositedirection tightly oined, upon this came a secondtier of 3 bach plauk, then the whole was overisiol with 10 inch Cumber, theee mere braced with 10 ioch timbers as shown. It will be obreerved upon Inapooting the drawing, that two plpes are
run through the dam. The object of these and their nese are as follows
The smaller or 8 inch pipe extended from a point 6 feet below the dam upward to the water level where it
was blanked, it was blanked, it was tapped witb a number of botes as shown;
these boles perthese boles per-
mitted the encape of air from capes of air from
below and prebelow and pre-
vented its comvested its compression, they
also allowed the escape of a cercacape of a cer-
taln smount of water when it roser to these heights, and which falling tapon the dam from above, nesisted, by its weight, in resist. log the upward pressure now

Fig. 8. Plas of Day is Tunsel. exerted ngalnst it.
The 10 inch pipe was fitted with a valve from which the handle wheel had been removed nod bas been replaced by a palley wheel; around this was run a rope
which poased up to the surface and with which the valve could be opeesed or closed. Stable refuse was,
depth which made the tanka Ineffectunal on account of the dam, the pumps lowered the water further, when the dam was removed, and hoistling with the tanks mas esumbed.
At the pregent rate of digcharge, the mine will be free time required to remove the water will aprosimate the time required to remove the water will approsimate six
The entire supervislos of the work of subduing this, ose of the flercest naibe fires the reglon bas seen, fell entirely upon the shoulders of Soperinteodent Morris Williams, and be bas again decmoestrated that hls skill as an e0giveer is equalled by bis skill as a practical misling man.
In concluasion I wish to acknowledge the obiligntion be and fnepector Edward Breunas bave plsoed me under if ground glnot the dinta snu accompanying mas other courtesbes.

PERFECT PUMP PACKING.

Description of a Style of Packing which is Meeting With Grent Suceess.
To say that sll packinge but P. P. packing bave been tallures in mine pumps would be untrue, but to say that they have not been unqualifledly successful would be ing, and eometimes both the shape of the packing and the guallity of the material used in its manufacture were to blame.
In P. P. packing, Mr. C. A. Danlel, the manufacturer,

is the mater robe, introluexd through the in foch pipo thls floating apon the rialig water effectually closed any crack or chink if any existed if the dana
By continuing the pipee to six feet below the dam there was lesd disuger of their becoming elogged witt footligg debris, as might have been the case had they been ret flush with the bottom. The spward

Fig. 4.-Eleyatios Dash ty Sinayt.
the holatiog mags, the malno on the 10 fo the holsting mays, the ralve on the tolnch plpe greued by means of the rope permitting the escape of the sonfined water below. With thesetanks $3,000,000 \mathrm{gallons}$ poe diem were ralsed and dischanged. (A datailed description of these tanks, ete., will sppear its a later Wumber).
Whes the water in the shaft had been lowered to a
endeavored to meet all the ohfections that cotald be found and that be has succeeded is evidenord by the \&avor with which his product has met among minhug anen in the anthracite regtons of Penneylvania
It is doabtful if any milning region of the world pres sebts soch problems in mibe trainage as exist in the santhracite regions. 8trongly scldulated whter fagreat volumes must be pumped from deep mines. This made the before mentioned regions an excelleent liek in whtel to test P. P. pockiog, and Mr. Daniel boldly estered it.

Rod Packises

A glance at the above illustration showe that the packling bringe loto service a cushion mbich nilspta itself to the changing position of the merlges, formed by cutting the rubber lack diagonally through its sectios. and thas keeps up a uniform

acte as a luloricast carriet

The packing is applied by enteriog it, mushion first, Into the stuffing bos. The glasd is then pushed down upon the riogs and the buts holding the gland in place are tigbtened with the fingers. A wreveh is unbeceseary, as the steam or water preceure tends to force it against the gland. Thls preseure slldes one wedge upon the other and dilates the preking, thus adjusting it automatically. This is well shown in hoieting engines. When the cegibes are rumsing forward wich steam, the gland is so tightly forced on to the muts that it cannot be moved. Whes they run bockward without stesars the gland is freely moved. In applying rings of this jucking, the jotnts are broken, so ill any other packing. The Iubricnat uaed in she betap cashion is of the finest
grade of lubricatingoil. The graphite, incorporated with The packing in its construction, has all been floated to Ireee it froes grit, and is of the flotes grade. The rabber
back from which the wed gea soe cut is a grule of cauras and rubber, which by expertment has been fousd to be and rubber, which by expetimeat has been fousd to be packing has beep in uan for about is months tu many of packing has beev in use for about is months in many of the mine pumps and other machiuery throughout the as somethlog far superior to other makes.
Pumgwes, where bad water is to be handled. claim that the graphlte of this psockieg eostes the plungerg of the pamp with a black film that is to n large measure impervious to the action of acid wator and thils preserves the planger frow corresion. The Lehlgh \& Wilkes-Rsme Coal Co., has sdopted the preking entirely and has bo far given it sothing but praise. In ove of their fan engines the packing gave five months and live days sirvice and was then eoly removed to see what condition it was in. It whs foand is splendid condition. Thla engine has a three inch rod, baily gcarred from the use of other pack. lugs. It runs day and night at a piston speed of 180 ft . per minute. For the same company, at the Hollenback mine, ove of their "buall pumps" was pseked with this packing. The rod in this lastance weighs 7,500 Jtes. and the cylinder rods are vertical instead of horizontal. Great trouble has always been experleoced from condenasIons in the cylitoder, and the squirtinu of water over everyThing vear sloce focking with "P. P. P"" no water waken ot all. At the D. L. \& W, mides the packlog has been found in their wonst mine pump to give 20 tlines more service than the packing they were using. Mr. Townsend Poore. Master Mechanic of the company, in a letter to Mr. Storrs, clalmed for it the greatest economy ever found is steam or water puckinge. With all others using it, the same or slmilar praise has been given the article, Among thone usiog the packing ns superior to all other, are the following prominent operators: Hullade Cosi \& Iron Co.; (bot quite through with teat,) Elis Hill Coal is Iron Coc; Mt. Jesmup Coal Coc; Bue Fildge Coal Co.; W. T, Smalth: New York \& Scranton Co.; D., L. \& W, Co.;
Lstaigh Valley Coal Co.; J. C. Hsdidock; Lothigh Valley Coal Co.; J. C. Haddoek;
Wroddell (Fatate Xoal Co. Laekawanas Whaddell (Eetate)Coal Co; Laekawanma
Irou \& Steel Co.; Chamberlain Coal Co.; Iron \& Steel Co. Chamberlain Coal Co.;
Simpson \& Watkins: Cose Bros. \& Co.; Simpeon \& Watkins; Cose Bros \& Co.;
Jeddo Tumnel Co.: Lebigh \& wilkesJeddo Tunnel Co.: Lobigh A Wilkes-
Rarre Coal Co.; Lelsenting Coal Co.; Barre Coal Co.: Lelsenting Coal Con
Eillott, MeClure \& Co; T. M. Iighter \& Co.; Midvalley Coal Co. Columbua Colliery, (Mt. Carmel;) Nertou \& Old
Fonge Coal Co's. Langelife Conl Co Fonge Coal Co's.; Langelife Coal Co.; Lextz. Lily \& Co., Clear Spring Coal Co.: Stevens Con) Co.; C. M. Dodson io Co_; A. Yan Wickle; Pardee Bros. \& Co. Reference to any of the we will be sure to meet with is very favorable ansoer.

Beauties of the Lehigh Valley.

We lave received with the compllments of Mr. Chas, S. L.ee, (leveral Prasevger Agent of the Lehigh Valley Rallroad, a copy of a bandsome album containing fifty photo-gravure llustrations of polnts of interest on the L-bigh Valley Rallroal. The govenery aloog this live of rallrasd is unexcelled is any part of America, and thia taken with the good rontbed nod absence of smoke and dirt dae to the exclasive use of suthractieconl on the ocomotive, makes the L. V. a favorite reate from New York and Philsdelphin to all points in the Anthracite Regions, and to Buffalo, Nlagnra Falls and the West.
The car equipment is first-clats. The day comches are models of oestness and comfort, the Railroad Compasy's chair cars sre fine, and the Pullman service fully up to that on any road in America. The dining car, run on trains Nos. 1 and 2 (botween New York, Pbibdelpbia and Buffalo) is a luxurious one. Meale are berved a ia carte, and pesseugers pay only for what they order. A stmple, ecobomical meal can be ordered, or the bon rirunt can order as elabornte course dinner with wibes. Each
pays for what he gets and for wo more. The service lo pays for what he gets and
ilirat-class is every reapect.

Merit Wins Success

The Jeftrey Mfg. Co, of Columbus, Obio, has during the past year run its full fotve full time, nod for a namber of moeths has bad a large aight force at work. Their present outhook is vety good, abd judging by the favor Wita Whict Jeftrey couveying tabchaty amd Jetrey coal mining mach this freeperity. The oompany la certalaly tinuance of this proeperity. The compsiny is certalaly an enterprisiog one and the officers manoge the business In such a manber that the excellence of the Company's flled wios new evstomers dully abd clibeches the trade of old oper.

Facts,"-"High Pressure."

The Babcock and Wilcex Compony of New York, has corned a grest reputation asde from that due to the excellenoe of the 13.8 W, bollers. It is due to the bandbowe anit instructive hooks they publish for free dis. tribution to stemm usert. Their anoual publication "Steam" in several labguages showed great cuterprise and liberslity. They have now isaued two Der spectal pubtiestions, one of which is entitled "Facts," sud is really a hatory of water tube boiler cosstraction. The other, extitled "High Pressure" deals with high pressure stenm. Both volomes are handzomely bound, illustrated with remarkably fiue evgraviegs, and they are bot only artistic in design but interesting as well.

Writea toe Tix Colakny Ewakek akd Metal Miekek

MINE SURVEYING.

LATEST AMERICAN IDEAS AND MOST AP- PROVED PRACTICE.

Aewritten for the use of Mine Officiais, Surveyors and Engineers, from Lectures Delivered Be the Students of Columbia Scheol of Mines. (By Edwand B. Durham, E M.)

Cabieti V. (contixump)
In the sarrey used for illustration, the total intitade aud departure afut elevation of the flrst polnt, as well as the asimuth of the back coarge, she knowa from pervious survey. If now we add the latitude and the first station, we bave the total co-ordinates of the oecoud point, which is soted in its colvmen opposite the aecoud proint, which is soted is its column opposite the surver. Notice that when a Nurth latitude la added to the latitude of a point sousk of the oriela, it is prsctlcally subtracting it from the total latitude of that polst. the same effect oe the operation as the plus and minus sigus in algebrn. At station 71 the work closed for the Jny nod everything was removed, so it was practically a oow survey that was commenced the next day. Instesd surrey of the day before, they can be dittoed down.
The only remasiaing thlag to be found now lo the elevatlon of the points. This must be doee in a roundsbout may, ts the line of the sarrey was run between ustrameats, and not of or parallel to the stations. The taking the case in the example here given.
The elevation of station 49 whs determised by the arevious survey to be 732.71 , nad beight of the Jnatru. ment this time $1 s+5.03$, $8=$ taken from the tield notes. These are added together slgebraically, giving 742.74 as the elevation of the lastrument. The line of survey rums from instrument to instrument sad in thls case falls 14.54 feet which gives the eleration of instrument at 20 obe 728.39 , the next line rose +23 feet making the eletopped and tripods were remored. The elerations of the polnts are found by subtracting algeoralically, the belghts of inetruments from the elevations of the instraments. Thas the lastrument at 70 is 3 ed feet below the polst, if we sabtract - 3.64 from 72820 we have 731.84 proceedure will continue throughout the surveg, exeept where the tripols have been disturbed as at station 71 . Here on reauming the gurvey ob the following day, the astrument was set at a different hedgbt than on the first day, so its new elevation noust be found by adkling the belight of instrument to the elevation of the point, as woald be done in starting a new survey. It the tripoda
had been left standing, and had bot been disturbed, there would have been no break in the lines, and the cal. culations would have been the same as if the work had boos done at oup time
The zords :"
The mords "Back" and "Formard" areused to indicate that the first figures are those determiaed by tbe bsek survey while the seeond are thone ased is codtinuing the
line formafi. Station 72 was "temporary," as noted in line formard. Station it was "temporary," ns noted in
the romarks colomn, and not havigg any point, coald the romatks colamn, and not havigg any point, coald
not tave any clevation of poiut or beight of instrument. The trouble in carrying elevathons with plummets would ber, that there would occur just such breaks, as at
Statioe 71, at eferg statiou, unless specinl presutions Station 71, at rarg stat
were taken to prevent it.
It is often convenient to know the co-ordinates of stations, while in the field, 90 sfter flolsbing the cal culations oo the sheets, they may be sdded to the note book opposite the stations. In the case of teraporary
polsts the elevation of the instrument will be ail that is polsts the elevation of the instrument will bee ail that is
of lemportance. Also put a referesor to the sheet, where the calculatioes can be found, on the page with the notes.
All the calculations connected with surveying involve angles and mgalies the use of the trigonometrical functioss, eapecially, the sines abd coaines. These bave to be looked up I
mon use, viz
nou use, viz of natural tunctions, in using which the distance fa multiplied by the function. Good tables of thene will be foand in the hand books and are most coe venteot for short calculations in the tield.
9. Logarithmic Tables, which are as improvecuent over the first, in that all the satimmetical work is done by aidition, thus log of distance 1 log . of functlon
log, of reault, but it is necesanry to open the brok in log. of reault, but it is necesaary to open the buok in
three different places to hant up the logarithms. three different places to hant up the lognrithms.
Brubn's Manaal of Logarithoms is one of the best and babdlest for surveylog. The tableg giveo to many of the hand books sre to small for rapid work.
3. The Traverse Tables, where in using it is only uecestary to open the book once, asd any calculatiou
necesasy is done by addition. The diatances are given in lises and there are two columas hended slaes and cosines, respectively. At the intersection of these with the line belonging to a given distanee, will be found the product of the distance by the function of the angle given at the besd of the puge. The only obe we know R. I. Gurden's "Traverso Table." Tbe distanoes run from 1 to 100 and the augles corer every minute of the quadrant. The co-ordinates are given to four places of of lagarithms at \$250 aud Garder's Traveree Tables at $8 \% 50$.
In reducing radiatimg alghts to horlasutal and vertical dhatasces, peedialasry to plostug, the semall traverse
tables found in many of the text books on surveylag will be found very useful and will give reenlte as accurate as cat be plotted.

For mapa of emait nress on s large scale, ssy to 1 to
200 feet, the protractor sul necale cas be ued to plot 300 feet, the protractor sul scale cas be ueed to plot
the survey, but for esteasive work, the errons
are Hable to accumulate and cause great inseare Hiable to aceumulate and cause grest inse-
curncles. If the courses are laid out each time from the meridian, instead of from the last courge, a greater degree of accuracy can be obtained. Although the protractor saves calculatiog conordinates, it does not furnisb any check on elther the tostrumsental work of on the plotting. The protractor will be a convenient and rapid way of plotting the radiating sights taken by the transit surveys and will be suafflelently accurate.
The plotting of the traveree of an Important or estended transit sarvey, eapecially if the scale of the map Is small, shoold be done by mesns of co-ordinates, using the protractor to check the augles and the scale to check the distances.
In plotting by co-ordinstes the flrst step is to lay off the pajeer in carefolly masio equarea, about two inches a a sble, abd so that each side will repreacnt a whole divide the paper is to draw a line through Ita ceoter, and nesr the middle of it to construct a perpeodicular to it on both sldes, then from these as base lineg, to canstruct with the divbleer as large a roctangle as the shect wili take nad aub-divide It into squares of the desired size. To ercet the perpendicular, take a point on the center libe where it is desired to bave the lines eroes, lay off with the dividers points at equal diatabces on both sides, then, with the line joining theae two points as in base, construct lanoceles triangles on both sides of the line, and, through thelr apices. draw a line, this will be the
deaired perpeodicular and should crose exactly on the deaired perpeodic
volst Ilret taken.
The squares look well when drawn lagreen or blue ink. In plotting the stations, they miny be taid off from the bearest corner, formed by the co-ordinate libee, by cosatructing a rectangle, with the divislers, whoge dimeenslons are sach, that the station will come at the diagoan orner of the rectsugle frons the corber of the square The permanent atstions are ibked in, after checklug the plotting, by drawing a small red circie atout the point, With a bow spriag compass, leaving the prkck bairk in bee center to indicate the exuct prothoo of the station, and placiog the station namber near, slso in red. (See
Fig. 13.) The sarvey libes can now be draws is red bik betacen the eircles, taking care not to cut through their circumferebces. Temporary poists are plotted in pencil only, and sfter the detall titken from them, bas been put on the map, they can be rubted oot.
After the gurvey llom have teee piotled

Fis. 13.-Plot op Nenvir.
amaller ecales- A large scale can be ued where mine are samal or a large irea can be readily divided so as to keep the sheets smasl enough to handic. A gevern plots of the different regions to a siogle sheet, by means plots of the differ
of a jantorraph.
The surface sbould be surveged, and the important detalls in the vicinity of the workinge should be plotted oe the mine maps, for the mutual protection of mine and surface. Care must be esercised in mining that the zround is not 80 disturbed by settling so to imore The proports or to allow water to bow tuto the map in order that ample marning may be given of the approach of the workings to the boundaries. The exset distance to the line had best be calculated, and 80 ellminate the errors in plotting. If a specisl survey is being ran to determine the distance of the working from the line, it will be convebient to use the property line as the meridisn, and some point on it as the origin then the departures of points along the face of tbe morkings, will be their diatances from the boundary, A common pfsctice in gorkiog towner a liwe, is for both parties to stop minitg so as to leave a wall for mutua protection. The thicknees of the wall mast be suck that it will mithatabd the prespore of the overlying rocks without crumbling, and if neoessary it must be able to withatabd the hydiostatie preasure due to the flooding of one of the mines. The thickness of the barrief for antarncite seams can be found from the formana given by "The Cosl sod Mefal Minet' Pocket Book. p. 178. Width of bartier pillar $=$ (thickbess of work logs $\times 1 \%$ of depth below drainage level) + (thicknees
of workings $\times 5$. Each party should lesve one half the thickness of the pillar.
Any old rorkings is the vicinity of the mine, mast be plotied on the maps so that the excavatiog may not be carried too elose to them, endangering the lives of the men and injuring the mine it a break is made into them. allowing gas or water to eecape. In approsehing
absodoped workings that ape lisble to fedangorona, it abandoped workiogs that are lisble to te dangerous, it is always advisable to drive bore holes, say 20 fem long, in advance of the excavation, as a sate guard
against woeldent ss there is no way of telling bow mueb agninst moeldent ss there is no way of tel
rellance ess be placed on the old aurvey
The pribcipal plot for flat mines will be the horizontal plas aod as the survegs are all ruterred to the boriwontal it will ussaally be the foundation map from which other floor should to boted frequeatly, is order 0 give some ides of the pitch of the ore minet, the dip should slao be reconded accompanied by an arrow to show direo tion. In the istter it is sometlmes con venient to bave eoutours of the floor, to how the formation to the beat adrant age. These can he drawn in from the elevations, the dips, and also by the rang waya, which ste uanally driven on a regu. lar grade.
Where the pitch of the ore becomes so greas, that the horizontal plan is forewhorteged, so that it eely approximates bs make a projection on an ivelined plan parsilel to the geveral direction of the deposit for the late of the mine foreman. Thls projection, on a reduced scale, is alsec ared is the reprotts of the mine. It has heir triw relatice sise, and is foome intel ligible to non-technical people than or tho caphie projections. It can be made by rojecting the the distances along the strike of the ore deposit, from the hortizoo

Is sided. Offsets are laid off from the traveroe lines. and radiatiug sights are plotted with a protructor and scale. The points, obisined in elther way, are then in. Thes eutline of the workiuma can be dnywn in black This arrangement of colops on the mag, greeb for the square, red for the survey linwa, and hiack for the worklugs, makes a nlose looking map and keeps the surveg linea sind constraction squares in tbe back ground, While the outline of the workings sland out sbatply Sometimes the progress of the wors from yesr to year, Is shown by plottiog the survegs mavde daflug each yeat in a different color, then a glance at the map mill give a
cood idea of the area moriged. Where the mapy ure keod ust of to dste by frempent surverys, each one should kept up to date by frepuent burveys, each ose should
be plotted completely and dated. Then from the plot of the plotigiasl survey there will be a succession of lines showing the growth of the workings like the annual riugs in trwes. The area between these lives will bee the ares mined is the geriod betseen datea.
It is advianble to use the best, beavy, cloth mounted frequently, and will soon wras ont on light raper As the paper will vary in sloe with the clanges in the strmosphere and by woar, it is mecesaary that a scale should be plotted on the sheet, so that it will vary with the paper, sud then new work can be plotted to the same leg atretehed 1 to 5 feet in a 1000 feet in a tew years, 50 In adding to old maps, care mast be taken that the scale le not distorted.
A scale of 50 feet to the inch makisa a very blee sizen the a semall work, as dhatatoces can be picked of from too large for plots covering large arens
The law in Penosylvasia requires that the working mape of the coal mibees shall be 100 feet to the inch. but even this gcale is found to be too lagge for convealwhes fo extenalye operations.
Their can be no dellitite rvie ns to the scale of the msp moret that a large 8cale, as 50 feet to the ibeb, allowe placel on measuremests taken from the map, than with
as plan, and using the inclioed measure
ments recorbed in the note book for the diatances in the direction of the dip. The stations and traverse lines, are ooultted from this plot, they belng usually placed or the horizontal plan aud sometimes on the rertien pro jection. As this ibelise plan of gection will not be the
enginepresorking map, it can be projected with saffengineres working map, it can be projected with suff-
cient aceuncy for its purpose. He will depend ou the horlzontal and vertical plaus which can be tosde with greater accurscy

As the pitch increases, the horizoutal plan shows lese nomesa about the mine, abd the vertical projoction bewhen the mite stus mote value. This is especially so omarly vitch is over to. Wheb the depposit beconaes bariy vertica, the plan will be very smail abd of Iltile longltudtoal pe ecinecr's omice, nind thea the vertical portant gal projection of the mine will be the wost maber plotted hey projectios from the borliontal plan sind bs their elerations, and thon the borianotal ptan trom the survey lines by vertical offects. Detail taken by radiathig sights can be plotted as were the stathone by pros. jection and elevation.

A more accufate way, where the strike of the deposit is regular, is to take the meridiall parsilel to it, thes the vertical projection will bee is a plase perabiel o the elevation without projecting, and radiating sights could be plotted is the same way or be projected as before.
Cross sections through a rsibe sre ofteb wasted, in Which esse they can te constructed in the same way as the verticsl projection, depending slso on how the data cross sectlons through narrow chute8, In s goft hematite mine with a hanging compase.
In the ea-n of a large mass deposit worked in floors, a general croseserthon is beeded to explain to otbers the the floors and pillars. The peincigal working mape will bee the horisoutal silana of the serfatate floors, and cach shoulal show the pillats of the floor above, so that in

If there are not too many floors or levela they can al be plotted on one sheet by using a different color, or i different klod of line, for esch.
This is the method used in some of the coal mines where there are different beds, overlying each other.
If there are seneral floors of beds, the different lises oe one map will be very coufasing and it will be clearer to plot esch with its own color, ou a separate shees of tracing eloth, with the meridiso linee draws on it. They can then be placed over each other in thetr proper relative pooltions for study and comparision.

This plan is often carried out much more elsborately is a glass model, by drawing the surface, and each level of the mine on a sheet of glasa. These sheeta are theen plsoed is a frame at the proper tistance apart so that all the beds can be seen at obce in their proper relative positions. For this purpose a grade of glase koown as erystal plate sbould bee noed to get the beat resualts, as it is dilkealt to aee through many thicknesses of ordinary giass. The plotting may be done by inising the eolors with copal pletare varnish and linseed oll in proportions to flow easlly and dry nealily, and applying them with Irawing pens and and the brushes. A very fine modet tion of the Cogper Queen Mine of Arisoma. It of a por tion of the Copper Quees Mine of Arisona. It bad bori inetal phates of glass ench showigg the drifts of oue level in its apectal color. These were monnted at the propee be slld to pare side to allow the exsmination of those belone. The bature of the rock paseel through was below. The bature of the rook jesseel thtough was Above the harlzontal plates were arrauged two acts of rertical ones, with switions through the mine plotted of them. The sections were taken both on the north and eouth, sBA on the esst and west lioes, at diatsuces of 100 fout apart. The plates more suepended from averheai tracks and any or all the plates of either set of sections could be placed oner the horizontal ones and be studied is connection with any of them. The sections like the horizontal plsna only showed the drifta and esch plater incluiled all within Fof feet on esch alde of the section The plots were all made to thes scale of 50 feet to the Theh.
A duplicate of this model is contained is the collection of the Mining Department of thes Scbool of Mined Columbia College.

(TO EK Contise ED.)

NARROW GAUGE RAILWAYS

The Hunt System for Mining, Metallurgical and

 Manufacturing EstablishmentsThe fact that narrow gaoge railways for handling and ramsforring coal, cabtings, parts of machbery aud materals of all kinds in and around manafacturing establishments constitute a very Important part in the ecouomy in the operation of a plant is dally more folly appreciated, eapecially in a plant of considerable magnitude or where the various degartments are in separnte buildings. A system of cars and tracks lo no much a "machibe" as a lathe, a stesm hammer of a loom and should be juiged in the same way. The saving is time and labor assured by itd introduction, the increased
dastrial establishments, is in this connection worthy of

- pecial notice.

These Iodustrial Itailways ans built by the well-lnom C. W, Hunt Cowpsong, 45 Broulwsy, New York City, Who have for moby yeara given the subjoct caretul con-
sidevation and have acguired an envinble reputation as

Fio. 3.-Puall CaE, Witil a Morable Cextike Piges

builders of high grademachinery of this clasa. In determinitg the gange and the radius of the eurves most anitable for an industrial railiwsy, it is becessary to take it is to the ued.

Fio. 4.-Coke Call Bumit mot the Tososto Gat Compasy, Tomosto, Canada

EThe C. W. Hunt Company belleve that if the gauge adopted by them (21+ inebes measured from the outaike to the outaide of the hebis of the rails) is mot the Ideal ove, it comes very near to bolng 40. In all of the rallwaye that they have built, they have never had a user even eraggest that a bronder gauge would he better for any purpose.

No 1377
Fige. 1.-and 2.-Hust Sxatey of Nakbou Garog Itallways fon Manvfacterise Estamlatiterests.

Abstract

fliciencles of otber machines or of the whole works at nee effected, the greater protection againat damage afforded matertal betng handled or moved, and the geo. ral couveniebce, must be balasced agaiust the interest on the laveatment and the expense of mainteosnce. In putting in a mailway of this kind many questione ariee which require careful coostleration, such as : What guige is the best for this purpose y What radius curves boule of cars will be heas y Whouk the rail be ? What shoullt he used? II ow alall the switches and cross ties be mades Can formotableg the switches and crosaing the effect of grades, eto, until it leek as theagh be would have to ahondog his regular bual thoongo obe theen details. There is howerer no peressity of doing this if one delermines at the outsel to put in thet onghly tried and reliable syatem, lenxiug the entir matter with all veratious detnils to the esperlence ant expert jod zueat of the baiblers. The Hunt system of narmor The Hunt system of narrow gaage railmays for in-

In a manufacturing establishment the curves should be of 8o short a radius that every part of a factory ean be reached directly without expensive and troublesome barntables. The Hunt Compaby state, "Our standard curves are 19 feet radfus measurad to the centre of the tracks. Tbis radius is almost exclusively ured in masufacturing eatablishments where cars are usually mowed by hand, becsuse cars can be used with a running cear which runs as easily on a curve of twelve feet radius as ou s straight line, the axles taking s radial position with the outer whecls ruuziog on the flange, in:cead of on the trean, thus esabitog wurkmen to move thisle the lond they coald with ordinary cars. it is for flanged wheels.
These variations from onlinary railway practioe make no difference whatever in the operation of the general construction, except that the curces, switches and frogs must be espectally arranged to suit wheels with outside flabges.'

The lond which osu be carried on a railway depends not upot the gauge, but ujron the strength of the track consequentiy, whatever btrength is bevcled to carry a ertalin load can be obthined with os narrow gange, a readily as with the standard $4 \mathrm{ft} .8 \mid$ in. gauge. The Hust cars are of improved cobstroction, abd are fited with a flexible wheol base, the axles takigg a rallal position on a carve, and the wheels and the curve so proportioned that there is no slipping whatever to canse friction. This departure from the old style rigid lisue cars la sn importast festure of the Hunt system and the advantase will be at once appreciated by any ove who has had experiesce with rigid wheel base cars. The pribeiple on which the cars turn a curve is illustrated in Flys. I sad ? A cylinder rolls on a plabe in a stralght lise without slidigg friction; a cone rolle on a plane io a circle about its vertex, without sliding friction. If both of the wheels of a car running on a curre have the stme distueter as the cobe would have ench rat, wy are portions of the cobe, and the wheels would run

 A Shabre Manefacturiso Co., Phovideser, It. I. THE EADIAL pootios of THE WHEELE ON THE CEBYE BS ELLA B Bow is TH18 0Ut
around the carve withunt sliding friction, the axles taking a radial position. The illuatration Pig. 2 elearly abows that if correctly made, there will be no sllding friction in passing the curve. In applying thesen principles the outer tail around the curve is made of apecial form so that the wheel runs on a flange instead of on the tread. The axle hearings are pivoted in the eentre, between the whecls, permitiong ther to take a rallish position, as the wheels direct.
Could the whecls be made abeolately round and exactly to the theoretical dilameter, and the tracks perfectiy smooth and laid to an exnet circle, the cars woald then paas around a curve as ensily as on a straight track. It is impassible in commercial mnchleery to
fully realize theoretical cobditions, but the difference be ween the runsing gear as farzished by the C:. W. Huant Company and the idenl ooe is shight
Rigld wheel base cars do not run easily sround a curve because one of a pair of wbeels of the same diameter, secured rigidiy to the asle, caust slide on the ralls a dietance erual to the differebies in the leggth of the inner and the outer rail. In in car having two paind of wheels. with the axle boxes rigidly connected to the frames, not only must this allding take place, bat it is increased by the mufavorable poaltion its which the axles bold the whecle, as the axies caunot take a railisi position. Which is the ooe most frvorsble. Beside the standarit Cans illustrated in their lateat catalogrue, No. 0,504 , the apuelal design for carrying all pared to furaish cans of opeclat design for carrying all kibds of material, and in this sybtem of barrow gauge rallways offers apparatus cmbracing in its coostruction all the latest improvemeets to machibery of this clase.

Bоoк Review.

The Mosern Moshisiat, by John T. Usher ; publlabed by Norman W. Henley \mathcal{A} Cob, 132 Nsassu St.,New York. Price $\$ \geq 50$.
This, the latest work on machine shop practice, is written by a maschinist of hiph stavding who bas had a whe range of experience both in this country and in England. The author's coetrilotions on the subject In "The American Machinine" and other hieh grade technical publications bave always been favorahly recelved by their readers. The book contains 329 well priated pages and 257 illustrations wbich are strictly Dew, not a rehash from other works on the same subject. Wiver atice that a lange number of the cuts are perspecillatar al are well sdapted to the subjects which bley Mensute. Among the many eabjecto treated of, we notiod Lining Shatrumeats, Vee Work, Chasitg. Erectibgs Lathe Working, Planing, Shoplug, Slotting. Miling,
 overy person Interested in the latebt details pertaining ts the modern machime shop.

High Grade Hoisting Machinery

High Grade Holsting Machinery is the titie of a handgome Illastrated catslogue of boisting epploss, boilers etc., manufagtured by the Pen Argyl Iron Works at Pen Argyl. Pa. The catalogue is one that will isterest every mine and quarry manager. It is sent free on application
to the Pen Argyl Iron Works. Pen Argyl. Pa.

Ventilation.

Editor Colliery Enginuer and Metal Maner:

Sis--Please lasert the following question in your aluable paper.
A mine employs 400 mea and boys, and 400 mules The amount of air for each man and boy is 100 cable per misute sud for each mule 400 cublic teet per minute
The area of airway is 8 tt. sq. and 6000 f. loog and oneThe area of airway is 8 ft. sq. and G000 ft. 100 g, and one-
third of the air is lost through friction of the mine and third of the air is lost througb friction of the mine and
fan. The fan going at 85 revolutions per molnute, what is the diameter of the fan?

Ladd, Hlivols.
Yours, etc.
G. HI.

Ventilation and Arithmetic.
 Editor Colliery Enginuer and Netal Miner:

Sun-Please iesert the following questions in your valunble paper for some of your resders to answer.
(1.) What would be the ares of su airway to pass 50,000 cubse feet of air por minute if 20,000 cuble feet is passing through one 5^{\prime} by 4^{\prime} or 20 feet area ?
(2.) What is understood by the formula (3) ${ }^{\frac{3}{3}}$ Work out and explala.
Port Morien, July 17, 1895 Yours ete., MoDorald

Coal Dust Explosions in Lignite Coal Mines. Eaitor Codicry Engineer and Metal Miner:
Stif:-I noticed an article is the June number of Tire Coluery Eseisber axd Mrtal Misen by W. S. Carr I bave every resson to think that Mr. Carr believes in the dugt theory as far asily of such explosions to ouen in lignite milues.
The purpose of this article is to prove to Mr. Csirr that such exploelons do oceur in lignite mibes in thls country. On the 9 th day of Oetober 1894 as explosion oceurred in one of the leadiug mines of the State of Waabingtos, whereby four meen were killed. The coal worked at this colliery is lignite. No fire damp was ever fousd before nor after the explosion. I have bever met a man yet, that is acequainted with this mine, who does not believe that this mas a gevuine coal dust exploslon. The llame could be easily traced for a thousand feet, 700 feet is a westerly direction, and 300 feet Is as easterly direction from polat of ignittion.
Coal duat explosions occur as often in the ligalte mines as in the bituminous minee, to proportion to their number.
Auother example of thin class of mines is the Black exploslos occurat at of sis mine Diablo, Calffornik. An dled from the effects of it Several mibor explosions ocesurred at this collery and to got burned was almoet a sure death. There wis no fire damp found in this mise either.
Tacoma, Win, Jone 27, 1895, Jourd ete, JoskPis James.

Nova Scotian Examination.

Editar Colliery Enginerr and Netal Miner:
Sun:-Referring to the June mumber of your valuable paper and to your solution of the question froms Nova O and asaming the hypotbenude $\tilde{\lambda} O$ as 25 feet, and the ares 100 square foet.
Now I allege the forgolng construction, from any geometrical stand point, is fualty, if not quite tuposelble to say the lesst, sud I wish to submit the following ay belag far more correst Lay of a libe $A C, 25$ feet loge, F^{\prime} 'qual to twice the area of the triangle it is desired to

construct. This fizare would have a widit of 8 feet $=$ to $O G$ or $A F$. Upos $A C$ draw a gembecircle $A B O$, sud jotur the polats $A B$ and $B C$. The triaugle $A B C$ belug in a ectu-circie is right abgled, its elevation $A D$
$=\theta$
θ fuitis the conditioes of the nuwalios.
By ref repenting $A D$ by y and $D C$ by $2 l l e$ ankboxn
aldes to this trlangle are very easily and briefly calculated.
mee a lease to mine a liggolte bed 10 feet thick and making an angle 70° with the plane of the horizon. The lease confers on me the right of way and the power to itilize any of the surface or underlying strata. The furfaco is on abed of sand 20 feet thick and at first aight that mould appear to be as unfavorable eoudition, but the lignite coal is good, and can secure an opeo market at a high price; we have bowever certa outies that must be overcome in the mode or working? pous igaition, and any small in the yob, or pillars left is, takes flire as zoon as subjected to lucreased preasure. Therefore we must extract the sebole of the coal, and I wish you to tnstruct me how to do it with the uss of very little timber, at a small cost per ton, and with safety to the miloers. To secure a good plan, thlak over all
general use.
Qers. 171.1 am the princlpal director of a mining concapany, and.we have the chosee of one of two mine properties, and in either of which, we could work the pame valuable satu of bituminous coal at a depth of 000 we wish to work and we will call the bottoon oue No. 3, and the one above it is No. 3, and the top one No. 1. All the seama are lying level and their depths nee, No. 1,450 feet; No. 2, 630 feet; sud No. 3,200 feet. Between Nos. 1 snd 2 , is a bed of consse ssudstone that sheds much water, and is one of the offered propertles A, the top gesm bas been all worked out, but in the other property B, nove of the seams have bees worked. I' will therefore deem it a great favor if you will eay which of the properties A or B would be the safest isvestment, and for what reasona? Quss. 172. In prospecting for conl, rotary tube borleg ts the best, because the cores furaish flise exsmpled of the fogsils peculiar to the strata in question. Thls being 80 , will you tell we the Permes of some of the fossile pecaliar to Permian and Sllurlan rocks; for example, euppose you are boring in a bed of tive shale, abd the cote when broken shows a toathellike fossil, mado up of cells arranged is regular orler, after the
start a cross cut from No. 11 to No. 10 at dot 4, and while that is being driven a croas cut should be dirivan rom headiog into No. 9 chamber, at dot 5 , and after gas No. 8 chamber, at dot 6 , nad at the gatme time a crosa No. \& chamber, at dot 6, and at the bame time, a cross cut should be made from the beading into No. I chamoer, at dot 7. After the jNet mp gas has been semoved. Atrong bitick wall thus leaving tat one inlet tnto the etrong bith wilN icna leaving but one fiet hito the No. 1. Great care should be exercloed in the selection of men for that elles of work, nope but well experietce il ofen in their difforest callinga ahonld be pernalted to work to that distrlet. Yours etc., Trowal $\begin{array}{ll}\text { Nasticoke, Pa. } & W_{x} . \text { in. Thoyss. }\end{array}$

PRIZE CONTEST.

PHEXE GIVEN JOR THE BEST ANSWEHS TO QUFSTIONS RELATING TO MININE.

For the best answer to each of the following questions, the value of $\$ 1.00 \mathrm{im}$ any of the books in our book satalogue, or bix months subecriptlon to The Collisis Evenserer axd Metal Menen
For the secoud best nnswer to ench question, the value of $\$ 0$ cents in any of the books in our book catalogue, or three monthy' Bubecription to 'Tue Colasint Eseinese asd Metal Misele,
Both prives for ansurers to the alme guestion will not de avarded to any one permo.

Conditions.

Sirst-Competitors mast he subecribers to Tes Cos-

Sccond-The mame and address in full of the contestant must be signed to ewch answer, bod each nnawer must be ou s separate jajer
Third-Answery must be written in lok on one side of the paper only,
Fourth-"Co
Thempetition Contest ${ }^{n}$ must be written on the eovelope in wilich the miswers are sent to us.
Fifa-One pertoon taisy compete in sll the questions. Sirah-Our decision as to the metita of the asswers ahall be final
Secenth-Answers mast be mailed us not later thas Ene month after publication.
Eiglth-The publlication of the anowers and names of perzons to whom the prizes are awarded shall be conadeted sumelemt notiticution. Sucersaful competitors ate requested to nodity us as soon as possi

Competition Questions for July

Quss. 169. Our mine is sttunted in a ruglon where fesu soft water canoot be obtained for feeding the steam bollerg, sad we sre thencfore obliged to get our sapply from the undeggiound feedery that are bighly eburged with sulphate of iron, uos as you no doabt exjeect, the that we wial to axail it we con. hat we wieht to avolit if we cans. One of our oprratord hus returomifrom south Atoerica and he says a mine
 WIII gou then explain to mee the chembal Will you then explaill to mee the cheabeal a.ton tha taked phaw when salt is thrown into nann water coufalnsulphate of sole cryatslize on the tooters and cools the task; and I will slso be pliled it sou will esplain to mes the ehemical action (it un5) of sode sulphate on the shell of the boller.
manner of the structures of the hydrozoa. Whleb formation would that shale belong to? and what is the boring in a limestons, and the oo fossila? Again wou are several examples of in starlike petted stracturs sumethiog like a epider's seb, and netted Btructure, ing to the hydrozon, which foriastion is this? and whe is the lame of the foesil is questlon? Quss. 173. For the purpese of
seam, is brancher the purpose of haulage is a level senith, the branching road has to be made, at a right angle
wad we thon with s curved eutrance, the radil of which sine to be 29 feet for the lobide, and 29 feet for the onteide of the curve. Give a plan with all the neceasary explane thon of how you would prosed to ecoure the correot eurvature for this junetion.
Ques. 174. My Uucle George is a mine ruperlo tevient and he naked me to-day if I bad given due at teution to the study of mine maschinery, and steam engines asd bollers? and I sald oh! Jeg, I kuow all nbout thea, abd nobody can teach me any more than I know; and he sald, "hem," and continued, solve me this question and let me have the subwer in a few days. We bave a semb-portable hanling engive in the Burdock mine, asd it is tather light for the work, and there fore, always rume with full steam. It is 80 horse power and the bighest pressure of the etesn at blow-off is 90 potauls of the square inch.
The tralo bas a speed of 10 miles an bour on the leve rond whed the etenter pressure falls to (i) pounds on the aquare inch, and oo coming within 850 yards of the ebbat the train of cans bas to stcend an incline, when the rpeed reduces nod the pressure of the steam in the bollers ribes to 90 pounds on the square ibch. Now the bollee tire (befots the etart) is banked up to hisp the horse power of the boiler uniform throughnat the journey,
The question makes three demands
1st. Why does the botur prosute vary?
200. What is the graclent of the inclise?

Bri, What lo the speed of the train on the incline?
I frankly confess, I have made a malstake it boubcing to my uncle George, and I hope you will help me out of the dilemma by answering the questions for me.

Solutions to Questions which Appeared in the

 Previous Numbers, and forPrizes Have Been Awarded.
Quss, 137. It is rald you can messure the velocitles of air currente in mives with a this light pine boned 2 feet deep, 15 teet broad, and a I ioch thlek, aud weightug is poands. The boardis su-peuded at the top eotisers with two pieces of tine twine, tied to the top timber. The air current blows the bottom edgee of the board out of line With the plomb-line humg up close to one side of it, and the veloelty is found frous the pressure per equare foot of the noving aif. Can you tell me three thlage: Firet, it the foree prodacise the deflectious of the bosed, proportionate to the sines, or the tangents of the vertical to dethed angless of deflection with enly an woud you find the nogles of
measure?
Ans. The foree producing the deflection of the boar is proportional to the taugent of the wertionl anerle of is peoportoras
deflection, because if the surfsce of implugement always made a sight angle with the ditection of the curreut, the force would be proportionate to the slue of the sngle, bot the surface of implngement is canted, and
 verticle angle and the foree required for deflection is therefore $\frac{\text { slne }}{\text { costipe }}=T$.

Tangent of $48^{\circ}-.900404$ and $\frac{\pi^{\prime}}{2 \eta}=F$. Now P is equas to the foot units of the force, and as the area of the board is 3 squasre feet and the wetght of the board is 8 pounds, the welght per square toot is 1 pound, and the foot units required are $\frac{\text { Tan. } 42^{\circ} \times 1}{.076}=F=\frac{.900404 \times 1}{.076}$ $=11.847$. Again VP $V=2 g=0$, then $1 / 11.847 \times 64.32$ 27.605 feet per second. To eind the angle of deffection measure a thoe from (snd at a right angle with) the plumb line to the bottom edge of the board.

Abuhrin Cook.
Houtzdale, Pa.
Ques. 157, You have given to you 23 gratns of as Will you explain to me, bowever, hatone you begin, how you will proceed to do it, and further tell me bow it grester evaporative power than some samples of anthraette coal, notwithstanding the fact that average samples of anthracite, have a greater evaporative power than averagesamples of bituatious conl.
Ass. To deterinine the evaporative porrer of conl, an
instrument called a calorimoter is used of which th then drawingla con-
venient for practical purposes. It con slsts of a glass talning a kDown quanA melghed is variable quan. to be experi mented with is fotimately mised in a
mortar with aboutten tlmee misture of 3 pts. putassic
chlorata and chlorate and
one of poteanle one of potaseld mixture is plaeed in a cyllader C, Which in its
tarn Is conered with suother $\pi / 5$, farnished with a tube aud stop-cock
on the upper side, abd
plerced
with
holes V, V, V. of the lower is placent in the amaller cylinder containtig the misture, this is Iighted, the stop-cock closed, and the apparatus let down to the botton of the grapluated flask coutaining the water. When combustion has crased, the stop-cock bo opened taken not to ratse it out of the water. The temperature is ooted at the beglonlog and end of the experiment, and from a table supplied with each tostrument, the calorifio power is found. The rise of the temperature, plas ten per cent. of this rise will give the number of pounde of water whieb 1 Jb , of coal will convert into steam from and at $212^{*} F$. 1 should separate the coal given into as many parta, so that the misture would very pestly fll my copper cylinder, the more testa taken a becter average re-ult could be found, and proceed with each ex. periment as gives in the above description.
Some sample of bitumbous cosle that contain a smal percentage of ash, show a higber evaporstive power ban somesamples of anthracite coal that cobtain a bigh perceotage of ash.

H. K. Mobeniv,

West Newton, Pa
Seound Prike, Joskrin Vinarx, Holsopple, Pa.
Quss. 153. I am a mine foremso, sud the superintendant offers me promotion if I can obtain by skillfal miniog, all but ten per cent. of the coal in s riven dis. triet that messsures in plan, 200 by 300 yands. The seam ta a bitaminous one, 6 feet thlok, and of moderate bardness; the roof stone is firm sud strong but the floor Wh
Will you asalat me with your adrice by making it
quite clear how I abould procerd and be successif in guite clear how I sbould proceed and be successfull in worklog this coal at a depth of 900 fret from the surface? ANs. I would work this conl by bord and pillar, and make the borda 120 teet long and 12 fret wide, and the beadings is feet lobg and 6 feet wide. This would leave pllars baviog a base of 1,000 equare sards, to rest Having reached the boundry limits I would flest coesmence to draw out the flankiog pillars, and take great care to keep a long face on all the pillars in line, and to prevent a squeeze by subsldence into the soft bottom would secure the fice witb cbocks.

Geomer Beow s,
Falls Creek, Clearlleld Co, Pa
Seoond Prive, H. K. Monsmet, West Newton, Pa,
Qusa. 159. I am about to try some experiments in the
the coal has all been extmeted and the roof and the floor bave not yet broken. Thls vacant space measures it plan 250 by 312 yards, the area of the roof and floos the riek of heling lamest of bile will you tell mee, flrst, Fhat will occar when the floor and the roof yiell, after I have sect up twelve props Bear the conter of this space second, what will take place if the coal face on all the four sides is timbered by props 6 feet apart and twolve oent from the coal face; third, what will oocur if I set ap back lines of props six feet apart, and twelve feet beblod the face propes, when the roof bresks? The Besm is level; 6 fout thick, and 200 feet deep
As- First, the center prope will act Ilke a buttress, and throw the welght of the cover unto the face
Necoud, the row of prope 12 feet from the fase, will throw the weight onto the roof far lato the goaf abil ause a cave.
Third, the second row of props will tilt the welght over onto the coal fo e, and thus erush the side coal and and bresk the face propes

Grones Bnows.
Falle Creek, Clearfield Co, Pa
Seoond Prise, Josepin Vinars, Holsoppte, Pa
Qu8s, 160. The tosin eutry or grogway in a oonl mine russ level alose the strike of the inclined coal scatn, and for facility in the hanlage, a rosd has to be made along the pitch of a graile of 20 per cent. The junction of the main entry with the haulage road on the pifch, has to be made with a curve of 29 feet mesan radius, abd I will deven it he great favor if you wlll tell the how high the
floog of the curve is above the floor of the main enteg at floor of the curve is above the floor of the main entry at 6 points equally distant along the line of the curve, and towsured from th
the main entry
Axs. The als polots along the curve belog equallictant, will be 15° spart, then eall them a, b, c, d, c abd and the point of junction, zero, then
$\begin{aligned} & \text { zero to } a=15^{\circ} \\ & " \text { to } s=30^{\circ}\end{aligned}$
to $c=45^{\circ}$
to $d=60^{\circ}$
to $e=75^{\circ}$
to $=90^{\circ}$
The lieights of the different points above zero level aill be proportiocate to the rereed siues of the angles.

The elevation at the top of the curve will be $\frac{20}{\frac{200}{}}$ 5) -4 feot, and the helghts at each of the points will he is feet.

Ques. 161. I am told that I ate a proteaslonsl minet ohould be nble to ideatify at wight the characteristic fory stle of the Carboniferoms formattion, and those of the formations directly nloove and bereath it, such as the tone. Andlone ant the Permlus abd vent tel samd stone. A
Soone say that the fishes of the old red sandstone had pecaliar talls, and they were covered with peculiar acales, will 500 plesse explain to me all tbeae peculi. arities as exemplified in four examples of the flahes of the period.
ANs. The flahea of old red-sandstone period had beterocerea! talle that were vertebrated, that is the vertebral cotumn was continned lato the upper lobe of the bail, like the sbarks and stargeons in our seas now. These fishes where also placoid and their plates or scalea mene ganoid, that is, the horney scalea or plates on the ishes bad a pearly luatron
Example 1. The cephalarpur of the lower series ls me markable for the great enlargement of the bony enameled plates of its bead, that formed a kind of detensive shiveld.
Exsmple 2. The asterolepos a very savage fish from 20 to 30 feet long, and conted with amall placold scales similar to tbe shark.
Example 3. Found in the upper series; the doloploAras a very large flab, diatiaguished for the peculiar Wrinkies on its ganosd scateg.
Example 4. The pergetthye of the upper ald red sandGone a remarkabie fish having only one pair of flas. which extended from esech side of the body like a pair of bars. Juespry Viners,
Sroand Prize, Thos. West, Sherrodsville, Carroll Co, 0.

QuEs. 168 . How do you account for the fact that if one endlese rope baulage is one mile long, and another is ken milec long, hel the cars ofe the ropect of one basage
 many cosls arrive at the shaft by the long, as by the bort bsulage in equal times, abd with the cars at equal diatabces oa the ropes?
Whlle you are busy, please calculate for me the hores porer required to haul out with ab endless rope haulages, 600 logg toos in teo hours, the road having an upgrade to the absft of 18 in 150 , and a length of 1,500 yards.
Axs. There are ten times as many cars on the long
moving at the satne speed as the small one, consequently ten timee the somder is the exnet equivalent of tbe small number moving with ten times the spent.
To flind the horse-power notice that the cars wIII wefgh as mucb as the coals there belng two cara for one load, and takiog the traction for coals, cars, and rope to the 013 of the losd, and the muodulus of the eagiue and sheaves to be Z we thus flod the H. F .
The deacending cars are balanced by the secending ones, thetefore, the load only Is ralsed, and the strain due to the grade is $\frac{600 \times 13}{150}-52$ tons, and the strain due to traction only is, $1,200 \times .013=15.6$ tons, abd the total ntralo is $15.6+52=67.6$, we therefore flad the horge-power to be

$$
\frac{67.6 \times 2,240 \times 1,500 \times 3}{600 \times 38,000 \times .7}=49.164 \mathrm{II} . \text { I }
$$

Phalla Creok, Cleartiold Co., Pa
Enensd Priee, Willisx Dosaldsos, Kangley, IIL

Electric Traction in Eelgian Collieries.

The old borae transway at the Amercour Colllery at Jumet, in the Charleroi district of Belgium, has recently been replaced by an electric tramwny. The lise is about
a mille long. with a fairly uniform slope throughout in the direction the loaded trucks are taken of 2.7 mm . per finetre, the gauge of the line belug 1.64 ft. The line communk ates betwew the Chanmobevau and Belle Voe shatts by a sloping gallery, at a depth of about 30 yards from the former, and is used for convegiug the coal obtained to the Chaumonceas pit to the gecond-bamed, wheboe it is cooveryed to the gorting plant. The finat looomotive mas put if use in July, Is93, and proved so buecessfal that an order ous given for a second one of an improved type. The first locomotive was designed for Che baulage of 300 trwaks per tenl houra eneb train consisting of ilfeen trucke, the normal spend being five milles per hour. It is 13 ft . long, 3 ft .10 in . Wide, snd 3.7\% ft. blgh. It has four wheols, and its total welght complete is 3 toos 2 ewt . 96 Ib . The socond one is 14.95
ft . long. 398 ft wide sud 4.34 ft , bigh, its weight being 4 toos 8 cwt , and 44 lba . It has eight wheels arratiged in two toogles, suspeeded on spiral springs. It Was dealgned for the banlage of 4109 tracks per tea bours, each train comprising tweuty trucks, the speed being $\$$ miles per bour. The feature of this installation is that it is on what is known as the ncumalator system, the supply of electrical ebergy beiog stored apon the loconotive, and not taken from conductors on the journey. The nevesuary electrical energy for changing the accumblators is suppitiad by the plant on the sartace emploged for the electric lightiog of the pit bask, offices and works. It is convered down a service shafi by on Insulated cable. Roth locomotives carry a listtery of Jalien accumulators, comprising thirty-alx cells. These are placed in ebonite boxes closed by is removible Cover of the same materinl, and arranged in a ehest on the framemrork of the focotovetve, It the firsl lecomotive the motor is in the oenter and runs at 1,080 revolutions per minute, while the wheel of the locotnotive mokes eghty-tive revolutions per minate, so that the
ratio is as 12 to 1 . In this case the motor tranamis ita ratio is as 12 to 1 . In this ease the motor tmbsmits its power to an intermediary shnft by means of wheels gearibg io the ratlo of to 1, this iotermedinry shaft chain wheels chain where has ptoch chail bowever, has two motors, ose connected to each bogeg,
 revolutions per minute of the wheols of the locomo-
tive. The loccmotives have platforms at cweh cnd, one of these only, howe ver, beling provided with starting and etopptug srrangements, ete. Awple brake power etopplug surangements, ete. Awple brake power
and safety arrangements are of course provided. Unfortunstels, focurate particulars as to the cost of working of the now defunct horse tramwny at this time are pot aypllable tuit from an carcful estimate it may bes put down at 1 it per metrical ton kilometre. Thay coet of working by the flrat electrie logmation, wacks out at yd por metrical fon-Allometre. whille that of the secoed and inproved locomotive is only id. It may bee whlded that the plant and locomotiven wrem supplied br Ls Societe Electrielte of Brusaels, which cobern is exbibiting a duplicate of one of thes Joconotives at the Antwerp Exhibition - Cólíery Gwardiars.

Coal in China

A British coosular ruport from Johang states that no cosl appears to have left the port during 1894, t ough In 1883, when there was sectuingly less demand for it, there was an rxport of 10,258 pleuls, valued at 8.255 tuot far from plaves uot far from lebang, but the maethods employed for its excavation are prinaltive and the mines are only workable duriug the dry season. Whes the rains set in they ing them fros of water. No formigs machinery is emploged and iolon is is ployed, and, hetwed, innorations with super intoratioos with supersil is produod, zotne of the mines havieg a dsily output of 30 of 40 tons of good anthracite havios a dsily oul The royalty paid to the prosinclal gorernarnt is coal to the 10 toms paid to the provinclul government in pit's mouth. An expert in elach matters, who has bad pong experience in the K'silping miues, pear Tinotsin gave it as his popleloe Tecentls that the country was roh in coal and onis beeded forelgu appliances to make the production remuberative.

Did gou ever stop to think why ofl barrels are palnted blue? Well, in making the barrels they are thocougbly soaked in water, then they arm painted blue, as this ta
the beet pigment whioh will hold the all. Tarel whell the beet pigmeet which will hold the oll. Tara Whern the cask is full you have oll on the lus de asil ofl the outaluc wita water betwern thmo, and oil woe't come outside with water between thon
through water. - Coopier's Joursal.

The Colliery Engineer

METATMENE MERE

PUBLISHED MONTHLY AT SCHANTON, PA

Advertising Rates on spptiostion to Main omen TERMS.

EXPIRATION OF SUBSCRIFTION.

 ton biss been pa

HENEWALI, ETC.

SOTICE OF DISC OXTINUANCE.

CHANGE OF ADDRESS.

 THE COLLIERY ENGINEER CO the colliery engiveer compayy,
 LONDON AgENTS.
EbGaN PaUll, Thench, ThUBNER a Co, LTD. Patrusostra Hocsa, Chanimo Ceob

VOL XVI. a UQUST, 1895 . NO. 1.
For Table of Contents see page xI.
THIS JOURNAL HAS A
LARGER CIRCULATION COAL AND METAL

bam n,	town,	North Daket
ks.	Kanust,	Scoti
	Mataibuette,	Yenamivasis,
itiah Columbin,		
Flort	N.	
Timision		
tudiami	Now your	w
1asit	Northcar	
THAN ANY	OTHER	

It goes to 1395 POST-OFFICES in the
above States, Territories, Provinces, ete.

APPOINTMENT OF PENNA. ANTHRACITE MINE INSPECTORS.

T4HE examing board tor stine Inspectors for the Third, Fourth and Fitth Anthrucite Inspection Districts of Peana, has completed its wherk and recommended for reappohutment 3tegars. Hugh MteDonshd of the Third Distriet and G. M. Wultamas of the Fourth District.
In the Fifth Instrict, Mr, John M. Lemis the recent Inapector was leates by Mr. James Roderick who realgeed the offlee in 1889 to accept the superintendebey of Mosars. Lidderman A-Skecr't Stockton collleries, While the State will sercure in Mr. Koderick an offecial who made a splendid record during his former tnenmbency of the office, and a man who is recogaized as one of the ablest practical miniog men to Americs, we regrel that Mr. Lewis, alao a very able und conselentious oflicial loess ithe position. In fact, it is a pity that the State can't have the asrvices of both the gentlemen.
In the recommentation of Mesirs. MeDonald and Willisms for reappointment, the state alll contisue to prollt by the services of exceptlonally good men. The
coening term will be the fourth term for Mr. Williams and the third for Mr. MeDonald. At the elose of the term, Mr. Williams will have served the Stste twenty years ns su inspector, and Mr. MeDonsld will bave served fifteen years.

MINING MACHINERY FOR JAPAN

THE folloming note from The Bining Jowrnat, (London, Eogland) le stgeitieant :"The makers of mitatoz, rock-draling, nod octhor ma-

 reased quantities under the sen conditions of development
 Obe of the earliest roquirnmests is certaib to be in the aifoctioa of isrgely-auguented quabtities of masbibery of aitsocts ovedom S evers evblewce the Japsiese bste made up thetr minite
 Armasd Hiould tev acyualuted vith the courke the Goverument have taken. Mf. If. Perrot Formaw has been appuluted by the therge and ethere ond Britith manufaturer direct ${ }^{-}$All fosechal sud stanes aan

 crives io this conater Io addition to maanfacturers, the
 bainters ct comwerce abd otber se sur trisiog bodiec sre so be
 for the earthest expoundiag of Mr. Feentan" s commission"
It is evident that British manufscturers will make a strong effort to control the trade in machinery in Japon. With the cordlal relations exlating between the United Stateg and Japan, together with the poeltion of Great Britain during the recent China-Japan war, when, while not actively hostile to Jaman, her sympathies were cerlainly with Chlua, makes the present an exoellent time for American manufacturves of mining machinery to ebdeavor to secure a large portion of the Japabese tradeBut stmply sitting still and waiting for the Japanese to come to us for miuing appliances will not do. Active and well considered efforts should be made to brigg them here. Oar coasalar service should be instructed to aid tis the work, and the same methods used by the British to capture trade should be pursued. With the good will of the Japasese people and the best ralsing macbibery in the world, American manufacturers poosaess a great advantage over thooe of other nutions Will this adrantage to followed up?

DEATH OF JAMES LEIBERT

WE regret to annonace the death of Mr. Jawes Lefbert, formerly chiet elerls for Tus Conasiv Esorsbbs Company. Mr Leibert was a geotleman lo whom the officers of the company bad the utmost contidenee abd whose busless abilly was of a very high order. He was the only son of the Rev. Eugene M. Ledbert, a Moravian elergyman who for tweaty-five geare was principal of Nazareth Hall, a Moravian academy for boys (the oldest inatitution of the kidd in America) nt Nazareth, Pa .
Mr. Leibert was bors at New Dorp, Staten Island, N. Y., on Sieptember 23a, 1865, while his father was statioced as pastor of the Morvlan congregation at that place. He reedived his academie education at Nazareth Hall from mhich inatitution he graduated to' Junes 1878 In the fall of that year be entered the Moravian College and Tbeologienal Seminary. He took the fall classteal and theologleal course nod graduated with the degree B. D. ob May 16th, 1881. After completing his elucation Mr. Lethert felt that the theological professioe was bot his calling and he therefore entered Nazareth Hsll as a tescher within a month after his graduation from college. He developed great talents as a teacher und exerclised a wonderfal control over his puptls It was while filling this posttion that he sttracted the atteotion of the officinls of Tue Coluary Esarsers: Company. Whes Rev. Eugene M. Leibert retired from the prinapralship of Nazareth Hall bis son James Likewloe resigned his poaition and accepted the pasition of chlet clerk in this oflice. During the early part of the wister of 1893.4 be was aflicted with an attack of the Grippe which developed into pulmovary tuberculosis. He was finally compelled to teoder his reslgsation and retare to his father's bome in hopes of therefo tighting of the disease by reat and care. Everything that the moat mbolled physicians and the loving care of dovoted parents could do mas done to stay the coarge of the difease, but in vain. He gradually grem weaker and Aunlly, on the avening of July fth, be passed peacefully away. Up till within a fow months of his death Mr. Leibert entertained strogg hopes of recovery and anxiously awalted the time when be could return to his work:
Durigg his compuratively brief resilence is this eity
he won many friends and was so popular that he was elected president of the Scranton Bicycle Club, one of the strobgest abd most intluential organizations of wheelmee io the State. He was a meauber of the Masonic Frateraity abd took great laterest in Masoaic literature, land-marks and traditions.

THE PROPOSED AMENDMENT TO THE BRITISH MINING LAW.

AS Great Britian for many years led the reet of the world in coal production, sbe aleo led in the enactment of laws intended to protect life and property in mines. As a consequence other nations profited by British experience in mining legislation, and even at this time the action of the British goveroment in regard to such legislation is of isterest to Americna mining mee.

An effort to amend the British Mine Law of 1887 has resently been made, and to give our readers an idea of the proposed cbanges and a discussion of the adviasbility of making such chauges, we employed a prominent Eaglish mising engineer and colliery manager to give us an oplaton on the matter at issue. The gentleman to whom this duty was assigued is a man who thorougbly believes is rational mining laws, and mhoee years of experience, and theep knowledge of the biatory of mining legisiation makes him a competent person to expreas sach an opluion.
In arriving at a correct idea as to what is required in mining legislation, the natural difliculties ineldent to exal mining mast be carefully consldered. These dimculties our correspondent enumerntes as follows

 ertatin siobust of cost mapportiog th. of dnager, and niwayen in mavy winee reguirtug srtifcial reptistbo. In minee where Are-damp in fownd, as so prevest explebons.
o Dim. whites in conace tiva with water

 all the seclidentan whith happen io or

 followe

Esplosbous of Ore-dsump and cosl duat Fatlo of roct and sites.
 lis esafto
 Minchita Atove

 follow, under the Employers L.Lablitity Nat

 Win. Hobsea, ithe Inspector eo Stites for thin district, ssss in
bis snumat roport, in referebe to the Alblon es

 ${ }^{c}$

th

 to

\section*{

 ond cinumb

 | | |
| :---: | :---: |
| | |
| | |

 atrum alion

 vith respect to -nery or dry ast twity minos, or employed in
of oboot suck minta. With respect to any of the following
matient a The liates on te used in the mine

 Sekjorially roferms to bree

Semes 7 Iflers to particulars to te fursabted by the owner of

Writea doe Tue columey Ekadeek axo Metal Misek

VENTILATION OF MINES.

Reply to Mr. Sperr, of The Michigan Mining

 School.
(by J. T. Beard, ottumwa. lowa)

Mr. F. W. Sperr, of the Michlyan Miling Selbool, ban Friten a secoud criticism of "Ventilation of Mioes."
 not it is oor privilege to elose this lovoluntary diecusolon abd we gindly acoopt Mr. Sperr's isvitation.
We realize, moreover, the vital fuportabce which the fair and unbinsed determination of this question bears oll of thi ajil anticipated the nation of just wach quar tions as Mr. Spert has mised, when three years ago we began the investigation. We have pot beed hasty in of hat at any cobecusion and are not in any way alarm femee. At present, the vital point at isese bas reoelved the endonement of the Colliery Engiber and Metai Amer, which we consider the highest nuthority it In the School of Mines Columbla College, to bis recent review of the book, takes no exception to the point at issue, but alludes to tho book is words of the highest praise, when he says, "The author is qualifled by edoca Hos and experieoce to epeak with authority "; and, the boek sft poisties out some potuts in whie enptious and ungratefal to point out the shorteominge in has yet sppeasped." The CWliery Gwandion London, Eug., in its review of the book, bas obly mords of praise, woding to ita author as betug well ritted for the work ucid atylen in band, baviag a lore of has waded to bere ti passing, to show that the book bas passed muster at nome of the higher courts of criticlam and establisbed its Sow comes Mr Spurace tites to minsay such right, by laining that the fundamental priveiple bas beent Wrongly stated. And, agaid, Mr. Spert, by a play upoe o place the author in the absurd position of coedemuling bis own work
Bus, let us at once to the discuselon of there rital points. Mr. Sperr asks that we explain the dietioction forces. Thlo we will do and make it so plain na not to he misuinderstood. First, we uoderstand alf forve to be the expresion of an esergy that is either inherent or
developeri. Second, sueh force may the either constant or narialle: a force is constans when it contlaues to masifest a ueiform lotedsity during all units of time. present time. Now, a force mary or toay bot be vccelerative in its effect, this last depending upon the ppon. (1.) The mass may be beld intact, when the force actiog upoa it will manifest itellt as a preseare of evsion: such as gravity produciag welght, of confined be lavpelled by the force asninst an pposion mant- may (a.) The mass may be free to move under the action of we force and opposed by little or bo reaiatabce. These three cooditions under which focce may act upon any Chapter clearly set forth and their mensure lifert Now, if the "Force as Applied to Mine Veatilintion." velocity o! the mass each unit of time anch force ia nocelerative in its effect and we term it ab scceicrating force (thougt this is slightly a masnomer, ss the force may bor a constant force). If this socelerstive effect is
uaiform for esch unit of time we say the fore unifforwis acculeratice. Gravity acting upon a falling at the same time, it is a coostant force. The stean pressure in the ezlinder of an engine represents a coll atant force, mooving at a conatant veloclty. Let us pote the difference between tbe measures of these two types of constant forces: while the cylinder pressare acto force of uravity acting upon the falling body ylelds an
dently Pr (e being the space passed over in a misute of time), (this mensure beivg constaut for all tme); the ated unit of time (g) being the space passed over daring wich unit of time) (thls differentiatial merasure of the force is conetuat for esch suocebsive unit of time). And
further, remembering that W or we reprevents the fovere of granity, and g the sameration diveto such focce Wg or mg^{2} beconser the trae mensure of the force of the fallimg hody, at the end of suel unit of time : the work performed during such unit of time belog "
From these practical and familine examples let u8 pass亚 constunt forec, us stated upon page 40, belug developed Trow the uniform revolution of the same meight of air. 25s of the June issun should read, "were the velocity a constant velocity, etc.-" they refer to the velocity eatablished by an wecelerating force at the end of any unit of time, as uot bsviug been constant during
that unit of time. Were this velocity a constant, inatend t an ascelernting velocity, Mr. Sperr's measure of the forve. Fo, would be correct, the case would thee be
analogous to that of the crlimbler pressim, of the mox ing presmure to the aliway of a mide ($P \mathrm{c}$). Mr. Sperr rightly says that the equation (equa. 7 , page 40)

```
v=N
```

represents the work storel in a motor in developing a velocity f. Aud if stored by the fan, we sok, stored out abd , asponalite for the mosement of that given pat abd ie-jponsilhe for the movement of that current this sir-current is the work of the fan sad the work dored is the worlk given out, always in the dypamics of fulds. We do bot know bow there can be any question If this. The method aulopted for the developennt of the tan tormula (Chap. V1) approaches a practical dif. through the medlum of the establishied ape of the airmay, It reveals to us the important fact that the acceleration. that a struight-padde fan faparts to the contalied sir, e the establieh ment and matatenance of soureat wif: be axpreseed in twrus of the velocity of the oroter of gravity of one section of the tan and the radlus of that center of gravity, according to the equation (equa. 5, page 39)

$$
f=\vec{E}_{R_{1}^{\prime}}^{R_{1}} .
$$

Agnis, is this equation, (equa 5, page 39), y_{3} repreBents the cireumferential vel rity of the center of
gravity of one section of the fan. In the expression P. apokea of by Mr. Sperr, e represents a radial velocity due to the owntrifagal foroe N, acting radially. Mr. Sperr
contounde these two velocities छhen he says: "Stoce a raries as the $\sqrt{ } f$, it varies as n, and $F e$ varies as $n^{\frac{2}{\prime}}$." This is not the case, ss we sald before. If the expres-
sion F is inteoded to mpreseut the work of the oxptrifugnl force, σ is a radial velocity and varies as n^{2}, sud The vilal point of ary vary ne
The vital point of differeace upon which Mr. Sperr tases his whole erittecsm, in thls regard, liee is his claim that "The fan actiog with the foree F, will start the nit from a state of rest and contibually accelerate its
velodity until the reslatances equal the force, when no farther acoeleration takes place. The velocity, then, is constant, and thersafter the work performed jer unit of time is the force, V, multiplled by the space pussed over thee regaris the force as as no longer accelerative abd makes f^{\prime} e Its measure.
We will say tn cloeing that tbe work of the fsn is a coutinual work of accelemation, by which the inert alr rent. This work of transformantion is coatlenaly going on. It is a coatinuous work of acceleration nithin the fas. And the messure of this mork is as given hy equaspuges 39 and 40, we have

$$
x=\frac{1}{2} m r^{2}
$$

This last equastion agrees with the "fuadsmental priseiple," as enuocisted by all the standard authorities. foundly stmple work of apmards of sco pages, as follows (rage 38).
WArN
celocity tor cunsfant force wets on a mads so as to changer its dwer of the mas on wine sy the furce is rqual to half the pho. The "change of the square of the cellocity" for a unti of When, would be the square of the acceleration.
We will only wodd that Mr. Sperr has not quoted us right, when he says we admit that the testa applied were
wet "satiofactory ail couclusive" We madde
 arrived at have demonstrated beponil ans reasoonble doubt, their eflicacy sad the correctuess of their trend." Wo bote in our experience that socee investlgators are eanily ssissieit when rough abs approximate determina-
toong and are prone to explain lack of ponformity tous asd are prone to explain lack of conformity in
their results, as due to this marcin of exactores while their results, as due to this margin of exactoess; while
nother often does himself s comparative Injuatice by nhothee ofted does himself s comparative lejastice by
the honesty of hls expreasion. We will let the arguthe honesty of his expression. We will let the argucritictem.

A Convenient Publication.

The Ohio Brass Co. of Maustield, Ohio, bas just called icataloge of vectrie rallway supplies, which is cobvenieat pubilication which should be in the hands of every manager of a mine in mbich electric machibery of avy libd is used. It is sent free on arplication.

THE PROGRESS IN MINING. ABSTRACTS FROM THE PROCEEDINGS OF THE MINING SOCIETIES
 And Journals of Europe and America, lilustrating Branches of the Mining Industry.

Clenning and Concentrating Outcrop Iron Ores - An artiele on this subject, by Walter J. Mny, has appeared in the Cunily portancen of the matter froen a mining polint of viem, for it is a fact, that an ore of poor yleld is worth wore bear at band, than a rich ose far off asd an outcrop ore of poor yleld, mas when assorted and dressed yleld the poor yighest percestage of mentsl of the tinest quality. The object of the writer is to show how the value of outcrop ores can be increased and here are his plans. Outerop ores, bowever sboudant, usually contain too low a metalile content to be worth working, while sillceous matters are often very high tndeed, but where on exsmination these materials are found to bo ens y scally aboent from thuphur and pbosphorus are pluce consider such oree with a vlew to working them on a commercial scale. It is true that the value of the erude ore is a small one, but against the small value we have
to set the small cost of working, which as opposed to underground working is a meree nothing, always providing that syetematto and ecomomical methods be adopted. In tact, as opposed to the underground morklog of low grade ores, the cost of worklog surface ore may be taken as from a fourth to a sixth of that ublerground, especiaily mhere there is little cover to be re-
moved. Indeed, if one exeluideas that coast of nocovering, moved. ludeed, if one excludes the cost of uncovering, corface ore should be loaded into trams for less thaz 12c. per ton, the value for Jessing nunging from 480. to 81 as per ton according to the amount of recoverable ore.
Of copren this refers 10 bematite ores, hut othery mould Of course this refers to bematite ores, but othery mould have a considerable value in many cases, particnlarty where the means of transit are favomble, as often deposits occur which can be forwarded to the furnaces for a
low rate if they could be made sufficiently bigh in metallic value It must always be borne in mind that oo matter what may be the metalic value of an ote, the
cost of carriage ls prectsely the same, It costing just as cost of carriage 18 prectsely the same, It costing just as
much to convey a ton of 35 per ceat. one a certain dismuch to convey a ton of 33 per ceat. ord a certhen dis metallio contest, while the flisacial values are widely differeot. In fact, a 60 per ceot. hematite in a clean state would thad a ready sale, while the cost, if produced
from some outerops which the writer has inspected. from aome outeropa which the writer h
would return a handsome marpiu of profit.
In conclusion, it is well to note that there is searcely a how grade ore in this country but can be concentrated up to a bigh point of metallic content, abd that profit-
sbly, if a sumiciently large supply of crude ore is prosbly, if a sufticiently large supply of crude ore is prid-
vided and eflelent plant is laid down, but in every case vided and eftclent plant is layd down, but in every case
the plant wust be suitalle for the traatment of the the plant must be s.
A Competive trial of Flue-heated Coke Ovens
In Westppislis, Germany two of the most noted syoteme In Westphalia, Germany two of the most noted systemb
of flue-beated coke ovens have been put to a prastical test, not oaly for by-products, percontage of coke, nad speed of coking. but for the quality of the colie in nctual ase in swelling iron.
of two station a batery of 30 ovens wasselected at essch
 uved. The first batters consisted of 30 Otto-Hofforam ived. The frot batpry consstid of 30 otto-Hoftuans These orens are in use at Germasia mine, the property of the Gelsebkirchen Miolog Company at Marten, Westphalin. The scoond bastery also conssted of 30 oven belouging to the Carta-Husuer Cystem as Bumbe. the work of the Coal-distilligg Compang at Butme. funsthed at the snme bour on Auguat 18th, 1892 Total thee 11 days or 364 hours. The the of cokige eseh ducted under the laspeetion of controllers sppolated by the competing companier.
The resolts are as follows: Higbest temperatures of
 C. The following table is a test of conl and coke C.M
represeats Carves-Ilusetoer ovebs. \quad O-II Otto-Hoffmane oveos

	corl	c-ll
Coat charget tose	9809\%	
Cokedrawh but	\$14 4	(60)
Whter in whe dravo,	楽:	${ }^{415}$
Tescentare of jleth, isrs)	sin	8) 10
Hatharwo cokn itren 1	69\%	Sin ${ }_{\text {ch }}$
Wkter in that turanceokejet comi	\%	. 1
Water in weth that oike, per ceed	\%is	
Perrettere of ast coke, (ars)......)	964	4
31.67 tona less coal were charged into $C \cdot H$ ovens than went into the G.II wurns.		

	frn	<\%
Ast. per ceat	8.00	
Tvesincuptur Erarty ed ewat coko	18	1/3000
yoisture perceat it farmes.	209	${ }_{6} .11$

classes of coke were determined by Dr. Thomer of

The manager at the smelltig works considered the sarves-Husseder coke was the best.
A Creep in a French Cont Mine. - A translation of an article in the Annaios des Mines by M. E. Coste lately appeared in the Coliery ofvardian, nod M. Coste sems was think that mhat occured in siostrambert coltery to, have boce common esperiences wherever deep mining has been practioed. The title of the srttele is "Alters. tion of Coal due to Sybeldence," abd as the description 18 well dose, and casnot fall to give our readers that M. Coste's article with a quailifyivg remarle, that where the "slack" or dust cona is gobbed, the outrush of air and gas from the goas mben the root and the thoor close carries with it a stream of fine particles of coal, sud the "the doposit referred to. The "earthquake" and botice.

In May last a suldeb dieruption of strata smounting to a small earthquake, occurred at the Montrambert colliery, Lolre, Frabec, produclog an unusual crashing feet topon the coal. The morking nrea is about 2,300 lease and thing down to 3 fuet 6 ibeches at the other Overiving the coal is a mot of cosl-shale areraging 20 inches in thickness and above that a strong sandetome mblle the floor consists of a hichly silicions fire.clay The stalls had bees carefully packed, but the roads lending to them were not fally gobbed. Loud Getons. tions have been sometimes heant, tolerably rare as the lower portion of ench pabel is being worked, but be coming more frequent as the morking advanoes. In 1808 a sudden digplacemest occurred to either the root of boor of the ream, causing a shock that was felf
considera tive distance.
"The nolsss recently heard were nttributed to the fracture of the floor, and they often correspooded with shocke sufficient to throw down the propes. On Hay 5 1805 a very severe shock oecurred, cracking the timbers and accompanied with a violent rush of air. Fortunately searly all the miners were out of the workings at the time, but most of the lights of the few mea in the rasds mere blown out, and the men tossed ubout. The Inspection showed that the roof and boor were nearec together than betore, the sbale of the roof had fallen is, and io places the roads were bloeked, and the stanis Geatly illed. In the disturted area all the eleavige planes of the coal were opeoed, and the conl was so cloud of duat was formel, whlth had not heen the casi before. A small bed of yers fine coal dust was found
 Everywhere the conl was fonod to be is a crusted state and very friable, and the commetion was felt at the

Modes of Working Cosal.-A paper on the above by Mr. J. B. Hauford of West Kobterey, was recently ern Central Peansylvania, and was as follows
It must he obrious, that a thick seam of coal will yield more than a thin one, aud that the greater the gield per acre the smaller muat be the costs per ton for making and keeping the entries, etc. These premises beling graated, it follows, that a this seam canoot be worked so chenply as a thick obe, and therefore, to buke the workive of a thin seans a protitable transaction, the very best methods must be alopted in the ee wortion chaper than the -tugle entry i i conclute From oterervation, tbat if double-entry is the cheapest system of morking a thick seam, there is nothing to Merent it from displacing the single-entry system in sstenon, abd thus us har as due nivaslages or a goold ecure os roolk arate sh the thick one. It is true the cost of making double entries is cotestilerable at first, out this extra cost is a good invertraent, because it is al all times a dificult matier to properly ventilate a thin
 working, because the great number of wooss required is a prime soarse of waste of nir current and again iouble entries sercres no hocreseed ventilation, free from the maste "Ample reatilation." Artiele IV. Section 1, Aet it Bitumhnous Coal Mipes of Penosylvania, and again Article 11, sective s provides for two entries thle it is elas To show the aim of my coutcotion, homerer, let us helog 3 telt lig ons ant finceley thot the cover or aselylyg rest
 mine is operated by a drift of 3000 feet aloog the butt ine, and that rooms are turned off every 36 feet and vides 200 cuble feet for every man, and $\hat{0} 00$ eubic fret for erery mule, and let us see what will be the aproxil. mate coet of estracting the miberal by esch of the syatmins of working that now are before our nttention. maintaining the the constan monds, we bave maghly the following cost to is each case

If the rooms are driven 55 yands long the main ebiry will give a tonage per annum of 181,259 tone of the cont The roads on one yenris haulage is $\%$ couts
out the eotries as now 40 yurds ajart
 was. Coats per ton fit ceets of a total saving of \$2500 for the doubla entry system
By leaving a large chain pillar, the coal will not be 80 moch crushed, thas securiog it larger per centage of ump cosal
Blown-out Shots. - An article on the above subject save of the Colliery Guarias.
Mr. Ashworth's article aime at sbomiog that the Dastlog powder at presedis use, is an lefferior sid cheap peopsaration to which as escema of nitre is used in its composition, hecio the dangors attending its use, for it is now an established fact, that, in the absence of lire damp, if the cartonte oxide ned name from a blown-out shot is projected little cosil dust, an explaston ensues which is the uucleas of a greater one, for it the first explosion raises a clond of In llammabledust, the second ove fills the milue with name. Mr. Ashworth further shows tbst nothing has yet been dobe to compound the three ingredinats in gum powder in such proportions as will hasure complete com. bustion, as is neariy dobe, in the burning of whersing powder. He chaffs at the old, old story "ot per cett as the true, and beat proportions for good service, and he shows, that it tepo demontrated that a better blasting powder and chenper, and perfectly safe, can b made ky increasiog tbe proporthon of charcoas, and correapoedingiy reduciog tbe per ceatage of aitre. No the old proportions in blasting powder, and three of them are as follows:
Firet.-Nitrate of soda is very cheap.
Tecobi - You wish to buy in the cheapest market.
Third.-Manufactures conpete in price
Turiug le twrediente preperls properlio gupowder plete cos hagredienta properly proportoced or com plees of the in perte and dangerous hatles powler in common use. The following is the most timportant portion of Mr Asbworth's articio
That it is poesilite to memenfacti
which for all cordinary moes is pre a blasting pomder breen proved gears by foe fltm safo to use, has mho introduced a powder ealled "extra strong mining (E.S. M.), fired preferably by a detoostor. Thia powdes was of much the same composition as the best artillery powder, but it differed from it in its physical qualitiesit was unglazed, it was soff, the cbarcoal was pot common charcoal, abd it was incorporsted for a long thme in the mill, and not merely rabbed together. Being ugglazed a charge was resdity iguited, nod the combus thor, by reason of the exocliences of the ingregientrs am was such that porlige of 8 oz was fully equal to $1, \mathrm{jlem}$ of ordivary pomilet
This locrease of force was not entirely due to the -xcellence of the ingredients, but also to the detomator, which had the effeet of firing the whole charge instan Gaveously and aot, as with a conamon fuse, allowing the ignition hame to pess from end to end of the charge at Thematatively mlow speced.
These statements of practical experiedos with a bighwass pomiler prove that the risk of scoidents from bloms-ont shots may be reduced to a miumumen if is proper and suitable articie is demanded and its use
enforeed. It is, bowever, possible to shom by the reault of an actual esperiment what change taked place io the penactuat exjeriment wast chaver takes for by reterting to the expertmests made by Karoly1. He fired a charge of powder composed of saltyetre $\uparrow 3 \uparrow 8$, sulphar 1280 , carton 13.39 , in a very strong irou taorta and theu teated the resultant gaces, and he foumd that 1 lb . of powder produced only 10.1 itres of carbosic
 of nitrogen, but be
and $\$.9$ of bydrogen.

Botb the latter resultant gares doubtlessorigloated from the charconal, and therefore if these gases cas be roduced by the use of more sumbill charcal, chere is bo doubl pon-dangerous mitnes if proper regulations are enforced by Act of Parliament, and the gunpowder-makers are made amenable for turning out a bad article
The eaforcement of blasting by electrical orother detomator mould ubloubsedly afford an extra polet of safety 38 ensuring the igsition of the whole charge more quilekly and the fase is thraed up nad fixed in the fiest cartridge and the rest of the bobbbins threaded on above, the conse quebee is that the ebarge is Iguited at the tack, and it the hole is "fast" the froot part of the charge is blewn out when only partly consuaned, and cabnot fail to ath which reulls when the carbopic oxide is banst into cartromic actal
If dust of any port is present, the extent of the llame must be thereasod (cide Bir P. Abel's experimests io convection with the Seaham disaster), and if, as seems prostede, thete is Boy Eredaup lurkiog nbout, as sug force of the blow-out and consumed at the same time that the cartoonle oxide is bume into cartonic achd.
In conelusion, if high-class gumpowders nre alone there will bee every differebce in the world lin the reoplt. ecause the combustlon will he alresily complote abid the thame will belimited to that which comes out of the bole, and not litensitled by a secopd and mofe intense tullamuation frow the bursing of the carbote oxide, miners' haat priticipat
Water Tube Boilers.-The water tube boller is at
present the geberal favorite, as it secures the greatest
eoonomy and eflleivecy in the raisting of high pressure steam. Before, however, proceeding to give the detsils set forth in a very importast raper lying before us, it may not be out of place to nothee dutisitely the meanalags of some of the terms employed. The vater tube boiler Is in contradistinction to the fire tube boiler. In the fire tube, such as the tubes of the Labcashite sud Cornish boilers, and the multitubes of the locomotive and warioe boilers, the flaming gases past through the
tubes, whille the water within the boiler covens the exterior surfaces of the tubes. In the other, or coetracase, the water Is within the tubes, and the flame acts
on the exterlor aarfaces of the tubes, hywee they are called "water tube boilens."
The Adeantages of High-presed Steam. $-1 t$ requires $^{\text {nearly is mach heat to gevernte ateam at the prosalire of }}$ nearly na much heat to geverate steans at the preseure of
the atmoeploere, ss it does to genvrate it at 300 poands pressure on the sequare lich. Aithough ic the latter case the temperntare of the steam would be cousiderably abore
$212^{\circ} \mathrm{F}$, yet as the sebalble hest of the high presed steam incrumser the latent heat decreasss, and the result is, it reguires very little more hest to produce a pound of steam
at a pressure of 300 prounds on the eguare ineb, thas that at a pressure of 300 pousds on the eguare ineb, thas that
reguired to make a pound of stean at a pregenre of 16 reguired to make a pound of
ponnds on the square foch.

We soe then bow it is that high pressed steam secures such econony, and in this we also see how it is that all stesm users desite it; but tbere are lmportant factorm
required in the modur operandi, and theso are a ligi required in the modur operasdi, and theso are a sigh
temperature, and a large heating surface for the bollers. The reasoo why these factors are reguired is fouod in the fact that for steam to be formeed, the bemperature of the temperature of tha steam, to supply fafrat hent, and as the rapidity with which steam is produced is in proportion to the number of degrees the beat is alore the a higb temperature is required and to still further impress the judgaent let us notice and not forget, that
The evergy of vaprofleation is directly propor tionate to the units of beat absorbed per minate by the heatiog sarface of a toiler. Now the face is reckoned to be good in a multitubular boiler wheo it is equal to 8 units of hest, but to geperate very high pressed steam wee requires sn ahsorption per square foot per anlnute of not leas than 12 units of heat, there-
fore the subject is one clalming universal attention, and Mr. Allen Stirling of Cblosgo, recently read a paser before a weeting of the Mioing lastitute of Scotland, on
the subject, heoded, "Water Tube Bollers." The prinelpal points tonched on by the paper are as follows:
"The Stirllug boiler is practically self-eleanlog, bede d eebds with a slow mothoe of 6 laches per misute to the mud drum through the back group of tubes, which have an aren 100 times grester than that of the feed pipes
HOn euterlog the mud-drum the feed water bas reached the boiling protat correepoeding to the presauru under which the boiled is workling.

The scale forming matter, together with other solid matter beld in suaprenslun prior to the feed water ester-
ing the boller, is deposited on the bottom of the madlog the boller, is deposited on the bottom of the mad-
dram from which it is readily blown off. This arrangement ensures the supply of practically pure water to the front sud roiddie groups of tubee, where
the steam is masde. The Stirling boilers are giving the the steams is made. The Slirling boilers are givlog the
bifhect resulis, and ate only opraed once in six months, highest repulte, and ate only oponed once in six
nod even then very little cleaning is necessary.
"The sulvantages of ustog high pressure etenm are widely recognizod, sad its use to modern engloes is iscreasing rapidily. The merits of the water tube as compared with other boilsas for carrying bigh pressures, are
copoeded by the best eogineerivg anthorities and the copocded by the best epgineeriog authorities and the
Sticling water-tabee boller commends itself because, (1) Stirling water-tabe boder commends itself because, (1)
there are so riveted joints exposed to the heat; (2) there are no that surfaces, and consequently, no stays are required: (3) the outside surfaces of the tubes are the
only parts with mhle flame comes ls cootact: (4) the ends of the tubes are is water; (5) there is no heating surface above the water line; (6) all the parta are of wrought steel; (2llow for driling the tubesboles; (8) expanslon and consllow for driliog the tubseboles; (8) expanslon and con-
traction bseve been thoroughly provided for; (9) the thactlon bsve beed thoroagtly provided for
water is divided into small sections; (10) the cirealation is stendy and thorough; (11) it is practically self-cleans ing, so that the boiler seldom requires to be opened,
and (12) there are only four jotnts to break to get access and (12) there ane only four
The following are other advantages claimed by the "The Stirling wster tube boiler oecupies.
than any other. The small space regulifed for boilete than any othee. The small space reguired fot
and fire room effects a savigg in coat of ground.
The following are the principal dimenaious of Steriling boilers receutly erected in Scotiand

A Lecture on Mining. - An important fenture was lately delivered by Mr. W. N. Atkinkan, H. 3I Iuspec-
tor of Mines, before ar meeting is Losdon of the Fuder. ated Iustitute of Mising Eugineers. Thio Jecture is reflex of the experience and a-pirations of the Misies Bingineers of Gceat Britain, and, therefore, clalma -pecial
notice. The subject is treated under elght heads,as follows:

Sntety is Mining.
Falls of Roof and sidee.
Explcelon of Firedserp and Coal-dust.
Aceldents in Shafis.
Vaderground Aceld
Surface Aceidents
Trainiog of Mining Eugineers
Distribution of Power by Electricity.
Safity in Mising.-Me. Atkinson proves with the following facts that satety in the practioe of mining is progressively incressing. We may cobgratulate oureolves
that, polatively, thes tainer's ocapatioe ts now much hat, redatively, the calber'A occapation is now mucli
safer than it was during the carlier part of the perion for which statistics are axallable. Thus, according to the oflicial statiatics relatiog to mines under the varions
Coal Mines Regolatiun Aota (which are the statistics Coal Minee Regulative Acts (mbicts are the statistics
always referted to) the rato of persons emploged io and abous referted to) the rasto of persons coaployed inines to esch denth during the five yeare 1851-65 was 293 (dieath rate per $1,000=4994$), whilst It the itve years $1800-94$ the correspobiling ratio wha
dist (death rate per $1,000=1.008$), so that during the 624 (death rate jer $1,000=1.008$), so that during the
latter quinguennlum more than two and a-half times as many persons were emploged per life loot as to the arlior period.
Asplusions uf Fire damp and Civel-duat. - The lecturer shous that during the last 41 years the loss of
IIfe from explostous has been greatly reduced. "ExHfe from explosions has been greaty reduced. "Ex-
ploeions of fire-danop and coaldust account for 21 [pq cent. of all the deatho from socddents in and nbout the mitues undee the varlous Coal Mbes Regulation Acts during the forts-four years, $1801-94$. Tbe annuni loss of life from exploshos varies more widely buan that fromi any other class of acxadents in mines. During the past 1888, the average annual namber of deaths from this cause beiog 220. For several years phat explosions in coal mines have been the eubject of much controvery and rpecial lavestigation, owigg to the adrancement of ine extensive explosions. This contef soution is now widely
in admitted, although there are still differences of opinion cobcerning the relative influence of Bre-damp and coal tust in mine explosions, and as to the conditions under which conl-dust may cause or exteud explosions
It is next shown that the oceurrence of explosions has diminished since the dangerous character of coal-das: became known, and he says
${ }^{*} \mathrm{O}_{\mathrm{n}}$ the other hand, we must remmber that the avernge depth of coal mines is increasing, and this depth Is accompanied by increased drybess, so that in the future a greater proportion of mibes will be subject to danger from coal-dust than in the past. Statintics indicate that slsoe the tione when the influence of coal-dan In colliery explosions was seriously constdered, there bas He Best reduction in the loss of life from this cause. "Improved faf on tbe subject of cafety latupe by bsyog adopted, but in this respect there is room for further progresa. For sone thme we bave appeared to be on but as yet it is not forthomating. With respect to the lampe is use two polats strike me as specially requiring attention. The finat is the abolition of the old screwlock and the adoption of a lock incspable of belng opebed surreptitiously without detection, and this is mo able to most of the jamps now in use. The other point Is the risk atteoding the use of lamps with elose shields, that laraps may bet takeul foto the mine withoot the gause. That thig is a real riak is proved by its occur-
poce in the experience of a puaular of persons. The remedy is not so obvious as the Improved lock, and it involves some alteration in the construction of the
lamps, but it is sa dsuger deserviog of scrious attention The introduction of tmproved gasivetecting lamps, capable of isdicoting the presence of very small propor-
thons of fuflammable gns, eunbles a thouse of be forment of the proluction mod precurate esticante to be fortued of the proluction sod preseuve of fire damp in miser. Fur kome time I have used Ot. Clowes
hydroken lamp for this parpose with much satisfactlom hydronen lamp for this purpose with much sationacthon-
Fails of R and $a n d$ Sider. "Falls of roof and sides in mines have aiways been, and probably always mili be, sccouotatie for more aceliectss hod deatbo tban to seek. It is other single caume. The reakon is bot far which every persou engaged underground is to sorbe extent contioually expoted. About 40) per cent. of all the Rengalation Acta slace 1851 were conend the falls Mineo and sides. The statistics show, nevertbelese, that there bas been a steally decline in the death rate from falla. Tbe methode of preventing accidents from falle are wel) known to all engaged in minling, and there ta no pros pect of the discovery of any new principle for the avoid mest lies in the better application of the old methods. The substitutios of iron or steel supports for timber io likely to extend for economical reasons, and may to some extent ndd to safety"" Athinson further males the followlog wist rewarks- Sbaft accidents account for $18 \frac{1}{6-r}$ vent. of the deathe recorded slace 1851 . The stathath show an more ibaiked decrense in the number
of deaths by sbaft weeldeats than from any other single cause. Although it cannot be shown bs the figures it is probable that the decreabe lo due in a greater degree to
lekerend loss of life acoogigt persous simply uslog the shaft= to pass to aud from their work, thas to imereased satety to thoos eugaged to sivkiog and repairing sbafts fing of rullwars, it is the mere passeriger who rubs then lesost risk. The reduced number of shaft acedents is tress effected in the fittiones of ghafts, the alnangt unf. versal ase of guided capkes, sutomatic fexces and other
fmproved oppliances counected with the shafts and wioding eugines. In mavy essees a very high degree of Ferfection has bees attained in this reppect. Poists to
which attention should be directed is order to prevent which attention should be directed in order to prevent
loss of life in shafis are the matutenamce of the sider
of the shafts and the shaft fittings in thoroughly good repair; Bian the avodabos as fur as poessble of the use where that is unsvoidable the adoption of special appil. noces for securing sntety at such places. Then the use of good topes of adequate streagth vigilantly examined, olledant cared for; periodical recapplag, sud, where there is the probability of laternal corrosion, extra precaution with regard to the length of time durling which the rope is used, as ropes outwardly per-
fectly goubi, may loceak suldenly from this easuee. The use of detaching hooks may now be recommended with cooflidebce, and they should be supplemented by the provibion of keps or catebes to arrest the fall of the cage ta case
the chains are liokeo, as nsy oorar by the fall of a cage The chsiss are lotokeo, as tasy oerar by the fall of a cage
carrieit up by its momutum sfter then ropela oletaved. carriei up by its mometum sfler the ropels detached
Apediauses for arresting the fall of the cage in case of Appliawes for arresting the fall of the cage in chbe of
the rupe brealiug have pot arrived at such perfection as to marrast the recomionemlation of their geoeral use.
 Ing causird 17) per cent. of the deaths reconted sloce 1801, and the death rate shows a tendency to inerease
ratber than tha contrary. They ans asunly Tutber thas the cootrary. They are asually single fatal-
ities caused by the use of explosires, buffocation by Ities cansed by the use of explosives, suffocation by
gases, accideuts in connections with the haalage of gases, aceddents in coanections with thes haulage of
minerals and aristug from sundry other malscellaneous causes, fut occasloosily s large loss of life occurs from Itres sundergrousd and by eadden irruptions of mater,
both of which are Lueloded with miscellaneous under. ground aceldents. Anetsded with misellabeous undergrousd sockernss. A latge proportion of these accidests tusur cases both safety aud ecosomy would tubs, and In by the sloption of lmpooved wederpround polling stoek and more perfect haulage rosis. I will oels refer further to meclidents arisang from flies and irruptions of water. Undergroumd flrm are of two clasocs these due to spoutaveous combustion, called gob-flires, and others caused by sockdental Igsitions. Fires of either class may resuit in loes of life either by suffocatios by the products of combustion or by explosions caused by tbe bres. In seams tree from Aredamp gob-flres do not usaally have fatal rebulte, but in flery and dasty seams they are a source of great dabger on socount of the risk of explosions. The causes of spontaneous combustion in mines are not clearly understood, and the liability of any etam to its oocurresce is only discovered by expecienoeDurigg reoent jears there have been several very
serious accidents from flos usierground canaed by accidental Ignitions, most of which were due to the use of naked lights in dry workiugs, and especially by "torob" or "comet" lamps.
The work of surveying mibee and making the plans thas in the past often been coutlded to facompetent hasds, and even now the importabee of the subject la requeatly anderrated. It would not appear to bo marrasing of minimg that jersons ertronited by law to hold some recognized proof of their capacity
Surface Accidents.- Aecidents on the sarface in connection with mines amoust to if per cent. of all the accidents recorded sioce 1851, and for the last tweoty years at least the statistice show oo foppovement, the average death rate being alightly ubder 1 per accldents are not of a character peruliar to miniog, but are similar to those eccurtiog at ofber works where machinery and boilers are abed, and where railway wagoes ate moved is coefised places. The number of accidents in eonnection with the movernent of wagons about the scteens might be reduced by the provision of
grenter clesravee bedween the wagone and theetructures greater clesravee betweed th
near which they are mowed.
Traising of Mining Engisecrs. - Thas is an nge of education and with the tutroduction of electrical, and the many other examples of ocleutifo englneering. the British realien the importsace of techaical sdacation as followe: Ia view of the contiuasi developenent of the miaing industry, and the increased difflculties and dangers to be avercome as mibes becoove deeper and roore exteusive, and the introduction of complicated and costly macbibery of various kluds, it ia more that ever requisite that, to
be saccessful, the mining engineer should bave a very efbe succestul, the inifitg enginect ohould bave a very ef-
fielent training in both tbu practical and seleutitle knowllicient training in both tow practical and yclentitle knowl-
eslge of bisprotesaton. Thure is no rearon why a thoresige of bisprotesaton- There is no reason why a thor-
oughly practical kbow ledgeof mining ahould not bie accompabled by considerable selentific attikinmeats, and the mining engineer mill flod it advantageoas to bave some ack qusiblance with meat ly all the exact ans pibyelcal bciebore," Dhatribution of Power by Elvefricity.-Mr. Athinsom seems to be in touch with the Jien so maby cnterfain,
concerning the transmlasion of the euerry in fuel, Soncerning the transmbsion of the etrenty in fuel. the elemeats is coal should be couversed isto gas ubd transmitted through pipes to the polats where heat, Ilght, and energy were requifed. But he proposes a cheaper mode of trausit, by desputchiog the euericy iu a opititual form as electricily sbrough cabiec, where it could be used at all polats as heat, light, and i mechankeal agent. A subject of interest to colliery owners mud miving
 installations situstod in coasfielde, for the distribution of power to distant placen by electricity. If this is fousd practicable there will be an immense savivg in the cost of carriage of coal to the consumer, and a mitigution of how staoke-plague aflicting so masoy mabufacturiog tage of colliery ouners to fuitiate the system for the dla. tribution of ebency to grousis of mines. A much poge -peculative queblion refere to the possibility of atilisiog the Iuterior heat of the varth by means of deep shafta
ail bor-boles. A few weeks ago I read of a scheme for attemptiog to solve the question liy a serines of shafts and borluges in connection with the Paris Exhibition of 1900. If this source of heat and power ever becsme
arallable on a large scale it might materlally reduce the
 there is solsce in the reftection that many things are thely to happen before we get deep enough to be able
utilize the beat of the nether regions.

Writtes for Tek Coluant Kigixekn and Mistal Miske

A NOVEL STEEL TIPPLE.

Description of the Tipple at Forest Hill Mine. Near Douglass Station, Pa.
The steel tipple at the Forkbt 11 ill mine, owned by Messrs. Ellkworth, Morris \& Co. of Clevelani, Ohio, and located pear Douglass Station on the Pittsbarg, McKece. port and Youghlogheuy IS: R, posarsses some novel
featurve. It was lailt to replace a woolen tipple, which was destroyed by flee. The orlginal tipple was about 30

f. high from the rail to the tpple platform, and was
ownected with the pit mouth by a double track inclines. The distance between the tipple and pit mouth was short and the incline was very steep. There was room for but two care on either track between the foot of the incline sud the tipple dump. Tbis, of becesality,
Ifmited the tripa on the inclise to two cars, and conser Himited the tripe on the incline to two cars, and consequently linaited the capacity of the tipple. Io designing cline and increase the beight of the tipple honse benta to aboat sisty feot, so that the mibe cars coald be nall d!rectly to the dump from the pit brouth. There are two loaded tracks on the tipple, each holding ten cars tent reen the croes over and the gwitch at the pit moutb. These tracks have a descending grade to the dump of $1_{16} 5$. The dump is the Phillips Automatic Cross Over Dump, (uanufac tured by the Phillige Mise Xupply Co. of Pltsburgb, Pa, , and the cars aftef dumplag, rum automatlically to the switch back and back to the foot of an treline, up which tbey sre takeo by a sprocket chain to the head of the inclines. At thit point they are sutomatlically relessed from the aprocket and ran by gravity down the empts
track into the main entry of the mine, where track into the main eutry of the mine, where the empty tripe are rasde up. The gprocket ob thy
ioclite is rus liy a tea hors. power cogine situated ioclibe is rue by a ted horse pow
on the lower floor of the tipple.
on the lower floor of the tipple.
The coal, instead of betog dumped directly into the screcoss, which is the caun in upples sor uat slly bailt, gows into a counter-welghted drop basket, which is lowered, by the weight of the cond, about thirty feec, to the exterebs betour. The gate st the lower ethl of the basket is opened by chreck chains jast before it reaches the lump screen abd the ead slides out of the basket over the trolled by friction brakes on the drum, and to prestrolica by friccion braked od the drum, and to pre-
vent too great a shock it the bottom, the haskem ts chocked by spiral spriugs on the und of the chalos. The cruibles on which the loaket rame an alx by eight inth yellow pfies, sad on the baskethereare four friction collers ne each slde, wotk ing on the sides of the graides. The time of lowel ing the basket, dumpdug the coal on the ecrevts and rai-lng again for the noxt load is lese than one-half ralente.
Aly incressiog the distance between the tan outcr tranks to 1 ? feet, from center to center, aun bbute, it is poasible to loait box cars with lump or rus of mine coal on etther of the outside tracks, instead of the outer track as is genersily dobe. This saves coosblerable tion ang increases the cspacity of the lipple when load car, conl may be rus into the oar on the laner track, and
rice zeras. The introaluction of the nut and slack bins is slao s anarce of tima saviog, as thes allow lump cont to be losided while shifting a car slready limied with nut or alack, asd dropping empty ears into place on the nut nod slsek tracks.

The cosl is all melghed on the track scalea, the weigh office betige on the first floor of the tipple, and the sealre are connected by rods rumning from the track level io the beams in the meigh oflice
The miners' checks are takee from the mine cars at
be dump and droppred into a tia tuhbe loouling to the the dump and dropped into a tia tube lealigg to the Irog, hagket se on the floor bedow. The brakes on the The tipple is at present equipped with a simgle set of Crevta, and its capscity is twelve haudred tons of lamp sont in ten hoars, but the stracture is 90 designed tbst a second set of screens may be added is the fature,

Strai. Timite at Fonkst Hmi. Misi.

hera the cutput of the mine deanal it. Mreats. Wit kins and Davison of Pittsburgh, Pa., were the desigaibg mpiucers, the structural work being built and erooted the screen equipment by the Pbillipa Mine Supply Coms. pany, and the ibeline sprocket by Messrs. Heyl and Patterson of Pittsburg.

Jeffrey Conveying Machinery for Coal Vessels.
The socompsnying Illustration ropresents a coul con-
vyor, Installed by the Jeffrey Manufacturing Company,
The mas who thinks a knowldege of botany cannot nid a prospector does not know much atbout thescience. The trath is that the mineral charncteriatics of a aoil They change tbe shade abd color of leavesand grass and hoseomen, ns well as ofter dietate what plants shall and shall not grow there. Thereare plante which grow oe'y ahere thene is coesiderable zine in the soll, and othere which apparently grow beat, or only, where there is lead In the earth. In the lest regiona of Illinois abd Wisvonsin the old-time prospectors looked as mach for the vegetable growth as an indication of ore as they thit for flost. Old-time Colorado prospectors remember the little "salveg flowet" found go abumdantly in the mountaiss is parts of Clear Croek aud Boulder Countles, where stiver ore is most abundnat. Observation shoms

that it appesra to krow best in the silver-bearing regious, flower is shaent.

There is a scientifie basta for all this: it is that soltare innuenceat by the oces and form them, and that kech precular soll foftombers th vegedable growth Mone that otice wr have seen the courge of a lode elearly marked by the vegetable growth along its entire length. The old prospector ancesermous In ctass and trees as well is stones.-Mining fidantry and Trmbestarn.
af Columbias, Ohlo, for the Mohile Conl Company, Mole, Ala., ob their whart, fof the purpoed wo cas on the trestle conveying same to a helght of about forty-flye fees into a storage poeket from which it is delivered tons per hous.
This convegor is about 175 ft . In length, is constructed of doable steel chais of great streagth and durability. to ahlels irou scrapery are tastetand by means of specin! awivel attachnaents. The conl is carried by the scrapers
referred to through a steed trough, so constructed as to preant a smooth and continuous burtace, olferibg bo imperiment to the passage of the coal. The chain operates in iron guides, away from the material, supfrortige the serapers elear of the frough stom, thusreatly reducigg the friction ant wear, without being actombed with that unterarable screcetoing boige, produad by ordtanty convegnes where the wornjers slide on隹 brtom of troogh. The ofrevtion of this coaveyor inuefect, carrying 130 lotur full of imibe cosi couminimsly, with lor least amoubt of breakage and aresia monount of power. All of the working parts In case of ripairs

The oouvesor is driven from the delivery end by an engine located on the ground, the connection, (owing to the distance), being made by wire cable operating over rabher fllled sheavea
1n eonnection with this The J-firey Company also furnisbed a car puller, which is not shown in the Illustration. This car puiler cousista of a friction drum, driven by the same engine that operates the convegor, by means of which the emply cars are pulled away and the losded card into position for unloading. The resulte botainec by the naer of this maccinery
 omically by any other known metbod. The raving in labor is very Errat, to say bothing about the safe hamding of the coal and the very short
atw obliged to mait for theit supply of fael.
The installation of machinery, as represented in The illustration, is obly a stosil part of the Jotrey Dabuftacturion col drils for mining the coal, electric locomotives for hamilng it elevators convergars auf ecruent for proparing and londing it into cars reaty for ahipement. preparmg and losding it into ears ready for shipaent. Hog of material is atras hoarl, pulp and paper mills, ling of material in straw board, pulp and paper mills, cowiting and roftuing works and numperoms other is. dustries. All who are interested in thls class of naschiners and dealre to oltain the latest and most apporoved appliabces are invited to write for full particulars and prices.
A lange and haodsomely illuatrated catalegue appllication.

Piants and Minerais

Easy Lessons on Mining.

This Department contaias articles to assist ambitious Miners to educate themselves, and obtain Certificates of Competency as Mine Foremen, or to become Mine Superintendents.

The articles are written to be understood by the unlearned and the learned alike. Plain language is used, no obzcure terms are employed, and each subject treated, is made as clear and easy to understand as possible.

Further: The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors, are printed and answered.

Ef The Saries of Artheles "Geotogy of Conl," "Camiatry of Mining," "Mining Motbode" and "Mintng Machinery" was commenced in the iseue of

MINING MACHINERY.

Velocities on Inclines-Laws of Resistance on In clines-Times and Velocities on Inclines.
58. Velocites on Iaclines.-Figure 108 is intro. daced to still farther explais how the gradiont of an is cline may be found when the length and time for the in ient is gives.

Fio. 102.
In the upper example in the figures $A, D, A / F$, and $A C$ are mudis of the same eftecte, consequestly they are equal, A in 5.657 seconds what is the gradient for this time We kuom that the beight $B C$ will bo in proportion to $B A, s s$ the square of the time of G in falling from D to A is in proportion to the square of the given time 5.65 ; seconds. Tbe length of the radius $D A$ is 64.32 feet. of the height A from which the body will tall is 64.32 feet and as $\frac{g t^{\prime}}{2}=A$, is must follow that $A+{ }_{2}^{3}=t^{3}$, therefore $\frac{64.32}{14.69}$
16.08-2 -4 and the equare of 06318 equal to 32, and from this we see that the pradient is at the rat if 4 in 82 or 1 is 8 , or If $A B$ is 64 . 32 feet long the height of $C B$ ts $\frac{64.32}{8}=804$ feet.
When the length of the inclinesad the ratio of the gradieut are given, the time is essily found, because it in only requifed to redoce ${ }_{2}^{g}$ by multiplying it by the fracUlon of the gradient as in this case $16.08 \times \frac{t}{t}=2.01=f$ and theretore, $64.38 \div 2.01-t=5.657$ secobds the time for a body to roll down an incline of one in elght, of the length B A.
The example at the bottom of the Bgure is to show that pothing falls but the lond in carg runulog oo an inclise.
Here are two pans esch welghting 1.5 tons, and marked W and S; W carries a load of 3 toss, therefore the pans sud their load weigh conjointly 6 tons but ooly 3 tons fall, while the two pats balance each otber, abl are by the rope passing over the palley P. We see thed that 3 tous have while falling, to set 6 tons in motion, theretore it is clear that the load will only acquire ${ }_{i f}^{3}$ of the square of the velocity that would be attained, it the road fell slobe
It ta clear then that the time on $N M$ nust be longes
first case f was $={ }_{2}^{9} \times{ }_{8}^{1}$, bow it is equal to ${ }_{2}^{g} \times{ }_{8}^{1} \times \frac{3}{6}$ $=\frac{g}{2} \times{ }_{8}^{1} \times{ }_{2}^{1}={ }_{2}^{g} \times{ }_{10}^{1}=\frac{d}{32}=1.005$, nbd the thme 10 $64.82-\frac{64.32}{1.005}=t^{\prime}=64$ and t is therefore equal to , 64 -8 for the finctine $A M$ with halsoced pana, mhereas,

 as was explatined in a former example, with this qualit. cation honever ; the time of the fall from X to M mast not be fouml by ${ }_{2}^{2} \times \frac{3}{6}={ }_{2}^{9} \times{ }_{2}^{1}=\frac{9}{4}=8.04=7$, then 64.32 s.04 $=8$, equal the square of the time in sceonds for a body to tall from X to M with y force and it has been thown that if would requires seconits for the cars to perform thee joarmery from \mathcal{V} to V, bat the height nod lypotenuse of the gradieut are as the sequares of the times, therefore $\frac{8}{8}=\frac{64}{8}=\frac{8}{1}$, abs it $M M$ is 61.32 feet, $T N$ nust be $\frac{64.39}{8}-8.04$ tect.
59. Laws of Resistance on Inclines - Fig. 103 is to show that a self actiug lucline mill rus as fast with koo, ins with if hundred and
two cart, if the two cars, if the
frictioa of the rope ant rollces, and the welght of the rope is uegleet. ed, becsuase J to the samer; und to make the matter clear, suppose the
weight of each weight of each
pan in the fig. are to be 1 as at B, and sup-
pose the load pose the load
to be 2, the $2+1+1=4$ the welght to of moved, uBd itat falis. therefore; must be ${ }_{2}^{9} \times$
2
$4={ }_{2}^{g} \times{ }_{2}^{1}$

${ }_{4}^{g}=f=8.04$. This value applies to the pans $A B$ on the pulbess $P_{1} P_{;}$, and we will giud the same value for f on the load on the pulley= $P_{\text {s }}$ and P_{c}. On the eot of the rope C are four cmpty pans, and on the end of the rope D are four laden pans, but 4 pans balauce 4 pans and the load falls, therefore f must be $\left(\frac{2 \times 4}{(2 \times+1}+(1 \times 8)\right)_{2}^{g}-$ ${ }_{2}^{g} \times{ }_{16}^{8}-\frac{9}{2} \times{ }_{2}^{1}-{ }_{4}^{g}=f=8.04$ as betore. It is pos tible that two cars with ove load could not overcome the friction of tbe rope asd rollers, or lift the fraction of the seight of the rope due to the inclisatiou. Any acceleration then due to an increabed bumber of cars in a train is the resualt of a redoced proportion of friction, and bot to any increase of f. We cannot dismise this fguts without showing that it is a beautiful thustration of Ohm's law, s8 appiled to the current strength of the cells is a galvanic battery.
Ohn's law is this: "The current streagth is equal to the electro-motive force divided by the external plus
the interasl resistance."
On a self acting ficline the matief force is ${ }_{2}^{5}$ and the hasulage strength is equal to $\frac{g}{2}$ multiptied by the load and divided by the load plus the weight of the cars, plathe proporton of the losid doe to the friction of cars, rope, and roters. Now the frictive of tope and rollers, correspoods to the external ressistaboce, or resistance of the circuit wire, and the friction per car correaponds to the internal resiatance per cell, tberefore, we cleatly see that us g and f represent inert forces. Obre's law coald not apply to the conduct of an electric eurrent unless That corrent was subject to the laws of ioertia
For example, suppore we have 10 cars to each of the tro tralas and that cuct lomin equas to 2 tons and that axch car weighed 1 ton hat an the former example then.

$$
\left(2 \frac{2 \times 10}{(10)+(1 \times 20)}-\frac{20}{40}=\frac{1}{2}\right.
$$

thatis, fisequal to ${ }_{2}^{g} \times \frac{1}{z}=\frac{g}{4}$. Take a Leclabeche
hattery of 30 oells and let the electro-motive foree per cell be equal to 1.5 volte, and let the ibterual restatance be .5 ohms, the current strength for one cell bs $\frac{15}{3}=3$ wben the esternal resistance is uiliso $\frac{1.5 \times 20}{5 \times 20}-3$ as before: but suppose the esternal resistance is 5 obens, then for one cell $\left(\frac{1.5}{5}+5\right)=\frac{1.5}{6.5}-97$ umpere and for 20 cells the exterval restatance remainivg the same wo have 15×20

In precisely the same way, the friction of rope abd rollers is easter overcome by larger trains: of suppose the resistance due to the friction of the rope and rollers smual to 100 preande, then fot otes load to move or run it must litat overcome the tesistatice of 100 poubds, and if there are 20 loads. of 20 cars in a traio instent of one. (be 100 poands will be equally shared among them and ${ }_{20}^{100}=5$ poumts per londed car.

Fig. 104 illustrates how the lime on an lseliue can be reduced by abveletatiog the volling load at be begioning of its descent by muking the cmpty cars tirst move along a short level. To explain the matter, let the loud be 2 se before, and the weight of an
emply car 1. Theo by ithe Higureat A Cor $B D$
that B e sud its that B and its load fall, while D is only moved along a borizontal plane. and therefore its center of gravity is neither raised uor lowered, abd we now eke that i tons are moved while 3 tome fall, thus making the value of f equal to ${ }_{g}^{g} \times$ $\frac{3}{4}=\frac{2 y}{8}=12.06$
By the flgure, P_{3} and $P_{\text {, are two pulleys for one rope, }}$ anil therefore set up an focrensed resistance, whloh if duly allowed for, shoold reduce the value of f.
Fig. 105 shows in contrabt two moles of aecelerating the isitlat

speed of trains on self-acting

 inclines, sual in some capes "level font" sud "cyclosda) head'arecom. blaed is one haulage At f D we have the cyeloidal or quick fall at the head of The incline. Tbis rquick fall at the liead bowever is bot at all times possible in a mine, consequently the ievelat the foot is substituled. as ETV is cacler Toude; but artilices thelr artitices their

Fig. 105. advantages are very doubtful, for to obtain inerunsed gra le at the besd you must reduce the grade at the foot of the incline, and
when the laden traln is bear the lothom th energy whes the laden train is bear the bottom its energy is ance, that it is umable to raian the emping trainer resistbrow of the brow of the incline, abd the consequeuce is, such stopwith "eveloids" or "Woot jescels" gainel by acceleration the reaint of all $E \cdot F$ with a mean fall of f G ${ }^{2}$, tienal reanlts. Thens are bowerer bpeovel coses whero the "foot level" and the "eyclalit can be whel with ad vantage.
60. Times and Velocities on Inclines.- The lower part of the figure is to illustrate a point wherein it is manifest, that nature never conflicts with herself: and to make the polnt clesr, let us uotice that the same weight or mass of matter slmaye contalins the same amoant of euengy wheo moving at the same velocity as that at Which It bine moved before, or ewery timet a oue pound has stored up in itself peltber more or leas than 16.08 foot pounds of enerey, and with equal truth it can be sald that when a mass thas fallen (mithout friction) to a depch of 16.08 teet, whatever masy have beem the angle of the Inclination or the grade In every case, without sxeption, when the descent has become equal to a vertical fall of 16.08 feet, the velocity at which the mass is moving is 32.16 feet per second. L, N, N and O, are horizontal liones to indlicste the depth of fall. P, R, S, T and V, are incilised lineg from, grades of in indicate different $^{\text {in }}$ grades of inclination. Now P, R, S, T, Y and O, all cut the horizontal line L, and it bodies were made to toll
down $K 0, K V, K T, K S, K K$ and $K P$, to K, they mould arrive at differest timed, abd all the times would be found to be proportionate to the square roots of the lengths of the incltnes. The velocities would also be found to be the same when the bodies rolled down the
inclines to the levels M, N and O, It does no doubt appear to a sfodeot etrange, that the times are different, and get the relocitles are the sanee, when all the bodies have fallen from the same elevation to the same level but the strampebess disappears when we leari that it up eoergy would be different, it therefore follows, that, up ebergy would be different, it therefore foilows, that, fallen through a given vertical depth, the velocity at the fallen through a given vertical depth, the velocity at the tical line instead of an imelined ones.
Nothiog perhajes is more lnteresting in relation to the ehavior of falling bodies, than the flact, tiat a body FIll do the same fall slopg a shorter path is atraight Will do the same fall along a shorter wath toll aloug a curve B, L, C, M, A, in lese time than it will roll aloug the gtraight libe B, A, Fig. 100. This is the noted example of the "law of the

Fig. 106.

syclotd" in relation to falliog bodiea, and to explala the matter with clearness, let us by "plail
The angle B.AE is one of toy there .7071 and f is $-\frac{g}{2} \times .7071=16.08 \times .2071=11.37+$ Let the vertical line $G A=100$ feet then $B A$ will be equal to $141 .+2$ feet abd $s s t$ is the leugth.

$$
\sqrt{\frac{141.42}{11.87}}
$$

$=t=3.53$ mocoods bearly
the time for a body to roll down the stralght line B.A To attaln accuracy for the time of the curve, we would have to plunge into very sulvanced mathetuatics,
but we can come very near to the time oith plain but we can cone very nemr to the time with
flgares, and by this meane explain the case better
 body to fill aloug the line $B C$ and we will theroforet requife to know the leogth of $B C$ and $B D$.
FEquite to $B G C$ is an angle of 45 therefore the slne is .2021 sud the cbord $B C$ is . 26336 or the actual leugth is
 then the time for $B C$ is equal to

176.536

$=t-2.274$ swoe: 2

It would be thooght by the usinitiated that the body would bo longer it rolliug froen C to A, thas the rollige ity the body has attained at C, is twice that of its mens velocity in rolling dows $A C^{\prime}$, for it started with no velocity, and if it bad no fall frome C to A, it mould setil move through that distance in less true than it
required in falling from B to C iveleel it would do it to less than haif the tlme, as mn will juat now prove.
Ity the figure, the vertical line $F^{\prime} A$ is vqual to A_{A} sut a- I C must he equal to $C B$, it follows that A C is stive of 45°, it is 29 . Sce feet lemg. We are now in position to flisd the tisue a body will be in rolilog dowa trachee G it will ber maving with the same velocity it wouli haver at C, if it rolled down $B C$. Agsis, if evocould that the.
 for $r A$. The length of A F is fount as follows $A C=$
$76.536, C^{\prime} E=29,289$, and $F K-100$. Therefore, $A F=$ i6.53i $\times 100-251.35$ feet. Now r will he equal 20.245

$\int_{6.1535}^{261.15}-6.5171$, and the time for $F C$ is $\sqrt{\frac{1}{f}}$ $\int \frac{(261.35-76.586)}{6.1595}=\sqrt{\frac{184814}{6.1515}}=54008$.

Time from F to $A-6.3171$
Time from F to $C=5.4 \times 0 \mathrm{Cl}$
Time from C to $A=1.03$ es gecomits.
Time from B to C plus C to A is equsl to $2.274+1.0369$ -3.3168 secobds, and the time for $A A$ was 3.53 seconds, and the differebco is $3.33-3.3108=.2192$, or rather Jess than a quarter of a second. In the lower portion of
the diagram, the timas for $O R, R O$ and $Q P$ are foand the diagram, the times for $O R, B Q$ and $Q P$ are foand by the same process as $B C$ and $B A$.
It is true that the earve we have used was not a strody correct cycloid, nor bave the advantages of the Hine sfter leaving the curve, bit for mining purpoenge, it may be said that all we require for an lineline is a good fall at the top and a short level as the bottom.

[ro be costistind.]

MINING METHODS.

Loeal Ventilation-Pressure in Ventilation.
54. Local Ventilation.-In mising coal by different uethode of loug-wall workiog we gooe had that special ponditions require appropiste treatment, for we cannot work the conl ta many cisar by ldeal plans, but by such eoditications as will adapt the method to the requirements that arise in ench case.
Longwall workings are said to be easler ventilated than thoos of plllar and cbsmber, or otherwise board and pillar, or room and pillar, and this statement is guite true so far has the removni of tire-dmmp is concerned when the working face is adrawcing up-grade, but you may 80 run the line of the face has to make a Fow' for the collection of gas, and actually make danger where it ought not to exiat. We admit that loogwall is asy to reatilate, but for all that, the syolem has its pecnilarities and if they are not uodetatood, they cause rouble ; for example, the root breaks and falls, and the hasumes and cavitees thus tosate become rescroirs for the storage of very larges volumes of gas, whict float out of tho old rear worklugs daring the progrees of a depres. sion in the atmospheric pressure ; the result bs, it is at all times dangerous to tire sbots eith $\frac{r}{}$ in the gateways of a longmall tsoe, 80 that pasy to veotilate does bot at the same time mean freedoan from danger, unless dine care is execcised to preveat the
stratifyligg at the working face. In Fig. 90 we have an

Fio 99.
xaraple of this ling the working face is sud-
vanciag upgrade, ss pitch arrow the P, and the ingoimg air is Been to be coo-
ducted up the principal gatethe impure air is mside to retura by the two Hanking gateways A and C. Now the danger in a longrall working of this kind stises when the middle Lutake alrways are advanoed too far abead of the flanking gateways, for theo gas arcumulates as in a pool or byy con Fig. 100 represents a longwall thee under conditlons

Fic. 100.
the opposite of that of the previous lisure: for here, the flanking gatewnys are in putvanice of the maldale and principal gateway, and us far as the ventilation is conprevious flyume, but of cloger inspectiou it will bee observed, that one defect has beve subatituted for another will be seen that to keop the adlynnce of the falddie? guteway leblibd that of the llanking returus, the conl "jettics" of juts out in front of the dotted line A, B, C spolled. Tbe pitch of the bed in this case is indicated by thessrow P, the masis intake is shown by b, and the return gnteways are beva at K aod N The ventalation of a longwall facr may be "easy," but It cannot be well dope without a well matured judgonent ptevfous oses ilke that shown in the lact poggrade the groatest defect is found is conducting the is zolng air up the mbdille gatemay Instend of up one of the Ilanilug gatewnys, say in the tigure before us E. Now if E has ventilation of the working face it must bo kept in the rear of F^{\prime}, of A^{\prime} must at all timest ho sidraveed bigher up.
grade than E, so that all gas will rise alogg the face on its way to th
teturn. Thi

ones.

Flg. 101 la

an example of a longwall working face advancing along the strike fistead of upgrade on the line of piteb; and where auch an srrangement can be earried out, the very best resulte sre obtained, in so far as rebtlistion and the removal of gas is cobcerned. pack walle are berver gas or air tight, and any gas escapong out of the oid woricing can slways be collected in the return airway that skitis the top edge of the goaf, beside, no gas can loiter is the netighborhood of the working face ss it must thont up to D. In good milalng practice loogwall working is varied to the foor, and sll the qarlations in the "festure" or the floor, and sll the varlations in the texture or quality, or the clobscras of opennesd of the ckavsge, theeanl Rueh being the ease we mul never profer an the coal. Nach belog the case we tanst nevt practice all or ant syster or any moditiention of a system that beat fits the cooditions that we are confronted rith
The arrow P gives the direction of the line of dip;

Fig. 10.
$D B$, is th to
main return
airway:
EA A,
is the maio in-
faka airway,
At G, A and B
At G, A abd B
we have doors;
we have doors;
at E is a per-
manent brick
C stopplag. At
C we have the
dip or loweet
point of $t \mathrm{~b} e$
Pace, and at D
Is ace, and at D
is situated the rise or highest
point of $t \mathrm{~b} e$ point
Fi.c. 102, balige before our notice another modification of longwall. In the shales we find clesvage planes that are common in Blate and coal depreits, the shalea and the slates masy, homever, be classed as one, because true slate is oaly metamorphosed shale. The cleavage planes were made before the coustituent clay of the shales, or the bog of the cool sesms, was indurated.
We csu quite abcount for the cleavage planes in shales and coals, but to the unfaitiated it will appear strange to learn that the faults, fissures, and master jolnts in the limestones abd sandstones were produced by lateral pressure is the earth's crust jast as were the cleavage planes, but let us clearly comprehend that the fine lamination produced in plastic clay, must be different from the cracks and fisoures io a sroker solld, and it is with the latter we bave to deal in explaining the ressoo of this modificaton of longwall working in coal.
We cannot but expect that the common parallelism of the faults and joints in the rocks overlylug the conl seams will seriously affect the oost of obtaining the coal, unless the mode of working is adapted to the condithons of the roof; for example, if the line of the face is parsallel to the lines of the taults and roof joints, the cost for labor in remorise faticn stone, fin the timbering and fotimbering of the workings, and filling of the vosi mill conjointly render the working of such a nalbe an anprofconjoibtly render th
itable transaction.
The modiffcation sbown in the last figure is adopted where the master joibts are rumoing from C to D, and from E to F, abd are not garalled to tbe linets of any of the pack-wall, but have a directhon making vej
a right angle with the libe of the working face.
a right angle with the libe of the working face.
It will be secp that the pribelpal Iutaige airn
4 , and the recturn is at F, and that the cover will G A, and the return is at B, abd that the cover wil fall off the conl face asd thus prevest ublue pressure and at once into the return. The arrow P shows as befors the direction of the pitelh.
55. Pressure in Ventilation.- Pressure is an important factor in mine ventilatlon, ant however moch men may err in judgroent cobcerulag it, the law of its action is constant. Many years ago bore holes were
 Hight," therefore if a bore bole is stillesl down into the bighest point in a gonf where this gas accumalates it will tloat up the hole sabi thus elean out all the gas, the the gas never would riae hecsuse the hole mas invarinbly a downest for air, and if we paase for a motnent to for of the air was netther eceentrie bor erratio, the sulaject to the netion of an furariable lnw the alr was prosged down the bow bote becan-w the fitwourn in the bine was less than the atmaspheric prosimbe at the surtace. There can be so doobt that the bote-hole will in because it fursighes the chespebt and mont etlicient way of removing isflammable gases from ohel wouliligg or goafs with a very small quantity of in : readily msole, we can diceover without menth argament
that they must be a good investment. Whith the furnace and the exhanst fan, bore-holes cannot be adopterl a tottom of the dorenst shatt mill alwars he lese than at the aurface, and in the case of an eshanst tos the fres sure in the mine nest the upcast "ill be conatiderably leas than at the surface, this fact is clearly illuarratel

Fin. 103.
dombest as shombtry the arrom at $/ 7$. At the top of the upcost shaft the exhaust fan $E \mathcal{E}$ in seen, and let P represent the sarface presaure, and P - 1 represent the reduced pressure in the ehamber $A \boldsymbol{W}$, and urther let P - 2 represent the sepression in the fan Arife, a moments consbleration will satisfy us that the air cannot do any other than rosh down the bore hole into an interlor presaure as is shown in the Illustration. Agnin lot us reverilative ac thon by uslag a blowing, toatesd of an exbeusting fan. as at B F Fig. 104, the blowling fan at the mouth of the downobst
ahaft. It will bow be sect that lnstend of $P-2$ we have
 $P+q$, and in tead of $P-1$ we have $P+1$ the result lis as we mony "xpect, the gas is blown op the bors hole H, as sbow by the arrow.

(to ag costimeto

CHEMISTRY OF MINING.

Electro Metallurgy of Copper.-Electric Polarity

 57. Electro-Metallurgy of Copper. Copperores yleldiog about 6 per cont. of metal, call only be mase to yield a protlt in two ways; first, when the ore le availwhes the metal can be cheapls eeparated from its stony watris and chemleal comblyation by electrolysls, ot coalectro mad chetallungy as applled in mining it is to explain the second process that the subjoct illustrated by Fir 94 has tece iptroduced. At D we bave an electrolytie or really
Dantels cell;
for in the
porous pot of dlaphragm is a Week polu
tion of sual phurie nela along with the zline clement with the and bon or copper element is a solution of copper salphate CrsO the action of the cell (which is very glow) unkess it is aided with a current of some voltage, a depositioe of th metal copper takes place on the carboh or copper element, and if copper platiog is rejuired. the metal can be made to deposit on the surface of another metal, of even on the surface of wood coasted with charcoal or any other electric condretor. The voltaic current ta seen to circalate through the wire W, beginsing at \mathcal{C}, and returning boy $Z \quad T T$ is a tank such se is used for separnting moctallic copper from a solution which may be a chloride or a sulphate. $G G$ is the surface of the liguld and pieces of scrap or pig fron are seen covered with the golation. Is Spain aud Portugnal it pays sometimes to Bood the copper mines, sud pump the sulphate isto such tanles as we illustrate and deponit the metal eopper of pig iron, from whach it is afterward removed by water
wheo the netal is collected as a brown powder. Somewheu the metal is collected as a brown powder. Some-
times afvantage is taken of electrolytic action by flist pouring onto large heape of the one considerable volumes of Water, after which the drainage from the beaps is pumped up into tanks coetsiaing pleg fron as before,
The tanks any really electrolytic cells, and the mine and the watered heap are in fact the labotatories whet the sulphate of copper is prepared to feed the cells. and chemical polarity.
In making polarity
In making a flisst acqusintance xith mauraction electric abd molecular polarity, the stodent Is auptole, electn the strong co-velstionship of (wiat shali I sas) the polarities of the the polarity of force At I we have a simple cell and the carbon C and the rine rod z are simpled the poles in reference to the wire ar mal Z, ar cuit, and in reference to chemical action they are called
the elements, and the prasitive pole $+P$ is in the cell, the cell the positive vament sh shown at \mathcal{F} and N, and the

Fic. 96.
current is seen to start at Z in the cell and jops on to C, and to jrses out of the cell from e to Z. At B we find at example of chemical polarity, the excitigg tiquid is dilute sulphurle beld $H_{8} s O_{4}$ and the positive element zine is sceli to repel the positive hydrogen which elinge to the copper plate as globales H, H, H, while the neg ative so, combioes with the zinc as sulphate of atne, $\mathrm{Zn} B \mathrm{O}_{4}$. In this and all other examples in chemient action, the atoms and molecules combine by polarity. Positive comblues with begntive, aved in this case the positive zibe has diaplaced by repulaton. juat as a mag-
not would do, the pexitive hydrozen C ia an esanapte het would do, the pooitive hydrogen Q is an exampte
of a lasttery of cells and to secure an fimerosed eloctro. of a lasttery of celle abd to secure an formased eloctrocorrect polarity, by connectiog the negative pole of one vell with the positive prole of the other.
58. Electric Polarity.-Fig, 96 brloge Latore our attentioe an example of electric polarity as manifestec by the same current whet a part of it is movinz is ote ilirection by as arrangemest of the circuit wire, Wben

Fin. 96.
currente are made to move in parallel lines, the laws of polar sction are: currente moving in the same direction repel ench other, and currebts moving is opposite directions attract each other, and the case before us ie one of repulicioe
The construction and trode of action of the instrumeat requires some notice: Io the first place it will be won that to prevent a brusk in the coatibuity of the Current two cups of mercury are used as at M and B or O and C. Thes movable kop $A F F E$ is made to dip poction of the gireuit of electric, whangel IV is anoling portion of the circuit, of esectric chastam is is mashe to cobduct the carrent isto the upper cop of tuefcury, when it entets the apher emit of the movable loop and tlows tusters The rod G in is an wselater The on the the semn in this case to met rapulsively on itselt or the fired portion of the circoit Wis mgrelling, and is ifacif re pelles by the side of the movaluleap If will here

Wat W D C is the electric chamel leading to the upper rup and the oontiuastlon is MF'BS, Flg. 97 is an

Fie. 97
Illustration of the arrangement of the circult wires in the sarbe fustrument to set up attraction; sud bow the wire Wh pit into circait with the bottom cup N, the reault
 luop 2 , whis artangeticut. This polariscopes therefore ectablishes the fact tast courrerle attract each other as 59 The v
59. The Magnetic Tick. - That the modes of motion known as electricity and magnetian are the results of conca of a mauget or an electrieal eonductor, eangot be doubted, becanse the cooclusion is sustained with direct

Pia. Sc.
proof. Construct an apparntus sach as that shown by Fig. Te and by this means we are made able to bear moleculea atriking each other.
The oonstruction and mode of action she se follows The reannance chamber is adapted out of a cigar bos as Ghown at B, and nothlag better can be ased for refloctIng and conducting othereise inaudible sounds than Iry mood, as notice the mictophonle soubds beard with the telepbobe. Lying on one elide of the resonancecthatthe cimuit wires are seen to come from a galyanie eall, sud the circuit is broken at $\bar{K} \mathrm{~F}$
If the ear is held closes to the reoounnce chamber, the moment the wirea R and P are male to touch each other a distinet fiel is beant, and the moment the wien she detached and the clrcuit is broken tbe tick is henard again. The tiek producest, as we may imagioe, with \Rightarrow strong current, is louser than that promlucel with s wesk ove. The tick las a pecullar rigg aud bse to be heard to reoognize its true character When iron is magnet. ised it expande an though it wha heated. There aren no Cioult inene simple lawx contsolling and differentlating motion to proluce its modes, anid if our exes were sutticlently meroseoped that we could son the molecoledabce for light, heat, electricity, magreflism, and chem fosel action, we mould bee shle to ideatify theae inflections and sageolate them with well-known mochanical laws. From all these experiments it is obvious that to messter this sabject wo mast elesily comprebend that we are dealing with manifestations of force, thest areonly different is tbeir motie of netion. This brings us to consider sgain the polarity of attractlon and repulsion as we flud it is generativg "magneto electricity," and bere be it observed that, as bas been already shoms, if a circuit wire is conled on the $a y$ enon legs of a revolving armature, as the ende of the lege approach the opposite polen of a promanent maguet a momentary induced eurrent

Fic. 99.
Hows in the directions of the arrome at A, Fig. 99. N is the borth and S is the pole of the Lolucthe permabent naguent ; M and P^{\prime} are the legs of the revolvimg arwature, ind Q is the spindie of which the arusture movolves. It B tber legs of the sraatare M and Pare leavige the poles of the
the rosalt is, the midaced curnot moves in the oprosite direction, but it must be ary carefally notiod that there are not four positive and foar negative electric pulses in ous revolution of the scmature for, see at B, N mored and P^{\prime} onoves troms \& on to s oithout changeng the sigo of the pulee. At B, M from N to the same direction of the rourent as at A, nherer P is advaning on to.S. If the uest begurn men have to motice that there ate mimiment when the poles of the armature bercin to depart from the poles of the magoes, induction begine nesl guella up to the crest of the electric wave, as kraphloalty denoled hy
the letters X and $\&$ at the top of Fl. 100 mhere D, N, Z,

is one pulse wave and Z, S, D, is another, Suppose the armatuke to be revolving in the direction of the bands of a watch, then the tenderecy is for the current to for obe the poles ove pulge tends to hake two maximum abd one
 minimum point, and this, we
Fig. 101 is an illustration of the mode of action of the

F10. 101.
magneto electric wachine ased for geverating eitbet muscular of hervous act5ots, or both, in the bodies of alck people. B ef the armasture whach revolves on the o be in electric contact with a brass ring K which is insulated either with a woolen or gutta jeercha ring $/ I \mathrm{im}$ perspective and vertical section, of on the spindle C, ts a wood jucket to isolate K. The other end of the wire of the colls is in electric contact with the arms of the arma ture, and by that mesus with the spibile. Now a sprimg D is made to rest in coblact with K, abd the frames of the machine is in contact with the spisale, thevefore the loop in the complete circuit has its terminals conberted
with C and F, wn the body of the patient is made by with C and D, used the body of the patient is made og tweans of bandles on the outside wires fo form part of
the circuit. Further on a moditication of A lirings us to what will be called the commotator.
[T0 HE cosminezd.]

GEOLOGY OF COAL.

Life Conditions of the Earth.

48. Life Conditions of the Earth.-Tbe life conditions that have cbstactevizid each successive period during the earth's long ago have beeo the enrimombents
of the famuas and floras that weve pecaliar to the times: or it may bos said, the life coorlitioses of any ooee petiod were antavorable to the characteristic life of all the other periosls before it or after is. Just as bow the great zones of the earth cstatish differnt envirombent-
for different varieties of plaut and animal life, and if 1 by for difereot varieties of plat and animat hife, and if lo any cbange the temperatirn of the perish and become exered, its characteristic life woald perish and become ex-
tibet for ever, for plants from the torrid zoue can oely be kept alive in the temperate zones with the belp. of heat artificially applice, and the plants of the tem-
perate pones usin ouly be bept allve in the torrid zone by pecate mones sus ouly ba
cold artibcially applied.
The tonid pone is the bome of reptiles that live on the Alesh of other nelimals that oltain their food almont flesh of other nant the teruprate zones are the bowes of
without an eflort; then the bigher orfers of mammals, that obta The frivid momen vigocous efforts, istelligently direted. The frigbs zobee suid carnivorous thatres, milite the vipor of the elimate is totally unfavorable to the growth of the planta of the totally anfavors
tempenite wores
Hisd the varth's enviromment of life never changed, slmost the same life forms would have beva ebgraven to the bedaling faces of the laminn of the same varieties of the rocks; but nuch is not the case, because each peried whe subjines to liffervet dlamatic corditions that faveral some and disfawored other life formas
That different climates cbaracteriond different periode camot be doabted, and it is evilent that the whole earth at one period way sulject to a tropical temperature, and this was rapeclally so daring the Carboeiteross periol frigid ones, sud they are all marked with Imprints like those of the tropical tree ferns and their associnte cryp-
toganms indeed, the nery existence of conl is an ibdex of life conditions someld as preyall in the torrid zolue now. A practi-al men, me woult not trouble abont the climathe chametoristice of the Carhouiferoas perioul, were it
 of the periol from those of other periods by intimately The climgte then witb the canser of their individuanity al itl-spent is a litle mot tan tivotion of the mater Geotogy nod astronomy are mutually dependent gienceic The one will mevee be undetotood notil the other is made to hanmonize with it hy tracies geologieal shauges to ustmonmical cnuses. Por example, we hav tro thearies cobcerutng the relative ages of the planets by the lirat ooe, the olfeat phanete are nearest the sum; by the secobi ones, the goangest planets are nearest the
sur. . Ey the flrst throry the climate of the whole varth suin. By the flist theory the cilmate of the whole earth should be emuch warmer than it onee was; by the second
thmory the eltmate of the whote exath shomid bee colter theory the clmater of the wholo exth should be colder
than it once was. Gieolocy farni-hes nomistakable
 than it bow is, atd the first theory dispensea with this faet by poietivg out that the young eneth was a ball of quil lircorved wits akal oreat that was sumblently hot to produe a aas at a muct preaterdistance from the sum; but geotogy cotirely sets astose that courlusson sid proves to us has ehar privas have beca repented durng air tie ayges tuac have puseod. whine the deposilon of toe strntined to have a cotapehnastre vime we theretore , itsover thai me wust the able to prasp nith the the perte tistory the fousila s that vire to eath cmoup of rocks their spoelst fudivituality: and for this proup of rocks their spechal rocks that constitute the purt of the eather senes of diridedt tito three errest proups ache of mith ane dio divided

 The fossils of the palnazic intions
such orgmeismas as could ouly live in the matere of eot tivels bot seas a, as notice the preat prevalenee of coral and crinoital remsios.
To show the ention
otdal organisms on a deptenevey of the coral and eftiwe must notice two groat fects, finat, the conal insecte connot live now in the maters of sens whose temperature Is leas than $60^{\circ} F$ and smeont, the solubility of carbon ste of lifies varise as the temperature inversely the result is as the temperature increases the entubility decreases, until lime is insolable in boiling wator.
Koowiug this last fact we chenot wooder when we are told that the minimum tereperatare at which the coral inawcts can eberuat themoslves with their shell of lime is ingly scousee at lower temperatures the lime is meceasinsect would dissolve as fast as it was secreted; and if beat is a prime uecessity in the coralive seas, how much more must it be as indiapensable coodition in the envirooment of encrinital life. From the "testimony of the rocks" we learn that the Boors of some of the paleczaic scas were covered with is stone florB:
We do pot look for such life in out seas to day becanuse We koow this is a period that eavirons another variety of Carbanifurous times the high temperntures of the dutivos pheric and oceavics curont- amiel the heat factor of the coviroument of encrinital life within the polar cireles, bence from pole to pole the rocks and their contests amalfestly prove that the temperature of the paleozole
 iterous limestove measures, the lloots of sotse of the
sean were like veritable sulmarine gamens of atowe 11 lies wete pedaucles supparting the corollas of the lilies, would resemble the npectacle of thelds of errain.
We now know that we owe to cerals, crlnoils and
forsmaifers, the gelection, collecthon and depocilion of all the limestone strata of paleozole thmes
Many of the present most rulimentary lifo

come down
from Cambrian

t1mess, theic survival lieity das to their adaptability to the erer chang. tur life comilsthons on the | enrth, and Fig. |
| :--- |
| 77 | two examples At \& we have

araliateotmate araliateorgat,
iana of star isen or star
listy: round abont the oestral reglon is ous comd, and at tiee base of mech thager or Tay a bervoas off froma gang. liow or kuot of into the ray to mothe ray to movements. These eren-
tave haveralImentary orguns of vision, fursish a good illuat ration of that divislon of animal life called nodeata. At S we haveanother livigg exnmple of the surviral of the
oldeat organisms, and this is one of the present represebts. tives of the orthoceras cailed the nastilus, both belonging to the oruer cephalapods or head-footed molluses. It w II be interseng to observe the successive changes tin thi climatic oscillattons through which it has passed.

Fig. 78 is characteristic of the mesomoic, mildle Ite,

Fic. 78
or reaily the reptilian peroid. Reptiles made their firat appearance during Catboniferous times, bat during the secondary period they swarmed in the air on winga and waters wabersosely alliel, and the first hird form we are qualoted mith, appeared dating this period; its mandibles
 so that it was after all allini to the reptiles such as the plesiosaurus P The modern crocodile and the alliga for are the modern represeotatives of the ichthyosaurus

The mesozoic period was the reptilisn age par cavelChic, and this furnishes strong proof of the prevailing creatumes in bigh latitules. In bot regions, bomerer, reptilian ife is prolitic, abd it is here alas that the most power ful representatives are foubl.
Fig. 79 introduces us to the life and clinaste of the

Fin. 79.

calnozoic period, asid here the mannamalis replace the reptilia, of reduce them to the repersentative examples We koow, such as the lizards, saakes and serpents, and cspecially thoae of the rmgion of the torrid zooe. Many of the foretumbers of the true mammals, the marsuptale, have leroome extibot, atnd matay spectes of tmam The have pristhed during grost climatic vhaniges The eleghanti of Nas obe of this class, abI the getans once consisten of a number of rpoctien, all of whleh lase become extiset except the elephant. It is elear that the mammoth perished daring the lat placial periof, for an exsmple, covered with huir alld Dresh in a statoo of coneiderable powervation was fousd in few years ago locked op in frowen we ated mul The life of tho entinomio period is the highest in the orgamic. Maste, and is subject to the conditions of a lowe mean temperature and as ue have unged the impottanee of stadying the past life of the earth from the sland point of higher temperatares than prevall now, we will continut the subhert as far as It will assist the learner to grasp asd retaib the recollectron of the life formas that are of umbulted impertawe in She interpretation of that geology that eapecially concerns us is mitulug
[fo BE Costisugir.]
The Niagara Power number of Cassiet's Magozine is abquastionaily the busiformest special edition of any pobilication evver issted in Abserics. Its fiterary merit of illustrations the number is particularly somatlatide Thes contribestors are all meet of rastional meputation is The coutributors are all meen of bathound reputation in artictes in a manner thet makers them not only very instructive but entertainlue as will The polbilele and editor fo pesting oat this apocial nomber publishers for themanlves great reputations for enterprise and libernilty, Joug life to Cassier's.

- Miscellaneous.

THE DEPTHS OF SPACE

The zenat majority of the stros ane sitated at distances how frr away thoy are In hus, whly colugatatively for making aty scourato determiostion of their poitions No

 Truithes, hum that the star is so remote that there is so posst.
Caliey of learuing whot its distaner arctuily hamumts to. I

 near the horison the ressel secras to chasee its , thace but
alowy, though we moy hoow as a matter of thet that it Is traveling at a rate of perthops sore thas ten miks as bou
The nearer we aroto the stemmer the mone rapilly does what io called propere motion, that is to say, if the star whift its posithon on the sky with referenue to the other stars, and
if the numout of this shift wos unosablly great, then there nould bo a presampeios that the staf ous somparatively

 not tho case Bat. sjeaking geoerolly, wo may fairly arzue
that tf a stor dor- apparar to be movis. ragadly, it is a ver
 The star

 in the sume tedropet etplet. By mesans of a delivate inatro-

 miles, the earth hasving moved during this proind ronnd to erver alters the position of the bear star in relation to its

 matiex to
the carti.
poorly eowneged by strings of ineure refresoting million of miles. Ejectricans krow that the spery of the electric

 one esi, would aremplish the servi cirvaits in obe socoud
of time. Froviled With this conception we can now give
 Let us ous to their restarebes on the instacues of the -tars
 length and depth of epsco. Lot tu now ore what the very mitted to esch of these sereral destinatioss, Fios with respect to the moos, our sateline is comyaratirely speakiog
so bear to os that but little more than a areond woula be re

 wire to parsue its foote at that supensous speed which
would permit it to pisce a girdle seses times around this carth is a socond, yet eight minutes would bave to elayse Tolegrapthing to the stars would te 1 much more tation
 Woubs isided tax tor pistifece of athe concerned. The hey is pressed down, the cirnuit is complete the menage buash
 even of mouths, for no less than four yenrs would have to
pass ty betore the eliseticity, rembitig alone the wire with its nappproacbable speed, hait aceompliabed this stoy
Alpos Cuatmuri is, however, merely the nearest of these ytars. We have set to iddicate the distasce of those which
are more remoce. Look ap to-sizht toward the heavess. and among the thounads of twlekling points whitb dedight our eyes thero is many ano up there so far on that it, utter the tattle of Watertoo bad been wos in 151/, the Duke of
Wealiagtoe hail teligraphed the new, to these stelar digas, the mesater would not yet have bect recoived there. Only ter sees through the telescope, nat they are so remot hail been circalated far and wiofe through the noivese by the instrumentality of the tolegrapb, the numoutcement
woull not yot have reached them: and in semos certaik that many of the stars, wbict afe known to as only by the hapres sions they make on a photograptho plate, ate so remoce tha
if the glait tidings of the arot Curistman at Bethebem, 1,89
 30 incoocelvatly remote-all the seconds whath bare
clapsed in the 1, 火91 years of our peesent era would not bar clapsod in the 1, ,04 year
sumped for the jourviey.
Some there sre who may he inclised to doabt these facte

 voult of enstat exised which the nocients sappoed, our

 i. $2 . \mathrm{com}$

 Tho sumbs nos were wral. When a bethet of 13.7 man . git
 iter beriat of 15,000 fe., anad the tempernare

 With ex whlnt effect. At 1225 the fold avroust tait out

 When as the tolithit of
thas Chishive obeet the tative

 hod stoppod the Lailoon from risime nuy hicther, but

 fee crystak, tot of weil formed small saos fakes. At 17 ti

 Anen withut rikkeg tombole of his suremerol jourme

 belght of 21, ve it. is stopped, nal heguie began to rim Abither pilint the velve raveed it to rolecond. ot the
 Dutity
Dit sour the terrible cold began to have effect. Dr. Burton

 allist wis liruxu cot, at the beight of 11.40 ot to tmoterate
 Shoon's powat. The slow descent, bowerer, nllowed of teplerature alout 42 nhove zero, Was foubd at tbe telighe of tive If Theoro down to the crirh it tant noun nime sentest hemght of bis trip two of his fumers were froben, lout

 Kiel, on the very esening when the German Yepreor, the

AET OF KEEPIVG COOL.

The com fort of the isdisidual during dog dass abs thoos rosily oppreaive period which prevede dog days, depens
 Gee resson why Thomes Joees works with moever hes revo him to to lo foush in the difereder between Johs anit Thomak and pot in the climatio ditereseno of the two plaves
 Fanny Flatter, is very hot is to te found in Clamis superior
phatisoppy.
Tre woman ubo worties about the beat, who nervously
omeults the thermometer every bour, who ruall the wrather
 iroptrey come true Owor-activity, mental as well ad phyolM), wust te avoided by the sowker after an event temperaturu:

 in toe uintor, Now mote stite ber mataral impulor to spemi
a lasee fart of the day in the. linth tot, for more thas one tat-

 Arinks and distes showit be partskeo of spariugly. Tbey
in bad for the digertion an coserpently to bo avoided.

TVO TEMABKAELE LOSG-DISTANCE TOWFR

Thereare two munarkalso lomg-distugce tratiomisations of
 Trom the other. Ob is the transmbsion of of by pepe-tine frum, to thil-water, a Alstaneve of ovee 200 maters Tho otherg
 The geping of oil, Ilnt from the isdindinal oil wells to

 There are twelve pumping tationw along this line, situatot about 35 milcs upart. The pumpe operate ot a pressum of
atoout 1,000 proats per spluare ibcb, and the eapacity of the The st about 30,006 turrels a day.
The main pupetine is divided into divisions abd sevtionk
mpels like in trank railwhy sisteno, dul los, dimitarly, it

 rawmilisuce to transmber
 cobsected by feed pipes to a sapply lise, which collects the fos and corries it to il powpros tathe. There large comb-
 dasly delivery of trom i0,000, 000 to $12,000,000$ eutsc leetof gas

CAYABANA'S fichos font

So far as I cas bearil, the only regular pigmen jocot mirike on this side of the contibent or the chior is that which bears
meteagng every isy in the summer suaron letween Loa Angelen and the litthe towo of Avalon, on Calalimil Indabd,
 Thraph or tolephiones
 sammer population of perhapseis milhousands ond, with a petel et che a

 Los Angeles. The sevvios whe inangurated lant sombere and was feared at first thit the pigoous, whach wre distivetly
 for suxicty ou that gosit. Tbe messuge bearens usually certanty and jpanjanco wimot in redible The air-tine
 Thi- wa< acromplisbend by some of the Catalima lyers in Iffy
minutes. Prom three to four bours is requarel to make the minutw, From three to fo
trip by railical nod ateamer.
Lase yoar a cousibleratibe revesue was entred is the for
 Avaion conev the someghint startiug informatuon to the smat may bel formanded at aog hour of the day, sud, in conaection With the tolephones, telegraph, and cable libes, to amy part of
to gorld.
 from Catalisa.
 tervals that the liridn toward the eont of the scosoult lecaspe has relintle it is not the tight moross the water that es The Zaho lofto at Avalon ous Los Augeles fumber this year
 the summer.

why we atw healthy

We are constantly told by thowe who buve diweovered that of the kerm theory, that we are in eonstant danger from
attank of thee diworlers. Tbee is bardly one of us, we are asuared, bue could fornist from the lining membrane of bis
own mouth nol own moath ansl mose safficient germs
cpidembe of diphtherim or jomamonis.
tadeed, so geterally diffused are such germs, that it might forming osesclf into a walking repository foe antiseptiss of all kinds
Theses statements mo doukt wound alarming, yet we need
not le greatly disturted thy them, althougt they are in every
 the development nad growti of germi disenses may te sabil to Not oely that, bot the theory that in their trestment if is

 Is this
If th possiste fo contained the naswer to those who ask bow for it all nbout us. The thood of all animals contan a a eub-

The sutetabice is not alunys present in animals to the same
 perssing it, - the sabstance toed not erinee the some powe In this way is explaised the atolity of some animuls to take a

 Hore tepportant still, is the fact that this substance is power in dirent proportion to the quantity and rictineme of the bofod.
As wew, the blood is suterpeilde to many changes. It 4a when the vitality has been borered from any cause, thet
 Toumax Companiou.

SEA BATHING

Sos bathing gives more pueasure, and for mavy is more pro-
notive of heallit than almost any other form of bothing. As Jaly and August are the months mbee it is most practiced,
 ong froely snit to atvantare. Those who have mueb ndipose lath, th the water is warm, with prott. We wher koown soch
 gowerate less beat must not remain in to long. The hagth of
time, bowever, thould le determined by the tomperature of toe, mater aved the visor of the person. Experience is geber omain in tho whee ver loone, bot they may wade aloos the
 are careful not to get cold. Very delicate pemotst of either
sex must be guded by uxperience; and for sach, wa a rule, a
 They may, There are many mho eanot then the sas bat at all. Let ibese go barefooted on the trach is bottiong ecewhen it we thar teet, playy is the sand add be like chatirem, when it ts warm ebourt.
In some places there is sill sea bathisg, that is, there are no
ocena wave nud swelle This is most suitabto for wrakly

 which igo on is the tianues. A little skill castiles one to enjoy the rougher wa lathing sery greatly. It is one of tho they
formesf exerchere known, lut it tires one pooer than otill water lantinige
The efferts of ses tathing are generally exhilarating bech in the briny wator, and fowls is if his physical sivs bel all bee wasbet suay. The agpetite increases and digestion in-
prove-. The akia becomes tougter, often moghter, in whtich
 It is Letter, peowruly, utter the buth, to take a fresh water shower to want of the salt that mizht other wise remain on

 more should elaysmotofore euting.
Thicoe who caneot have the advi
Thiose who caneot have the advantage of sea bathing may pet searly or quite the stwe gooit by ireht water haths

hightwing.

 are always intermixed wink masy superstitions, abil Fore-
caster Alexander M-adje of the Voited States Weatber Do.

 mbuld a for lystanden to take seath for krated. There is
 measare of stimulation ues resussitation shophd be itentantly
 Tbe mernaina exp
stombl be performed.
Howangin.

beech, tirch or maple ehould te salected, ms these species are rery rarely struck. The oak is frequentiy hit, and so are the Im abd the chostaut. Lishtuing rods should be erested upon bouses, especially in the country. It is an erroe to bellere that rots are an
added peril. The record of lightaing bolts for the decade added peril. Tbe record of lightaing bolts for the decade
(rom 1 Now to 1093 shows that 2,769 bisns, 125 ebarches, and 31 dwedinges were struck. Cburches are a particular favor-
 condactors should be surrounded by pointe. Aby disastrow
discharge of the imprisobed current p thus peevented, abs

STRUCK BY A WATERSPOUT.

The bark Wasdering Jew left Fhilatelpain on Katurity, Jane 1 and went out of the Delaware Capes the sames night ander a ful pressare of eanaas, carrying ber through tie water out and light airs asd calmen grevailed until the night of the southesat from Capo Hatterns. At miffiretht Din mind frail ened sid sill was shortesed The Yessel Whe diving in a
"pasty" sen, and as morning wote on Capt. Little considered "Easty" sen, asd as morning wore on Capt. Little coasidereal W. . and all hands were seot sloft to take in the upper saiks pecing the poop deck, obsurved through the ghoom what apwiod thed and this buge white object drew mearer rapally, xhen it wns wenat its true light. It Tha a mammoth whiter: Vout, making difertly for the vessel's site. All hads had

 sailors nad oftcers, batty bruseol and crippled.
They hat the closest call of any crew that was ever spared S refate the thrilling tale of teng struck by a waterspout.

 seonds the vessel was conpletely engulfed, abd wben it passed over ber sto lay belplese, nod all hands that were of
 water. It wes an experienow that no other living suborhave posed througs, asd the of karkeutike ant she liwe tenlas
sult
 Hatteras it suusual, and the Waslering Jow in the ncood
reacel to have met them in a few days. The British seamhip Fertuede, natrowly escaped being strock by one of them uge spirals

in a mothschilo strovg box

-The larpest shipeent of Dasited Ntates bowds to Europes sistant Secrectary of the Treasury, "- Wa. made in 1575, nad "onsisted of $20,00,000$ coupon ti. It was mule nuder my tharge and 1 presame my experinace way atoot the same as
that of others serving in like capacity. The bonds wure is ive steel boses, weikting when packed about four hanitted pounds eacz,
"We rode with the boveo to New York in a postal car. A

 tie pyiser, bat notll the toat left tha pier come con of our varry kegt as use on the boses. Ouco at sua, howerer, Fe aporourling libis. Ai Liverpool, ©ioce we afrited nfter a
 onth that 1 personally knew their contents, and their leibesed Way to open them. A compromien was fually effected by my
takimg with me a cuktonk omecial, who should see That the hoxes rourhat the consignoss untisturbed, and when opesed
 the syndicate. This deny cuased us to memain al might in We took turse is watolimg them throught the aight. The
 penctical cootrol of a passeoper car, in which we put our

 prarily employed at the heedquarters of the synticate

 asd a reveng tiva showi
format tueth to my rellef.
op, through the floor of the momina atouve, opened unly at the by a littie buft' It mas sot as imposise skght, but it conevery native in Europe. Two men were emploged theer nil

pure water.

In determining tho sutablity of water for defoking pur-
 ONof animal master.
Of coarse this rale applies ouly to the "soft" waters in
woueral us, and not to the "misenal" waten, which form Thes by themsolves, All -"off" waters, valess they have hece discillet, contain mory or hess of the lower forms a the wator it pocolisir tave, just so che peccliar tosto of the

These low formes of life ner in themsives of so particular
 to staul, or is contaminated by forviga sulataaces, it imme
 Oun does the water lienily beromer
Theres are two proeral methods in
Whter ksown to be mom or leed pollated.
The Bras of thes, Hilrativa, EE Employal sually where waterwapply of a city. It can le madens tharough an is de
arol by samply repeatiog the proces, of ty posime the
water through fluer material; and is generally sutticeotly In the bousehold, howeser, this process is not so prastioabie, partly for the lack of proper means, but more especisily
tecanse, the subject not teing underatood, the emd in veiw is defested to the verv mensures taken to semere it.
Wehse all noticed to littic lages of mustin which are probably woaderol what adrantace was to be gained from their use. All fancet-1iters are becemsarily imperfect is their operation it is posible, however; by boiling the water, to
destroy ail soaree of danger from asy form of animal iffe By thin method, to
By this meinod, to bo sare, many of the minerals which up if the water is allowed to cool in the same utemsil in which ithas been heated. The watry stoonld mever be botied for any grest loupth of time, and stould be kept covered while if

THE PROPER ESE OF A SHOT-GUN.

A good sporksman is familiar with his peoce, and brave ans the to mearle of the harrels is on his mind until he hay taken it to piecee, eleaned it, and prat it away in his cave.
When the sarts
 Thenal, he pprises the store into its pisos with bis ripht. Thes having fixod oa the little pioce of wood which clipches the two parts together, bo pases his right arm around the
larrets, so that as be carries it the stook poiuts up and bebinit bim at an angle of about forty-ilve degrees, and the barrols point down toward the earth nt a similiser angle in front of
him. Arongd bis waiat or in hin porket. he carries cat tridge. No elatrge goes into his fua uatil he has not ouly Ift the house but actually arrived os the grounds where be uxpects to sind game. If he has to drive to the proper woods
ar the shooting-ralais. of binds, he places the pieer in the kettom of the Fagos, pointing out towards the rear, never over allowing it to pocint towards himelf or suy one else who may be standing by It he is mear enought to the woods of shorv to waik be carries the gun as desmind, unlowded, un-
til he reaches the proper phee. When climbing over fenees. whether with cartridges la place of not, be places the zua then phko it mp rom the other tide Ventige a thoctionpiece against a fence or wall in an sp-rigat position shous The grewhborn or the caroles smil therofore poor sportsman.
-From Harper'; Fiowad Tathf.

PHENONABTE

"Basioses is buriness," says, the man sowed to that life, and so it bs ubquegtsonalily, tut equalily perkomality it personality. Leaving the later out of comaideration will throw astenomer wholoes bot allow for fersonal ermations. This the successtal man of atmirs fally auderstandx
When it cas be retognized there fo nothing more interestiag thas watching the miual consultation of a busisess mas wower of cobaaltation is not possesaed by all, and is invisptie pouer of codanitation is not posa
with many of those who have it.
1 remember bearibg a young busibest man deseribe rench a known as the keanet flampejer. The proposition which the young mall had to peresent was feasobabile, seemingly sure of success, and he bimself beliered io it enthusiastionily
$\because 1$ isid it before the old fellow," be kad "one by noe meetgutotioning me finally becanse the pateat value of the propfirmation ens preved healise whe chorked net. I felt embold ened to ask, 'Wbat do you think of it, sir 7' And then I saw
a curioun sight. The old fellow sat ㅎotionlesa, kooking away a curiouk sipt, The ohd follow sat motinatea, forking away chill's who is listening for a dietant and familar voice 1 ally be turbed to me with a smile sat showk his head. II con't exactly believe in your plan, he said. Ism staring nt it uns as inatinct alone that held the oid man bock an in: stibet in whicts he supecstitiounly truated and on which he otr gibstely acted. It was the moent extraordinary thing I ever ondee gave him a grivato ioformation which wa mone than Extruondiaary or nict, those who come is contact with sueCossful busanesa mien will see the same phenomenon repested orer nad over in greatre or lese digeres. Call it a genins for amains, of ulam you whit, thas carious power of civisation reemains still at

FEW Notess about cons.

The rei of Brazil, tike the mill of our own money table, is coinel. Tvu shourand rois equal +5.45 , Vermont uns dhe first scate to mane a colange od ith oun The fint womsn's face represented on a coin wha that Tbe Chiperes etampe lisrs or ingots of gold or sulver with minted is 1662 , and wemp put The first Marg innd coibs were minted rone, houswh put Wo lofigg is sixty posuds of tolinero and recejve ten shillings of the bew money in exchanges for it,
logat tender by the following ena-timet : It in bullets rilercal that musket bulletts of a full boare shall pased currently for a farthing apiece. Proviled that noe mana be com-
pelled to tale atove XIId att a tyme in them."-From Marjor's Kownd Talde.

HERBOS FIND WATER

The Mexican burros have good honse searee; they kbow in
 vation of the surlawe of the groand anil sutenquent diserovecy.
 water. They passed several damp places, examined the
emond closcly, uben the leswler buited pear us nut comneoved to jer a bole in the dry, hot sand with his rigst fome bole wornething over a foce in deptls, the louked out nud watehed it inteatly
To our surprise it soon commenced to fill with witer. vited, if think, the others to take a drink ; it all events ibey promply did ox, sud theo went away, when weigot dous and
tonk a drink from thrir well. This wator wa- cool und r. reching: in
many indas

VALVE MOTHON FOR HOCK DItHLLS

No Si0,s30 Twouan J, Mesrier, Neu Yobx, N. Y, Patevater of the cylinder Fig 2 is a jartial top view of the valve tace ; and Fig. I shows the buchingen fa which the valve lever is jomeranked. The valve G is a double 0 vive, Working on a that face. It is moved by means of a roeker F and sbide blocks C. The rocker is piroted is bushinge $I f$, Which are conflued in the cross groowe in, tg the jort plate their lower ebis where ther touch the drill piston D, and
badd spirnls teing coweave, und the left bund ones being convex; the cobvex and conchye spirals roll elosely obe into the ther. The kars are bollow, and perforations extend outin suitable trunnions at the emik, ant can les rofated by menas of worm wheols 5 . worme 7, shafe 6 and wheel 8 . These are tursed at intervals, not continuously. A blast of air is blows into the hollow bore of escb har by means of an indepeadent steam jee as shown is Fig. . Cosbustion is aloo aided by sulerbeated stenm, which is blown in pte from the
croas pige 24 istos the upper part of the Ilro. The stome for the parpose is lel througts the anperthentige pipes 23 , which are ciscle of haril bronss to endure the intewse beat. It is claimed that the jets of air which are distributed all over the arce of thro irsitr, make a very strone fire, wblech in evonec
 urned ropdily without asy amoke whaterer.

FAN WHEEE

 sui Fig. 2 fa s top xiew of the same. The rim of the okheol, a_{1} is made cone shayed ss shown clearly in Fig. 2 . The vantes s, exteod nulially frote the hub bo aesl are usited to the rim by curved eltows \&. They are inclised at as angle

of 45^{\prime} to the axis of the shaft, sud tbey are so wide that they project begosed the ofge of the rim, as in Fig. 2 . The aif enters at the small end of the cone, and passes through in
the tircotion of the arros, while the wheel rotates as shome be then arrow in Fig. 1. It is rlaimed that this whemel is wers eifective for mine ventilation.

HบDHAELIC POMPING EWGINE

No. 5sh, Req Eusest W. Nanlos, Bousd Bhook, N. J. Pafended May Thth, 1NK, Yle 1 is a side elevation, partly in secthon and Mis, 4 is a verticial cross section on the lise y y. orig. L. This mawhine is decigned to pump water ugringt is inteples for mining purposes. The water for driving - eters at A, nabl passes alternately to the wap of the working ehambecs 3. The plungers D.Df are connested by fods 24 and links 2f, to a beam F. Ench driving plunger is con-
 Into the delivery pope R. The sudmisnioe of water to the
 plungers F^{\prime}, is controlled by the platod valves 12 nad $/ T_{\text {, }}$, ail ralres are mored simultaneously by meass of a motor $\kappa_{\text {, }}$

MUNVIR FOR AIR AXD COAS DCST

Ni. 540,114. Goxhtaxz Rewnitz, Beblity, inexasy. Paleufoi Nry 281, 1525. To burn powdered fael a 1 vantageonsly the proper amount of air mast be supplied at all times. Too
much air must the amofind ins carefully in ton latie, the formuct air must be azofled is carefuly as too tutie, ues iorperfect cotolos-tion. This spparatus is designod to maistain at ull times a jroper progortion betwees the coal dust and the nif ascoasary to bara it effectively. From a fannel A, the groand conl is lad by mesass of a feeding roler B, iuto ha air current produced by a fan O, of by any otber suitable D. istos the storn-mones E The air vurrent, with which it boves, sllow a all the parta heavier than the fine rocal duat to

fall down. Theser parte, kay courenr coal pdeces, misemal ndmixtures ubld the like, are collected in a versel E. In the storn-rooen F, the the air is put is motion by mests of a fas 6. The velocity of the air is sach that it masintains in sus-
jenasion exactiy such a quantily of conl dust as, usier the coubitiou* obtaining, an be brorned io the most aslvantageous manner. When is larger quantity of cosl dust is introduced than the air in motion is capable of maintaining is the store-roons, whence from time to time it is dibcharged into a vesel $I I$, placed undernesth the store-room F. From the store-room the mixture of coal dust asd air is carried off it is congh one or ciore conduit gipes J_{5} to the furnaces, where it is conksmed.

SPOONINE TOOL

No, 340.201 . Sathas E. Vazsey, Dexven, Coed Pafatlached to the same bandle with the I This is made of a cosical coil of steel wire, which projects three of four ibches fayond the eed of the basilis. The poist of the coll is made flat, and is spait to make two teeth. The taker edzes of tbese teeth are cmale ruthoil, so that they will tamping shots. The tont is very upefol foe, whemosin in used for that have misond fire, the tootbral epd being well s-lepted to

Which operates the beam $l_{\text {, }}$ and moves independently of the plangers h. This motor is compoesd masinly of a douthe troble! by the valve I. This valvela operated by as armis 41 , upoo the shaft to of the main beam F, or it can bo operated by mears of the hand lever 61. The stroke of the main plungers cas be regulated by adju-ting the sots 42, 43 upou engrine of thi- sariety having main plangers of bil inches diameter, and 72 inches stroke masin effleleneg of of hiz incher attimed. The motor K lrak driven by water taken from the driving pipe A, through the tube so. The opeotst trivise water esupes at C, nad some of it pusies down the fipe, $J_{\text {, }}$
riew of the apparatus in workiug pocition. The grate is comlett habided
rated plate or grating 4, asl is ilibel with water to the sill of the delizery kjont 12. The cual is swept over the gernting 4. by s ont of rotating joldies 6 ned Z, whinb are aiternately the tank through the door 12 , and tbe dirt paste downwari

through the gratiog, into the lowve chaslece. A small propeller whoul $1: 1$ atire ise witimeut and keep it from lodging, so that ubers the elide it in opened, it will rus out (resty with the water. The coal powes dows the perforated chute 13 ,
onder the spinklet 15, to a rotary scren of ordinary coen ander the
atruction.

MSE CAB JOURNAL

No, 5a7,181, Jusera sprunxs, Fobest Cirv, Pexx'a
 hearing. Euch tearing conetst- of a bollow cast-ifon sleese

is turned to flt the bore of the wheel F, and is hored to it the dummy asle h. This axle serves osly ha a braw to
maistain the bearing- in proper sligmont, und dote aot re-
 interiof part of the castingts used as an ofl hos, being provided with ofl boles K. and a lliligg hole d, nut cover E :

SUPERHESTING HOLEBR.

 Patroted Mas 20k. 12ti, It has bern foand by exteasive experimesto that the use of superbenter somic is attended with considerside ecobotmy, Jut steam eanmof be syper

F, wheb hes been found to les a jirationlin werking temrperature, tho fursace guse nhould have a temperature of
fope to 1 ino N. To oqerate an onlimary stesm botier ecomomTwe to 1100 N . To operate an ondinary stesm boter ecomonitaping gues to aboent $4=8$ F. It bes si=0 leon foumd that more than half of the eteam gevecated in a locotastive bofler is gebernted froms the Ire lox sheeds alous, und that the se-

 inder beresthown. stemm is fepernted only is the colset, which Constitute the flre box. The circulation is very raphi, atil the mingted steam abd water is delivered throngh the pipes in and a', boto the top of the receiver K. Hece the stean farts frodis the emirasued water, shit pustes throagh the pipe facome through alternate coats antil it twathes the top of the chamber, thea downwards through the internentinte enils, ned out through the pfoe of. The hot feses Ill the opper
 the itsmpers Sthowa, The hest af
 the roils lieing intenserly bot, the steam is pepersted ander the mosel etobotical cobslitions. The beat
 trated liy the sugwelocatios voils δ, ing gase is made as low as desired. Thes ther reowiser anrven, anst only to rat on and drpereit the impraritios of the foest watur which entors atid averflowt st A , bat to emparate the Ateum zenernting from the saper-
heating chamber, sad to frem the heating chamber, and to free the
stenm from the eatraiped water Whtht usuntr makes superbeatios. imprestbratis.

HHAKE: FOH MINE CAK.

No, $540,24 \mathrm{~s}$, Scort Houe, lierThe shafis A and A^{\prime} on each sube of he car F, ary journaled is maitaliele aurimes had have aftins ed uns if
and cranks in mod iot respotimely The operatiog Jever "C is pirntal to the frobt of the rar at pivoted to by the link. A nad f, Qhioll ar connected to ssid lever oin opposite shbes of and equi-distnut from jowot
 which it i- bebl in proition. The
hrake blochs I anil J, bave vertion stemes, E abd E respectively, whinh bawe in serics of pia holes casi, The arms from the sbaft

K^{\prime}, which ame fa-tened to the lottom of the car and bave their outer ends sprend, as sbown, to otdain a beoad boid on the blocke By operatiog lever C, is the proper direction, the sha't- A nod A^{\prime} will thrues the brake blocks
between the wbecls, upoe both ssdes of the car.

COALDHLLIE

 the drill with the lite in gilsce: Fig, s sbows the cutting kets: ant Yig. Tis a section a.ross the soiket, showine the lists in phace. The augor is made with a bollow or tutular body 15,

FIG.4.

ric.8.

and a spiral binde 15 , mbith may ter nither doalle or singh

 the T stot 18, and prermita tho jarts fram sapurating, either

Whes drilling or backing out of the hole A lealing bit 21 .
 olges no thit they mav lie held in place liv the simgle pits 24 . This comblination of hite tuakes a very rapol, free cutting toot.

MINING MACHINE.

No, 53i,45N, Eparys C. Monass, Cur-sno, 1hL. Patented Vancl $266 \mathrm{~A}, 1295$. Fize 1 is a verisal anction of the machine: Fis 2 shous the pink, sul it holler Fis. 3 shows the means veer of the machument Yig. 5 shows a top view of the mats
cum. The machise is driven by an electric motor consisting of the magrect D, armature \sum^{2}, and pinion. 6, which peare
 tale 3. The pick is ahe forciant ty a strong spiral speing W, snil is Arawa lewel by a large eam f. which cogages tbo roller T, at the back end of the plunger U. The cam is cast to one pocce with the spivedie f and buffer arms N. The wheot if is locoe pon f, and has large porkers. S, in which the loutier Fand K hare pexne play, thas the coancetion botweed the pootor nad esta is made elastic. The rybter
blocks R stusorb the most of the shonks. The apring 11 lears against the circular nut J, nod the tenevis may be adju-tol whtle runaing ty rotutiag the serve Z. This may be dode turning the hanille D^{\prime}, abd pinson B^{\prime}, Which are shown in Fis 3 hal 4 by doted lines. The machioe ss mounted upon two wheels C, abd steered by $t w o$ bandlies B, in the nowal manoer.

WATER TCHE HOHERR

 mied Juse 1NK, 1N85 The water talies are divided into three steam strums $\delta_{1} A^{\prime}$ sad E. Fwh vertical row of pilne is conasted to a hewler l, and the headers are conuseted to the mud drams $4, \sigma^{\prime \prime}$ and sp^{2}. The headers are connected at the top, to the next beod dram, by means of the tubes II. The steam drams are ail oconected by menas of

smount of تuter is the buiber. Tbe bot gases are compelldive to fow nisermately up and dows, by mexasd of tile garti-

 ocal elreulistion. As the lower tules are hotter than the
upper ones, the watef sorents to the drum, entering at them aper ones, the watef sarents to the drum, entering at then
lowest point, and tlows sownwand to fhe besders through the upper tutec. The sections of the boiler lefing amply wny mostion may terame undaly cmpty or oyerh ated.

The Colliery Engineer

IVETAI IMINER_

The New PULSOMETER STEAM PUMP
 OVER 20.000 IN USE.

RECENT IMPORTANT IMPROVEMENTS.
THE SIMPLEST, CHEAPEST, MOST EFFICIENT AND MOST DURABLE

STEAM

PUMP
SHALLOW WASHINES.
FOR COAL WASHING.

Sand for Free Calalogue.
THE PULSOMETER STEAM PUMP CO.
Lotk-Bar 2511 , NEW YORK CITY.

Writes toe Tus Coluisu Esursers and Metal Mixes
PROSPECTING FOR PLACER GOLD.
A NOVEL AND GIGANTIC SCHEME IN CLEAR CREEK CANYON, COLORADO

Showing how Gold is Obtained on a Large Scal from Gold Bearing Gravels under Favorable Conations
"Prospecting" may roughly be detined as looking for precioss metal we bope and belteve exists, but of whose actual presence, we bave no positive assurance. "Miolog" on the otber band is when we bave sctually found ore and are following asid developing it. Leder this detiatition there are
many klnds of
many klada of prospecting. There is prospecting for min. eral leside with plok sud shovel and for placer gold with a pold pan and rocker There is proe pecting on a bigger scale by diansond drills, such as are now pranctaring the mountalinsabove Lesdville in seatch of the gold beit. It is proapectiog on a gigantic scate when a larg company, like one at work at Idaho sporlogs drives a tunsel for live miles Through the
montains in monat of vele seared of velía which theyknom which theyknotr
to exist, and others ther hope to flod. It is prospecting still prospecting stan
when, as in the present case, a present case, a takes to work the gold tearing sapds of Clesi Creek on a glgantte scale ats with giganticand with gignutheand slofen, they have constrad of the miner's little ditch of length, twelve feat wide and eight feet deep to turn the course of the primeval torrent and carry ita natere bodily on one slde, 80 as to expoese and lay bare a Interval of a mile and more of the river bed for their operations. Inatend of the miner's little pipe short tom or losg tom and driblet of water, the lateat invention Allen'g big stave pipe over three feet in dlaweter, brought to bese and bas been lafd down for a mille, whilst attached to it ls another mille of black steel 16 inch pipes forking at the end to accomodate fwo giani uoczles with a pressure of 125 feet vertical head and a focce like that of a cannon. Theee powerful nozzles ate to wash and blow the gravel out of the creek bed and up through an ele-
vator fipe into a double flume above theco where, as the
gravel mashes rapidly over the floor of the slaice, the heary gold drope to the bettom sud is caught in the intersthces botreen square blocks of \#ood, called rimes, fith whicts part of the foor of the sluice te llued, of faligg in this it phases over a perfornted fron floor abd rops through to a smaller sluive a little below and along , ht, haed with trussels carpet to catoh the fiuer abd coshas gotd that tusy have ksesped the rimed aun perforations of tbe largor slulce; namity contributions from both find their way to a wide troughlike satuice ealled an "undercurrent" lined with hundreds of semall rifle bars and with carpet. Here it is trested furthor and collected with amalgan or quicksilver, which by its peculiar attinity for gold collecta it in ita silvery body;

Abstract

silver mining tome of Georgetown. Thus it drains two gold bearing sareas. At Central in addition to what it may oring down in the way of pols from the vetne abd rock direct, it brings down thiso a krest deal of fline four gold, the refuse of the stamp milles who lose on an average upward of 40 per cent. by their crude methods. Fhis refuse gold has beed accumulatiog for the past thity years froms the millis aloue, bot to say what for Thes hins been derived from the rocles themselves. The tirst paying placer was opebed where Central and Bheckhawk how stand. Thu beed rock was very rich winers are said to have areraged 8100 or more per small clalma lasted

GOLES DF LOCAL-

Sluces asd Flexp at the Stosr Dan.

We may sasume, then, that the gold benring tresms unite ith their foeight at the forke of he creak, heace, the reason why the origisators of the preseat scheme selected site for their oferationsalittle clow thla at a point now ealled ther renson why theoriginstand thelr engine and their eoginlog looked the ereek over from und to end se. roted the pres. ut location hove all others, will appear when locality in question. As we ascend about efegk miles, we reach a polet where Ita acenery reachea its grandest, by Fenaton of the precipitious gravite walls and the barrow-
from which later it is easily extracted by retort. But we are anticipating.

cuban cherk canyod.

Clear Creek Canyon is one of the steepest and grandost canyous in these mountaiga. It is cut tarough grauof rupnards of a datance of forty miles and to a deptb hove Georgetown, ta it onetlet on the plainas at Golden. This was the work of anclent glaclers abd of the present streati.
About 18 miles above its outlet, os the foothille, the creek forks, one brameh gotig $1 p$ towards the godd mining town of Central City, the other to the pold and
wess of the canyon between them. Tier upon tier of massire layers of granite and gnelas rise abone otie another, forming steep clifs, which at thls polnt begin to be iotersected by great red dikes and veles of feldspar and quarts, which are suggestive of dized. At Roscon there are several such velna, some of which, near the surface, are belog worked sucoessfully for gold.

the stoxe dana.

It is by the breaking down of a buge vein of this kind that hy right acroas the canyon that we ent of the grand portsi to the Roscoe property. The great veln originally Was thrown, like so miturnt dame, hoross the creek till, the
now dashes down a fosming raphd with a vertical fall of thitty fee between great boulders.
This struck the ebgineer as an excellent point. Here mas a splesdla place for a dumping grousd of the materIs dug out above. Ove of the frast things to be looked for in a large placer property is coevenience for dumptng the excarated gravel, otherwise the property will soon become choked up by its own refuse and hare to be
abaodobed, no matter how much gold may still be there. ababdobed, no matter how zuvch gold may stili be there.
Here, then, was both a drog of some thirty feet and a Here, then, was both a drog of gome thirty feat abd a
powerful rapod torrent to carry away the debris as fast powerful rapid
as it collected.
${ }^{\text {as }}$ Pasing through this wild and most pieturesque gateway, worthy of the brush of a Bierstadt, bow known as the "Stone Dam," we come upou a loug gtretch of up wards of a mile or more of comparatively quietly moving water, usderiahd by deep, gravel, locally called a As gold is generally tound either amougat the large boulders or the fine gravel, this combination of cirenge.

In the dry bed of Clear Creek frow which the water has been remored to one side of the big flume. The /ndess.
fry says. "A great flume is coestructed by the side of he creek capable of carrying all its water, which is turned into it by means of a dam. Then a pit is dug to bed may require a pomp. A gravel lifter eonsisting of a mayy require a pomp. A gravel lifter consisting of a
ptpe through which rock, gravel and water is forced by the water jetted from a lyydravalio nozale below it, carrien the rock and gravel to the beight above the surface necessary to get needed grade, down which it is washed to the canyon below nsing the needed "under carrvat" sluice to secure the fine gold. A sluive box is meanwhie carried aloog in the bed rock of the pit. A pipe fochers of water gives the beeded hydraulic bead. Wben the worktog has adranced far enough up the stream, the pit left behind can be used for a dump. The flume by the side of the stresm will furulah the power to rum a dynamo which will operate a dertick sud pump and by
the leading machline mising county in the State, colThected the greatest number of miners.
There mere 119 nem mines opened
There mere 119 new mives opened during the year, 67 remained inle, and 39 were eltber exhausted of basudoned. At the close of 1894 there were 1,168 mines is greater or leas portion of the year. Of this number 411 emploged more thas ten men each, and 695 a less number.
257 secidente oceurred in and about the mines during the yeas. Of this number 45 were fatal, 116 serlous for each 46,343 toms character. There was one socesdeat mined to each life lost and $102,6 i 4$ tons to each mined to each lifo lost and $102,6 i 4$ tons to each serious iojury. $\$ 8$., of the year's casualties were doe to the mine cars, 75 \& to preasture explcations of powder and one fatal and foar serfous were due to Efr-damp.
The Iroe Ore production was confaned to the three compties of Jackson, Lawrence and Scloto to which there wetre mined Ss. 043 tons mhich is the lowest of any rear wete mined ss,0sm tous which is the lotest of any year The fire clay industry has also saffered keealy from the commerciat depression. The- prodaction amounted to 942,913 toDs, a loss of 89,435 tons over 1893 . That it was quite general will be seen when out of 15 counties that reported, 12 returbed losess in production. There was a loss of three weeks in the time worked, in the ploged in the manufacture. In the prodoction of limeatove the returns for the year abow a loss about proportionate to that which occurred in the other statistical branches of the report. The industry was carried on in 99 counties of the State. The axerage time worked was 25 weeks, a lous of two as compared to the previous joks of j44, the beaviest that has occurred during the time that the Induetry has been under the care of the department.
The report vontains an articie on the quality of oil ased tor illuminating purposes in the mines, and ope of produced to the keg is the serversl connties. There is an maxiltary article on milue fires, their origin, prevenminous conal mining which contains masy intereating zures obtalned by atsolute esperiment.

Something About Mechanical Rubber Goeds.

No single treatise or other work hitherto published on the India rubber industry gives an fusight into such a variely of uses of this important material as does the
 100 pages. Thls eatalogue, is a diatioct doparture from 100 pages. This catalogue is a dastinct departure from
others, in that it combioes the artistic with the practical Others, in that it combibes the artistic witb the practical The eom in a pleasing way, convey an iden of the varions uses of rubber berides containiog twuch information on the rubber, buedes comtainog whe ioformation on the differencefrom the former pollicy of manufacturers, of keeping secres all facts of this kivd.
This catalogue is istroduced with gomen notes on the blatory of the N. Y. Belting \& Packing Co., L't'd. with illustrations and descriptions of their three factories. Some nocoust of theit trade-marks follows, after which comes the department of rabber beltiog, to which thirteee pages are devoted. There isan scoount of rubber belting ia general, followed by detaill ed deseriptions of the belting made by the compasy for grain elevstor uae, threshing
machines, parer mills, ete- prion liats of lentlier and machines, paper mille, etec price lists of leather and cuber beltiog, and information of vatue on the abolasd rules for calculating borse power, how to splice belts, aud other similar information.
Trenty-four pages are devoted to rubleer hose, with an soconnt of its mamafactare; steam hoae, which la as important product of this compang, oocupies three pages, With valuable tables and lists; one page is given to air-btake hose, two to fire bose, four to ootton bese and the "Lestberite" treatment of sarse ; thres to subtios bose; seveoteen to mats and rastting, including the company's new patented rubber tiling, which they have supplied to the new stenmers St. Louls and St, Faut; eight pages are giveo to paoking. gankets and tubiog. and tis to emery wheels. Conslderable sface is devoted to epeclaltles, of which a large variety are illustrated,
together with reoarks on vulesuization and mold work, together with reanarks on vuleanization and mold workBicyele tires are briefly disposed of, as a separate pamph-
let bas leee pubilished on this subject. A double lodex, new and convesient in urrangemeat, gives the pagea of
both the lista and descriptions of articles. Altugether both the lists and descriptions of artleles. Aitugether it is the most complete, comprehensive and artistio rub-
ber goods catalogue that fas ever been leaued. The ber goods catalogne that has ever loeen lsaued. The
Scrustou Supply and Machivery Cop of Scravton, Pa. are epecial ropresentatives is the Authracite reglues for
the N. Y. Belting \& Packiug Co. They will be plensed the N. N. Belting \& Packing Co. They will be pleasod
to send a copy of this catalogue to any mine manager or ougerintendeot.

Coal and Coke Exhibit at Atlanta

The Tennessers Coal, Iton und IS. IR. Co. is preparing an extensive exhibit for the Cotton States Industrial Exposition. It will conslat of full sections of The com pany's coal seams, spectmens of coke, samples of pte festure of the exhibit will be a reljef map of the BirmInghan (Ala.) distriet showing the coutigulty of the conapany's raw materials to the furasee plant. Photograplas of the various plants with mage efte will also be shown. The exhibit will be in the Enst Wing of the Alabata buililing just ceast of the Governmeet building. It will be in charge of Mr. Class, E. Bowron, mioing engineer, whose name is familiar to most of our reachens,
owiog to bis contributions to our colomns. He estends a liearty invitation to sll our readers, to visit the exhibit

COAL-WASHING.

NOTES ON A SOUTHERN COAL-WASHING PLANT.

A Description of the Coal Treated and of the Ma-

 ehimery Used With a Statement of the Re-
sults and Cost of Operation

By J. J. Ormsbes, Tracy Citr, Tema

[Tradsactsons of the Amerlican Institute of Miaine Kngineers]
Attempts at cosi-washing have been made in the Southern States durligg the last twenty years; Sut it is only withis the last four or flve years that the practice has become at all geberal. It might perthaps be clatnsed
as ooe of the blesstogs derived from one departe 1
regular partings of any esteat. The slate parting is persistent, varying from a mere trace ton couple of inches in thickneesandoccupying a constant position about eight inches from the root. The otber impurities mentioned are ine entirely to carelese mining. The pleces of alate
and pyrites in the salack-coal nre for the most part and pyrites in the slack-coal are for the most part
thin, and bsve a leugth and treadth severnl times as thin, sud bsve a leugth and breadth several timess grest as their thtcknek
slate is from 1.8 to 2.
In mining the coal, single entrles, with alr-courses, ate driven, and the worktugs are opeued out by "room anddriven, and The roonss are made 13 yards wide by 100 to puse. The roonss are masde 13 yards whide by 100 to 120 yark in length, the piline left being i ratis
to breadth. All mining is dobe by band, the coal is uodercat mith the plek and geberaily brought down by the use of black powder. Sometimes do explosives
travel different paths. The refuse material collects in the chamber (F, Fig. 1), closed at the bottom by the valve (H). When the atteblant is 8atighted that this cbsober is full of slate, the valve (J) is to be closed and
the lowet valve (H) opeted, dischargeting the wnste tito the lower valve (H) opebed, discharghg the waste tato ing. But in practice the waste is allomed to accumulate in the bottom of the cooe, and eeaptied throw or four times an hour by working the valves untill it is certsis that about all the refuse has been taken out. At first the valre-lequts mepe operated by hand, regulring tmo and sometimes throo stout men. Bat thitg metbod has been replaced by an arrangement of steam-platons, 80 that the valves are now worked by one man without exerthon. At the time when these notes mere taken the interded to led away by a mule abd driver: but io

"booms;" for, during thetr sway, the supply of coal of sll qualities, good and baid, could not equat the demand: but with the subsidence of the inflated demand. came imperative ealls for fuels of better quality. dot
washers, previously regarded as Iaxariea, became washers, p
necessities
Among thome now in use in this section are representatives of the following types or clnsses the trough washer; the jig washer; the percusaive table; and those
washers, in which a conatant upward current of watea effecta the saparation. Without having full statistica it is rafe to say that there are in saocesatul operation in the Soath more washers of the last class than of any of the south wore washers of the last clasd than of any of
the others. The purpoee of these notes is to present data with regard to the construction, operation, and datalwith regari the of ofie of these current-washers, based malaly on the plant at No. 2 Slope, Pratt Mides, Alabama.
The cosl is mined from the well-known Pratt sesm, having bere an average thickness of 3 feet 6 lucbes. It has distiact cleavage-planes; and breaks in cuboidal sir-slacks only after considerabls exposure. It burna freely, lesving a gray or buff-colored ash. The lump and nut-conls are used for domestic and steam prorposet (chlefly, however, for locomotive firlog), and the alsek for making coke. The specific gravily is 1.272

Asalyege of Pratt Coas.

Autherity	$\frac{1}{\text { гпill }}$	II Mchalles.	III. Min Kesounces of 18, 8, 1592	IV. Lupteo.
Fixet carton,	\% 60	61.60	5433	63.8
Yuaule material.	950	31. 480 y	$32 \times$	31, 8
Motnture -		1.58 508	1.78	1.12
Sulphur,...........	0 sk	0.16 0.918	2.46	8 \% 80

ELTMats Analyses:

Authority.	Pullipa	Fillige
Carbea...	85.8	\% 5.16
Hydrogea, ${ }_{\text {Oxy }}$	10.88	9.91
Durogen........e.t.	1.75	1 1\%
Buphar	1.65	$0{ }^{\text {g }}$
Ast.	2.10	2.80
Nodeture	1.38	1.15
Total	100.60	10.0 .6

The coal from the mines is dumped on as ordinary bar-screen, with sjaces 2 finches in the elear, all going over this sereen belng shipped as tump. That which pasaes through is recelved on a shaklog bar-screen, with isch spaces, which separates the nut from the slack. All the coal golog throagh this gcreed is sent to the rasber. Of an output of 700 to 800 tons per day, sbout 40 per cent. is shipped as lunp and nut, and the reaninder is washed for the coke-ovena.
The imparities occurring in the coal are pyrites, minernl charcoal, and slate partings. As delivered st the tip there will be also foreign slate (shale), and dirt from the top and bottom of the ream. The pyrites is tound geberally in this sheets or local psstings, aud not
is nodular form. The mineral charcoal also ootars in is nodular form. The mineral charcoal alao ookard in
sometimes a soft, and agsin a very hard, slate. The roof is a ssudstone in some parts, a gray slate in others.
Between the conl and the root there is asually, but not always, a thls "mack" parting.

TIIE WAMINE-PLANy,

This consists of a 400 -ton Robloson washer, with the necessary applisnces for banding the coal before and after washiug. The oosi that passes through the nut with a plteh of 18 inchen (A, Fig. 3). It is borizontal, 19 feet 6 foches long, and has, at a rpeed of 25 revolu, tioes per mbute, an actual capacity of it tona per hour This serew delivers to a flight convejor $(B, \mathrm{~F} \cdot \mathrm{~B}, 3)$ with a slope of 32 deprees, the nighta belag 7 it by 13 inchea a slope of 82 digises, the nights beling if by 13 inches
and net 21 inches apart. As sbown to the flgures, the lower end of this cooveyor is below the rallroad-lovet, that it may take coal trom the screw (C, Fig. 1), which is used at night, whee conl from other mines is brought in by rall. The coal is delivered by this elevator over the central part of the washertiab (D, Flug. 1). This Is
a cone-shaped tub of iron, 11 feet higb, 11 feet 6 ibches car by rope, so that one man
can do all the work for the washer.
The cteaned coal and rater passing the overflow ($\mathcal{E}, \mathrm{Fig}, 2$) are recelved on the screen (K, Figs. 1 and 3) At first there mas but one screes, of ateel, with h-loch perforntions. It did orily and wore out in a very short time. The preeant arrabgement conslsts of two screeos, both of manngancse bronse. The upper one is f-inch thick, with ?.Inch perfornttons, -tnch from center to center. The inelinstion is 30 degrees, and the ocrees is it feet wide by 15 feet long, the last thres feet, however, betig blsok. The flue conl and water that pass through this upper screen fall on the screen (L, Fig. 1), of No. 30 motal, baving ${ }^{1}$ - -isch perforations, the coal from both screebs discharging Into a chute, which empties into the rallroal cars. The water sud sladge passing
to the tank (M, Fig. 1), through the lower gereen go to the
from which the pulsometers draw.
In the English and the esrlier Americas plants this
In which the palantan tank was merely a "sump" for the pulsometers. But aven with contalned in the water. As all the water, and pyritescontained in the water. As all the waier, except that arried away by the whalied coni, is ubed over agaio, the pipar is eerioga. Valves quickly wear ont pumpe aud plpat is seriouk, Valves quickly wear out, and st one elighteen monthe. Apaio, with the simple fank thle flye sediment and especially the slate sud pritus thia tie on the bottom, neccumulating the slate sud pyrites-settles ilderable helght above the level of the diacharge confrom the tank to the pumps. Thls after a shile, plipe foan the tauk to the pumps. This, after a while, slips extent as to prevent them from tho pumpa fo buch an ling was required to overcame this anng. Daily shovelIfter requertenes ot thls aert at Shafl No.
r. Mr Erakine Ramsey, Chlef Fegineer of In Tenof, Mr Erakive Ramsey, Chlef Eogineer of the Tenthat has been used at the No. 2 Slope plant with gratify-

In dianaeter at the top and 92 inches at the bottom, th shell being ,'inch in thicknege. At the lower exd is as anmular compartment, connecting with the mater-suapply, and 80 peofforated as to admit the water to the cone in the form of a number of small upward jeta. In the the bottom and cone la a vertical ahsft, reachlog nearly to attsched iron stirrers. Short stirrers are also nttached directly to thls shafi pear its lower eud. Motion is derived by means of gearing from an eogine above.
The slack dropped from the coavegor into the wash blarts to deacend, but is met by the ascebding currents of water, and the particles of cosl are stopped in thelr townward career abd carried up and over the disobarge (E, Fig. 2) while the hearier imparitios continue to the bottotu. This separstion is assisted by the continual agitation caused by the stirrers, which make 8 revolufions per minute, aud are go arranged that the two get.

Ing success. As shown in Figa. 5 and 6, it is an Iroe tank, cylindrical to section at the top, funnel-shaped at Fig. 6). The water, changed with flee coal and plate (a) Fig- (0). The water, charged with fibe coal avd impuri-
ties, is selivered fote the top and at the eveter, so that ties, is delivered foto the top and at the ownter, so that face of the plate. The flow of the water on entering the tank plate. Thaticated by the arrows in of entering thls current of water are carried the floe cone partieles while the impuritioa owing to their greater specifie gravity, drop from the corrent, as imillated in the alcetch, into the comparatively still water folow the level of the mouth of the parsp-sapply pipe ib. Fig. 5) and collect in the bottom of the tank. From here this refues is removed by means of a valve (c) discharging the sluige isto a trough, by whioh it la carried to the waste-car under the washer-tub. The relation betaeen the diameters of the deffectiog-plate and the tank is a
point depeeding on the amousts of coal and of impuritica is the Haes snd on the difference to specific gravity of these materinis．With too smsll a pinate the tmpurities will go to the pumps with the coal．With too large a diameter the cont will sot be carried along with the cur－ retb，but wil bet liven with the glate． a given coal，the reoult are dstinctly good，as wim be given below．In connection with this tank is the valve for supplying the fresh water beeded by the washer， for supplying the fresh water needed by the washer，
automatically regulated by a flost $(g$ ．Fig．σ, abd N ， Fileme 1）．
The water，freed from its beavier impurities and ang－ mented by the necessary nmount from the fresh－supply pipe，is taken by the pulsometers through the eventral pipe direstly into the washortab This is on isnomation on dormer practice，the old plan being to pamp into a tank totmer prackce，the old plas beibe to pump into a rank
40 to 60 feet atione the bottom of the washer，with a dis－ 40 to 60 feet abore the botwous of the mastice，with a dis－ masintais a constant head．At this plant the same object insintais a constant head．At this plant the same object is sccomplisbed at leas expense．The pipes between the pulsomotors had the whalher sie coevected to a stabo－ This acts as a balance on the inflowing current，and tis of especisl adrantage Theo，as somentimes happens after a stoppage，the material in the washer becomes packed． The pumpe then force water up the stand－pipe，uotil a head is developed sufficlent to forces a way through the obstructing stuff．Seldiom lise this columu－pipe overtlowed．
The engine that drives the masher－ machinery is single， 10 by 16 inches， with a－15eh steam－supply．It furnigbed also the power for operating the two serews，the elevator，and the shaking gcreen．The steam－plant ibcludes six bollers，each 46 inches in diameter by 25 feet loog，with two 15 －inch flues， Three boilers are in use，carrylog is to 90 poands steam－pressare，abd supplying steam for the pair of bolating－engines at the slopen as well as for the washer－ engine．One fireman is emploged．
One man does all the work at the washer．He must watch the engline and keop it and the othee mactibery olled； uperate tho mali state－valves three or four times an hour，and niso the slydge－ tank valve，and load the washed coal into the rallioad－cars．He la by no means overworked in attending to these duties，asd will have ample time to run the refuse－car when the rope haul for it ts introduced．For the same capacity， even the trough－wshere can hariliy excel，if they can equal，this lator record．
The cost of a Robinson washing－plant muat vary with the particular conditions at each locality．Basing the estimate on the records of sereral plants in Als－ barma and Tensessee，the total cost of a 400－ton plant complete and ready for washing，focluding machioery for sup－ plying the cosl sud disposing of it after wacking，and also the royalty to the owners of the patent－IIghts，may be put at from 85,000 to 88,000 ．The cost of the washer－tub aud its tmemediste ap－ plinaces would be sbout 81,000 ．The cost of repsirs io low，in fact，to the washer proper，thete will be almost bo repsizs beeded．But water－valyes， pumpe，ecreens，elevators，ete，need sttention and renewal from time to three， the masber．

Perhaps the first question arising is that of actual working capacity．At this Pratt mines plant the Average output bas been for many months folly up to the nominal capacty of 400 tons．Oc casionaly，for several bours at a time
the output has been at the rate of 601 the output has been st the tate of and more toos．per day of ten bours．It Is not likely that the quality of the pro－ duct on these oecastons coald have been equal to that obtained is treating a nos mal quantity．From its appearabce to the eye this whs in－ deed claimed；bat noanalyses weremaletosibstantiate it． It may be soted here that the output in cleas washed coal may be double the nowtunt capacity，when nut－coal

Table I．－Siack Coal，Before Washisa．

free from alack is ased．On the otber band，if oaly very flise material be used，for lustatice，coal from a distinte－ grator，probably not over 200 tons a day coald be cleaved．
be gees that the average ash is about 8 per cent．These Tigures were obtained presumably froms lump－coal， No． 2 Slope，taken during regular working of the plant

Table II．Wasmed Coal．

Smmpled isk		Yotutite and Combustible Materis！．	$\begin{aligned} & \text { Fizel } \\ & \text { Cnrton } \end{aligned}$	Ash．	Suljame．
Novemter	1		68.69	5．8	1.48
	2	238	63 cs	6.97	3.50
＂	${ }^{\text {a }}$	2\％ 6	6.41	4．31	1.46
＂	4	30．22		7 家	139
＂	－	11.00	6	7.61	1． 5
＂	－	21．30	6． 58	430	0.186
＂	$\stackrel{5}{5}$	8184	${ }^{68.78}$	458	1.12
＂		85．89	64．06	3．36	1.17
＂		－ 38.11	61.18 60.48	6.20 6.50	1.28
Aversce		20 6	61． 51	5．78	135

and sampled between the last gerees snd the wasber． The spaces betweed the screvebtars are－ibch its the Flear and everything that pswes through this gereen goes to the washer mithout further trentment．，
Table II．showr the results of investigations of the

washed product，samples beling taken from the coal as it was dellvered to the railrosd－cars．
Table III．－Cowrabioon Betwees Tames I．aso II

been reduced from 9.98 to 5.78 per cent．In otber words， the washed coal contains 49 per ceet．leas ash than the unwashed．Tbe reduction in sulphur la over 10 per cent．，and the galus to volatile material nad fixed carbon in detail the effects of washing，caloalatel from the above tables as percentages on the figures for the ub－ abowe tables
washed coal
Table IV．gives anslyeer of the washed conls of larger dimensions only，gsmples belag talen from that part of the prodact which goes over the screen with part of the product
The average of these results，compared with thoee of Table I．，shows a reduction in ssh of over 48 per oent．， a reduction in sulphur of bearly 15 per cent．，and gaing
Tamle IV．－Warned Cosl，Oven \％－Iscin Screrk．

Sampled iva		Viplatile and Combustible Materiat．	Vixed Carton．	Ash．	Salphur．
	1	31.18	6483	5.6	3.46
	z	28.08	69	59	1.14
	3	33，40	S5．0．	4.81	1.8
	4	29．62	68	3.70	1．51
	5	a3 68	88．80	5． 8	1.8
		31 14	\％8．72	5.15	1．42
	9	33.98	\％8．78	5.8	1.018
	19		6.98	\％ 8	1．85
	11.	क1． 6	60．82	6.12	1.12
Avernge		38.01	63.82	D． 16	1.27

in volatile materisl and fised carbon of aboat 5 and 6 per cent．respectively．A detall statement of the re－
gulta of Table IV，compared with those of Table I．Is given in Table V．
Table V．－Comparibos Betuges Tahlm I．and IV．

	Volasite sudCompustibleStater Master		Fixed Carbea		A＝h		Sulphur：	
	会	¢		建 $\frac{5}{8}$	京娄	违娄	宫奢	姳 $\frac{4}{6}$
1	\％$\%$	＊	\％ss		\％	10．4	＊	5
\％	${ }_{0} 8.1$		5， 19			41 51		\％ 300
4	14		30.65			548		4.45
6	5.15		＜ 4.			49 ts		${ }^{34} 88$
？	2.40		0.51			15 3^{3}		358
5	${ }^{\text {B．}} .818$		${ }^{0.18}$			548		8185
10.	¢． 81		98			58		${ }_{\text {g18 }}$
11.	15.43		7．34			58.5		16.42
Average	4.96		$5 . \% 3$			45.28		16．7\％

It must be remembered that this washer is treating at one operation all slime of conl from－inch in thickens down to fine dust．Many pleces of the thickness named exceed it in their other dimenatons，as is nataral with a separation by bar－acreen only．It coald not be expected that a current and upeed sultable for the larger dimen－ sions would make as good a separstion of the finer materlals．

Table VI．gives a series of anslyees of the washed cosls that pass through the k－inch holes and over the screen with $\frac{1}{1}$－loch perforations，
Table VI．－Wasurd Coal，Underf A－IXcu Sckges．

Sampled		Volatile stid Combustrbite Mnterfal	Fixed Carben	Ash．	Sulptur．
Notember	1	21.13	54.85	783	1.2
	\％	23.15	46.86	48	1.42
＂		23	60．83	78.8	1.88
＂	4	${ }_{5} 81$	60．41	9.85	1.61
$\underline{\square}$	5	${ }^{20} 5$	6881		1.31
$\underline{\square}$	5	\％ 48	6.51	\％ 38	124
$=$	9	${ }^{20} 48$		${ }_{13} 8.6$	13
．	10.	雨 14	\％k． Bs_{5}	315	13
＊	11	50］ 8	39.84	7.19	1．3\％
Average		29.54	64 \％	8.54	3.43

Corsparing the average results of Tables V1．and I．it is eres that the reduction in ash is aboat 145 per cebt． in sulphur 6 per cent．，with practically no change in Table VII－Comfabison Beturey Tanles I．asd YI．

Votarite and Combustible Matorial．		（1ased		Ast．		Sulyaur	
늘	建妥	景咅	$4 \frac{4}{4}$	$\pm \frac{8}{8}$	安安	交娄	${ }_{2}^{2}$
$\%$	1 N：00	N：1	＊	क5．010	$\%$	5 N	＊
\＄ 85	2\％	10.23	1 a	¢ 12	61 is		宕楽
\％ 66	2.2	0．es	1oc		6.4	1.91	1.5
3.6	1.54	\％	i 21	21.38	4）．56	3 is	
4．68			1．2	25 20	\＄ 21		16．10
	$\bigcirc 35$	25					\％ 1816
64		8． 61			f 80		\％ 9
	0.63	Q as			11.4		6 0t

volatile matter，and 2 per cent，frerense in fised carbon． A defailed comparison is giveo in Table VII．
A glsuce at this table nad at Table V．shows at once
that the washer, working ander existing tonditions, is better alapted to the larger-alized coals than to the fines. Yet it is peonomical to contivue as at present, sinee the amount of product passing through the $\frac{z}{}$-inch screes is small, not over 10 per ceat. of the total, and for thls amount a secondary treatment would scarcely pay. With regard to the esmpasition of the refase, two sets of analyses are presented, the flirst (Table VIII.) beling of conrse materlal takea from the main mashertub, the second (Table IX.) of the flise stuff from the
slodge.tank. sladge-tank.

Tamle VIII-Coabse Elatr Refese.

Smapled.	$\begin{aligned} & \text { Volntile } \\ & \text { madcome } \\ & \text { bustible } \\ & \text { Materibi } \end{aligned}$	$\underset{\substack{\text { Vixed } \\ \text { Cartora }}}{ }$	Ans	Salphur	Vrom Solutice.	
					Ceol	Met in
Norember 1		388			11.0	
$\stackrel{\square}{*}$		- ${ }_{\text {an }}{ }^{14}$	${ }_{5}^{8104}$	2.11	${ }_{6}^{681}$	
\square	16.5	\% 31	${ }^{50}$	± 4	117	tis
"	is is	\#1.s4	51.4	17	1250	5 sf
$\stackrel{\sim}{*}$	1410	\% ${ }_{\text {His }}$ a	40.51	2	21.50	
$\bigcirc 3$	18.11	\%14	6, 6	1.5	$4{ }^{9} 8$	31.4
$=$ it.	12.88		${ }_{70}{ }^{2} 19$	1.85	8.80	3
Average.....	15. me	24 x	20.18	13	12.3	21.56

As the amonnt of this refuse in a day's run is about 18 tons, and the conl-contents, as shown by the above table, are 12,29 per cent., there will be 2.3 tons of coal lost in the averager run. The irregularities in coal contentr are due partly to the use of a bar-serrees and partly to oocasionally passed by the secreen, and of course descend with the slate. The attendant may sometimes open the the valves too often, sud cause a loss of ecosl.
The value of Mr. Ramsey's tank ln getting rid of the worthless material is ahown by the following analyses. About 7 tons per day are drawn from it, only 16 per ceet. of whbch, or 1.1 tons ts coal. The entire loss in coal thee on 495 tons of materisl treated, is 3.4 tons or
Table IX-Revese yhom Radegy Slidgar-Taxk.

Ssmpted.	Tidatileandicem nadcsam Mntectat	$\begin{aligned} & \text { Eixed } \\ & \text { carbice. } \end{aligned}$	Ast.	Sulphur	From solution Sp, gr, 1:215	
					ConL	${ }_{\text {Anh la }}^{\text {Coal }}$
Norember	17 ss		68.85	$2{ }^{20}$	\%	8.0
\%	15.36	5	S6.04	28		13.31
	\%.\%	${ }_{4}$	${ }_{*}+8$	${ }_{2.5}^{2.4}$	14*	14.a
$\square \quad 6$	38%	${ }^{16}$. 5	\% ${ }^{\text {a }}$	219	碦耍	98
$\underset{\sim}{\square}$	281.94	46	31.85	2.15		$\stackrel{8}{8} 8$
. ;	19.6	\%	4	${ }^{10}$	${ }_{31}{ }^{\text {d }}$	-
$\because \quad 110$		5.11	41.81 4.4	20 24 4	317	¢0.5\%
Average......	13.97	\%\% 25	42. 5	2 \%	36.4	tam

0.8 per cent. of the total. The total refuse material, slate and conl together, is 25 tons of 6 wer cent.
The anoount of fresh water needed to take the place of that carried off with the refuse and washed coal wa found to bo 14,060 gallons. Oo the day of this teat 400 toas of washed coal were produced, and the washer was running tor 11 bours. The average water per ton of washed conl was $3 \pi .1$ gallons; average per misute, 21.3 callons. Hoarly measurements were taken, showing
from 24 to 51 . gallons of water per ton of conl. This from 24 to 51.2 gallons of water per ton of coal. This
Impegalarty mas due to the varging coal-supply whlith irregularity mas due to the varging cool-supply whleh,
depending on the way coal came out of the mive, was depending on the way coal cames out of the milue, was sometimea only 25 toess (washed) in an boar.
The cost of washing per ton of washed coal is low The dally expensers may be estimated as tollows.

This for 400 tons would be 2.25 cents per ton; and is quite likely that the actual figures are atill lower.

ruE ooke.

The washed conl is carried in bopper bottomed rail rosd cars to the overs, and there dumped loto a serics of blns of 5.000 tons' capacity. From these is is londed

Table X,-48-Hotr Coki fhom Unwasmed Coal

Ssmpled 1 Eat	$\begin{aligned} & \text { Yolatige and } \\ & \text { Counsutimbe } \\ & \text { Material } \end{aligned}$	Cartiod.	Ank	Sulptur.
Jasuary	9.85	89.48	,	1.3
\#	90	8	12	1.21
\#		\% 5	14.35 16.80	
Avernge.	9.62	58.50	15.6	131
locomotives. The ovens-are all of the beo-bive pattern, 12 feet in diameter, and built with a height of 7 feet 9 ibches, thougb the average helght bow is probably not over 6 feet 9 inches. The outshle walls are of sabdetone. the ovea walls of tire-brick. Of the bottoms, some are of fire-brick; some of 12 by 12 by 9 -inch fire-brick thes;				

some of common red brick. They mere built with the back 6 inebes higher than the tront, but masy have no alope now, With unwnshed con the lasual charge was trom 4 to 4.5 tons. Slace usligg wahbed coal this has
hove increased to ahoot 6 tong, without auy locrease of of mages to the palleots, 6 tons, without any liscrease of of wages to the pullers, as the lator is less than whea
pulling colse made from unwsshed coal. The oven retain the best better than before, io apite of tbe washed coal, being charged daup. Repairs to ovens are lear thas before using washed coal. All coke is quesched in the orens.
Tamer XI- -48 -Hovi Coke frow Wabmro Coal.

Coke from the washed coal can be reooguized st the door of the oven by the difference in the amount of braize. To determine the improvement in this reapect the welghts of the ash-piles in front of a number of wens were carefally taken, obowing the avernge anoount wheo coke 18 made from unwasbed coal, to be 521 poubls, and, with mashed coal, 238 pounds, or a saring ench poubds of coke per oves. It the output from ench oven is taken at 2.5 tons (the tests kaving bew unwashed cosl) the savigg is 5.66 per cent. There will aleo be saved a certain smount of the braizs made in forkling the coke from the oven-door to the car, is the unlonding of the cars, and the loadting into furance buggies. Welghts at the farnaces of binaize left in cars after unloading showed 3 per oent. In the cose of un wrahed coal, and 1 per cent. wheo washed coal bad been Thed.
This gain is outpat of marketable coke ta sumbleat, without cbarging the furuaces any higher price for thelir fuel, to compensate the mines for the cost of washing and for the material formerly put into the ovens but bow sent to the waste dump. Assuming a belliog pirioe vents, in the cars 4 centa or in both items 15.32 oouts per toe of coke. The retuse trom masber, formerty coked, is 6 per ceet. of the total. To monke a ton of coke, 1.67 tonas of coal are required. Six per cent. of this, or be lan, may bo cailid, from the ataisapolint of lie anes, an in loss in coni per too of coke. Aasumiles, was in cost of eon cost of cos, added thes per toe wibing, 225 cents per ton of coal, or, 3.75 conts per ton of coke. The total is 11.75 cests, agaiuat which there is, as above, a saving of 15.32 cests, or a net saving of 3.5 ceuta per ton of colke, doe to washing.
In the furnace, the wasbed coke is distibctly adranrageous. Thete is less of that flibe stuff from which no raluabie service is realized. Comparative testa of crusbing strebgts bave not beed mbse; but the "wsobed coke" undoubtedly will sustaio a hearier burden than the unwabbed. A few worts froma a letter of an otticial of one of the Birmingham companies will show the esth
are now held

Practical operatlons in Alabama, Georgia, and Teo nessee, duriag the just four or five years, have proved that this waheher la well adapted to such coals an those of the sonthern fleld, containtng a moderate quantity of impu
lows
a. Low flirat cost.
8. Low labor-cost
c. Compnetness of plant
d. Economy of water-
c. Small maste of coal.
f. Ablity to trest with good resolte materials not closely sized.
Notk ay the Secaktaby.-Comments or criticisms upon all papers, whether pivite corrections of typographical or other errors, or communication for publicathon at "Discuselion" or fudependent papers on the same of a related subject, are earnestly luvited.

Tho Abealroth $\&$ Root Manutacturibg Compang, 98 Cliff street, New. York City, manufactarers of the lm36 b . of Buffalo, N. Y, sud a 500 b . p. cootract from the Reading Steam Heat and Pomer Company of Reading. Pa. They are also erecting in New York Clty, 300 h . p. to Baptists Home: 1 boiler th the Parmly Builaing and 2 bollets for the Sligg Sing Electric Llghting Company.

The use of stemm separatots, bas, during the past few years, become reoognized as a necessity. They enable the engine to work on dry stenns, prevent hammering in the cylinder and locrease the emliency of the engine and at the same time reduce the liability to breakage.
tronge to the lour cost of fued at coal mines there is a erong conservstism masiffested by the managers, in the ng or ailopition of improved lieas is raising and utilizo mines. It This conservatisen is bot qo marked at metal
 of ethefency amd durability in coal mining operations ahould be and cail be bexared, as in otber induatries. Too moch conservatism tends to prevent this.
Every expert in stesm advocates the use of a good separator. Such a mechabism. known as the "Zig Zag Keparator" manufactured by J, S. Stepheas, 315 Dear-
born St., Chicago, is shown in the mocompanying born St., Ch
Illuatrations,
This separator ta so constructed that it bas a direet, nodivided passage for the steam, the distabce over which the steam has to travel being bot greater than 5 per oest, more than the straight-line distance from face to face of the hangee. Tbe area of the sleam passige
Is 10 per cent. larger than the plpe, thua giving fall and 1810 per cent, larger than the pipe, thus giving fall and
froe pasage to the steam without obatruction or loss of free passage to the steam withoat obstruchon or loss of
pressare. While this separator has all the sdvantagees pressares be obtained by the diapptragm or baffle-plate style, it aleo combines mith this the sdvautaped of the centrifugal form, the centrifugal action or change of direction of the current of steam belng shorter, quickee

tloe, and haviog the further advantage that the steam is spread out to a thla hayer or ribbob-shaped current, giving the greatest facility for segaration by centrifugal action. This centrifugal action is contaned witb seristed separating surfaces, piaced at an acute angle to the flow of the steam. The serrations present right angle surfaces to the outer diameter of the ribbob-shaped tesan current is each turn it maks io oblain exparation hy ecotrifugni isetion, while the turns over three surfaces velog reverse cirves preseat each side of the curreat of ateam alternately to the serrated impurity-catching surface. The main current of steam rassing over these surfaces at an acute angle has a congtant tendeocy to assist in the aeparation and removal of any entribeed water or forelgn subatanco
The water aod impurities are forved into the recelving hamber by the rapid passage of the currest of steam through the separator, while the purifed steam pasers of at right angles to the diroction imparted to the water The vertical Zly.Zag Separator bas
Tho vertical zog.Zag sepparator has been designed top of the throtsle valre of the to phaced directy oo ap on semanar should be to be mose effectlve uny ive its duty). Thls style is tapped for the consection of the lubricator, elther right or left handed, as ordered, sud fitted with nolekel-plated, heary body gauge cocks and straight-wny drain valve
If the dimensions are giveo, or a paper teraplate is furnished, the flange will be itted, drilled and Inisbed, and bolts furnashed ready to attach to the flange of the throttle valve.

Culver Valves and Separators.

Those of our readics who have seen the Culver valves and separators, together with those who read the deacriptions of those excellent devices, will be pleased to kbow that Mr. W. B. Culver, the laventor, has turged over the management of the busibeas of the Culver Mfg. These two young mee will give the business that attenthon whilch it falled to receive in the juast, on socount of Mr. W. B. culver's professional engayements. Thenew men in the firm are young mee who will pash the busineas vigorously. Mr. Geo. W. Culver is a practical machinist, uod Mr. Derman ig a young businese man of bustliog proclivities. All letters of lequiry sad ordera received in the fature will recelve courteous and prompt repilies, and it is safe to say that in a very short time Calver valves abd Culver eepsiators will 68 in use at mosoy promisent stesm plants is all parts of the country. The valves and separator are of the simplest posiblie construction, and the excellent results following thetr use have made them very popular wherever they bave been introdoced. The merit of the valves is apparest to every engtneer of machinist who has ever seen them, and their apparent merit has been amply proved by practical use at a sumber of plasts. Circulars desertptive of the ralves and segarator together with prices can be secured promptly by addressiog the Calver Mfg . Co., Scranton, $\mathrm{I}^{\prime} \mathrm{a}$.
The Lza Angeles Electric Company, Loa Angelee, Cal., use "Stevedore" transmisaton rope for their drive, and have recently ordered 3,000 feet for this purpase
from the C. W. Hunt Company, New York City, who are the sole manufacturers.

A NEW TYPE OF BOILER.

Description of the Cahall Vertical Water Tube

Messrs. H. E. Colling \& Co. of Pittaburgh, whose adertieemeet appears in this issuc, in reply to our request ing article which is worthy the attentlon of all boller users. Colsil Vertical Water Tube Boiler, mamutac tured by the Aultman and Taylor Machivery Co. of Mansfleld, Obio, for whith we are the sole agents is the United States, consists of tro drums arranged one above the other, made of best mild, opeu-hearth tlange steet, and conseoted with $4^{\prime \prime}$ Iap-welded beat eharcoal fron tubea. These tubes are vertical, are perfectly straight throughout their entire length, asd are expanded toto the drums at esch end, maklog lasting and atsolutely tight joints.
"The upper or steam dram has an opening through its ceater for the exit of waste gases. These gases although reduced to a very low temperatare in passIng through the elosely grouped tubes of the boller, ing through the elosely grouped tubes of the botler,
will impart wost of their retained narplus heat to the
metal elides of the psasage through this upper drum, thereby tendlug to slighely superbeat the steam in the chamber above. The water line in the upper dram is nbout a foot nbove the bottom of the dram; the drum itself being sbout six feet higst in the clear inside, leaving a spsce of file feec between the sarface of the water and the point at which the steam is drawn off from the bollers, thereby precluding any possibility of the carty oner of water In the steam, either to the form of super. saturation, or mecbanical entrainment.

An external circulatiog plpe consea oat from the apper or stesm drum. just below the Trater level, and is carried downward, outside the brick work, to a point just below the tube sheet of the lower drum, where it bla external circulating pipe, and no posibibility of making any, asd there being in the tabes connecting the two drums, steam in greater or less proportions, the result

Ity of destructive strains from unequal expansion, the lower, or tuad drum, supported upon four pless of
then foanilation, the entire structure gtanding without the founhation, the entire structure standing without ontart with the betich work, thus allowing the boiter ing the brick setting. In all places where pipe connecing the brick setting. In all places where pipe connes-
tions are made to the boilers through the walle, they are thous are insde to the bothers
encseed in expension boxes.
"Owling to the fact that the grees egcape through the oentral opening in the upper drum, the upper tube sheet ans a circular opening in its center, lesving a cential to the bottom tube shect. Alvantage is taken of this apace, which is in the form of an inverted cone, to intomtuce deffecting plates, whleh canae the garas to bo alternately thrown out abd in througthout the whole beating surface, giving them a sweep at nearly right augles to the tubes, thereby extractiog from these gases thelr hest, uatil they come to very nearly the tems. inature of the

This construction preseats form of boller, which, while ton it gives a carscity pet square foot of heating sartsoe insurpsssed by any other boiler beretofore built, at the fame time, oming to the direc. thon of the grevs over the tubes and the consequent rapid absorption of the heat therefrom, gives an economical performance equallog that of soy The ape ever tonde

Fio. 1.
obtsined from any otber water tube boiler with a stack 100 feet bigh. This beavy draft caases is very rapid combustion of fuel per square foot of grate, with the conemuent high initlal tempernture of gheer, wblet all engineers of tu-day admit is the primal
"To sum up, we furalsh a boller equalled by pone built, in iquality of material, In excellence of workmanship, in surplus capacity per nominal unit, it evaporated eflifiency, in senall grount space occupied, is ease of examination and cleabing.

PREVENTION OF SCALE AND CORROSION N BOILERS

Owlog to Bcarelty of water for steam purposee io baby mining fields at this senson of the year, a degether permit of the use of such water as is available

The Pittaburgh Boiles Scale Resolvent Co. of Pitts. burgh. Pa, manufacture a cheap bad efbicient boilar scale resolvent aod acid neutralizer from a product of petroleum that bas nuel with much favor. H. C. Frict cole athera of the Carmegle and Clevelabd Gas Conl Co., and many others.
In fact the editor of this journal recently madeneveral ibquiries of promisent miaing meid as to their experiedce with this product and In every that unqualitiedly endorsed it. Mr. Howard Morton, president of the Pittoburgh Boller Scale Resolvent Co. states that bcale sad corrosion can be prevented in a 50-H. P, boller at a cost of ten ceats per week.
With a view of making the Resolvent as effictent as possitice, sud to aid its work in the boiler by the mechanical action of the water itpelf, Mr. Morton has devised si apparatas for top feed that bas proven very nucceasful.
In the above cut FIg. I sbows a two-flue boiler with the top feed. The arrowsshow the clrealation of the water.
Fig. $2 \frac{1}{2}$ represents the top feeding device,
A is a brass sipple with thresid on esch end.
C is a diecharge cage of thrasa.
R is a copper pan which is fastened to the cage O, with nut locks, which are not shows in the drawiog. $D D$ are nut loeks to fastes the ulpple A on etthee side of the boller plate through which it passes. A saitable pracking is furnished to make it steam tight. The device is go simple as to be resally nudenstood at a glance.

Water parts with its scale forming mineral at the boiling point ($312^{\circ} \mathrm{F}$.) When the water is fed into the botler from the rear and bottom, it reacbee the bolling point just The mineral thus precipitated fastens onto the flive The mineral thus precipitated fastens onto the flre sheets bed swon bardens into scable. Sonce of thil pass upwstd through flues and tubes and attach thereto. Dy the the the bottom and rese of the boiler, it thas left the greater part of Its scale forming mineral oa tlues aud tubes and ohects, sut of the por off Another serious influenve of the mud drocs or blow on Another butious objection to feedigg a boler froos the rear sud bottoar io that water of ampara of the fre sheots when projected andong the ls subjected to a fleree beat of several baudred
 degress reataita The grestest expense for repaitry comes irom grams.
this source
this source
Now suppose we foed from the top by means of the device shown in the engroving. The water passing out of tod to a high temperatome linfore it ovecflows is a hested to a
thin sheot.
By the time It reaches the sarface of the water in the boiler the mineral is separated, but instesd of fastentug to flueg or tubes, is harried back wand along the sarface by the rusbiog currest and carrled downward to the mud drums of within the Intlueuce of the blow off. By untag the Boder Scale Rersolveat with this device the miberal is kept io solution abol perevented fromerosstalizing isto 8oale notil such time as it can be removed by blowing down or washing out.
An atsolute grarantee of the effliciency of the resolvent when used in conbection with this derice is given to every purchaser. The usual charge for the top feedIng device lo four dollard, bat when a barrel of the reeolvent is furniehed, one of the foeding dovices ia furnished free. It a number of boilers are fltted with the shervice, a change of four dollars is mase for esch device furnisbed except the first one. Theo with eseh subsequent barres of repolvent purchased, the price of one top food device is deducted until all the bollers nre clear of cost in this perticulse. The purcbsosir of the device nod the reeolveat lia the sole judge of Its merit.
If it doess mot do an regrescentest, the company will make If it doess sot do as reptometes, the rompany aill make
no eharge,
Every man familiar with stenm raisiog knows that Every man familiar with stenm raisiug knows that petrolemm alone is an exvelizot acalery corroben fure. The rittsburgh Boiles Scale Resolvent retalus all the dealrable properties of petroleum and does not volatilize anitil a temperature far to excess of that found in bollers is reached.

MINE SURVEYING.

LATEST AMERICAN DREAS AND MOST APRewritten for the use of Mine Officiais, Surveyors and Engineers, from Lectures Dellvered Be
the Students of Columbia School of Mines.
(Hy Biward B. Durbam, I in
(H) Columbia School
Chartre VI.
Consectise nuse and sterack.
Having considered the ordinary methods of making underground surveys, and the apgiratus used, there now remains the problem of connecting the mine surveg with
the surface, in order to determine the relative positions the sarface, in order to determine the relative positions
of points and libes above and belou ground. If is the most difticalt work in connection with tulerground surveying, and at the same time, muat be done with
great accuracy, as the correcturss of the orientation of great accuracy, as the correctuess of the orih
the whole underground survey depenils on it.

In the days when the mine surveys were male with the magnetic needle, the mertdina was determined un-
derground by means of it, taking the precaution to derground by means of it, tak
remove all iron from the viciaity.

With the introdoction of the transit into mise work, came the secessity of a corore noccurate way of orientlag the underground sarroy. The finst methods, nsturally, used the transit, bat, ns the mives became deepor, pew
problems were preeented which conld not be solved by problems were presented which conld not be solved by hail to be emploged.
witu till thavall
Flat /nclinex, - Where the entrance to a mine is by a tumel or a slope with less than to to 50 degrees of in-
clination, the survey can be run ti the asan way abd elinatlon, the survey can be run in the abank way abd
without specint apparatus. It quite flat, the elvations without special apparatus. If quite fint, the elvations
can be determined with s wye level, but if much toclived can be beterminedtion by the vertical anglea and disthey must be obtained by the vertical augles and dis-
tabce. The oaly difficulty in the work will be the iftasce. The oaly difficulty in the work will be the ib-
conventence in uising the instrument, owing to tack of conventence in using the instrument, owing to lack of
good footing and the awkward positions Decessary as good footing and the
the pitch ivereases.
Step frofinex. - As the pltch becomes greater than 40 to So degrees, the line of sigbt through the telescope will
strike the compssa box and sbut off the view and specina strike the compsss box
methoda must be used.
The thods cocentric telescopee, already described, throm the
The Hine of sight beyoud the edige of the plates, and so make it poselthe to take steep sights downward
the travit, sul the other to then main telescope of the (rasuil, sud the other is fartewed to one end of the
horisontal axla. They are adjuated go as to be in the horisontal axls. They are adjusted go as to be in the
anme plane as the main telescopen and parallel to It. If it is placod on top, sud is in proper ndjuatment, the horizontal angles read with it will be the same ins if read with the mala teleecope, but the vertical angles, as
read from the vernier will not be correct, unless the signal has been ruised, perpendicular to thelline of sight, a distance equal to the distabos betwees the tro teletolescoper, the kame as with the mais one, without re gard to its betpg tnocrrect, and, afterward, the amount of error could be calculated and the correction made is the aggle, thus if we let $A=$ a point at the horizoetal
axis of the tranalf, $B=$ a point of the tog teleceop on a perpendicular from the main telescopor at A, aed $=$ the sigual.
Then $A C=$ distance between horizontal axis of tranalt and the sigual.
$A B=$ distance between telescoper.
$B C=$ line of sight of the top telescopet.
$A C B=$ error in vectical angle due to
$A C B=$ error lo vertical angle due to slghting with
the top telecsoge. the top telescope.
Then, slice angle $A B C=90^{\circ}$,
Sine $A C B=\frac{A B}{A C}$ from which we can thad the value of $A C B$, sud subtract it, frow the angle
tive slopes, and sidd it for poeitive sloper.
From this, it follows, that the mean of the reetical angles read with the top telescope at the two eeds of a course, mill give the true aggle, since the correction, ap-
plled at obe end, must be sidjed to the angle as rrad, and at the other end it most be subtracted. Io takiog the second reading the horizontal axss of the transit and the signal must exchavge places exnetly, as is doae with the instruments ased for the three tripod method.
This calculation will have to be wodified for lines,
π bere the differebee of the elevation of the two ends is There the differebce of the elevation of the t
less than the distance between the telegcopes.
If the eccentric telescope is on one end of the horizontalaxlas, and is adjusturent, it will be in the same plaue through the horizontal axis as the mais one and parallel to it.
The rertical angles as rend on the vernler will be the true oote, but the horizontal angles cannot be read correctly unless the algnale are offeet from the pribt, a distance, perpendicular to the line of sight, equsl to the
diatapce between telescopes. It can be provedt that, the meas of two sagles, one resd with the side telescope on one alde, abd the other with it on the other, will give the true angle. This will allow the angle to be read by repectition, by taking the same number of reallings with the telescope on oue side of the center as with it on the
other, and then diliviligg the flom result by the total number of readingstaken. The approxinate determial Lion of the asgle, corrosponding to the first angle of an ordinary set, mould be tound by mesuring the angle,
once with the telescope on the Jeft eide and once with it on the right, and taking the wean of the two readings. In betting up the instrument for steep sights care the line of sight. Often it will be more convedient nod

Begua is Martb. ins:

safer to the mas and the iestrument, to clamp the tranalt to a heavy plank nalled across the shaft.
The horisontal angle is read by using the ecoentrile telescope for both slghts. Owing to the many things sets and to read abd record every angle of the sot, to ald in the detection of azy error in observation, which would be apparent, if there was any change in the differences be apporent, if there weas any
betweet coseceutive realings.
The mont likely cause of error in shatt work, with the open lamps, is, that the thmes flicker baily, owing ot the air currents. In sighting douv, oue is looking gighting up the body of the lamp is oftes tin the way. Here the illominated target is frer superior to the open ights, in that the target is at right angles to the line of sight, and the lines at which to slght are sharp ancl clear.
Havin.
pext sen wated the polut down the slope, the tranati downznap there; if it is necessary to sight still fartber rut if the line is to he ceariel of horloutally, the eccent tric telegrope can be removed, and the upwasd sight taken with the prism oye pleco, unless the sight happens to be so nearly vertival that one coa not get the ege
close to the telfesopes. The work at the bottom is more difficult than at the top, owlog to the atraierd position in slghtiog upward, and davgeroas on accoant of falling material
The ver
The vertical angles nust be read very carcfully, as in
steep lives they liflumence the bortiontal diatances mueh steep lioes they litluen
wore than to tint oem
If without on occentrio telestope, Tun Colluney

 prisme ege pleoe and ranaing by foresight only
To do this, ost up the tranait at the foot of the slope at a poist A, when a polat B, cso be located from it, measuring both distanoe and angle, absl to the prolonga-
tion of $A B$ set a pofnt C. Then set the tranalt at B tlon of $A B$ set a polnt C. Then set the thanalt at B
sud set a new point D, and is the prolongation of B sud set o new point D, and in the prolongation of $B D$
set the point E. Thee read the sugle $C B$ in and set the point E. Then read the sugle $C B D$ suid new pair of polnts reading the angle to the neacer one from the live $D E$. Continne in this way to surface the the transit will be se sile mouth of the slop can be read from it to some polet of the eurface survey The angies may be recorded nas deflection angles to this right or left, or they may be read by repetition, and then bave 180° added to the result, when they will be the same as the ordisary horizootal angles. This chemed Cous away with ail sights down the slope, which The "He bualo without an econatric telegcope
oethod saggested by 8 . W. Ralcti of gives an ingeaious method sugkested by s. Batch of gettiog a line down of sleht will clesp the plates. The inetrument is ad. justed, whille in the talted position so that the centers will be lieclised, oaly in the direction of the line to be thrown downward, then the horizontal axis will be borizontal abd the telescope will revolve in a vertical plane The transit can be set approximately in this position by means of the plate butble parallel to the axis of the telescope. It can be accurately set with a stride hevel, or the the to be thrown dompwsind, and then bring the butble into the center of the tube with the leveling screws the vertical verniter belng set at zero. The same reault can be obtaised, by settiog the vernler at zero ected, swing it to the right and lift through small angles of equai size, and adjost by the leveling scress netil the lates or the butbie is equat for equar denceatial plane to be projected after each movement of the leveltug siens.
Whes the horisontal axis has been leveled, and the plates are clamped with the telescope in the direction of
the linn to ho projected, it can to prung domoman!, and the line to be projected, it can be sruug dowowand, and if or two points marked in the underground workimgs. If ouly ove point la oet, the surface point will be the backsight bot if two, the line betwees them cas be used, as it will be paralled to the surface libe. The point over the center of the horizontal axis when the tranalt is tilted.
Ihesides throwtog a line down is a vertical plane, a right augle can be turned with the transit in the tilted position without speciar calenlations.
In the original article, the necessary formulas are teduced for turning any angle while the transit is tilted, but the angle could be turned firat with the tranalt level.
and the direction of the new line marked out, and then atd the ditection of the new line marked out, abd tiva
the trapsit could be tilted and the line projected downthe ton
ward.
Vre
Wericand Shafte.-In many of the test books are metbods of tranaterring a suiface lise underground, by placing the teleacope in the direction of the line to be ing two points in the mine in the vertical plase thus described, and then connecting the mine marvey to the line belweed these two marks. Or the transit may be placed at the bottom, and a line of the mine survey tbrown opat the botiom, asd a line of the mine survey thrown opthe shaft, nad later the direction of the line between them san be determined. This could easily be done io large obailow shafts, bot the conditions in practice are not ofteld such as to make it practhable
wiog to the metneses of the shate and owigg to the retumes of the shaft and the jar of the pamyos, transit was set over the staft, in the vertical plane

through the cester line of the tumnel, as determined by
poles on ewhis side of the Sevem river Atter the bead pugs had been driven a sbort distavee, in both directions from the shaft, a wire 300 feet loeg was stretehed at the bottom; and carefully placed ta line by the transit. This for the tumeet was obtained. The headings are said to bave thet exactly.
The ends of the wire were placed over the V threads of horfzontal screws and stretched by weights. By tarnthifted, as directed by signals from the man nt the in. strument, votil it was is lise. About 14 feet of it was vasible from the transit, and thls was illuminated by an electrie ligbt.
If there was no retraction, the errors would all be due obbervation.
If the instramest mere out of level about an asis perected in a vertical plane, thel lise would stint be prolel to the tumbel, the teiescope would throw an oblique plsue and tbe wire, if it was horizootal, nould be placed parallel to the true pasition, asd the error would be constant. This asme priberiple was ewployed by Me. E. A.
spertrs nt Leavenworth, Kansas, tweed two conl mines, ench worked by a werlical shat He tifed plaubing with 5 pound plamb-botes, but coald not keep thum steady, even after inserting four wiogs into each of them to offer more reaistance to the water in the tuls. The shafts were about $i 90$ feet deep.
Floslly he ras the surface libe actoss the top of the sbaft, asd marked it by a tack in the collar on esch
side. Aree carofolly adjuating the sile teluscope on bly side. After carefully adjuating the side telescoper oo bly
tranait, the set up his tastument on a platform, about 30 tranait, he set up his tustument of a plastform, about 20
feet above the surface and over the center of the shatt feet above the surtave and aver the center of the shaft,
so that the side telecropee mould revolve in the vertical ao that the gide telefcope nould revolve in the vertical
piane thronght the tacks. He then swung the line to the plane through the ta
bottom of the shaft.
At first be tried to sight at two straight edges, fast. cthed together with asit about io toch mide between
thea, and with lights placed belom them. But the Them, and with lights placed below them. But the
Iights flared so much that he cot a large bole near earh end of the boards, aud over each of theme placed a plate esd of the boards, and over each of these placed a plate,
with a erose cut in it, and threw a light up through theas with a ball's eye lantern. The erosses were tben runged in, and the line betwees them was used as the lase for the underground survey.
3 minutes in ange feet apart abd he had an error of 3 minutes in angle and of 3 feet latetally, in closing, In adjusting the inatrvmeot, be first
zootal axis truly horlsontal, liy sighting xithe boricontal axis truly horisontal, by sighting with the main teleaoope at a long the wire, adjasting the axis outil it
follomed the wire throughout ita length The mire man follomed the wite throughout its length. The wire mas bung ta oil. He then stretched two mires, at a distance agart equal to the diatanon between telescopes, betweea directly of two bu'litiogs, and ont the instrument would travel aloog it, and then nidjuated the side telescope to follow the other wine.

The transfer of the surface aligument to the mine by plumbing, can oaly be done where there are vertical sbsfts. There may be elther oue shaft or there may be several.
Ose Shaft.- When there is ouly one sbaft, a line is run acroas its top, projected to the hottom by plumbfrom, which the between them there used as a base, acroks the top in undergroutad survey is rus. The lined potat conoected with the enfface kurner. Pet at some fastened across the top of the shaft, and fato these two opule are placed, so that the libe from the trusit will blsect their eyes. The distances from the tranalt to the spads, and the direction of the line through them and the trusit, will determine thetr position. The plumbing wires are now passed through them and lowered by 1 of 2 puand Iroe bobs to the bottom, where 30 to 30 pound ones are substituted, sud hung in tubs. After the wires have stretched all they will, and the bobs bave beea raised so as not to touch the botton, the tabie are tilled with water to decrease the vitinatione, and thea a cover them to prevent anything from falling in to dlisturb the water.
Nometimes the water in the tab is covered with oll to quiet the wavee abd eometimes a thin ofi, like signal oil, Is used instead of water and at otber times thick oil,
lirive molases abd ewen med and water have beon used, bocording to the faney of the wotiveve or to the materials svailable, the thicker fluide beling used to The wire resiatabee to the swinging of the bob-
Guse throushout the entlire depth of the shat they hasen be protectat trom lecinal dieger of the shatt avd munt bevels. In plumblatal aircutruts at the different teveled the wimes with for the Mersey Tunnel they toucheal anywhern. The common methot to see if they man at ooe exd of the wire pass a light around it very slomly and have an ohowrver at tho other coid sotioe whether be can see it at all tioses, as he gbould be alle wit the wire does not touch. The distancen between the wires should be measured at the bottom to see that it ie the same as at the top as an additionsl check on their hanging freely
noder-groued, thes are all right, the transit is set-up ueder-grvund, in the prolongation of the line throngb can be seen without changing the focua. The npprosimate position for the transit can be determined by pars tauging a plamb-line tagent to thy two wires, of by will give a mark very vearly right. The transle cas

ghifting the tripod head，until the two wirea sppesi directly behind each ofher of eighting through the tele－ seope．The line can bow be transterred to the roof or floor，and marked by permannent points，far enough aport to give a good base line．The direction of the libe through them will be the same as the original lise carried across the top of the shaft and thelr distanced from the plansb－lines mill complete their borizontal location，snd the wires may be removed．The elevation of points under－ground are determibed by measurivg the depth of the shaft．
In sighting at the wires they may be made viaible by bolding s piece of paper bebiod them，and illuminating it with a light is front of it or by one behind it．
Where the boks will uot settle on socount of air cur－ rents or itroppiog water，it is neceseary to blsect the swioge of the wreas．If the vibentions are small they can be bisected by the ege In sighting at them，but if the wireswings outaide the field of the telescope，it onn be followed with the telescope to its extreme positioe， then read the vernier quickly，abd follow it to the other extreme，resd the vernier again．The oveter position of the wire eill be the mean of the two reading，this should be repeated several times until a good mesan position is determined．
As sbuft plambing is only needed occasionally and as the apparatus is simple，the neceseary thinga are usually improvised by the engliveer to itt his special con－ ditions．It will therefore be protitable to describe the methods used by different persons，ss some combluation of them or neethod suggected by them may aid fome englinetieer is solving his problem．
Tbete are severnl scbumes for determining the exact central position of the swinging wire
Prof．Schmidt of the Frimberg
Prot．Schmidt of the Frieberg School of Mines，de－ termined tbe miblle polnt of the 8wiogs，by means of a
finely graduated ackle placed behind each wire，and per－ fibely graduated scale placed behind each wire，and per－
pendicular to the line of sight．The extromes of the

司

Fpe．14．－Tub fob Shapt Plembisg．A，elevatoos is Fhas of ToE；C ，FINDIVE tHE FOLNE
awings mere noted，and by bisecting them the central pos－ tion was foumd．A tomber of obseryations mepemaileand the mean positions were used．The bobs welghed fil rounds and the wire was $\frac{1}{2}$－loch in dismeter．The scale was illumined by the ordinary miner＇s lamp．
Yrof．Schmidt also tnvented a clamp for bolding the levels
He arranged a cast fron frame，through which the plumb wire hung，aut which carried two scales，which could be set so as to be perpendicu－ lar to two lives of sight，obe from the fransit abd the other from a sec－ ond telescope placed at about right asgles to the transit．The position of the wire was thus iletermined in two directions．The bob whs then removed，asd the wire fastened to a center block，which was shifted by 8crews in the frame until the mire gtood to the ventral josition as de－ termined by the two telegcopes． With the wires thus stretched，ob－ aervations could be made on them at any number of levelo．
Another way to get the true por sittou of a swinglog plamb wire is to cover the tub in mhich the bob hange with is board in which a round hole several luches is dlameter is cut oonkally，Fig．14－A．The cover mant be wellanchored．Then，
as the wire swigg to and fro， a rule is planed at right angles to the direction of swiog， Fg .14 －B ，and kept just ahead of the wire，so that its estreme position can be noted by marks made at
？
 esch end of the rule，and both sum－
lerel alike．This is pepentel tweel alike．This is repeated ustil a number of marks bove bect mande．The bob is thee removed and a plog placed is the hole，Fig． 14－C．The lines are now dtane across the top of tbe plug and a
clrcle drawn tangent ta clrole drawn tangent to as many of the lines as poasible．The ocs． ter of the eirule will the the evotral position of the wire，Irregularities in the swings will give circles with otber benters，bat these can bee beg lected abd the point chosen as the
contral one whinh has the hunden of crutral ous wheth has the burget of
the proof in its favar．A pio cons be placed on the central po
found and used to slght nt．
\square
L：
Fro． 15 Clevi
roi Willes In puamblog shaftr in Montam Mr．I．Kuhe huog the wires in aingle comportment of the shafo loug，but still he checkesl his sut－ whes In llae at the top，a plumbing board was fastesed acrices the shaft， fand the（wo wires were each attacher） to a movnble auppott，clamged to It．Each support，Flg 15．enadated of hultron rod，sliding in two upright plears
The rod hat a gmove ot the outer nat for hulding the wirm，snd the other ebl was seated against a fert anow，

abd held thene by a spring．Thees allowed the wires to be moved untll they were exactly in the deaired line．He used No． 22 copper wire，lot it down with a obe－pronbd年， oif．In oommunicating with the man at the top，to naise Jower or stop，the regular mine aignals for hoisting were used．
To
To facilitate the work of sighting at the bottom，the further wire，from the in：
atrument，was illuminated while the bear oue was tasde fo appear，as a dark libe on ight ground，by placing i light betwees the two wires and close to the back obe Fig．16．The light was pto－ rided with a rethector．which increased the light on the hack wire，and also kept it out of the trabsit．The mider then the two isched rider than the screen suld printed white，then by set the it a little to one side． the best wite appeared on
thlte base sis a dark line

Fig．16－Linirt axd Rg－

Tonc．

MINE HAULAGE．

Description of a Compressed Air Mine Locomo

 tive．The Susquehanna Coal Co－bns just put at work in No 6 shaft，at Glea L．ron，Luzproe county Pa．，a com Porter air mine locomotive built by Mesars．H．K． leading anthracite mining companies have ordered lending anthracite mi
similar locomotives．
similar locomotives．
These locomotives are for tase in mines where the liability of the presence of explosive gas is such liability of the presence of explosive gas is such
that steam or ordinary electrie locomotives might that shean of or
prove dangerous．
Though the current of air forved through the mine workings is large enough to dilute and carry off the gas in a non－explosive state，the managers of the three compenies decided to make assurance doubly设uire a fire under the boller，or a frolley that might ctuit sparks in case of a sudilen mevomistion of gas fue to gotme uuforseen accident．While thle wha a potent factor in decidiog on the use of the compreased air loco－ motive，the question of cost and expense of operation was also considered and found to compare very favorably with those of any other system of hanlage，sod indirectly to －more more favorable then most others．
In the accompauying illustrations Fig． 1 shows a side
view of the locomotive，Fig． 2 shows one end view，sad

cylinders at 100 to 140 Ibs．pressure，whteh can be raried ingtantly as desired．Tbe tank beads are conver，and are double riveted with manboles io the end shown io Fig．2．The horizontal seams of the air－tanka are triple riveted，and an abundant factor of anfety has been pro－ vided，having been tested tight with 900 ibs．pressure．
The four driving whecls have a powerful hand ecreu brake attached to esch．The tanks，thres，axles，crank plns，rods，crosc－heals，guides and links are all made of sfeel，and there are hardeted removable bushings and plas used throughont all valve gear．Sand boxes to sand all the wheels，when running in either direction are provided．
All the operating levers，valves，ete－are in easy reach and under the constant coetrol of the engineer．
The locomotive is specially constructed throughout all its details to sceure the best effelegey，utanost con－ venlence abd ubioterrupted mork for loug houns under severe conditious．The few repairs beckeary can， owing to the construction，be maule ensily and quickly． The loomotive in this caserubs ovee a track of 36 in． gange．There are no excessive grades or very sharp curver，though the machine is desigoed to overcome such conditions if they did exist．
As was implied before，it is tmposable in many wines to use a steam locomotive os account of the danger from
fire sud aporks and the dimiculty of removing samke fire sud sparks and the dificulty of removing smonke from the openiogs．The compressed alr engloe，while eutirely free from these objections，really abds veotila－ tion to some extent，the exhaubt from the eylinders furnishing an appreclable sadition to the supply of pure
air in the galleries．The adpocstes of thls spatem claim air in the galleries．The advocites of thls system claim that it has many sdrantages also as compared with the electric motor，abd these claims may be stated as follows：In the first place，bo wires are required，sud there are no obatructions overhesil of underneath the eatry，but the tunnel is left entirely free and clear．In long as thens is a the power is selt－containa，and as cong as there is a supply of air in the tanks the engide can move，and is not dissbled by soy bresksge In con－ toctiug wires．Thirdly，the engloe can be need at wlll la auy eutry whete s track has been laid，and ls not de－ pesaent upon wire connections．Again，the only many coal mines are proviled The operstion of fillag many coal mines are provided．The operstion of filligg the tanks is extremety simple，and las to be repented Whlle this locometive is a
Whate this locomotive is a beer frature in the Wrom－ ibg region it is by no mesins an expertiment．Two or three years ago we published a deseription of a eirmilar loce－ motive built by Measrs．Porter \＆Co．，for use is a mine that atiracted the stention of Mas Ior I description Gea＇l．Supt of the Suspoehana offlefals of the other tro compank to Co，and the locomotives for ueer in compankes，to compreased sir havalage deviees would not loe pranticable．Mears．H F Porter asd Co．have built a purnber of thesers．If．K tives for mibe use，sud in every instaboct thoy have proven eflicient，safe and econoenical．The same flrm

Fic． 2.
 work，the froet will as much as possible，be that oud
ebown io Fig． 3 ． abow is Fig， 3.
A dercription of the locomotive Iustalled at Gien Lyon Is as follows
It is 17 ft ． 6 in．long， $5 \mathrm{ft}, 2 \mathrm{in}$ ．wide and 5 ft ，histh． It welghs 18,300 Ites．Its working presaure is 600 Its The oylladers are $i=x 14$ in．，und there nre 4 steel－ ired driving wheels esch 24 is ．in diameter．There are total capacity of $1: 10$ ouble foet，with an musiliney ervolr sad redocing valve for dellivering the air to the

Fic．is．
bas aleo deelgted compressed alr motors for street cars， whlch they clatm ane free from the faulte of trolley ears，
and are far more rellable than storage battery motors， and are far more rellable than storage battery motors，
whicb so far bave ouly reachoil the experimental stage．

We note that the Taylor Iron \＆Steel Company，of Iligh Brdgge，N．J have recently installed the C．W． Hust Company system of cars and track for baudling their materia，also that the Ols Coupany of ware， fystem of Hunt industrial railmays．

 mureote nfocrima

Ventilation．

Evitor Goliery Enginecr and Metal Miner
Sus：－Please insert the following question for solation in your next issoe．
Thares pair of parallel entries between which I have seventarak－throughs and my entries are drivet in 3 in Fords past the inside brenk－through．Break－througher minutes botice．Now，there is a shot Elode th iny retura entry．What I want to know is this：Will the smoke leave quicker by closing No． 6 break－through abit lear \log No． 7 open，or will it leave quicker by elostag No． tor five minutes and opening No．G，tben，closing No， and opening No 7 ，chasogiog voutimuously until the sanoke has gone．

Elco，Wash．Co．，Pa．
Iours ete．＇Catuss．
Hven

Expansion and Contraction of Air．

EAtitor Cultiery Engineer asd Metal Mener：
Sun：－Plense insert the following question in your aluable paper for some of the readers to answer．
As air expanda ify for every degree of beat and Ahrisks of coatracts y^{2} s．for every degree below zero Now，suppose the law of contraction holds and we fix the temperature at $4.9^{\text {a }}$ below zero，what will becone of the air and ita welght？

E．Palestine， 0 ．
Yours ete．，
R．T．Davis．

Ventilation and Arithmetic

Aditur Coiliery Engineer and Metal Miner

Sis：－Plense insect the following in your valunble gaper in answer to query given by A．McDonakd．Por sorien，to your Augast， 1505 tasue
（1．）What would bee the area of an sirway to pase 30,000 cuble feet of air peer minute if 30,000 cuble feet is passing through one $5^{\prime} \times 4^{\prime}$ or 20 feet area
We will suppose the pressure and also the form of the Takey to reussin the of the ratio of then，by the following rale wuitiply this by the given helght，which will give thr beigbt of required airway，then multiply the Foot of the ratio of the quantities by the given breadth，whtect will glve the breadth of airway required．The ratio of the quantities will be $\begin{aligned} & 50,000 \\ & 20,000\end{aligned}=2.5$ then $\langle 95)^{2}=1.4327$ asd $1.4497 \times 4=5.77$ feet，the height of alrway reguired Then $1.4427 \times 5=7.21$ feet，the breadth of alrway re quired，and $7.31 \times 5.77=41.6 \mathrm{kq}$ ，ft．the area of airmay required for $50,000 \mathrm{cu} . \mathrm{ft}$ ．per mioute
（2．）What is understood by the formala（8）${ }^{1}$ ？Work out and explain．
The formula $(3)^{\frac{1}{3}}$ means to extract the ；root of 3 and can be easily solved by logarithme as follows．You will and to obtain the \＆root of ans number，to be 422121 log．of the nember by 2 and divide by 5 thus；log． $8=$.477121 and $\frac{47721 \times 2}{5}=.150648$ ．The number corres－ ponding to $\log .190848$ is $1.5518+$
Scammon，Kass．
J．G．Wumaysox．
Ass．1．We will assume that the preseure is the same for both airways．
For smull airway $p=\frac{k l p a e^{3}}{a}$
（1）．
Now，ns the ratio of the dimeasions of the large ait－ way，is not given，we will suppose it to be sguare

Let $\quad x=$ lebgth of one side of large aireag．
Then $4 x=$ perimeter．
Then $4 x=$ perimeter
And $x^{\prime}=$ aren．
Whence $p=k l 4 x\left(\frac{2}{x^{2}}\right)^{2}$（2）．
From（1）and（2）$\frac{E l \theta v^{2}}{a}-k l 4 \pi\binom{q}{x^{2}}$
Now，diviling（3）by k t，and substitutiog known values，it becomes
$\frac{18 \times(1,000)^{3}}{20}$
$4=\left(\frac{30,002}{x^{2}}\right)^{2}$
Simpaifylige and transposlog
$x^{2}-\frac{10,000,000,000}{000,000}=\frac{100,000}{9}=11,111.11$.

Therefore $x=, 11,111.11=6.444$
$=$ area reguired．
Houtadale，Pa．，Aug，6， 1895 ．Anolerma Cook．
1．$\Delta \mathrm{N}=\quad \begin{array}{r}00,000 \\ 20,000\end{array}=2.0$ ．
$(1.4422 \times(5) \times(1.4427 \times 4)=41.627+$ area of air way nequired．
Asoume length of sirway as 1,000 foet and the well known formula $p-\frac{\hat{k}+\sum^{\prime}}{a}$ will prove p equal in enels airway：
2．AN8．${ }^{(8)^{t}}$ equals ； 8^{2} or the fifth root of 3 squared Thas，log． $9 \frac{1}{2} .0542425$.
$9542425=.1508485$
$190848 i=$ Log．of 1.55184.
Therefore ，$^{\prime \prime} 3^{\prime}-1.58184$
Viotorla Mines，C：B．Aug．8，1806．
T．J．B．
（2）What is understood by the formula（3） This means that 3 is to be ralaed to the I，or what is The sames，so the i power．This will requite the ap－ （1）．Fisd the logarithm of the number and multigly it by the exponent of the power，and the product will be by the expronent of the powti
the legarithm of the powes．
（s）．Pind the mumbor cor
（2）．Find the number corresponding which will be the $\mathrm{Log} .8=0.47712 \quad 0.4712 \times 4-\mathrm{Log}=0.190 \mathrm{~g}$
Number cortespubaling to Log． $0.19035=1.5518$＋
Rock，W．Va．，Aug．15， 1805 ．Yours，ete．W．Baftev．

To Extract the 5th Root by Arithmetic

Editor Colliery Engínuer and Metal Miser：
Sin：－Please insert the following is angwer to A． QUE．Tt at is understood by the formula $(3)^{\frac{3}{2}}$ ？Work out and explais．
the Sth root of the sathematicsl expression，meaning the 5th root of the square of 3 ，sometimes writtes thus
$\sqrt{(3)^{2}}=\sqrt{ }=\sqrt{2}$ ．Theextraction of roots by Jogarithme is easey，but there are no helps（and rightrly too）at examina． tions．By the following method any root nasy be ex－ Thacted．You will observe there see four columns， There is always one column less than the root to be ustracted．The operation is as follows

cail cal 2	con．	at．	
－ 1		！	is，－nsm
1	4		\％
i	5		Hemem
wiz	霷	51\％	
彔	\％	Fame	natamem
哭	Himem	\＃nizu	\％atememe
¢	\％	패ํus	\％ensalumanas
\％	\％	5amemem	
运	，	мапг	
	，ypata	－	
$\frac{\square}{\text { and }}$			
	边		
	menem		
哭 mamay			
5uamumat			

Point off the given fumber into periods of tlve figures Seures．Find roct Bgaren of contat prom from one to tive Bgures．Fint root Bgure of tirgt perlod，place it to the rigbt as suritat in division，also pace日 it in first cos－ multipls it by root and place in Brd columen mulisly bs autiply it by root and plsoe in 8rd colamin，multiply by cont firune，place proitant umer Arst periptand gy cime i from same．Bring doma next period，next add root
tigure to figure in first colums，malligly this sum by root Bgure just found，sdid to second column，multiply sum by root figure，place in third column，multiply sum Now anoes four ciphers to fousit colump fouth column． Now honex four elphers to fourth cotumb asd agsin add three frat columb，maltiply it amblin add to second colum
隹e to first calams．The firume in fint colums will nom be fire times root firare find wexs root figure from col bent four anol place is quotient，also place it to first col mon to the risht of Agure or flrunes Shete thus inereos ing the mamber too times，the new root ilgume being in wits place to right of that alrusts there Proend is ssume wny througbout．The exnnaple will help explais． Yours，ete．

Bohekt Hinsing．
Carterville，III．

Magnetic Attraction of Iron Ores

Editor Colliery Enginerr and Metal Miacr
Sis：－In the July number I read some consbleratione on the enagnetic power of iron ores．
To complete the knowleige on the matter I can tell
 is dismaguethom．
To ascertain the magnetic power of Iron ore，it is secesasary to reduce it to a very thib powder and put it in a little pipe of paper t inches long and ty in diameted． The ore toust be compressed in the plpe ns much as paseible．
Whed this ptpe is suaspended with a thin thread，if you appronch a strong magnot with it，the extremity of the jijpe is attracted．
I bave made sucb an experiment with the ores of our mine which have no practical liflueboe on the compnes when in place，but are very little magoetic if experi－ mented as described
Orbetello．Italy，July 28th，1825．Yours ete．，Eao Bagon．

Mischievous Mine Legisiation．

Sill ：－In the May lanue of this Journal I was allowed the privilige of commenting on an undeniable case of Mischievous Mine Legisiation，via：the recent alternation of Section 2，Article 15 of the bitumbous mive law of Western Peonsylvants．
As a victim of thia particular clanses，I claimed the right to protest against it，abd oaly asked ab opportunity to sttempt to confute whaterer arguments had bewa anlvuoced in its favor，and to prove the evil influence exerted by a few apparently barmlese worde．In order to test the valldity of the arguments that had been used to effect this change，I offered to dlscuss the subject with the gentlerasn who bad introduced It，bat he has not deigued to reply，Ind her accepted my offer and been able to
demonstrate that it was essential to the demonstrate that it was essential to the
welfare of the coal diggers and ordinary welfare of the coal diggers and ordinarg
mive morkers，or a bevefit to the cond opive workers，or a bebent tiction，if be could maccesafully combst asy of the comprehenslve articles that occasionally apperar in this paper agninst stmilar cases
of illoonsideren lawe，or if te could have of illcousidered laws，or if he could have showb any of the argumeats I propreed would have been forced to admit that my objection was groundlesed
 geutleman，I cen ooly sppeal to the gon－ tlement who fondvertently supported this that ang reputahle Amerleau clitizas hav－ ing then requisite eaperience in bitumele－ ous mions－either st home or shroad－ toay be lecally entilled to competeat any may matiation for a cortiticate as a mine offlelal in quention wirtally do．
The clause is question virtanally de－ clares that a miser is incompetent to masagen a coal coibe in this btate unless This is pot tive gears＇local expreriebice commentary acainst the chpability of every miner outable of Pennaylvasia，but it is unjust，seeligg that experiencul mloers from Pennsylvanis are eligitio as sime forrmen in simost every part of the Uuited States，whereas this ridiculous clange effectually prevents Pesueylvania from granting similar privileges to Amer． ionn miters from other coal thelds，there－ by gainiog the questionable distivetton of beling obe of the few etates io the Union where a certain section of the American people are treated as furelgners．
Will this probltition of competent minens frow other mining dietricts in－ crease the efliciency of Peensylvsuia mine oflscials？Is it likely that a better dass of trise forereen can be selected from a comparatively small area（Peon－ sylvania）than froms a large ane（the United States）of is it assumed that there ard no capable misers eswept tbose bav－
v．yeare＇experience in the mipec of Peon． ing five or m

sylvanta？

As n direct result of this classe in its present form，an Americsn mfuet from any other state，who，by force of eircumstances，is tudaced to follow his occupation here， mast surrender foc a term five yeses，the tights nod pel－ vilegte of Amprican eftizenstip thut are generally sup－ posed to be inaiebable．Surely it is not a crimioni sot
for a morkman to move from obe state to another，yet if
the immiernet is a coal miner with a laudable desire to Improve bis condition, and Western Pennsylvanis is his peanity for auch an act to be disfrabchisement. If this law peanity for such an act to be distrabchisemest. If this law haig berse in operation a rew years ago, woune of the lease
 position consected with this intustry -would most certainly have been kept wat of the state. If the mining suthorites of other stafe were foolish enough to alopt a law similar to thls one, Aceettcan mithers could not be truthfuly elassed as Amerivan citizus, they wond beslate thit not citizeta of the I rited slates not A merican cittreve
By a slight contraction of the "Reiontific Frontier," deflued by this clouse, a miver qualified to set as a mutue foreman in the Pittoburgh district, woald be prevented trom holdieg a like pocitlon is the Connellsorlle diatrict, abl vice versa, mes who would be considered competent oficials is one county could not liswfally perform similat datles in an adjacent courty, Cootract it agnin and it might eventually be illegal for a mine foreman is Mans. Beld to be engaged foe, of to nceept a positios as mine foremanat "Sax Stul Ron," or a man might be cosaldeted a trusty offletal in the vicisity of Dunkar, yet it would be unlaufol to employ him ns as official in the beighborbood of Uniontown, the wnly diffreace between the assumed and the a
question of extent.
Amesd the mine laws by all meane, ralee the intelleet anl statulacd of mise formen either by makiog petiodical exambation compulaory-similar to the mine in-gpectorg-or by any other method that will offer an
licentive to thean to stuty the thes ry of mining, and lucentive to them to stuty the thesiry of mining, and
thus coable them to copee nith unespected dangers, but thus emable them to copeo nith unexpected dangers, but
in the name of common senser and jastica, do bot maske in the name of cotsmot hense and justice, do bot maske statate books of Peensylcnain, that will bogeott experi eneed miners, mbd Americas clitioces, because they may have had the misfortune () to bee traibed in otber coal miniug districts, ath probably ander coulitions wore dimcut abd dangerous than are asnally found in the coal mines of Western Pennayivada.

Allegbeny, Ps., Aug. 7th 1885. EDu skD Hanpis.
Why Theory has a bad repute ameng many Practica Men.
Editur Collory Rngivecr and Metat Miser.
Sns:-1 notiond in your issue of December, 1894, page 109, this sentebce. "There is mistaken idea umong many
mituers that theory is a bughear that they must aroid miners that theory io a bugbear that they must aroid
at all hazards." is a miner I mould at sul hazards." As an miner I mould like to give a few quite recentily, bearly all minivg hiterature was written in lavguage that was unintelligible to the avernge minet and some of it was mritten by men with limited praction experituce, which ofteo resuited in giving the miner a eott of a "Gullivers Travels," description of his every day occupation. I recently real a book written and
 autbor afier couptimatug the minera as being the pages to describing a isattock, a tool used to cut clay pares to descrish fleishes mith a rather positive statument that ne gold dicoteries which had bwat snd were being made lo Califormin at that time would soon beexhausted, and that Georgia was about the ooly State which might be expected to fornish a regular abd permauent supply of good About fourteen yoars ago one of the most
promineat of M. E's, C. E's., E. E.s. and all other Er combineol, wote a series of urticles to the Minizig
Jowrnat., Lesilon, Eng, from San Frueriso, informing 14 miners that me bread bot +uxpect to fimd ruych polit outside of Califormia or Australia, still later a theoretical 3. E. ssorrted that the Ansecondin of this place mas Do mine but slmply a hole to the ground. This mine is one of the lanneat sud ricbet that was ever ktown, it is dows 1000 feet with gocd ore an the bottom, and the or body in some places is over one handred foxt wide.
A theorist who had charge of some very important operations oovoected with copper miviog in Moctana,
riliculed the statement mate hey minets that sorme of ridiculed the statement mate by minets, that some of our copper ores caribed lange quastities of silvet. Sucb incidents as theor tend to destroy all resp
that a min or might have for theory as it is weitten. Further, minera as a clash are groat thavelers, thes know of difurent methods used at iliffereat places to accompllath the same object, they tell rach other of the different methods, ancue vigorosely in tavor of theif own local cueton, but generalty alopt the memhod or moditication which is really the best, they have a good deral of theory of their own which. perhaps, is not as scleetitias it might be, but moet of them cas apply it practically as they ubiceratand it. By the term miber I wean those men who have worked underground from childhood
who would rather work thern than vo surface them are fobl of collective sjerecimens of some of thome them are ford of collective bjecimens of some of those
hemuliful fers frobis, and other fosell liugreselons so
 Trejuestly to ber fousa the somes strata in sud some the
minerals io which they are morkioge nod some thave minerals io which they sre morkibg, nod some have
fornsed optoions of thetr own reppecting the mavner of fotherition of velus ete. I exclude the toe cream and bonsha peddlers found working in the easten conl mines, and atso the railroalers, Noodehoppera, ffarmets and
 with their established rate of wages, which makes ail uoderground workers, miners,
Butte, Montana.
Svermex II. Nohtuey.
The C. W. Huat Cors bere catalogue cotitied "Induse trail tavery ota al It is ment free op application to the C, W. Hum Co, 4 It is sent frew on
Browiway,
N.
Y.

PRIZE CONTEST.

prizes given for the mest answers to quertions heiating To minive.
For the bost answer to ench of the following questions. the value of $\$ 1.00$ in any of the books is our book
cotalogue, of six mooths' sultestiptouto THE CoLrizur centalogae, of six mobith sult
For the secoud beat ansoer to each queetion, the Wher of 50 cents is any of the books in our book cata-
 Exameke and Matal. Miskh.
Buth jpires for nusmers to the same quection swill nut of truavini to ang cae person.

Conditions.

Fird-Coupetitors must be subecribers to Tur Cos Heky Enainkex asd Stytal, Mimer.
Socoud-The name and adderss in full of the contestant wust be signed to each auswer, and each answer must be on a separale paper
Thirit - Aname
the japer only.

must be writtes in ink on one side of

upetitiou Contest" must be written on The eovelope in which the answers are seut to us Fiph-Oue perzon may compete is all the questions. sirth-Our decision as to the merita of the auswers Shall be thanl.
Seents-Answers must be mailed us not latee than aue month utter publieation.
Figids-The publication of
Sights - The publication of the answers nesl names of persous to whom the prisee ate awarded shall be convidered sumficient notisation. Sucessful competitory disposal they wish to make of their prizes.

Competition Questions for September.

QeBs. 175. There is at present a mady mariket aud a buidtinice tor fire-bricks flooring tiles for fire-ptoof ghazed nas voglazed facing liricka: sewer pipes and Irain trape.
Trais trapa
Our Coal
theture and tende Company wish to share in this manu. hioks ont of thes nodecolays of five differnt coal suppe or ate working. I have doge so with the fulloming results - Clay of semm A makes a hurd strong red briok coarse in the grain; Clay of seam B contains iron balls, but the iressed clay makes a ooft wbite brick that is very porous; clay of seam C maken a soft white briek that is very porous and specialed with blackish brown spots: clay of seam D makes a hard conrse gruined batick, and of a black and bluish color clay of seam Erankes a white brick that is very strong sud line is the grain. Now I desine to know two thlogs to cuable me to make a satisfactory report to the company
Firal. What classecs of goods are each of the clays beot sslapted for making r
Sonod. What ate the constituents in the clays that give to tho brieks their different characteristics
Quiss. 1iti. Here are two asmples of fituminous coas and io chemical compogition they are both alike, and wven suake cokes that are alike, hfter thry have beet ground small and steeped in hot water. Hot water lisolves out of sample A, bitte, and out of sample D, coambon kalt, and what I want to know is this, what 4/ect will bitre have on the coling of sample Λ^{1}, and What effeet will common solt have on the voleling of sample B
QoEs. 1it. We bave a bitumbour gesm of coal at a 4epth of 400 fort mbd lying oranly jevel, and weare going oo work it by the system of lougwail retreatiog. The fooy bs a sodt shate and the root is s slate. bee will be olifiged if you will give us a map of the best plan
mrorking, fogether with all the neovanary explanation. wrorking. fogether with sll the neqeasury explanation. wrifing ia an argilinceons lime stope, and what ous helghbors call the same seam is the surrounding colierter has io some cases a slate roof, in others a cavdstotee roof and in others an atvuaceons limestoue toof. Ihs you think it is the same seasu of coul in all the cases, and if
coal too thinksel
QuEs 179. 1 usu now a fire-bors but I am promieed promotion if I can learn to hevel, will you therefore show me with a sketch and an explatiation how to level and after sectivg ap the ingtrumeet tend the staff every atic after sall
tive yards.
Quen. 180. The action of one of our mlne putnge is very peculiar, and it will startle you when I tell yon, that the lifting of emel the pump loosers the water altoser fler Now as I mould illse son to explain the titeks of thls peculias pump I will pive some particalars When the pump pistoll is ut the bottom of ita stroke, it is 19 foet abowe the level of the supply water, nbal as the force to lift the kowp ralve and oyrreomer the frletion of the pater moe the flrough the tall of tbe promp is equal to a two-feet feet. Will you then teli me teon thimes.
Pirsf. What is the highest speed at
an bornurto Srowed. At what pstoo speed does
the water altogether.

Solutions to Questions which Appeared in the

 Been Awarded.152. There is a shell-ilah that is commoniy fousd oe the sen beoch sear the mopths of rivens and it is biest known ss "the mussel." This fish is a bi-valve, anit found in great bumbers, and closely componetel in manses, in the blue or black shales that overtie sonae of the cosi scams, nod strauger still, the mibers often call the fossil- "'thone mumeple
There can bee bo doubt that the blevalve of the Carbon.

Iterous period beloeged to a family clasely allied to the representatives of the mused families that live in our seas to day. Wal you then be good enongh to het tue tilist appearatice, and aloo the different names it ts tiomom by in all the sucoueding formations yn to the most mecent, ineludigg thoen now living on the oerna shore.
Ass. Representatives of the Mytilliae are lisst en coustered is the Tremsidoc slates (British clasaification), and is the Treaton period of the Xilurian (U.S.),
Mytilus is fousd from the siluring to the present time. This genus is represested by 100 fossil and 65 existing species
Myalise is found from the Carboaifecons to the PerModiots is found from the silurian to the present time-and the same may be saik of the sub-genue Modiolopsis.
The following arr some of the species found as we Modioliepsla carinata-Treaton period, M. Sulthoou-boldea-Nagara period:
Mytilares oecidentalis-Chemung period.
Mtodiols metella-Cbemung-Catskill periocl.
3f. Augusta-Catakill pestiod.
Hyalina recurvirostris-Coal messures.
The following are some of the toodern representatives of this family
My ytilus edulis, M. latus, M. canallealatus, M. magelInticus, Stodlola modiolus, M. capensis, Mt pelagicn, M. vistor, efe.

Wimana R. Evaka,
183 خo. Lancolo ave.,
Scoond Prize, Jos. Vibas, Hollsopple, Po.
QCE- 163. The noderclay of a coal seam we are worliIng is foat feot thikik, and the company have requested mee to fied out if it is good fire-clay, of if it will wake test it as a fire-clay, is to wake three or four bricks and burn thens in a furnace of high temperature, when if the bricks contaith itoes or lime in recos, they fuse and "ruin," nod theretore such clay will not make fire bricks. but the best sauitary pipes can be made of it. Now I Would like to taske a
nill you explatn to me?
First. Wby clay containing an excess of jrou or lime fuases?

Third. Why good tireeclay will not manke good samiAxs. Firet. When the underclay of a coal seam contains 2 or more per cent. of iron, and 1 or more per
cont. of lime of maguesis, at a high tecoperature 2. So 2 cont. of lime of maguesis, at a high temperature $2,5 \omega^{2}$
F., the salsica fuses with the iron and lime of the clay, and vitrities.
With bigher percestages of Iroe or lime, the duidity of the glasay fiolou ibereases.
Second. Ciny coutaining an exoess of oxide of irob or oxides of metals, mised in equal parts by weight with oxides of metals, mised in equal parts
silics, fuse and produce a perfect ginss.

Third. A good fireeclay that makes refractory brieks That withetami the temperatures of the bottest furnaces. sanitary pipes, that ought to bave a relatively high tensanitary pipes, that ought to
sile and compressive strevgth.

Scond Prike, B. U. Putums, Leechburg, Pa.
Quss. 164. We have a coal seam 12 feet thick, with a shale band is the middle of it, 30 tarches thick. All the coal is of tirst tute merchantatle quality. The seam is pitching in degrees to the east, sond the the koesg of the cover is 1,20 fed. The root counizts of them of slate mhich faile. The floor is very strong. Say bow you
would wark this coal and secure the face, and give good ronkd work this conl and secu
Ass. I would drive the eotelies in the lower seam, and to prevent a jum in obtaining the top reanm, I would take dowe the as incbua of shale and have the top cual for the roof in the tirst working. I would adrance my rooms to the west, uparide, and leave good stumpe be-
tween the rootes which 1 would make 7 ysuls wide, and tween the rootss which 1 would make ? yards wide, and ajvance thesp 65 of 70 yards io length.
If persible I would heep up the 5 feet of top slate in the roomse Whale coming back with the rib; I would take down the top cost the full midth of the roou and rib and secure the face of the rib by 1,2 , or 3 rous of
posts kept uoder the top seam, and while drawing the posta kept uoder the top seam, and while drawing the
room nibd votry stumps the top seam could too got as room und vitry stumps the top seam could bo got as
terfore. This system of working would be the safest for before. This system of working would be the safest for
the the miners, and be the most prolltable for the the the
Each pair of entries should be drivee in line, before the roums are turned of
ficun Camss.
Smond Prive, Thowas Werr, Sherrodbville, Carroll
Quis. 165. We have got the creeps in one of our seams and we have estemted it by trylog to stop it. Au old expetheord miner says "that the quiciest, cheapest, out all supports, and by weakeviag the pillars of coal that isterfere most with it. Is the okd man right or wrong? Please let me know nt once, and explais, it you ngree with him, why his mode of proceedling is the
Ass. The old mas is right, aud to supprort his coselu. Eloo it is a fact that all watas sie gulpect to creep, that floor the conl may be nipped, but the floor will not litt and ereep.
When the floor is coft and the covering rocks are
or undrumn timber ought to be left in the got. To stop the creep, first proceed to exsmine a map of the workings, and you will in rariatly find, that small pullars ure not 80 moch the cause of creep, as groups of pllars
belonging to undinished morkitges, and jutiong rigtt out belonging to unflinstbed workings, aud juting right out
into the zob and preventiog the breaking of the cover. into the gob and preveotiog the breaking of the cover.
ing roeks. these sbould te worked out as quick Δs pas: iog rooks, thees sbould be worked out as quick as pas
sitble, and in the meantime, the pullars skitting aloeg the sitbe, and the moantion, the pllars skinting aloge the
outside of the locality of the ereep shonidd be strengthened outside of the
by cribbing.

L. A. GABAst,

Brookwood, Ala.
Seoond Prite, Jos. Quaury, Westrille, Plictou Co,
N. S.
QuEs. 106. For an extension of the haulage in a coal seam we are about to make a brauch road golng due
east from the main entry golng due north from the east from the main entry golng doe north from the
shafts. Now the junetioe of the bram li nad with the shatis. Now the to be done with a curce of 24 foet radtus. and na I would like shom off a bit with this curve, wili you give me a plan sbowlog hom to set up the centre
liber with chools, and the fowest angular nuegsurements regulred for a complete quadrant, the carved road being 12 feet wide
As. We are sorry to say that me have not beep able to select out of many papers sent lio, a satisfactory
practiond answr $\begin{aligned} & \text { to thta question. No computitor has }\end{aligned}$ practicat ansur r
even attempted to show how to n up the center lines.

Qerk. 167. Stow that the flora of the Duvonian per. tod was similar, and there ore jast antedated the thons of the Carbooiterous period, and further show, that the thuano of the Curbopiftrous period was characterized by
the introduction of a clues of sertelrates, bigber in the lite scale than fisthes.
Axs. Vascular eryptogams such as equisetinae and
Iyeopodibea ans first foumd in the sillurian formation Iyoopodisea ate first found it the siliurian formation. denedrona ata of ferns and conffers, sigillaris and lepbofound to have cootinued through the Carionifferous perlod, but we tind ear h of these examples having thelr dis
tingulshing characteristic mor- sharply defliged, aus thogulshing characteristic mor, sharply deflised, and more highly developed, in the latter formation. The
placoid fistres of the Oh Red sandatoee or Devopian plscoid fisbes of the Ohd Red sandatooe of Devotian
tienes, became true saurlans to the Catoolfecous seas, and are found as the fish lizards of the type enaliossurs. R. Evaxs.

133 so. Liecoln Ave.
Sroond Prite, Jos. Vmans, Hollsopple, Pa.
Quss. 168. We have bought a good second-band doable eogive with 20 ivch pletont sud 3 feet stroke. Our holsting shaft is 750 feet deep, and me intend to holst 600 tous in 10 hoars, abs make the ohd eagine do the work, and for that parpose we are going to set it on
the Ilrst motlon. The mesan velocity of the boistiog the lirst motion. The mesan velocty of the boistiog
rope when doligg coasl-work, has to be 1,000 feet per rope when dolng cost-work, has to be 1,00 feet per
minate. Will you th-a oblige me by givigg tno values. minate. Will you th- B oblige me by gi
Fird. Tbe steam pressure required.
Second. The weight of conls for esch boist.
Axs- Make the minding dram 12 ft . in diamoter, then
1000 nearly. Allow for time of ruuning 5 hours, then the weight of conls per boist will be $5 \times 00 \times 15000^{-94}$ tons or 2085.6 pounds.
Let the winding rope weigh 1120 poauds, then add the
weight of coal to the weight of rope nod we bave 3225 . weight of coal to the weight of rope and we have 3355.5
ponids, and the unita of sunful mork doon by the eugine pounds, and the units of useful work dooe by the epgine
per minute will be $\overline{20) 5} 5 \times 1000=518000$ Allow the modulus of the machlerery to be 8 , then 5130000 $.8=6411000$ units of gross worls to be done. The pressure of the steam then is
G411000

$20 \times 20 \times 2 \times . i 854 \times 3 \times 2 \times+2,6$ First: Steam pressure 40 pound per square inch.

Secoud. Weight of coals per lift 94 ton or 2085 , pounds.

Jasem guncgr,
Weatrille.
Peatrille.
Pictou $C o, ~ N . ~ S . ~$
Writiod for The Coluinhy Emamana and Sietal Misen

A "PRISON" MINE.

A Sketch of Prison Life at an Alabama Mine

 Worked by Convicts.Without going tuto a discuselon of the queation of the right or wrong in the cass of the emplogment of convict labor in mibes, a deecription of a large mibe operated
wholly by convict labor may be of some interest to the
 such a mine baving recently been viatted by oue of our representatives.
The mine is quettion is one of a groap of coal mines
known as the Pratt 2 lines, operatel by the Trenessep known as the Pratt Minne, operatod by the Tennessee Coal, Iron and Iallitoad Co, at Pratt City, a foer miles from Birwingbans, Ala., this psitticular one being locally knowe as the "Prison Hine."
The reader uho has hail his sympathles played upoe by
woald-be philnathroplats who in the eolnmns of varions Would-be phllasthroplats who in the colamns of varions
Bo-called sesespapervhave set forth what have seemed to eo-called newapoper have set forth what have seemed to
their imaginations to be the wronga lutticted upon those their imaginations to be the wrongs lutficted upoo those
individuals aho have tranggressed the roles lald dowa by society for its protection, commonly called "law," would
bardly be prepared in mind for anch a slate of things bardly be prepared in mind for such a state of things
as he would flod oo a visit to this penal liatitution, and as he would fiod oo a visit to this pemal liatitution, and
be would probatly lose a good deal of alckly seatiement concerning the treatment of prisobers
The "priove" proper at this mine consists of a collec-
ulon of frames structures withis a tion of frames structures within a stoekade comprisives
donmitorles, meas-hall, mardeu's residence, and hospital. dormultorles, meas-hall, mardeu's residence, and hospital.
feet above the ground, and thoroughly whitewached within and witbout. Except for grathigs at the wiv-
dows the botldings might pass for whitemashed barns dows the batdings might pass for whitemashed barms
rather than for places for the coutinenent of ctimituals. rather than for places for the coutinembent of ctiminals.
No cella for isolation of puisouess frome each other are ased. The men sheep in four large dormitories, 100 to 150 in each, in comfortable beds, and bone of the ordibary prison dieciplite
tween the tuven la worn.
The rooms are well aired and ventliated. There are ample though not the most lavisbly appointed water. close socommodstions. ant the sanitary condition of these is grod. No odors come from these elosets nua they are regularly and thoronghly flustocl by memplo Bow
The hospitnal necommodatioas, while not becesearily stge, owing to the exceltent situatton of the place, are physiclan is in regular attendauce.
So moch for the quarters of the
so much for the quarters of the men. Their "aceom. The workings nup ther described.
The workings proper to not difer materislly from others of their class, other than in the provision for
tathing necormmodations for the be desoribect. In a big room near the foot of the siaft ase a large bumber of wooden tuth amply supplived nith bot ant cold waters and soap. In an pilfucent room are Taks with numbers which serve the porpose of lockers. This part of the equipsuent is not furnibbed as n privilege iecesality uvery day lefore they leane the mila
Each iman on entering hits term of sorvice at the mine, if his work is to be underground, 18 furuisbed a muit of cosree white duck, consiativg of a blouse and pair of truasers. In nadition to his regolation suift of prizon
stripes." The latter is no4 worn at his woek nuis the formur The latier is not worn at bis work, hur can Ou totering the mioe in the morning each ponvict wrars his "stripes" antil he reaches the locker room, abowe referred to, where he exchanges this suit foe his dack sait left there the previons might, and gres to work in
the latter bamed dothlog. On leavigg the mine nt night the latter bamel dotblog. On leaviog the wine at night
he flrat goee to the bathroona degarited, where, after a
 above ground, leaving. As just noted, his morling sult in the locker roon. By this srotem the sanitary con-
 it con
out.

At the time of our visit some 600 names were os the prison register. Of these nearly all wero negroes, very
few whita men bing test to the mines to work suph
 evidently bot being conducive to good feeling on the part of either party to work white men and negroses side by side.
Many of the prisoners who are known ns "trustys" are worked above ground ss teamsterg, tippleweb, gate
temilers, cooks anil in whatever poaitiona they can 1111 These men, of course, all wear the regulation pribon garb of "stripes
As notel alione, so attempt is made to prevent communkcation between pribooers, In fact, it way be sald that sociability and eatertalument of esch other is the
rale of the place, for at fetervals regular follificatione rule of the place, for at intervals regular follifications
are had. The large space with the iron tloor at the foot are had. The large space with the fron tloor at the fooc
of the chatt is utilized na a daving parilion, and varions of the shaft is utilized ne a dancing pavilion, nod various
sorts of plewsure gatherings are had here The natural sorts of plewart gatherings are had bere. The natural
muateni proctivitus of the negro stand him io good stead mastenl proctivitios of the negro stand hitm io good stewal at these times, abd the affairs are not infrequently con-
siderably on the reinstrel sbow oriler, furnabing amuepsiderably on the minstrel sbow otber.
ment ant eotertainment to all preenit
These little social affairy do moch to brighten the lives rementlenvids. One of the officials reluten how ousd versathe and geeial negro who had ticen semteskol to it long terau of service for stesaling a pair of pantaloons,
tused to put ererybady within hearing of his voice in a good bumor by ha keen wit and cetertalntug songe.
good humor by his keen wit and estertalning sobge.
The lator imposed upon the convicta is pot geven
The men are clasoified, necording to their physical conThe men are classifed, acoording to their physical con-
dition and experteote, leto four grades, sud to each is assigbed a certain "ptint" per day. These grades and ussigiod a certain"tint por dsy, Thuse grad
Ablebodled, expertenced naen, 4 tons of coal per ilay Forcond grwie, 8 tove ; a third class of 2 toes; and a State offlecals of the prisone department visit the pisce state mame a thorough examination to gee that the conviots are being properly eared for in avery way.
It takes but a little reflection to discern that it is no less to the interest of the company operativg the mibe with this class of lator to keep the men in good physlical coudition thas to the State lterelf. It is a matter of honor and hamanity with the State; it is both of these For, the further matter of busibess with the compuyy. tigor, the work per man is correspoudingly lesiened, while the coet of keeptng is tncreased. Hoopital treatment and special diet for conviets with cessation of worlis ${ }_{5} 5$ not conducive to profit from the mine
It should be stated here, perchaps, that no mee who can be termed old, or physwally fufirm, are sent to the mines at all.
Of cong to hack of skill and to the matural disposition ittle dint abor, as a class, to shirk if it can, there is assertel by the compan omidils. In fact, they go so far as to say that with skilled " tree" miners they could operate the mine at less cast than it is dope bow. There is an indirect ad antage, howerer, in the employment of this clase of labor, that it is not affected by labor agitathon, golag on without interruption from strikes, therely
nasuring slipments of coal when other mives may be shat down.
There is
Tbere is some iscentive held out to the men to beome aktiled miners, for to all those who mine over the highest quantity above named as a day's work, \& tons,
the same pay per ton is piven in cash to the mione as in the same pay per ton is given la cash to the miner as is
puid the free raiber in the adjofing milpes, though this paid the free rainer in the adjoining mines, though this
is something few anke any effort to accomplish.

The mine is operated by a shaft. It commanicate With an adjoining mibe, 30 amaple egress is afforded in case of accident to the shaft or bolsting equipment.
This sliaft is without the jrisou ebelosure proper, but Thls shaft is without the prisou ebelosure proper, but
conmunicated with it by menng of a nurrow lane beconmunicated with it by meang of a parrow lane be-
tween two high fences weil protected by guarls stationed at istervals. This will soon be changed, howeter, as a at istervala This will soon be changed, howetef, as a
slope is now beigg difiven directly from a central polnt in the mine to the prison yard. The slope when completed will effect three lemportant oljpocts; it nill give pleted mill offect three tuportanat olpocts; it will give
anollier menns of cgress from the mine, it will avoid any lopg exposure of the men in storuy or cold wenther. any long exprosure of the men instormy or cold wenther.
and it will materially lessen the chaners of escape of prisonens.
In closing, acknowiedgement must bo made of the courtesies shown by the Tennessee Casl, Iron and Rall-
 den of the pilson. The trip through the mibe was maile with State Mine Inapector Hillitonse and a small jasty of Birmioghmo friemels and every taclity was accorded to kain ieformathon coocerning tbe system of Norking with convict labor. Sothing was biblen, nor ild there appear to be noy occasiou for withimaing refreshment at the warden's bouse which wete appreclated by all

Coal Mining in the Transvaal, South Africa.

The Sowth Afriats Nining Joernaf gives the following arcuant of the mibes of the Trusvaal Cont Trust, lo-
 old matitashaft ts no touger asid for dovelopment prurpuoss, but the purapiog abd clectricat plant is placed there, and the workinge are drained to a large reservole excavated in the beighborthool of the shaft This has a
cnpacity of atout $1,000,0010$ gal. 'The mine maker ahout enpacity of about $1,000,000$ gal. The mine maker about
Ks, 000 gal a day. A Cameron steam memp, with al s,000 gal a day. A Cameron steam pump, with a capneity of $24,00 \mathrm{gal}$. per bour, is to use nad can casily Cope with the water maic, even in wet seasons. An and a Tangye pump of $3,000 \mathrm{gal}$. pee hour is uesd for pumping clean water tor the use of the natives. The ighting plant consists of an Ellwell-Parker druamo with fol lampes of 16 cabile power, and a small Tangre
engine. The bew shaft is placed cloee to the lite of engine. The bew shaft is placed close to the lite of
nuilway, with which the loading floors are connedted. nuilway, with which the loading floors are convedted.
The shaft is 13 ft: by 9 ft . mith two boistiog ways and a pump way, each 4 ft . by 9 ft . Cages carry two 20 cubto teet trucks, equal to about 18 kt . of merchantable conl. The shaft is 131 ft . deep (156 ft to the deliviry platform). The present output from the shaft is 1,009 tons a shift out noy extra pressure upon the faclitites. The boistout any extri pressure apon the fachlities. The bolst-
ing in dope by a coupled 10 Ji 20 Dhaglish engine, with 8 ft . 6 in. drums. The detivery platform on the heallgese is tall to the sereen it has been built 25 ft . above the ground and its tlmbers covered with a floorling of sbeot iroo

The steam for the surface engines and that uvder CTound la drawn from three Babeock nod Wilocax toilerg. The water used is very impure, owing to the sulphides present. The ousl bed is practically hourgutal, The poads are 10 ft . Wide and 7 ft or 9 fc . high. and lighted by electricity. Fodless cables are in use to
 with a cable of 900 fr . at right angles drivee of it by mesas of double pulleys is the slide rowds mules are masas of double pullezs in the slise rowds mules are
employed. The mioligg is sll dove by patives under the superlotedence of Europenas.
The usual pllise and atall system has beoe adopted, the pillars betng about one-fourith of the total quastity dheougboat. Only three boys have been killed during the inst two years. The cast is alenost from fromes shale bands and it is the practice to mise coversthing and sort vat the small proportion of shimieat the beits. The deposit differs from Earopean fields in the abaence of cleavage liser. This has the effect of making the mising coats higher, for the coal appesrs as a solld and unbroken mass sud no Thutage can be takeo of the heual nataral divisions. atise probatie recent chstractor of the deposif nad the responding prosaure, are doubtiese, the reasons for this absence of clearage
Dynamite is used. The drilling ta all dobe by native wisers, but Mr. Wulinams declares is favor of coal cutters, proterribe the percussive type driven ay comprest
ed air as belug lighter and more essily handled. The cheap habor of the patlon miber has assisted to prevent their aloption. but it is the question of iatial cost which is the principal ofjpetion unged agninst them.
The total quantity of the clean cosh, roand and mut, produced to date is 859,450 tons; the proportion of Whate bus not been less than 20 per cent., and 23 per
cent. of the total quantity devcloped is still in the pillcent. of the total quantity developed is still in the pill-
lars. The monthly tomage is increasing, and the outlars. The monthly toanage is increasing, and the out-
put of this year mill probsbly coosiderably exoeed jo0,put of this
000 fons.

Utilization of Water Power.

The new mills of the Grand Raplds Pulp \& Paper Co. at Bearin, ou the Wisconsin River, are being rapidly pushed formard. The company is constructing a dam,
excavativg a large mill pit from solld rock, nud erectiog escavativg a large mill pit frow solld rock, and erectivg
large substantial belck buildings. They have conlarge substantial brick buildings. They have coor-
tracted with James Leffel $\& \mathrm{Co}$, of Spetiogfield, Ohio, for 15 of their large Samson Tartine Water
Wheela which will le in position in Norember. All Wheels, which will be in position in Navember. All the work is bedng done upon the most
and is of the most substantina ebsaracter.

The Colliery Engineer

METAL MINER.

PUBLISHED MOSTILIS AT SCKANTOX, PA. Witu weice is comenegp tie misisa berala
 TER COLLIERY ENGINEDA COMPANY, PCHLBaEse

Advertising Rates en afplicatios to Mals Onse Advertising Rates co applicuthe bulline TERMS
Subscription, (rursc accec: c:s, cinnc) $\$ 2,00$ a Year

P. O. Orders,-You con buy \& Mones Onder at your Poat Expresu Money Orders cou bo uthined at nay omod

 We Cannot He Rexpousible for movey seot in

EXPIRATION OF SUBSCHIFTION.

 exiptivas ap to the date mien they orser the poper ditcontisped. notice on discontinuance,

CHANGE OP ADDRESS

A Subsertier mistlag to hase his bostess changet stould be Tise we caniot disi bio sime ob eur mallibe lise
All communteatloso niould ber ndtresech,
the colliteny engineek company,
Csble Adtreas--Retsot, Serantoe" Coal Eximages. Pa

THIS JOURNAL HAS A
LARGER CIRCULATION
COAL ANO METAL
MINE OWNERS AND MINE OFFICIALS

THAN ANY OTHER PUBLICATION.
It goca to 1395 POST OFFICES in the above States, Tetritories, Provlaces, etc

ILLINOIS COAL MINES.

TCHE Thirteenth Anbual Report of Mining, isened by the State Bureau of lllinols is at hand, and Ilke its fore-runbers, it is full of that class of facts that are regulred in the construction of hlatory, in the ganging of the renources of the commonwealth, in stlmalating the progress and developenent of trade, in flibiligg the advaotages or othermbeo of now mechatikal appllances and modes of worktug, and above all in tindlag what we nhould, and whet we should not do to reduce the loss of human life, and more, ash more curtall the canses of aceldents to mines.
Historkally this rejort reoonls the kreat depreasion is the coal trate in Ittmots, ant througbout the United States and the worid in 1894, atid the occurrence of the common aceompastment of butl sales, and low prices. namely, a strike with all itsattemisut ataory, voxations, and blighted thopes.
The miness were elosel for 61 , and the mibers were lale for 78 days. So great are the national regources. that notwithstanding the slackeress of trade und a strike combined, the outpat ot coal in the State of Illinols for the year of 1894 was $17,113,526$ tees sgalust $19,949,564$ tor

1893; and thus it appears that had no strike occurred the ontput in 1894, would at any rate lave been equal to that of 1893.
The number of mfners in the State of Intuols is 32,046 , but that number is increneed by 6,431 the namber of persons emploged above grousd, thus making the grand total of employes $38,4: 7$.
There is an tocrease th the percentage of fatal and boe-fatal accidents in the mines of the State, and we hope thls will be revereed io the Bureau report of 1895. While expressing thla wleh we are bot unmindfut ot the fact that every strike is a fruitful source of accidents, for durigg the cemation of wotk, the roof settles and becones traversed with uveeen crnols and joints, while the floor is broken and tebds to rise, aud thus the pit. lars are shattered and mude unstable, and the resalt is, in this sud other ways, unseen and unexpected causes of danger ariee.
Perhaps no greater canse of denger ever arizes than that of the bew caviroument of the minerg themselves, for they are "stia" abd awkwad ufter a strike, abd as their emplogment is then otten at unkrown mines, they are reckless and venturesome, and it is ooly after painful experience that they begio to practice prudence
Macbibe mining has become an important item in the Buteau reports, and descrese close and careful attention. Tbe nriter has loug believed as a practical man that there were cobditions of the roof sud floor is some contsesms that made the use of coal cutters itmpossible, and he has frequentiy expressed as his oplulon that machines may be made to cut under a loogwall face where the root would stand without timber. This has been accomplished and we must not forget that maschines may jet be made to work in a "forest" of timber, or if our own conversatism is subdued, the timbering may be done to suit the machive. At any rate me have now to confront an eatablished fact, bot only that machines can cut oonl, but that they can so cut the coal as so to obitain a larger percentage of "lawp;" and further, is the Bureau re port of Illisois for 1894 me bave anoog other tabmiated statemects, tables of "Mines is which Macbipes are uesd exclusively." and of "Mines in which Machines are used, but not exclasively." We cannot do otherwien than commend the steady progress of machine mining.
Trenty-flive years ago, much was expected and little of a prontical character was accomplished by the machines in England, but with improved modes of trans. mitting evergy, and increased experience of the requirements of the machibes, the results commercially are better and better, sad we cabnot even yet speak of finality in machine development, espectally in this conntry.
Although ten additional fana have been introdoced in 1804 for lmproved ventilation in the mines of Hinois, get still more than doable of the present number are required before the primitive woded of veutilation are eutirely displaced. Still although there ane 296 mines ventilated with fank, 176 w wh furnaces, 21 with steam jets, aud 301 with natural rentilation, if we cosalder the fan in relation to the oumber of wen enoploged it is very far in the ascendant. Fan ventlation is proviled for 33,450 meer while furnace, steam pet, and natural rebtita tion is provided for 4,854 mes, or nearly \bar{T} out of ewery 8 miners in the State are provided with fan ventilation. When we consider that many of the so-called mines are obly small workings for an excheateely local supply, we beed not wonder that 301 "motues" have batural ventilation. But as the coal trade of the State increases and estends, in the future the small mines will become targe ones furnlahel aith all progresslve improvements, and the farmace nod natural ventilation will tisappear.

AUSTRIAN EFFORTS TO PREVENT ACCI-

 OENTS IN MINES.TIIE Prevention of acelidents is mises is the constant care of the Austrias govermment, and nothiog that leglasation can do has been left undone to ont
With. the use of flameleas explosives, timiners ate besed with two tungens that these very "sufety" componads introduce, namely, strong flaming detonators and shots that demagnote fustead of explode. The dangens due to the use of stroeg detonators are evident coough, but when a shot deflagrates of vomits a atrean of hissing fiery eparks like a rocket, the most cortain mode of Iguiting conl-dust or fice-dump is present.
Nitrate of ummoela, or other like ultrates ate used to ehillt the thares of combuastion ta explosivee of the llamelese class, lnecause the nitrogen of these componede absortse the beat in a latent form, bat the consequest reduction of tempesature of tendency thereto renders the charge difb-alt to igntte, henee powerfal detonatore the charge difbeals to ignatte, heoce powerfal detonators
wout lie used, sud when an exexsis of the nitrate dilutes
the heat of combustion too much, linstantaseous ficing is premeoted, and the shot burns slonly or deflagrates.
This is not true of all the flameless explosives, but it is true of many. In Austria all fuses of the fire kind have been found to be dangerous, and therefore, firing by eleotricity is preferred, but sbove and ower all, they fiod that the davgers due to shot firing are, regardless of the cluse of fuses, detoestons, or explosives used, most surely redaned and almost removed, by emploging intelligent men that have recelved a beflitiog ednestion for the work of exnmining for gas, and firieg the shots, Experieoce las fully demonstrated that nether life nor property is safe when is the keeplag of densely ignorant men.

In Austrin, to secure the satety lampe against the isterference of the mivers who use theen, a magootic lock mas introluced, but ignorance and stupldity if bot constructive are alcays destructive and here is the proof. "Prom Octotur 20,1894 , when a sertous colltery accldent occurred at Aninn, to November 20, in the ssme distriet, so lesa thas three cases of opening Worrs bemane lamps were detected, and is two the magnetic locks were uninjured, for the miners found that by swioging their tamps violently agalest the groand with both their buods, they could make the inert force of the lock bolt overoome its magnetic focce, and thus open the lamp, and further the mibers actually have been found to force out of the fomutais of the lamp a swall portion of thamiug benzene to ligbt their ciganetwa in the mibesWhat thee in the face of all this must be done? Surely state eanctments, 8cientific experiments, and mechanical and constractive improvements are no security against the force of ignorance.
To malie mines safe and profitable, we must etcourage tbe younger men is them to obtain such instraction as will brighteo and elevate them, and at them to be our protectors.
Fraucls Joseph. the Emperor of Austris, bas dobe much to obtals a flameless explosive, but he caunot cure ignorance that is a greater danger than flaming explosives.

ADVANTAGES OF A LIBERAL MINING EDUCATION.

TCHE great desideratara at present io the mining world is a combinstion of surveyor and ecientife expert in the most comprehensive sense of the term. To be able to survey and level, asd plot mape and sections shoald only bea small portion of what he can do, for in additioa he must be a geologist, a chemist, a mineraloghst, a metalturgist, as assager, asd a good prospector.
Any man furnisbed by industry und edocation with tbe Steess bere outlined cansot fail to maken a success either as an agent for a compauy, or operatiog for himselt tidividually
A mine owner from the miang regions of South Africa, told the writer that it was ooly through the practice of great diplomatio skill that anybody could make any money, because it required such a staff of opposing elewents among the employes to determibe the raluer that juatitied specalation abd enterprise. Surely then whes men discover they have character and brains, abd alm at making life a succees, they ought to qualify for a protession that is foll of adventare and cash, and especially to this the case when we have a whole profeseion with bat a few practitioners. Such an expert would take bigh rank is the eouflidebce of a company and secure that kind of stability that is beceseary for suceess. He would be well isformed in the theory and practice of ore droseligg, and along with a tirst-class mine captain would make a mine successful where the mine eaptain alone would fall, bexause the expert mould not only be able to correctly pange the yleld of the matrix. but he wouk know what particular class of dresslog machinery would be best milapted for the ore to be treated.
The practival miner is very goold within the boundary liver of his esperience, bat a lead miner from a limestone regloll woukd fall as a tin miner th the granite, and so it is, many good minera bave coodemned good ground, because they could not nssociste it with the ground of their experience, thas proving the small compass of their mining resources.
Geological, mineralogical, and cbemical tests candot deveive us, thetelore, they must take the fore-front. The reader will now suppose that the mine superletendent must take a buck sent, but that can never permanently bappen, for who to so likely to acquiren nod proctice the necesary education as he, efpeclally if he atpima to do 80 ?
It does not pay to stand back and see others advance. The watehword should be forward. Mr. Nicol Brows, F. G. 8. Englad said before a meeting of the Geentogists Association, that "Mining operntions should the ubder
the control of an educated and experiesced mining saperiatendeat. He mast be a practical miner, and should have had experience in mining various ores in diffecent parts of the world. It is a erest disadvantage to ewploy a miner whose prejodkes bave been dereloped by long experienee in ove particular series of rocks or of the physteal structars of one country.
"Such a man, however capable otberwise, has no resources wben be comes to desl with new geological coeditions. A vast indastry of the tirst importance is needed to gather out the inflinitely amnll scattered portions of gold as they exist in nature. The directors of the Bank of Eagland may hold the key of the Bank's gold, but the geologist bolds the golden key of know. tedge to the earth's store houes of the hingly metal.'

WE. congratulate our contemporary Eingivering Ness in securing the services of Mr. Wm Kent, as one of its associate editors. Ife Will prove a valusble addition to the sble staff of the journal. Ite will have especinl charge of all mattere relating to mechubical and metallurgioal etagineering Mr. Kent bas been a meruber of the American Soctety of Mochanical Eugibeers situee its establisbment, in Isso, and has held the oftices of Mansger and Vien-P'readdent. He has been for nimetect years a member of the Amerienn Iustitute of Mining Eugineers, and is the present Chairanas of the seetioe of Mechasical Selence and Euginecring in the American Aseoclation for the Advancement of Science. His valuable coutributions to engioeering literature, in the transactlons of these societies and elsewhere, with his wide professtonai experience, have made him well knoms througbout the engineering profesalou.

LEGAL DECISIONS ON MINING QUESTIONS

Topported for Ter Coblakey Impangen axi Mayal Miske

Effect of Vein Crossing Side Lines.-Where the course of a vein or lode is actoss the claim, lastend of in the direction of its leogth, the sides of the location be-
come the end lines, and the end lines the side lines is a question, whether, in a case io which a velo or Iode passes through one end tines and one slde line of a minlug ocation, the owner of the elatm has any right to follow the limits of some equitably ctested new end limes, of is Ifmited to the common-law rights of an owner of real estate, and nothing toore, and whether, in casee the locatioe is amented 80 as to out off oneend of the claim, and thas make the vein pase through both end lines, assum ing that such amended location is valld. the rights acguired under it are to be regarded as relatiog back to the date of the original location, so ns to glve a right to follow the dip umiernesth sn intermediate locstion, of as aristigg slmply at the time of smendment, in which case the intermedlate location would have the prifor right
I.ast Chamee Min. Co. Ty Tyler Min. Co. 15 V , s . Ct. Rep. 733.

Insufficiency of Complaint - A complaint in an Wetion for injuriea to an employe caused by failure of a mining company to make sate the roof of its enine, sud Which falls to allege the company'e knowiedge, of the emploge's mant of knowledge, of the oondition of the
root, is bsd on demurrer, though it alleges senerally begligence on the oompany's part, and want of negli gence on thu vopdoye's part. The sulliciency of the general allegatioes of negligence and want of oegligence in ordiwary cases, where beggigence is sought to be put in lssue, caunot be coutroverted. It is the duty of tbe naster to esercies teasobable cane to provide safe workug places, applances, atod machioery for his servants Wherearecovery is sought for the mastet's beglect of kis duty with referenue to safe placs of ajpliances.
knowledge of the defect by the master, and want of knowledge by the servant, wuat be aflirmatively shown by the complaint. The servant's knowledge or want of koowledge must be sp-ciaily allag to to buld topot this pumed the riak of the defect, assumption of the risk and contributory negligence being epgarate and independent factors. It is also established by the authorities that the allegation as to knowledge ineludes not only actual Nen Kentuct knowledge of ludiana.) 40 N. E. Rep. 202 .

Sale of Portion of Mining Claim. - If the Jocator of mining claim should convey a portion of his
claim, without any reservation is his deed of conclaim, without any reservation io his deed of conthat might be found within the ground convoyed, in any vela w hose apex was within the surface lines of his depil So if a locator should conver to A . the east half of his claim, and afterwards should convey the weat half to \mathbb{B}., each of bis grantees would, In the same manner, be ontitled to all of the gold fousal in Bny veln which was entirely withtu the surface lines of his convegance; and ing ground which has been derived through foversl ocations should dlspose of the same in parcels, irreapec. tive of the lives of such locatloes, the rtghts of hif In such caees ofction 2,386 of the Revised Statates of
the Uaited States has no application. That atatute was not intended to limit or defline the rights of a person in is topossesion of a trict of misiug ground, a hece there is tsote thas obe veln, of to presertioe the enfect of locatson contalning one of such veins. The oldject of the statute was to supplement the provisions of section 3,839, and to prescrifo rules unifer mhich different loca thons by different proprietors should be held, and to utersactio the rights of such propitetors in case of minalng claim, who couvess in portion, ami relains the monalinder, is aunlormus to the porltion of thes Trited States after it has hesued its patent for a location.
As the United States, as well as a subsequent Jocntor, holds the unpatested claian subject to the prior rights of The [atontere, 18 p prescribed by seetion $2,886,40$ the grabtor thon in his deal ctam proof of uinsigg customs hollo the ungranteit portion saborainate to the rights of hls
 grautee in the gronue coeveyed. Wben minime groumi grantec takes subject to the rharackeristles of mialng progecty given to it by precaling curtoras anil laws, abid not with the aboolute dotsisive whirls Aows from a convey ancelntee of ondinary land. The mintug lant thus granted is still sabjoct to all miniog laws nod customs which as ippplicable, but the provision of eection 2, tht that, whem two veins futersect, "priority of sitle shisl govern, abi bach prior location shall be eptiticd to all oreoor mineral contained withlu the space of internection," cannot. goos sibly tee applicd to the case where A. convegs part of His mising cision to 8 , for in such a case throt is be rules which povern grants of land misat of neowaity aply, and if the intersection takes place on pat of th clsian converysi the grantee takes all the minerzl withit the space of intersaction.
Btinchfield v, Gillis, (Sapreme Court of Cillfornis.) 4

Pac. It-p. 95.

Right To Follow Dip In Overlapping Locations A coutrovensy arisibi from overlapping lacatione, after courts, whe compromised by allowing one of the loca thons to jatent most of the dieguted laud. A company Was then organized, reproseating both partles to the dispute, and 'the land mas convoged to it. It was held, that this company could not refer its title to elther of
toith of the contending locatlons, ot its eleetion, so as to loth of the conferdivg locatlons, at its election, so as to give the right to foslow the dip within the ebd lines of elther locstion at will, but, on the contrarg, it buast derive its rights in this respect solely from the locstion
under which the pateat was obtained. The fact that the aper of a velo, on its strike, pasocs through oge end line and one slde libe of the location, does bot cause both of these lines to ber regarded as end lines, 80 ns to destroy
the paralleltsos, without whleh there is no right to fol the paralielism, without whicha there is no right to fol
low the dip laterally beroud the tronmaries of the claim. Iow the dip laternily beyond the boumdaries of the claim.
Ona the coutrary, the owper of eucla a claim will hise in right to follow, the dip, within his original emil lines, so far as be holds the outerop withle hla location
Del Monte Mining \& Miling Co. v. Nea York \& L. C
Min. Co (Cirenit Court, D. Colotado. Gif Fed. Kep. 212
Construction of Contract - A provialon, is a bood for title to as sudivided interest in a malaing cisim, that the rebulets ans to phy the versdor obe-sixth of the het higreed price, is unambiguins : and parol evidence is fondmbsible to prove that, according to a coatom of taibers, the expenises of winiog as well in of shlpplag the taisers, the exproses of turtog as wery is of shat
Keofe v. Doveland, (Sapreme Court of Montaun.) 39 Pac. Rep. 916.
Liability for Injuries to Miner.-In an action by a miner agninst the owner of a coal inibe for damages for anl injury sastained by the falling of on overhangles purt of the roof of the mine It was contested that the fillow rervant to de bls laty lo deepies imo bous, Whow hervant, the fellow servant of the miner, and bot the repreaenta tive of the employer, still bis negligevee would not absolve the employed, although it may have coocurred with the begligence of the latter in producing the isjur Where the master is neglifent, he is responsthle al. thooght the negligences of a fellow servant may bave call carred is loringitg injury upost the emploge. Suemploger mast answer for his own breach of duty to hin eaplotes even though ooe of his enoployes was also guilty of negligence which contributed to the wroeg dobe to the injured employes. Thle rule reats ue solid priteciple. It is no more than bare justice to compel a wroughloer to Instrer for the proximute coasequetices of his own Drg mit him to eccape reepoestbility upou the groubd thas
 The duty of the master to exercise ordtanary care and aill eosicersiog the place tu which the servant is reguired to worls is a continulog duty, and the master conbot vecape reopousibility for failure to keep such place eafe by delegatigg the performance of the duty to perform thie duty. It is well edtabliebed that where begligence of the master combined with the negligebee of his servant produces injury to a fellow servaut, the Thared servant may recover damuges of the master. That the mibe boes was actiog for the master when be gave directions to the miner to enter the room, sud that the miner was jastitied is obeying the directions, is not erriously questioved, but shows such negligetoce as will bold the mive owner liable, whether the mining boss was a fellow secvant of a vice pribelpai, when be begligently
falled to maintain the rosf of the raine ina safecomdition tor the exaployes to mork in.
Island Coal Co. v. Riscber, (Appellate Court of In-

Bоoк Review

 Profespor of Civil Eugineering in Lehigh Univeroity and Jobn P. Brooks, Inatructor th Civil Eegiovering in the with lap. Price 8200 publisthed by Joba Wiley and fith tiap. Price \&s 00 publisthed by Johu Witey and
Soms, Now York is usual with pablications mitten ant complied by Prof. Merriman, this is an exseedingly ormetical book. It is designod for the use of claseve to teelinical ochools and also as a field book for surveyors. it coners the subject in 4 chapters and if mets of coos. rewlent tubles. Claspor 1 , is derotel to Famlamental Principles, Clapter II, to Land Surveging, Chapter III, © Dovelling and Tidangulation, and Chapter IV, to Togagraphical surveging. The tables are in convenient form nuid corer evers clats ueed in fleld aud oflice work.
Reronas Reckive.- Coal Report of Thireau of Labor
 tetal Isilitoul Ties, aud ou. Preservative Provessan of tetal Tio Pistes for Woodes Ties, hy E. E. Fussell Trutman, A. M., pegsared under the diriethon of B. E. Agrow to Seter aud Common Councilg, on the most feasitho oute for a ship
Athatic Ooeat.

Catalogues Received.

We have received from the C, W. Hunt Co, of to Broaduay, New York, un exceedingly handsome catalogue of machatecy for coal
ation. Like all the other cata ogues of the C . W. Hunt o, it is well illustratel amal ibtetesting.
The Phila. Eugfneoting Co. bved us thrue cataloguea deatgnated as "L", " M " and " N ." Catalogue "L" and shoms that the company's eegineers devote as much rare to deblgning aud proportioning fly wheels as they do to other pleces of machisery
Cataloger "M" contalus rules and tables for tho equalization of power developed in the cylimiers of erompound englest.
Catalogue " N " is devoted to condenslng and noeseondeuslog engines for tolling mill work.
Compressed Air and The Clayton Air Compreasors is to the various uses of compressal alr, pabises to descrip dons of the Clayton air compresso s, ete.

Work Placer Mines Carefully.

The object which has hitherto guided the operations of the placee miner has almoat almays bow to take the cream. If one may use such an expression, and to lesve
the skimmed milik. to hurry throngh the groumt, taking out the balk of the gold with the greatent passible coobomy of time and latror, and to let the trest go. Thls is obe gruat reason why the pastient Chinege cau wake a living out of groond that has been abandoned by white fisers. The evils of such a practice are self-evlaent. round is pophot is left is so dissemimated, aunfife

 takiug a ilttle mote care to save as moch as possible of the precious metal, aud tbe various improvements in
ma-hinety, eto, whih have bueen lionaght into more
 attention to placer mining ench succocting season. -Er.

Mr. F. P. Gridley formerly with the Walos Pacille Coal Co, at Scotield, Dtah, has resigned and aceppted at Dlamondville, Uintah Co., Wyoming.

The Lidgerwood Manufacturing Company of New York City bave in the preas a poomphlet entitled NTin vellitig Cableways aud Some Other Deviees Eroploged by then Contractors on the Chleago Drainage Cawal," This book will be one of their well knowe sketeh book weries, same stan as the previons issue, and will contait .2 pages, 86 foll page illastrations abd is intended par ticularly to illuatrate the multiplicity of use to wbich the Lidgerwood bulating emgines can be placesl. The Traveliog Cablewnys, twenty of which have been sold and ased on the Cbicago Drainage Canal, oceupy the langer part of the book. It will be free upeos application and those desifing a copy should apply at the New
York headquarters of the Lidgerwood conepazy, 106 Liberty street.

The Abenaroth \& Root Manufacturing Company, has of late filled a number of botable orders for their im ity and vicibity
It may be mentioned in this connection that Arthur Dormal Water Tube New York manager for the Nat 'Ral Water Tube Boiler Co, is how reprevent
'Rooler at 28 Cliff gtreet, New Yotk Caty.

THE PROGRESS IN MINING.

 ABSTRACTS FROM THE PROCEEDINGS OFTHE MINING SOCIETIES And Journals of Eurose and America, Illustrating the More Modern Developments in all the Mranches of the Mining Industry.
Mesozoic Reptiles.-Tbe folloming is taken from

 of tweoty-five gigastic land teptles, called iguapodon" gorge, cut by a stream through sentral hubdred foel of gonge, custy a stecazthrough enersal tuibred foet of the leceser vallezs of Beetgium, mbich mas at that recuote theue a lant suiface, as it is todidy, but covered thee with. cycads mod tree-ferns nod other semel-tropieal plants of the Weniden period.
The river wns well stocked with fish having booy musmelised sales, ,hike the Ameticas bouy- pike, whilst podiles, אater tortoises and bugh Iguanotons.
Thick vegetation of feras and other plants elotbed the marshy margins of the stream, and in times of noode hio plants ther fed on, together with many reptiles and habes of the itruam, wern all cotombed is a common GTave and corered up with deposits of theo mud lot thy the river. In proces of tome the valler was wuite thled had teen sunk at Pernisaatt, Destreen Mons and Tounay, bear the French trootive, the old Weashen or jurassle valley, was re-discoverad at more than 1000
feet benenth the present surface of the ground. At oes spot instead of workable coil, the mine gal. leries traversed for te9 (eet oely baren grousd. com. posed of chalk mod green sabd, here to the black of skeletons of the IGuanodons which were with great
 by M . Deyaur and the eugheers of the mibue. They have sloce, with infinite labor, bee put together by
II Depaus, and tive of them hive been set up in the Royal Musum of Natural History it Erousels. Through the kindvess of A E. EDsport, the director of
 been aequired for the Bitisb Muevum, and it has been set,
up in the repille zallery of the geological departuent. where it forms ooe of the most strikion opjecets ever presented to the gaze of the British pablic. The beast stands 15 feet high, and measures 30 foet along line
vertetral cofumi suit covers about 156 square feot of gailery.
The Remuneration of Mine Survegors in Ger-many-From the Coliory Ommbian Throughout Gercuaby mioe surregs are coodurted hy A corps of
highity-trimeded survegots appolited by the Governaent and the armount of remuneration to mbich they are ce titled is clearty specified by the Prossius Board of Trade, It has homever, been found that the scale of toes tised to June, 1876. is in many respects tuapplleatle
 Trade. This eesctumeot coomes loto force this year, and He provblong it contains caunot full to be of literest to mine surveg ors is this country.
The remuneration, it is stated, may consist either of a tlxed tatly fee or of varinble fees based upon the amount of work [erformeed. The daily fon is 53,60 and this sum is paysble for days spent in work or for days
devotwd to travelling on sarvey business, as well as for devotwd to travelling on sarvey busibess, as well as for spent away from bowe. A morking day consist of elght hours, and s travelling day comprises a journey of at day, the remunerntion is compated at 45 oeots jer day, the remunerntion is comproted at 45 oeble jeer
hour. If the mine surveyor is obliged to carry out his
 days of legal hollalaya, be is aldays entitici
supplementary charge of 21 cents per bour.
appencutary chargo of 21 oents per bour.
As traveling expeoses, mibe gurveyor recive for railway or stesmboat journeys 5 cents per inille, tuclajourver to and from the railway station 72 vents each way- For journeys not by rail or steames, the tate Is ? that s mile and a halt from the mise to be marveyed bo expereses are allowed beyotd the cost of grotterage of the are reckoniel as 5 hiloms (3 miles). It on one trip the surveyot makes survegs for several mibes, his travelling expenere mast be borve by the various mines in propor-
thon to the timen ppent at eath. In lien of the charge pe4 thon to the time spent at each. In lieu of the charge peet mile, the surveger is always at liberty to charge the sum actually diaburand on production of voochers.
The fees based on the work dove are gorsewhat comeplicated. The following are some of the pelinipal
details-For aurveys with the itial, verticalangles being obeerived. the charge illowed per 10 yands is 12 cent umperground and 8 cents at the surface iWhen vertlea angles are sot takew, the charge is 10 cents unferground
and 5 cents at the furface. Whes back insl fore sights are taken with a viers to elimbuate local devintion of the maggetic nevdle, the charge is 22 cemts sudergronod nos If eeots at the suiface. For tachesobeter surveys the
chargele lo 14 coats for eseh point determined; for plumbclosge io 14 ceate for esech point determinecl; for plumb-
lug shafta, 24 cents for every 10 yarda; for levelligg, for eweh setting of the statf, 10 venits unilecground nast 5 ersts at the surfact, for traveraing with the thoodolite,
incluling masaufigg the angles, permavently marking thenstation, recording the observatios, and plotting the point on the plas, for each statiog i2 cents noderground nod 48 evats at the sorfacen sind
centes for each sangle of the trisiggle.

In fiery mitues where it is neceessary to work with safety laneps, a small supplemestary charge is allowed,

degs. Fubr.) mibes of io workinge hess thais 4 ft. Io

The copying of plans cf all kiuds is to be charged for at a rate per 100 square gards of the area plotted, inolu.
give of lentering, which varins, accosding to the gcala sive of letterieg, Which varies, acconding to the scale
adopted frots 4 veents (scale abs to $s l$) ap to 48 conts

 ereater of less than the original, this rate is increased
ove and a haif to two and a balf times, acoonling to the owe and a hnif to two and a haif times, according to the
amount of ehange ot scale. Copylng on tracing paper amoont of change of scale. Copylng on tracing paper
or on tracing cloth is reckoned at bulf the rate for copyof on tracing cloth is reckoned at bulf the rate for copy
ing on drawiug paper. When the plans have to be Ing on drawing paper. When the plans have to fo
colored the rate Is Itcresaed a thind. In all cases in place of these fees, the dally or hourly clange for the Time actually oceupled may be made.
The drawing paper, tracing paper, of trading eloth of the loest guality, is charged for at a given rate, abid tuetion of vonchives
If the folut iwns
If the mitne surweyor engages the workmen requirel or asoist iti the surveg, be may cuter in his acconnt the Wages be bai to gay thero. The wages must, bowever, getter in the district in quagtion.
A Competitive Trial of Flue-Heated Coke vens. - Tbe report of this trial has been extensirely rabsistied it the foreige motoing jourrals and from which e extracted for "Progreas in Miniog" is our August wasue, the particularg then given. In this synopsis mider the in-pection of contur ithas eppointed by the nder the compecion of contouks appointed by the In question be the OIte Coke stul Chemical Compans of Pittsbatyh, Pa, the Americail representatives of Dr Otto, we hastea to give their denial full publicity.

Pitsbaret, Fa. Aucust Fith. 18 ga

Vrom this you vill mote that as limpertant tiotatatetion

Translation frum "Stabl avd Erisw," Janwary loc, iNes In No. 34 of this jourual Mr. A. Haegenter, Manager of the "+ Aetienpesellischaft fuer Kollendestiliation" at Bulmke near Gelsenkirehes, pablished a report accompanied by extensive data on . The competitive colstag teat between the Otto Hoffmans and Hoecsever Oven Welems.
his report biged to tanke a fer statemeats regarding statements will jertaln to the sulject matter and its origin. It is noccasary to comment obly upon is few pssential poinss of the report which covecs morn than 20 Accontiog to $\mathbf{M r}$. Husepont's statements the follow. mig perventages of water were cobsained is the coke Colllecy and the "Kohleadestillation" at Bolmka.

Per Cest. Water: is Coke.

Date.		Hulmke.		Germamis.	
253, Angust	Th	204		6.945	\% A64
-	然	\%	8	6.48	5
" v	160	435	-	8 ¢ ${ }^{\text {a }}$	4 \%6
" *	120)		(3)	438	7.115
" ${ }^{*}$	12mb	3ir	1 com	6. 546	12 (8)
" **	1sth		$12=$	480	5.85
"	14th	1.15		5.128	6 \% 68
* "	15th	1.15\%	kos	T.mb	5,6\%
Abursere			4.		. 814

The comparison of these figures shows evidently that the coke at Germania has been mosit reclecsuiy aut arge coke exclastvely).
Tht- '-d
if to 120 of trater shopen whatch was forced to alsort gulte ne silvery gray color nus) ite alsecarance was not -o uniform," ins the Bulmke coke mbich had been properis quencbed, even whlle very hot, and which dift was not neceseary to poo to the Slegerland t to namertaite this.
Pu.
Furthermore, it is thas esally underetood that of this pile of "half burned or waste coke" espectally is the classification oas cither slde was performed by emploges
of Mr. Huessener. We therefore could hardly expect
 statements.
It secms that equal amounts of quenchiog water of equal quality would be a very necesbary proviso is a In the setive coking test
In the report it is furthermore stated that the colal
vield of coke, free of water, from Germanis coal has yeld

\section*{${ }^{\text {At }}$ A heruobie
 | mases |
| :---: |
| rus. |}

We sre familise with the kald coling coal for many
 unable to ohtain is crue Otto. Hoffonan ovens, a yleld in excess of this figure, and have never claimed it. We
must thenesore refise. with thanks, to necept the the must thenefore refuse, with thanks, to necept the in
creased yield of eweotually t^{*}., attributed to us by Mr
 formed such mirncle. we connot decile. The anaual businesg repoct of the - Aetiengreellschaft fuer Kohl endestillation," for, $1803-4$ does not confirm it, as it
shored a yleld from this coal of 6.63%, colke and ooly showed a gleld froen this coal
$.073^{\circ}$ sulphate of ammonia.
at 3° o sulphate of ammonia.
We ame mable to
Wiscregancy. It to deternine where to look for this discregancy. It seems also that it would bave boem proper In a comptitive coking test, to ascertain right along how much coke could have ken proxuch from the changed coal.
In a compe
Iu a competitive coking test it must be eonsidered as anoet imporrant and indispereabile that the rules laid down are to be strictly allhered to; for tnstance, If it is jrovided that the perectage of ash shat bee deterwitpoblished oo pages 1110.1112 meotion this, vepecially in ar listhed oo pages 1110.1112 mentiog this, especially in ar
ticle No. 5 . This rale, bowever, has not bexn observed so mach for to-day to charscterize the extensive puil Hication. Regarding the origin of the test, the following At the dee
Wis informed the year 1802, our engineer, Mir. Meyn Wha millormed by Pirector Ramdatiock that the Autien jelitive coking test, to which, of courso, pothing could be objected. Aceording to later adviok. (Dec 13th, 1882) the competitlve coking was to commence aboul theeritatie of January aud was to lisst for about 12 dayd ponement necoseary. It was not before August 34,1883 , that we were fuformed that the intended competitive coking test was to commence on Monday, August fih rulea wha not before Aurust loth that we recelved the and skekh, up to that date, wer had not erea seen. For this reason, and eapecially on account of alceady evideat partialities to the carrying out, which wete sloo characetill further corroborate in a vert efllident way, we could not socerpt the "rules." We setually dod bot acougt them and entered our protest agalust such proodine
Dablbsuses oe the Rolst, Dec, 1894
Non-Sparking or Polyphase or Alternating
Electric Currents, for Mine Haulage and Pump-ing-This installation of electric hauling phat sets at rest the doubt coboerning the safety of electric motors is fiery mines
in the Rizhertion on the Alieruating Current Sgotem
 mine from a lower level than bail heore been customars a new engive was required, and later on it was decidel that the magobs should be drawn up abd down the staat by buesurg of a traction caile Phat transmenken of but as thecteny is wellinis is tothis sort or woul trom fin particalar colliery is subjat to explosione and electitical aparatus from syarking entict led to the adoptioe of an alternating curcent throe phase Instalis. thon allouing motors without brushes to be employed. The instailation for the production of the electric currebt mas situated on the groued level in the tan engibe shed, ams comprised a trin stram and coulensivg
englise of old type belonging to the mike. It had bova fareished with regulating ralves in order that it should futuisted with regulating ralves in otder that it should
work as oweothly as pessible. The power of this engine work as sweothy as pessible. The power of this engine
is 80 horse power at elighty perolutions per mioute, and its flymbeel drivis, by the help of a transmituer lised in the top of the shed, both no aiternating and a coatisnis of the sipmens abd Halske type R if it furnishes an output of 4,000 watts, when the vict Frnstase doze now gire pince to indwefion, but where the machine is drive0 is reduced to $\$ 5,000$ watts. Iu onder to obtain this force a power equal to bit horee juwer bas to be expended. including that of excltation. The dybano is 80 constructed that the continnous exciting eurrent is condocted by two brusbes and two collecting rings finto the
 fixed inductor. The aiternating curment dyaamo is conetruoted so as to give a difference in potential of 500 volts, and therefore requires, at 750 revolutions, 1,300 watts fursished by the coatisuoas current for the excitsthon of the tleld maguets. By lncressing the pewer of be ensily carried to biel, asd ite power be proportionately Increased.

Toe dyuamo exciting with contimuous curnent is of the A ba type, Performiog 1,050 revosuthons, it proiluces - elistlon of thealterzating current dymumo and also for the lighting of the pit. This installation for tbe production of the eloctrle curnent comprises, of coures, all igg, controlling sud regnlsting of the trodynamoss: the apparatus and instruments in question are placed on a
table behind the platform where the engineer stands, Three cables are defacbed from the vomamutator for the transmisston of powee, esch of them havige a sectional area of eopper of 35 tam . ($1 \mathrm{~mm} .-\mathrm{m}^{2}$ in.). In the
engine houge and the mine the cables are covered engioe house and the mine the cables are covered
with india robber and conreged by porcelain insulators, with Jedla rabber and conreged by porcelnin insulators, rrapped in slik, on oibed insulators, and after rumbing
 part of the pit whe amo the loading place. The condactors ame entirels casel in wooden bosicla. Terenty-two yards above the loading place is a box connected with the cable as medl as a comenutator. From this box the cobductor is formed of cable emeased in leas, and with triphase carront baviug irun lasuda arnd presating a nectioual ares of so placest as to her proot a asalnat all dan zer of detpriotn
 (2002 4 yards) frona the loading place, where it agntr comes fito contact with is junction bos, and is prolonged as far as the motor ly a catse covered with india rubtion The three-phase carrent motor is of direet derivation -that is to say, that the part excited by a rotatory weement has no brash not friction ring, and vonse quently does not ditectly peceive the current, which is quently does not thectly meniverthe curtent, which in developes a force of 25 horse power, at 735 revolutions

Onyx Marbles.- A paper on the above gubject will be remil before the Atlanta meoting in October, 1895, of The Institute of Mining Engineers," by Prof. Coart enay De Kalb, Sebo

Missoari, Rolla, Mo

Fowd the pajer we lesse that the word onyx is only ant oronmental calcite, and is a variety of besuutifus marble, for, sayo the writer, "In the begisuing a shart distibction mast bedrawn between the preclous ongx which is a ceyptocrgstalline variety of quarta, and the ordinary commerclal "onys" which is a depoait of carbonate of lime from aqueous solution:
It appeard there are matry varinties of the obys marbles asd the origis of the mineral may be defected by noticing the fact that some varieties are called the cave onyxes, and corsist of comented masces of stalso. tites and stalagmites, coneequently it is intereating to know that the onyx marhles have their birth in the vicisity of llmestone rocks. Further, true calcite, or dog-tooth spar, or crystallitne masses of the true carboo-
ate of lime do pot constitute opys anarble, for bays Prof ate of lime
De Kall

The requisite quallties for a commericial oayx marble are: First, perfect, or nearly perfect, homogenelty of textare: secosd, shecnoe of suberystallise
itruetam, so that no teodency to crystallization may le structare, so that bo tebdency to erystallization may be obecrvable by the ege; third, freedom from poroaity and cracks." The natarni cooditions favorabie to the marble, are engrossingly iotereatling to the stadent of marble, are engrossingly interesting to the stanent of mining, because through the "fllling" of veins and lodes. The conditions are : Firat, cartronic acld in solution seoond, hot spritugs contaising bicartronate of lime in solution ; thind, limestone rocks in juxtaposition fourth, the contiguity of volcasic hot springs
I'rof. De Kalb says: "From the foregong summary it appesars that the deposits fursishling the superior ouys marble of commerce, sere found in fegloest which bare been subjected to voleante disturbance; that they an saperflelal deposits or veln like inclosures, not connected in any manuer with caves, that they are 80 fre quently associnted with astive hot spos hos sprisgs, is to lead to a elear presamption that there must be a gee utic relation between them and such bot springs; and finally, that they occur aspociated with limentone rowk, or with rocks ylelding large percentages of limer At present the most important deposits of onyx foumen in the Repubtio of M exico, although some floe examples of the stone are foutul in many part of the Tuited Staters.
Improvements in Miner's Lamps. A pelfFochtig th ners lamp has been invented by lier Bochum, to whleh po spare pertg fre required, The ignitiog strlp is conta'bed in an anmular space, formed by presstng, without solder fotnt, in is metal rtng underbeath the cylindrical glass , and this pace is sumfiently large to permit the strip to tako from three 10 five turns according to the size of the lnmp, thus accommodating a isrge number-up to 150 -faleminate igulters. An advan tage of this arrangment is that the heat radiated by the lamp flame keeps the strip and its cbamber dry, and therefore the furminate igulters in a good condition for performiog thrir offlee. The ignitiog strip is made with a mire runnieg through is, so stat it cas be drawn out of Its ehamber by belog wousd up oo a small spltidle, notWithstaniligg the combuation which takrs place on 1 gni . tion being effected as each fulminate igniter is drawn
Ao igniting band which does bot dim the glasses of miners' lampa and is not llable to mise-tire has beea de-
vised by Herr Helurich Freise of Hamme-Bocbua, bevised by Herr Helurich Freise. of Hamme-Bocbua, being prejared in the following manner, so as to burn without jotoducing a 800ty flame. A web, traversed at
tixed intervals by a stronger thread, Is coated with strigs of toniting substastrongur thread, is cosited with strigis of igniting substance, salphur and lycopodiam milxed reopires s coativg of lyropedium both sides of the wel recoives a coating of lycopodfum, both sides of the web belog afterwards varuished with coll
ensure the continuabce of oombuation.

The anangetment of suother saftey lamp has beed pateoted by Herr C. Dalmanu, of ITerue, West phalia, metal chimney and main gavose, a smaller and sapplemetal chimney and main gauze, a smaller and supple-
mentary ganze cylipder is arranged, extend or domwarda from the lovel of the top of the chinumg to man the flame, and the low r ead teing beveled off, for is
troducing the air necesaary for combuation quite near the tlame The top and bottom ends of this supplementary gauzs eyltnder are closed by gauze cap日, with bee object of imeressing the counter preaburo whon ec plosious occur tu the inside of the hamp, wed thus brigg g act to met the mole aended to protect the sapplemestary gauze by a ixeed or removable sbield, in order to still farther lescease the Outer pressure ob exploglon ocsarring insile the latup
The Effects of Different Explosives on FireDamp and Coal Dust. - Λ paper on the aborn sublject Damp Bencest Coar Winkhouse, maje read belore Tho North of England Institute of Miniug Engiberss, and gave in detail the nature and results of some expeciments in Westphalih, Germany, with different explocives fired to the probetre of exploelve gawer and eoaldast.
Blastigg powider was altogertier excluded from the esperinemts, becsuse the carlice investigations of the Prussian Firedsup Conmission had shome that it was highly dangerous in all flery and doasty mines and should therefore be no loesta need in sach mises. The sabstances whleh carne into parriew were
I.-Among the non-safety esplosives

1. Grlatinedynamit

Klezelghhr-lyoazols
3. Ntonite (Gestelns-carboeit

1. Wetterdyusuit, from the schetomet dronatin factory, consisting of timitro-glyoerine, 32 , per oent. sulphate of magnesta (bitter salt. Mr
12.2 per ceut.; Kleselgubir, 14.4 per cent
2. Carboolt (oosl) mbleh (accoodigg to the managove of the Schlebunch carboeite Ractory) consists of nitroetyoerine, 25.0 per cent, sitrate of potassium. 340 per cent.; rye-weal. 38.3 per cent; wood-meal, 1.0 per ceut
iffrste of harlam, 1.0 per ovat.; bicarbonate of soellam. piftrste of barlum, 1.0 per oebt.; bicarbouate of sodlum
0.1 per cont. The chemical anslysis of a sample shoxad that the proportion of sitmoglecerion was 29.5 per cent 3. Solvarit froou the Kolo.Rottwell powder factories, vonsisting of smmonium dinitro-bensol, 21 per Not. nitrate of ammoniom, 37 per coot.a nitrate of potasalum. $3+$ per cent.
3. Roburit from the roburit factory of Wittet on the Ituhr, consistivg of dinitro-beozol, 12.8 per cent.; oitrate of ammonium, 29. 2 pet cent.t ammontam chloriber and
ammobiam sulphate, 0.3 pec cent.; water (damp through amoobiam sulphate, 0.8 per cent.; water
loeg storage of the sampee), 27 per cent
Io order to investlignte as mecurately as possible the roperties of the various esplosives, and in particulat their behasior in preaence of tife damp and coaldust, focted to the following seties of experiments
4. Pirfige in shot from the upper canuon in then
f Aredamp an ant length of the flame. and letugth of the flame
Fploslve in of a becies of shots with varylug welghts of explosive ofles to determme the smanlest fomonim Which can, under the following cobxltions, lanite the that such ignition can be lirought about by the heavices charges which it is poratble to introduce lites the cannon. say 16 to 20 oz. 1500 to 000 grammes
(a.) In presence of conlduat etrewed in the gallery atel suenemited in the air, without any tiredatap bodng pren\% to ? per thent of flrem present

In the midat of a mixture cobtalaing tifedamp, ond in suspension in the air.
(ar.) In presenoe of a gaseous mixture, such that the rogortion of warsh ghe prosent is just recogntablite
 aining 6 to 7 per cent. of ficedamp
With those esplosives which, is persence of $2 \mid$ per wut. of Eredamp, dSd not, eres with heavy clangges of further experimento mere male in prosenen of raberons tristures richer in firedsmp (say 5 per cent. of mangh gias), yet not to themaelves explosive, conlitust betng trewed and in suspension as before
Preliminary experiments were made to test the uniformity of the gabeous mixtured costaining firedamp, The electric detonators were aleo subjected to test ass to
athether they would ignite firvdamp, but no iguition over took place.
As variable reaults were obtaimed according as the charge of explusive wached to the aperturt of the bore hole or lay at the bottom of the canbont, and also aceord. ing to the levgth of free space left in front of the cart.
ridge, s series of experiments was firat carried out. in ridge, a series of experimests was firat carried out, in which the cartridges were 60 set within the canbou that
they exactly cotucided with the foremost alge of the chey exactly colucided with the foremost edge of the botetiole, nod prectsely identical conditions wert ar(aents whs undertaken, mbereis the explosine charges were slmply placed on the bottom of the borchole, leav150 mm) 150 mm .) in length. No stetumibg oas used in these experitumute, as in the previourertice The stady of the periments.
Firse Series of Experiments,-With regand to the first serits of esperiments (with the explcalve in the flons are portion

That flame phenomena, more or less considersble, vere observalile in the case of every explosive. Than greater intecsity were noticed with stonitte, kieselguthrgave rise only to short llames, and with coal carboelt gave rise doly to a feeble flash of light was obeerved
2. From the polnt of riew of thels belavior fin preswhee of coaldust without Eredamp, gelatine-dywamit, verurit, kieselguhr-dynamit, and stonite are to be reganded as by far the mont dangerous. Charges of
invariably sufficed to iguite a dusty atmosphere. Roba rit and wetter-dynamit proved moch more reliable With theee explosives the coaldast was ignited ouly by a charge of 10 tis to 1234 os . (300 to 350 grammes) The explosives Weatfalit and dahmenit, the cartridge cases of which had been strongly steeped fa reain jarafis, of retesis, to protect them sgainat damp, sud weve used, silil ib the original coveringe, in orclinary
working, ignited coaldust as soon as the cling eo reached working, ignited coaldust as poon as the chage reached
aboat 9 ks or (250 grommes) Int if the exploalge about 988 oz. (200 grnmacs). But if the explosive listust of hedug ebclosed in a parntiued covering, Wha
simply wrapred in an ordinary paper oue, ignition of gimply wrapyed in an ordinary paper ote, igoition of
coaldist did not take place, evos with charges na heory as 1759 ox. (495 frammes) With prognasit the dangetous intfuence of the parambeit cartridge cases was wot at frot boticel. The biggest charges Which could bee get in the cammon in the original casen duat. The same observatoon applies fo coal-carbiont 8. In the preatme of Eabous mixtores contaisle stanll percentages of Giredamp (say abon! of per cent. of marah gas) the safety of the greater mamher of exple stves whs found to diminish in a very remarkable degree The accompsuying table shome the sconillest quantity of the serveral exploelvee which would produce ignition.
 sive
nies)

4. It explosive gaseous mistures containing high perventaged of Éredamp (8By bi to ? peF eent, of marsh gas)
the following minimum charges of the various veplosixes sutiond to liting about igulion. No essential difference is regari to ignition wha notiond when cosalifust wa -1rewed at the saree thon, and sach differences as wete Ansurvable may be attributed to purely necidental cirपenstatice

Same of explesite	$\begin{aligned} & 6 \\ & 88 \\ & \frac{2}{3} \\ & \frac{8}{2} \end{aligned}$					
$\begin{aligned} & \text { Gielatine-dyan- } \\ & \text { mht } \end{aligned}$	2 Grin			${ }^{18}$	Gtme	
	150.	+	630	1 to	15.	5
	$\begin{aligned} & 205 \\ & 2=5 \\ & 2.9 \end{aligned}$			16		6. 68
		41	7.			
		150.				
Krearit Wetser-dy 0 a- mit			631	18.	51.	60
		1.4	610	${ }^{4} 96$	2280	$5 * 9$
				${ }_{5} \mathrm{sec}_{8}$		
Patmenit:		\%1	\% 6	19	帾	
			$6: 3$	19%		T. 3

Coal-carbonit, even in charges of $21 \cdot 18$ oz, 6.0 gram-
mess), and ta the presence of $7 . \$$ per cent, of taseath gas, thil pot produce any explceion of fredswo

Folds and Faults in Penneglvania Antbracite

 Beds.-A paper on the above sabject will be road in Institate of Miniog Engiberes," by 13. Smith Lgmas, of Philsotelphis. Pa.The paper ls illuatrated by 33 page-plutess containing 127 aections coppled from the State Geologienl Survey, The writer bas ouly one aita sod that is to disprove the cobclustons of Prot. II. ID. Rogets croverniog the topes of the anticlimal waves is Penosylvania.
To make the object of the puper clear let us firet guote the cootention of Profesor Rogers
There exiaty among umblalations of the strata in Yennsylvania a feo-they are very fer-exceptions to the almost untversal law of a saperior degree of abruptanticlioal waves

There are a few examples of unusuas sceepbess of the southwest dips in the primary class of llexured; but searly every obe of chese exveptions appliva to only a wither with - funt is the strats, or with an oblique inerfercene of the iul of an anticlinal of asother group. Mr. Lyman's views are expretsed in the following waragrapt : "We may conclode, then, that steep northnily dipe in the Peansylvanin anthracte region are much leas prevaleut than was formerty supposed; tbat bearly
half the basins and saddles are ahout symmetrical and balf the basins and saddies are about symuetrical ; and that Desarly threefourths of the subordinate ones are so of the maln ones are so in the Kouthern field. of the maln ones are so in the southern field,
Mr. Lyman gives the following table of what he cals Mr. Lyman gives the followiog fable of what he calis
"Perventages of Enual and Stovper Digh of what Pro "Perventages of Equal and stexper Digh of what Profestor Rog
carratioes.

Anthracite Elethe	Hato Fouds			Sutwrdinate		Folas
	Equal.	Nurlib	Sowth.	Equal.	North.	South
Xorthers Kantera Middie Westert Midaie bouthernMadiv	$\begin{aligned} & 5812 \\ & \frac{515}{4} \\ & 45 \\ & 41 \end{aligned}$		$\begin{aligned} & 244 \\ & 24 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 401 \\ & y_{1}^{4}=1 \\ & i_{1} \\ & i 1 \end{aligned}$	$\begin{aligned} & 361_{2} \\ & 515 \\ & 301 \\ & 3.12 \end{aligned}$	
All the rields	15\%	4	$\mathrm{H}^{\text {\% }}$	15	33	14

The columns "Equal" math the licurvation is eque
on each alde of the rave, and North or South means that the abrupt incurvation is greater on the North or South side of the anticimal ware
Strange for soy both the Profesor and Mr. Lymon are right from their own polats of view, for it is clear that the rock waves were produced by lines of force actthg at right angles to the axes of the anticlines, and as the axes of the waves run from the gouthwest to the bortbeset sted the crompling force seted from the southeast to the forthwest, the Itwerption of the force way
greatest at the southesst, ns is proved by the high patgreatest at the soutbeast, as is proved by the high perceatage of aboupt incurvatures on the Dorthwest sides
of then anticlines, namply, 48 per cent by Mr. Lyman's of the auticlimes, pamely, 48 per cent. by Mr. Lyman's
figures. Weare obliged to admit that Profeseor Rogers is somewhat Hight, shis bot even Ighorant of Mr. I.gmas's own coeclustous for he kays, that the exopptions "will be foubd connected elther with a fault in the strats of with an oblique ioterference at the end of at abticlinal of another group." Again Mr. Lymas is right, becanse all the abrupt inccerntures are not on the norithest sides of the anticlinals but the otservatioes of both Mr. Lyman and the Professor are in barmony with the resalts of the direction and mode of of Eastere Penasylvania.

FIRE-RESISTING PAINT

A Paint That Has Stood Severe Tests and Will Prove Effective in Protecting Mine

Buildings From Fire.

Some remarkable results are reported from the use of the Jamieson flre-recisting paiste abd kalsomines. Reoent aevere tests hsve shoan that a wooden buildigg protected iguition. In a large fire at Carteret, N. I., last year the

ralue of this palint as a cbeck on the spread of flamea was tllustrated. The cut presented hetewith gives a velw takee throw days after the fire.
The throw huldings standing in the background mere protectal by Jumbeson fire-resisting paints the ruins repreecat several acess of buildigge painted withordieary
paint. Every building painted with ordinary paint, we pinint. Every building juinted with ordinary paint, we are informed, was totally destroyed, while bote of the
buildings peinted with the Jamlenon fire-realeltog palot buildings painted with the Jumbeson fire-red
were guthriently jnjured to repule repairing.
Were sumbiently injured to reguite repairing.
The burnini blocke of buildings were ouly about sixty The burnid block of buildings sere oely about sixty
feet removel from the buildings painted with the Jamie-
 them on either end. The direction of the wiod durtug the fire was directly from the bursing buildings foward the unhurzul block, and although the covering boards were baily seorebrd in several places, bery aid mol
Egnite. Owing to the almont eutireatownee of fire apptiEgnite. Owing to the alanat eutire ulownce of ner appionee cought fire lo any one spot they sleo would have onee caught fire in any obe spot they hion would have
been totally destroged, and that they did not cat hol fre tesson firenoneisting paint.
A practical test llke this on a large scale is in soxne respece, no ratter bow carvfully the detalls may bee ar rusuged. Is owe of sach tests lately held socue very eatwas turule to the prearesen of the reprosentatives of the New York Bre drpartharat, bulliting departarent, slook thepartment, boant of fine unterwriters and of severnt large nallonat und manefucturieg eom
lowing description of this test lo glven
"The oriliuary course of these events is that the couIlagrations atart in mome light, quieldy dourning amil very inflammable sobstancis, for +xampler, paper, shavings, busthbter are Goited. The wooden portious of it truiliting, a-s rule, furnish the readiest foel, ami soe the bost inosals of epreaditug the fint. To lmitate the wood was placel in the buibling, filled with shavlugs aud the mhole soaked with kerostere oil. The mateh was then applied, and immediately the oil-eonked shas loge husst into flanoss, completely flling the bullding. At
tho same time the out-fle of the bullding was surromit.
d with simillar foel (shavings and hard wood barrol atayes), and the attack started from the ontside as well as the insile
"Aftet several mingtes, the shavinge nod oil having burmed out and the barrel staves havigg caught, the darnes became lesa is volume, but of greater istensity, and the spectators retired to in distance, and, shlelding their faces from the intense beat, expected the destrucbos of the buildieg. Masters merestimulated by throwlug on a few gallous of of at intervals. Theo the fuel wiss allowed to buct itself out, abd as boon as the flamed from the barrels died down and the building was cool Wough to approach, it was sce日 that the boands had oot caucht lire af ail, and tbe ooly damage was a charring of the surf ime.

The process of flrieg was then repeated and contluaed for a period of one bour abd twenty minutes, the only intermisstions heing a few secounds at atime to see moether The builaing had tskell firb. The intense best cadually charcd the wood away until holes were borneal cotupletely thtough the side asa root, but still the baitaing drit bot take ire, the bearest approact to it beiog at the ediged of the boards, where little flickerlog Licl out when she fuel ensel to bitm. Hiwlly the hid out ahea the fuel cesen to buts. Fisally the balldiug whs upset over a mass of burning barrel staves, rut seill refused to break into tiames.

Thes s. aimuss, asd the sctuas time of expocure to intense tire deducting the time of stopjages for examination) was
ooe bour and ten minutes. ore bour and tell minutes.
huldies. of porlinsty pine satistiod the loe prescut that a buildieg of ordinary pine lumber can be profected from fite by a simple abd necestary operatioe without any inereased oost of consfruction, viz, by painting with the forther shown that light and inllawnolu it it wha with the Jamiceng fire resieting paint or kiseomed will not actively burn, but must be slomly charred away

Low and in live with the other two pointa on the pitch libe of the larger piojon-the line on which are these three points is the lever. The falcrom is ati imaginary pitch lines of the small and large piaions.
The anmulars. Fig. 2, or futernal gesard, are in meab with the two pisions (or double pinlon) at poists "B" and " C " on the above eamed levec. The lever operntes on the amnalars at theoe points; and, since the lift chaln hangs from opposite sides of these annular wheels, they are julling in opposite directions, one on each side of the Imaginary fulerum, point "F" Now, turn the eccentric slightly, the lower rart to the right, imagine the fulernm point " F , " etationary, the point " A " of the lever moves to the right, the point " F " of the lever will move in the same direction, but the point "C," being on the otber sides of the ful.
crum, will move is an oprosite direction: the two
potnts, ${ }^{-B}$ ", abd 'C," necesanaly carrying with them
 the anbular, or lift ehain wheels, in opposite direo-tioes-
It will resdily bee geee that whatever the poaltion of the ecoentric and piation, the relative pasition of this imaglbaty line, or lever, is al.
wave the same. ways the same-
It is rather
It is rather an isfinite
series of l-kers, corresponit series of levers, correspond-
ing in number with the numing in sumber with the number of poists on the pitch
line of the semalar wheels. line of the amular wheeis.
It is apparent that the lond on the bjock exects through this levernge a constant
preesare of the side of the eccentric, sud that the block will "run down" unles there is safflicient friction to prevent it. Such friction is uncarad by mears of the antomstic brake, illastrated in Fig. 3
A friction plate "F" of slightly lesa diameter than the
hand wheel is
moonted uponan extenalon of the hub of the have bub of the havd
wheel and be tween it and the block trame

The friction plate has a wedging contact with at "B," and the hand wheel has in reverse wedging eontact with the elatch "D, which is keyed to the shatt and held io position
by the adjusting unt "us manstion A pull on the hand chain to false the load loosens the
wedge " B^{\prime} and
and t1ghtess tht
widge - D, wedge
whle
w While a puil on the bsud chain to lower the loal tightens the
wedge "H5" but おooge ne thet wedige "D," our wvilge couster tent producing a mo producing bo friction be tweon plat awtheftcional surface of the wheed of
point "F," But when But when th hond wheet ectia, the pull of cthes, the por of the the has ou the "thaft tightw. carrylug with is the havil wheel and friction plate, tightentrig also the we the tro werljes net ibg together sent
the frictional surfacos into contset and effectually lock the block. A pall on the hawd chain in etther direction releases one of the wedges, but as soos as the pull censes the houd lastantly catches up and locks both of them. The loek is poaltive and swooth working, slince the friction surfaces are really never out of contact, and hoary louds may be lowered by a pull on the chals of a very tore pounsle.
The block with all parts nsemblied and ready for use is Clearly shown in Fig. 4.
By the construction sbown frietion is almost wholly obviated, sud a smooth workligg, ervicenble device has bewn producosl. The block is marde in various sfars, nughtig from + ton to 10 tons cospucfly. The manufaccurers will be pleased to furalsh to mibe operators and thanagers aby furtber information as to pricess nod sizers
ifenired.
 thenired.
by the heat from eome external fael." The masursetarer of this compound is the Jandeson Fire-Fiestating

THE MOORE DIFFERENTIAL PULLEY BLOCK.

In the installing of new machinery nbout mives, of in making the evor recurring repaiss, if the work is to be bun- lijigg hesery ooned in such places, can be uesed to sdrantage. The simple block and fall noods contant attention to prevents its rumbing back when boisting, to asy botbigg of the need of frequent renewnl of ropers, and some of the older types of the differebtind puiley block have exoye
ive friction, making the work of holetiog slow ant difficult
One form of differextial pulley block recently brought out by the Moote M'f'g. \& Foumliy (Oo. of Millwaukee, over ney other form of this desice Fors ap circular insuacd by the manufactarers we aday the following deseription of the peculiar selvantages and construction The lovera.
The leverage in this new Moore Bloek is obtained by I grat and ploios monecuent. As shown is Fig. 1, then Gium in cloubse, that is, two sizes in one casting Beterthe cecoutrice, the point "B" dipectly below it oe the

Fict.

Fif. 2

Easy Lessons on Mining.

Abstract

This Department contains articles to assist ambitious Miners to educate themselves, and obtain Certificates of Conpetency as Mine Foremen, or to become Mine Superintendents.

The articles are written to be understood by the unlearned and the learned alike. Plain language is used, no obscure terms are employed, and each subject treated, is made as clear and easy to understand as possible.

Further: The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors, are printed and answered.

MINING MACHINERY.

Gyration and Percussion.- Mean Effective Radius

 of a Fan.-The Caloulations for Efficiency.
Radius of Gyration of Dises and Rims.

61. Gyration and Percussion.-The mode of nction of the centrifugal variety of fans is full of interest to the stadent of mining, and in the fore-frout of the inveatigathon there are certatn elementary pribelples is mechanist that must be kbown, or otherwige progresa is inapoasibie nrst then let us detercaline the radit of gyration and the oenters of percuaslon that will have to be sought for and found is the solutions of fan problens.
रiret then what is meant by the herm ratus of syration" ? To make the matter chear let us thke for an "xample a straight bar of uniform section, aod flod ou what will occur if it is made to revolve or turs on one of its ceds. With the aid of Fig. 107 the bar in question is suppased to be In the act of
turning oo phem turning on one
of its ends as at O, whlle the end P, de scribes an ot a circle. It
wlil be furthes will be further pointanallaloug the bar from o to P, move a different veloe thess and
these relocitleo are directly propartionate to the dis. tances of th poistrs tromina. at O, and travthe bar to P, the bar tolocities for the unt. formis incrensing dis. tances are 1 8, 1, 10, Each of the equal divisioneo
this bar of uniform gection will be equasl 1 m wetght, to each and all of the other divisions, therefore wo will call the weight of one diviston 1. Again although the divisious are equal is welght, the enerizg stored up is each for wo are confroeted agaln with that prinetple in mechanics that is met with so very frequently tu mining, unmely, the energy stored up to moving bodies "varies as the squares of the velocities," consequently all along the bar from O to P the energy in each poist is as follows, the top line of ingures representing the veloelties and the under line the energies, as

$$
\begin{aligned}
& 1,2,3,4,5,6,7,8,9,10 . \\
& 1,4,9,16,25,36,42,64,81,100 .
\end{aligned}
$$

For example, the point 10 moves through a distane equal to the are $A B$, while the poste $\hat{5}$ mores through an are of half the length as ED. The enengy stored up to the particle 10 will then be 4 times that stored up in 5 because $\frac{10^{7}}{5^{2}}=\frac{100}{25}=4$. Taking the enengy of the particle 1, for unity of measure, then the sum of the ebergy stored up in all the particlea as a whole mill be in the proportion of the sums of the equares of the dislet us hare potice that the distances 1 , etc. ane not 50 exactly proportionate to such distances as mould oan rectly repropent the value requiped, for example, the flre rectis represent the vatue required tor example, the firs divisiobal plece is 1 , but one eod of that peece has no mean relocity then of the center of grarity of that piree is 5 and the mean velocity of the place 10 is therwfore 95. but for the present. to avold fractions that would peclond the explanstion, let us take the remote distances $1,2,3$, etc. The velocities can then be represented by the distaners along the radius, because the lioesr velocity varies direotly as the distances of the jartleles from the varies direotly as the distanees of the garticles from the
oenter of motion, and the emergy stoted up in each paroenter of wotion, and the enurgy stoted up in wach parthe center of motion; and to still further make the matter clear, let us repest the relationship of motion to energy by two lines of fligures which tin the first case represent the distance of the particles from the center of motion as before, aud in the gecond csep. the evergy dae to the velocitiea, generatod by the distances 1, 2, 3, 4, $5,6,7,8,9,10$ from O in the igure.
Ravery stored up as the regult of the different velos
itses of the particles $1,4,9,16,25,36,49,64,81,100$. The total eoergy of tho sum of the eoergy in the particles is This $+9+16+25+36+49+64+81+100)-8 \times 5$, Cuse the distances were extrecue, bot the namber be 385 un be corrected by a constaut number . 891284 as $3 \mathrm{Si} \times$ $801288=343.14568$.
We are now in a position to fud the rndius of gyratlon, so important in fan calculations that is the length of a radius whase revolving end of extremity would move with such a velocity, that if all the matter in a hasi of usiform section could ite is the polat just namest, and the bor continuod to have the same angular velocity ns before, the units of ebergy woald contisue to be equal to 343.14588. To find the ruilus of gyration is this case we must tirst find the mean energy per unit as, 312.14589 that the ruestass. Now we saw by the explanatioe portionate to the nuste of the distanco from the ceoter of motion, thenefore the length of the radius of gyration in this chse must be $134.314588=5,8578$. That is to say if a untform bar 10 iuches, 10 feet or 10 yarda long. ras made to turn on obe end, the energy stored up in it would be the same, as rould be stored up tu the same reight of master, nil gathered together in ove point隹 the cean tof rovin the pobition of the conter of pescus ne can determineine pockon of rio con in the percus tions. The polat divides the portace stored uip la hoos. This potut divides the coergy stored up in a and as maso kion that the eneruy ie the paricles of the har arellifer alon will he neape the rapid moring end, and taking the length of wash a bar to be 1 toch, 1 foot or 1 yard or ane any other unit of leath in lengts, we fies the or one of pecularion to bee obecthind of the length of the bar from its rapid moving end. Now the tuminina of the radlus of gyration is. $\$ 8288$ of the Iength of the bar, fromen ita center of mation and therofore then cono plement of the length of the bar la $1-58578=41422$ Vow the musere of the radias of gyration if twies the oquare of tis complement, and therefore these squarea are exartly popportionate to the short and long ends of the bar, as measared from the center of percunation. The sumber 12 masy be takee to Illustrate what all this means. Nom let a 12 fach bar turn on ope ond, then the ceoter of gyration would occur at 7 inches from the center of motion, because $12 \times .58388=7.021356$ but leaving out the small decimal part, ? Leches is a very vear result, aud therefore, 5 is the complement, or the number to be added to the railus of gyration to make up the length of the bar. The two portlons of the bar that ite in opposite shdes of the center of percussion are to each other us.

$$
41+22^{2} ; .58578: 1: 2 \text { of } \frac{.58578}{41422^{2}}
$$

sou gely hava to ramer that Aldes -2. Again you only have to remember that the center of percus the bar form tis fart moriog eel to fli=1 the lequght of of the radlus of grration of the number . 585%, tercoass thls mullos and is complement are to each other, an the square roots of the two distances from the eepter of perenssion. Now the nxial leogths from the center of percussion, can be used as factons to determine the value of the fractional multiptier for floding the length of the radlus of gyration in any given case as

12
$\left(12+v_{1}\right)=, 00578$, the relative length of the radlus of gyration.
In the figare before us is given an Illostration of the reportabce of this point called the center of percussion for example. if a bar tarming on obe end, strikes a nat heal immedlately under the center of peroussion, thin H, where $C G$ is the conter of peccuation- should however, as in the case $N M$, a polat L within the center of percuasios strike the pail head, the exerss of energy at the N side of the nail bead, will cause the bar to advane and drog as shown at N, and to apite of care, the nal will incline in towanda the center of motion. Again in the case of $8 R$, if the bar strikes then nall hend witbout the centur of percusalon as at S, the exoess of energs within the center of percussion will canso the bar tid drop as at T. consequently the nall bead is thrown off as at 8 .
dometums the mass revolves aboat the center of mohere without resching to it, as illustrated by Fig. 108, and and from that the ceoter of motion in situated at O weasumes of to a mehsurvs 6 foet, had that if to to the radial distances as ab, of, ef, gs, if, ot, sud mil and to find the radius of gyration in a simple and ensily underatandable manner, let us find the mechasical moments With the mean distances $6.5 \cdot 7.5,8.59 .9$
10.5 .11 .5 ; theo $\left(6.5^{2}+7.5^{2}+8.5^{2}+9.5^{2}+105^{2}+\right.$

moments can be found by dividiag the sum by the sumber of particles an
$505 \pi=83.016$, and as before the radius
of gyration will be equal to the equare root of the mean number of mechanical momenta as $\sqrt{85.916}=9.16$
62. Moan

Effective Ra dius of a Fan. The lower por(hon of the ng. ure is to show that the enengy
withln a fanduy with tha fandrue
to the centrifuto the centrifagined to the bular the as what space depth is equal orp, or q 又
By the on the outer ans cle the fan is eoen to revolve, by the abot, and nrows it ta is tended to be thome, that the Siown, that the through a fan flows along the frout of the a.i. vabeling blades and the resul: is the energy must be determ. ined by the meal

Fing. 168 , radius of exte tion situanted between r and p or g and .
63. The Calculations for Efficiebcy.-It will re quire several lesesons to explatn the mode of antion, and how to determine the mork dobe by a fan, but if the cealer will take care to pecure these introdactory facta and explanations, it will make the work in the final alculations easy, fudeod it is our aim to zo explain the rundamental prituciples, that the realer cas antedate the conchuslone
64. Radius of Gyration of Disea and Rima. Fig. 109 is given to show that the ractus of gyration for

Fic. 109.
a solld discoid wheel, or for the rim of a Ily wheel is Oond not hy the equares, but by the cubes of the radial distances, and the rasoe of this is clear, whea you consider that the mass in ench anuolar divisiou along the radius inorenses directly as the radius; for usample, the
matter is the rigg $2 B$, is twice that is the rigg $1 A$, or
the manter in the rivg $4 D$ is twice that is the rigg $2, B$. Consequently for aswular maskect such ns the rime of a fly wheel, we proceed to find the area of gyration as follow Taking the flgure of a wheel $A B D$ as an example bere the radlus of the linside of the rimis is 8, and the radias of
the the onatside of the rim is 9 , then the the outside of the rim is 9 , thell

$$
\sqrt[3]{\frac{\left.18.5^{2}+95^{2}\right)}{2}}=\sqrt{\frac{614.125+857.875)}{2}}=
$$

$9.08=$ the radlas of gyration.
Fig. 110 illustrates first the angular velocities of the points A, B, E and F and this sketch is further istended to show that the motive columa Is a- fan supplles fores for a three fold parpose;

Fig. 110.
first to oxercome the mine resistance, as A, B, or that portion of the columbin exteoding from the circle A to the point in the radial column $N N$, and the colume from B to E, or from $M R$ to $C D$, represeats the pro-
portion of the columen that glves motion to the air blowportion into the fas, snd the depth of the column from E to Ing isto the fas, and the depth of the column from E to
F, from $C D$ to $P V$, represent that portion of the motive column that is expended in blowing the air ont of the fan: the distances require bowever to be qualified tions $L A \subset B \quad C E$ an $/ F$ At G and A the firure drass atteption to a meiter that engage our attrntion, bsmely, that the orifice of inlet into a fan should to equal to the orifice of out flow, and that the sres of K should Dever exceed the area of G. Fig. 111 Iluetrates the charscteristios

Fig. 111.
of the two classes lute which fans are divided, namely the low and bigh petsbure varieties. The orifloe of entry at CD and L.M la so large in proportiou to the oritice of outiow. that the conical constriction canser an acceleration of the air at discharge and thus wastes the eberyy of the then, wates the wine restatance is high us in the typicsi tencosed fas. In the case of the opeo Fingitg fans the diffusiod as $/ k$ will be shown to be a mistake. The Figs G, K and K will be shown to be a mistake. The Figs.
110 and 111 are given 110 and 111 are given for frequent reforence in the
fatare arti-los, explaining the promeseng fuyolyed is fas fatare articles explainlng the procesees involved in fan
calculatlons.

CHEMISTRY OF MINING.

The Action of Commutators.-Electric Impulse.
60. The Action of Commutators. - We suw in our last lesson that the magroeto-ciectrle currests, or the electricity induced by magnetio actlon, was altecraste io Iirection; that ls, it was alternately positive ani negafive daring the revolution of the srmatare, and aed repeat agnia that magoets can only be used to generate pulsations are positive aud negative in direction as all our previous lessous bave abown.
Where, bowever, a oontinusur eurrent is required a commatator is maile to give continuity to the external portion of the circuit: and to make the use of this current director undersiandable Fig. 102 is

Fua. 108.
introduced. The internal portion of the efreuit that constitutes the solenoils of the magnets, or the colls of wire on the magnets, is always the path for alterrnsting or polyphase currents; then let us suppose that X, X is the internal or solenold portion of the
 A B and that O and motive eneroy sa Y and Y. It will be seen by looking mot the cables $C D$ and $A B$, that ther are just two ex. st the cableg CD and A B, that they are just two examplea of the same cshose, and that the directions of
the outgoing currents H abd F are allke, and alon those of the return currents Q and R; thls continuity of the earrents it the same direction is secured by the action of a commutator. There really ace no commutators appded to magneto electric machines or dynamos, like the one before us, but this example furnishes the best illustration of what a commutator is, and enables us afterwards to understand the more complex arrangement.
Now it will be seen that branel connections from C and A are marked like their pitem A and C, sud it is further seen that two contactors $L . H$ and F, G, or $J F$ and $l E$, turn on hloges E, \vec{F}, G and H, and when the the current from the colls of the dynswo bas ndirection such as D abd C, the robtactore are turied over to moke contact at \hbar^{\prime} and Z, and when the indaced aiter. nale eurrent, has the ontpoing and return directions of B and A, the contactors are moved over to J and J_{0}, and thus by the alternate movemeuts of the contactors. Girst to the right and next to the left, the extemal current outgoligg at F abd H abd returning at E and θ

Fig. 109.
is kept contiunally in the ssme direction, or the current
is uniform or inouophase in direction. To still more
clearly explain the commutation on a dynamo, Fig. 103 has been designed.
The shaft S being a metalle condactor, it is pecessary that the commatntor be iosulated where the boos carryiog the oppoeite sectlons is keyed over the shaft, a sheave is algo keged over the shaft as a fixed portion of each boes. The mood insulation is seen in section at I I and the shaft at S. A epring counection rests on each sheave, and thess are intebaded to contact for the outgoleg and returu ewds of the wires From the geberator colls; the result is, they are polyphase, or they are the channels for the paskage of alternatiog eurrents as Poly C, and Poly C. The lower portion of the figure is not a drawiog of a commutator, but a design to explainits ase, and if the reader can comprebend the priuciple of will never fail to and mosele of action of this fyrure, he pletepers and to understand the conamotar of the marvelous producice that this instrumeot is one of the war veous prodamious of than function is that of a regustor of director of the eon the continuity repurats, wash the istake and delivery contimaty reguators, sech as the iotak am lek of a vaves of a pump, or the steam and exbact was the two steam ef entactore are insulatedl from ench other, and sow to conke the ilustratios unulstalsobly elens, the bow toted contactors are soen to be sltached to or to apring from different dises at the oenter of the wheel apring from different dises at the oester of the wheel. tive large Obe is marked - - ami the stmall wheel is marked small disc are lettered a, abil all the contactors coll know the corrent is producent in impulece at the momente when the polarity of the magnets is grestest and least, and thens oppreite eonditions of isduction generate alterastely ponitive and negntive impulses in regular onder and snecesclon, and this belug so the commatator is made to sychronitos there impulans in apoh a way that at the procian moments when the marmets induce a positlve electicic ware in the colls of the armatures, the contactor touching X is positive, and the one toaching Z is negntive, and all the b cont setore become a of positive on reschtige X and all the conptactora marked a become bor negntive on reschling Z. Of in rapld succession the $a^{\prime} z$ sire changing to D's, sud the δ 's to $\mathrm{a}^{\prime} s$, or every trelfth of a revolution the coutactors are chaogiog from positive to negative, or from begative to positive, bot the change takes place fo sach onler, that as each contactor artives at X it is a or t and as each arrives at Z it is b or -. . The brushes on a commatator as X and Y or Mona B and Mona B in the upper portion of the Ifgure, are for sweegring off the peeitive electricity and returning the negative of the circuit, bence the contnuity of the carreat.
61. Electric Impulse.-Fig. 104 is an illustration of elestric impulse: bere a roeking lever d, fatbing on the axis c, and moving rapdily with the hasd on the

bundle through the arc a, b, throws two balls 1 ant $\frac{2}{2}$ albernstely upwards as shown by the arrows. Now if after eveey toss of a hall, the lener was tamosi in a horizontal plane torgen hait a knocl bath the balls of the aul in that case me would have the the expet smalogue of the
 eharenteriatio of elocirielts that will just now coocern 4 and that is electrical preasure, temalon, or voltages for example, the higher the velocity with whieh the balla exes throme off the ends of the lever the greate is the elecation to whlah ther will rien, and as the energy stored up in each asoevding ball will vary

Fros. 10 \%
as the equares of the velocities, and the beighte will vary directly as the work, these ballo facsibh sin

Illustration of the preasure of an electric wave as Illustrated by Fig. 105, and here the helght of voltage of the wave is shown at $b d$, but the breadth of the wave a c, indicatesalow progressive velocity, or the armature
ta cunnlag at a low apeed. At $\& \delta$, the voltage has tois ruentog at a low speed. At $e k$, the voltage has in-
 is an illustration of totermitting impulses at loog interis an illustration of totermitting impulsers at lore
vals, and A interbat at $T \mathrm{~V}$ an approach to uniformity in the preasure of voitage of the current is maile by oterlisp waves, and at Y W , the electrical swell of tession or voltage, is made to approximate a contivuous level, by a double seties of intermiestons, and by this means a mees palse or suc-
cesslon of outhursts, is ponverted isto a stesdy even flowing electric stresm.
[To as costisura.]

GEOLOGY OF COAL.

Life of Silurian Times.-Carboniferous Fossils.

49. Life of Silurian Times.-The fosall reconds of the Silurian period, in so far as the imprints of marine Hife are concerned, show that it was as prodigious and
varied as the life in our geth to-day, sud yet theae pro toade organisms were ouly prototypes of the higher organisass of the higher environnments of all thesacceeding periods.
The Stlurian period is noted for its immense fasans and its alcoss unwritten puge of examples of its flora. Nearly
all that we know of its plant Iferviates to thallogens, of stl that we know of Its plant liferelates to thallogens, of
the moat lowly vascular eryptogams and fucodds, or weeds of the reen.
We can hardly eutertalo the concluslos that the dry land of the period was a Lifelecs maste, lecsuse the plant forms that we have found imprints of, con-

Fig. 80.
Linued Into the sueceeding Devoaian period, where we ficd thees along with the blghly organized coulferous trees, that have oontinued with little aiterntion through
ail the nalghty ages and changes, until they are our pine ail the nalghty ages and changes, until they are our ploe
trees of to-dny. Why then are eo few evidences of a profuse thors fuint to the lamina of the Stlurian rocks ? An anseer to this question we cannot give, but we rest assured that the childbood of the coniferous 1 ree, even astedated the silurian peelod. Fig. 80 furnishes two examples of focolids, or sus weeds. Now this may furnish a cue to krock the ball along, for we know that the anianil life of the sea could not exist without the jrime pource of his bourishment. Is the onder of bature, planta aloue approprlate inorgasio matter, and build up out of it orzante tissue, antmal life cannot be nourished by inonganie matter, avd therefore a vast oumber of anttrasla derive thelr life supplies from the consumption of
organtoed vegetable tisatae, and the vogetable esters in

Fig. 81.

their turn become the food of the carnivora, but the great fact remaias, namety, that phant life is the prime
gouroe of the sustenance of all animal life. if then evi dences of animals on the dry land call be foupis other than fish enting examplea, we may be sure that a supply of vegetable food was acoosalhle. Now in the ppper silarian as fossil scorpion has been found, and this earniv-
orous Inseet could ouly obtain its food by devouring other insects, that obtained their food from the fraits,
leaves, bullas, and roots of relatively highly organlzed leaves.
plasts.
Fromall wable From all this we learn that the positive indleations of silurian strata are the primitive life forms, such a graptodites among wophites, brachiopods among mol kind, manely the almost entire atasence of plant remsias Kind, namely the aimost entire atasence of plant remsins
So much is can at all times deterimive with pevelston the preseuce of Sllurian rocks
The Devooian that suoceeds the Sllurins, is teemiug With evidebces of a stupeodous adesuce both in variety for plants now furnish poeitive instoged fuma atid flora cationes of the presence of the Devonian etratas and strange se it miny appear, the Theronian flota was not ouly the fmmedister precureor of the Cartooniferous flors. but of the horsetalls aud conifers of to-day. The ferns and other acrogens of the Devait are however of a mome lowly type than thoee of the Carboniferons period. Fig. 81 furulabes examples of the sigillarta of the Devonina period, and but for the immasture orgunie developouent which the tmprints tudicate, they might be mi-taken for Carboniferous fossils. In the figars at A and B we have the gigillatis as a tree and at C na enlarged vlew of obe or Its brscts or leaves, of this have a fossill imprint of a portion of the stem the coaifers or panes. Fig. 82 furulahes at A, D and

Fio. 82.
\mathcal{E} some examples of Dovonian ferns, and it will be seen that thrif frobis or leaves have a stracture and vartathon ebaracteristie of the period, but far short of the
biuther development of the fronds of the feens, that characterize then Carboniferious period. At $I I$ and are examples of embrgonke. Ieplitoleedra.

Fig. 83.
50. Carboniferous Fossils.-Figare 88 sbows lople dodend ra of the Carboolferous peciod, at A, a restoration.
and at B, C, and D the geed of apore cases if the plant.

It is ouly in Australia and in toppleal countries in Asin, that tree planis allied to the cisillaria and lepldodenira ine now found, and strangor still, a small scrogon grows In Europe that is a dwarf example of these singular trevs. The lepldodendron is the foreranner of the sigillaria abd the sigillaria is the immature pibe, or the
forerubner of the conifors. At E and F wr have foasil foreruaner of the cobifers. At N and P w
Figare 84 is an illostration of the 'horse-talls or trae rush troes of the Carboniffecous perind anit koown under the geteral name of calsmites. These peculiar plants

Fro. 84.

are the forerumuers of the endogens or the grassaike plants of our day, as common grass, whest, oats, barbamboor. How intereatigg then mant be the study of conomle mining geology, whed we diseover that all the plants that diatioctively characterise the Cerhoniferous formation had in embryo, the germs out of whleh the higheet types of their abcceasors have been developed. At A sed C we have fosell examples of the root end of the sten of the calamites, and at A we have a plece of a stem of the plant, showing the nodes or knots from which the bracte epring. At D is a view of the plant roble lixiog aad growlug. All the fossils of this plant found are thattened and lylng horizontally on the beds of the strata, fast as a largo hollow reed growing in water would do at the period of decay.
[то вк COSTINEED.]

MINING METHODS.

The Velocities of Air Currents-Measurement of Current Pressure.- Water Gauges in Action.The Advantages of Tube Gauges - Improved Types of the Water Gauge.-False Reading of Water Gauges.
56. The Velocities of Air Currents. - The volume of air cirvulatiog in a mine, or the measure of the watilating carrest io cuble feet [er mibute, whs first determined by fuding the tinue myulred for a cloud of black smoke to nscead the upenst of furnace shaft of a bltuasfuoss mine in Eugland und the mode of proceeding was as follows Tro ohespoers with their watchess siet exactly allke wern stationed so that one was bestule the furnace in the mine to note the gecond of time at which "eusslI" coals were thrown on the furnace fire, and the other was stationed at the surface to note the exact time at which the cloud of black smoke arrived.
The
The ditferenue of the timus of the two observers, was the time of the asvent of the smoke in the shaft. The depth of the shaft and the diameter being knowa, it Tha easy todetermine the cable feet of air per minute in the ventilation of the mine, and to mske the matter elear let us suphrose the dismether of the cremiar shaft ma- 10 feer, the ascent of the smoke a serconds, then the velocity of the ascent of the smoke sis scech. the air current is the shaft, in feet per minute is

$$
\frac{600 \times 60}{40}=900
$$

The area of the eircular section of the shaft is $10 \times$ $10 \times .2814-75.54$ square fent, mod the volume of the reotilation io cubic feet is is $58 \times 900=20086$.
57. Messu ement of Current Pressure.-At the time under botlen the eurrent pressure was not measured, but when the current was moviog quiek the
mivers used to eprak of the "force of the witd" and at mivers used to epeak of the "Force of the wind" and at last the loquiry was, what can that force be ? and them attempts weve mule to meavure it. The so-called water gauge was first used by the eogineers of gas compabies to measure the super-atmospbetic pressure of the coal gras it the "mains. The preasine in gist tion and the grades on whith the ppes ane depositell tion and the grades on which the pipes are deposited, luation of coal ges thromph pply tans. As lhe distribation of coal gise throagh plped brings befote us the ing. just let us bithee some of them, flrst theo, when the ging tavk is situsted at an elevation of 450 feet aboven the level of distribution. it requires a pressace of 3 inches of mater gauge to slak it to the low level of the eity, for if a cuble foot of air weighs. 07% of a pound. a cuble foot of coal gas will weigh .03405 aod . $03465 \times+50=$ $15.5925-\frac{15-6}{5^{2}}=3$ tachrs of W. g. Secovd, as the sces of the transyerse section of the pipes is stoall, the sarreat frietion is oonstilerahle, and mould he fo govat
as to reguire a high preasure to send the gas throagh many milea of piper, but for the aplitting that takes place. First we have the splite of the first slegree in the groat malns, and then the diatrine malus, or splite then the splitting, aod splitting, and splitting uutit the then the spliting, and sptitting, ant splitting until the
gplitg are of humlenda of degrees before the gas reaches the barners. the regult is the current friction is very mach redoced, abd yet the pressure to foreogas through the pip-
The gas engioere do not reokon the pressune per quare fiot, bue per square inch, abol they coloed the

58 Water Gavges in Action.-Figume 100 is an illustration in vertical section of the earliest minerg

Fin. 106
in the elevation of the water columen of the beight of
 of an inch in the bere, and of the variety easily
softemed in the thame of a gas-jet, oan te purchased for 19 ocots and the beolitg is cesilly doser by a bovico, the reenlt is, mo mine foreman bod be without a
gange for determining the curreot possure. Two
 with the view of illustrating, hou the water coloung in one leg of the grugee is deperswed. nbile that in the other
is raient, nel lit us notion that the linab on ther soper. Is raisecl, ubd lut us notios that the linob on the soperpessume sile is always deprensul as \mathcal{N} and G, hecaase
they ane on the P, or side. The tro Neres they ars on the P, or site The tro Nigures
 extebded as the surface of the vecens, or lee it menasure a equare inch or a syuare gard, the same differnice in ${ }^{\text {pressuree}}$ betwowa the P and M sides of the diaphergen and ed. It will be sero by the flgure that the leg of the gange on the low preseure silk of the stopging eontains of the levels as and od meman that a slate of watar uon foot squante to the tuas, und 2 thethes doep, say, Is equal If whthet to the lewaute that is protuchig reatlation. Now surt a slat of water will weigh to + pouds terause slatoo water I squane fout in the lase nos 13 isches deep weighs if 5 pounts, then 2 loches mast wefigh oniesixth of that and $625 \times \frac{1}{5}=10.4$ pronuls. The peessare protucing ventilation is roskoned per square foot, the presalure howeser is bat aitered by the uut of measuce
 now the unit in mining is foums by tividing a cabte foot of water isto 12 slales, each an bech csick, that is 62
-5.2 . The pas eggineer takes for his unit of weight
1 1 foch in depth, and 1 squane loch for his hase or in
short the wegbit of a culsic lach of water which is equal

60 Improved Types of the Water Gauge.
Flis. 107 introfues to us the improvements that expert

Fis. 107.
ence r
gange
Wh.
rendered becestary in the constraction of the water
Theo Cook's tolary parep and Nixon nod Strane's reciprocating pamps were introdncod as mine reetilators, it was fonud that the water gauges in use could not the at every throw of Cook \& semetric drums, nod ryery stroke of Nixon asd Strauve's plotons, the mater columpins in the legs of the gange oacillated so moch, that no realing coukd be tsken, and thefefore specisl ganger had to be male. The chiet improvemest securvd by the Daglish patent was the contraction or reduced orifice at the V bend of the tube, as that shown at Q. for wben the current pressurs was tapilly flactuating, the wster could not flow responsively through the coetraction, abd the reault was a mens readiog
Bat for ventilatiog pumps, the gauge shown at $S T$ Is the best in practioe. Here latge square glass chsm. bers are counected as 8 and 7 , by the small coumecting furmet, does bot prevent is correct reading of the venti lating pressume.
The differences is the besal levels of the mater columbe In the stree tubes ate as a matter of course, the sames sopse leg of the gavge is contracted to prevent evaporation and the entry of dust. At $/ I$, the branch tube $J /$ phases throagh an air tight cork st the K etad, while the read as fm all otber casess by the height betwees the levels 7 and 6, or the difference of the hemphts, a oand ed.
61 . False Rendings of Water Gauges-Fig fos is gived to show how insocurate iblications of

Fiw. 106
the thean carrebt preasure atise. The varfations is the gange that produce false readings, are the detbectous sul displacrenenta in the path of the current. To pqove this, partly 111 a bottle with water, and introduce through the cork a 'T pipe as d, w., ;
the connection of $/ g$ with d is mande with a smali contracted orince at, and is contrastod month fileoo nt m. Now the cork must not fit air tight into the bottle weck. If you blow a good blast theough the mouthphoce of, the cutrot if thee thlat if on, Bweeps onve 1 he orition at \rangle and prodoces at that opening a partial vacuum by displacement, the result is, the water risect up the leg of the tulejiz, and wheo it reachesj, the blast of air cuts off the hesal of the uprisigg water, awd
intenailea in this was the vo-ume. The came moile of istensithes in this way the vactum. The same moile of

 bere then fillow tridigit is a greater pressare of falsely thereneal procure, as the result of the luectia of the arrested partleles of moving air. At. /t the air is sever to sweep past the opet oritiee at θ ant thas prodace 3 gepreston as in the case of the plpette of the bottle At C, the air is eevo to blow from the oritice at D, nind
 of the gauge. To vorroct all thils, then connection of the geuge with the drift has to be wlacty made. Fhg. 108 obows two etsamplos of fater resolings arising from de Itections of the plr curmute. The lirat dift has a right abgle elbow, and the roulling of a gougs conbected at i
is too masl), us the reailt of the imentin of the impisulum is too small, us the result of the imertin of the impingtoms
nir striking then reflectimig side of the stif nit striking ther reflecting mise of the difif. A kange combectus it B 18 mot reliabse, and strange to soy in
 oenly produees a depression at C, but the wave Impalae
of the agitated air makes the C reading very unstendy.

Fig. 109.
Io the game wby the degrussion at E will be greater than at D.

(TD HE COXVINEED.

LONG DISTANCE POWER TRANSMISSION.

 The Utilization of a Splendid Water Power by Ald of Electricity.An intereatiog long distanco power tuansmission plant is ith coures of conatraction it Frespo. Cal which if usique is more than obe particular. The bead of water to be used is 1.410 feet and the dislance of trabsminsion about thirty-five miles. The bstural conditious sur rounding the fostallation are extroordinary in themrealus. The water for aupplying the power fa taket from the North Fork of the San Joaquie river. Thet stream of the North fork ratis for beveral mules dowb rocky eanyon, forming rapils and catarncts as it runs between the steep moubtains. At the head of thet rapida a canal oill take the water out bpoe the summit of a high ridge, which it will follow for eis inlles to point nearly tiferon hunitred feet above the san Josyuin rivet. Here a reaervoit bas been constructed with an arerage depth of ten feet. It covers nbout eight acres abd can be made both larger and deeper, should the demand for power reguite ati extelaton. lito this resetvoir, the mater brought slong the ridge by the choal will be stored, but it will he used solely as an emergency btore. It is calculated that is will hold ebough water to drivethe machinery forseveral days, eo that should a break occur betacen the rebervoir and the source of supply, the electrical mork could continue until the regair was effected.
A pipe libe runs directly form the canal a distance of about four thousasd fees to the power hoase, and the besd of water obtained will not be less than 1,410 feet, The proseare at the bottons will be sax bumend lusto the siduare trech. The jowet ewd of the pipe tue is of nethed steel pipe, three-quartirs of an mets finickwos, having special nted flanges and special fuckibg at the at least 7,000 II P al the heul abore mentioned All
 possbble sucidents arn proviled bgans Shonly arens would form a racoum sear the ppper portion of the pipe and it might eallspee under atmaspherie preasure ple sir valke will le placed bear the top to provide againet this contingeper. The pipes will he minde in suctions of twenty foet math it the taplore emil the metal will be 3 inch thiok ant the plper 94 inches in cliameter. It will be fasteued to the solld granite mountain sblee by steel eahler.
The power station will be located at the bottom of the mountain. and will contain three Pelton nater wheels 5s" in diameter, difiven by a single noczles. The gesuEleotrise Company's three phase geberators. The three phase system has been solected in this case as the system whtch will give the highest efliciency of transmiasion with the lomest cost of eocilet
From the point in the North Fork of the San Jowquib fiver, where the water is fatken to the power house at the foot of the mountaio, is a distance of about seres miles From the pouer hoase to Fresuo, where the diectreity will be utilized is about 31 , milks in a ditect hir, of 85 fsiles over the electrie wite. The Iitur witg six wires tro cifcuits of bore copher mirw, consisting of sill wers strung ofl poles forty fiat high. The correm. Froen dicivered to the limer at a volit fise to the levet of Fow the power fiowse the fino wil Mor a portosi of the Aus Coybus, croks it and over the Red Mountain, vassiug abuat in inile west of Clovis will continue direct oo to Fresuo. The githt five miles will be over moderately level country, the other thirty through ansopen and ractically level coantry under lideal oonditions for ransmiscion. It is estimated that the prower which will be delivered is Fresbo at prosent from the three phase senerators will not be leas thab 1000 II. T
At the Fresno end the line will be brought ibto a substathonami thra the current wilt be Itanolor med down. Folls tore sub-station jow+1 aill bon delivera to all the mils to fown, tbe water works, machive shops, planhomis, lasantive, ptinting presses, elesators, packiog allway system of the city whioh witt requife atoout 300 H. I. In the sub-station, two are dynamos, ench of 60 hampes capacity will bedriven by anl igduction motor the motor being mountod of the same bed plate as, abi betug direet consocted to, the dybame. (arrout wil

Gins and fued in the Kan Joaguin Valley have always brought an extremely high petice and this masy toe considered as the most poted reason for the preetr insal the plant is started, at slout half ite perment coat ; and the towns uround Fresobo the priviliges of efectricity Will probably be estonded us soo bee of a bich tued of water and the listance over whlets the power is transmitted.

- Miscellaneous.

TELEGRAPHEC CIPHER CODKS.

 The Interastional Telograpl Barean is a telegraphic clear-ing house aud intelligenco oflice located nt Jerne, Seritaerland, of which all the Goveroments of Earope, abd all the
importans sastose of the reat of the egvilizen worlif with the
 is the trarexs is sespenally referred to, fs the centrni fifformin tion bareas of the telegrajh service of the whole world. ABy
interruption to a cable of lamd libe, the opewing of a uew lise
 telchraphie communication, asywhere abl from atiy cosee,
sach as stonus or earthyuakes, or cersorship oo telegrams sach as stonus. or earthyuake, of cetsorship oe trogrum anywheco else; anytbigg nod eversthiug that improves or di-
 intormation is jrompsly sout out from there to the bend
quartes of every Goveriment and telegraph company, nind

 tion, nati is to a grent extent under the domination of
Derine. With a feof exeptions all the able lises in thit Derne. Witb a few exceptions all the cable lises in this
hemispture are owbed ly Ieitisb romyasles, and is telegraptiog t

Entern

CQ, is the nometelatare of telegrapby, is thecircuminten of evergthing, Evecy city to the world has its code, rewog-
pized by lierne and snown woweryhure. Thus "LX" mean
 Berne sempty adiressed 'IQ Woubl yuirkly had its why to n telekram seut from lerae teiling, verhaps, of an interrap juake is Javs, abliteowh simply "C 9 ," would be phanes frum one goverament anil telegrap bo cospuy to another,
nand from ovetre to oentre, antil insble of trenty-four hours and from sestre to ventre, until insole of twenty-four There has always beea a diffenity leturees the teligragh courer, where the cot of telegraphing runs to erveral dollar-
 of thousands of dollars, by the aid of whinb one woft is made to express a whole senteoce. or phragrayh, of com-
merdial informatios. To speh a coivnoe has this matter of codec been reduced that the bulk of telogruas pasaing it-
tween this country or Eughod and distant julacos inke Chisa words Many hundreds contain only one word, beskles th name nod sdifress. Anit obe word oftes sums up a whole
day's buesbest. To imsure nocurscy and sjow the convention derided many ywarh neso that only horitimate word roles, nuid no word should contain imore then ten letters Artitrary coontiuations of letters, such as xyp, of ocy, are only nceepted op is bosis of three Vetters to a word. Wbale
calde operators ane son espected to kuow eight languaiges yet there is socsectiong about a legitionate wont from a moders
 and stopper). Thes ender of s forvign felugram of eight

 bo good words, nod not over tell letters long. The receiviag
clercis is cable oflise will shmost isfalibly rpot an fllegiti bate word, nod, as be is beld reppobithe, ot the rate of lets very low indoud get by him.
the good, availatile, sud snfe words that pretty besrly all vanse coafusion or liatality to erroc, have been used up, nad for many masons the ligitimary of words fo often cailed is
¡otation. Ferta

 about the most carrfinl nud expert cruftsmens in the worlh. One intaresting incident of this sort came up in an Euglts
ofice mocoe years age in relation to the word "fousdo" which appeared is a telecrum offered loe transmissios to Hombay

 nad Orfrstal ltue of stenimships runsing to Boestay. Th calde compasy chainot that it uns as evasion, pad the renter
fading oot later that the word bappened to be good Lintio,
 word. Dut Berser apheld the oompuasy.
Kuch dimentifer are continasily arisitag. Othera come
trom the similarily of ming code words, where the differcace of a letter, of a telegraptic dot, might mean a differebce of
 which instructed the burean at jourun to jreycere a vonbular
 yars of really great hator the vocabulary busbern coopleted
It contains 200,000 words of bot more this tea letters fail
 asd telegraplite stanalarik, and it io belicied that unale confues in any way. Toe nemount of labor involved in this bow much nlike husdreds of Words ane. It is sai. that every Ford in the vocatulary differs
every other wond in the 250, co0.
 their ciphers onniors to it. Jat after that date any woni sot rootaicet is the Berne book will mot be aveepted for

THE DISTHHUTION OF ANIMALS

The apparent anomalies in the distribution of animal- on the sarfave of the carth have for a loug time ntirwied the at
temotion of the poologith. Hou came the lemurk, those frail inhabitants of the tropical torests,
parts of Acia, separnted from theif kis in Afrien and Slada gavear by the whide cetas? Wby sbould cosrishlike berds
five in in Africo and Ausiralis, and Again at the wouthert part of Soutb America/ Not long ago, zoologists, relyith apon the current opision of goology, plased the Titan with
lad and water, inveating great coutioents and plantigg

 the soulbere hemisgdere, streteched fro
tentie, asd !rom Ausimein to Patagoeis.
lout jecologg, is is bas nbindoeed the theory of catastro-

 pelago, was once a coutibent. Africs, uow in coutinaous laud
 hive arournd, tas't aren jowing reearrently sthrough sucos. the whole hins then wouly fulben hack azain to its ofigima qubdition. 15at the sen and the lasd in their lirond mossen Whin as uben lices dsvided.
What, thes is the form of this
in the mintur the form of this sempiternai coalgguration

 lail to give the most strikimg Aoport of sen asd hovis. Iont,

 the ghote is at A cup thrown over the nothere bemisplece Whath.
wouth.
And wbeto dhd terrestinal animals eome into loisgy Tradition places their hotue eastuard is Dles. Scjelere point-

 Ifferent foods, enomies and climates, anil liruke up iuto dif Ife that had bict another, folloxing it. In the siruirie tor existence betweea the older and bever ty jer, tumeraily the bewer provailed abd trove the older southwatil toward the
diverging fringes of the land masocs. Ther vabinished left tehind thim on the fletit of tattie only their tiones to beconte
 sonth, asd were preserved is ishasas broken off tefore the bewer tyjes had renelbed them, of saved their live by boeom-
ing ereatares of the nisht. dwelligy in the fastaesses of trydzal forests 100 - 1 -rich-like birds oover in Europe and it
 cotriches of Alrica, and the rhens of Auuth Amerios. The
oidest mammals now alive, the duck-tuilird platypus suil the
 are lound only is An-tralim asd New Gubse. The pouche truabe mimicry of esibting mavimats. Now they bave Atmost entirely out of Noth Smerica: hut they have founs reluge in 又outh Amerken, aso, scoludel is Australig, they
fuem bearly the wbode of perimitive faums. so also with the

 Sulvriony Neve

ONE BIVER'S THEEE NAMES.

 whs'h I live, 1s ang right through the town of Trizilm, ia
 Torio, abd the Picket Wirn, Then batorer cume nbout is this Thy savta Fe, X. M., claiws to be asd is about the name age
 "Back in the midale of the nixtenoth enntory the siponisrds

 and lomgitude of both planes. Jatber late in the fall some
 the trail now foltowet ly the santa Fe Railionsl, atel at the
legisoing of wintee made a camp at ohat bonow the site of Trimoing of winter made a camp at ohat br now the sife of
Trimis, whach sits fuirly in the moult of the Raton Canon. fooking ont ou the plains.
${ }^{4}$ Therv they were ou the
 an utter waste of phaits, appareally without limit. A11 that
Wister the Spoaisris cam, perl is the mouth of Jiaton Canoti. With wine, womas, nod sone they pue in o hilarious tome, and prolatly had as woch fon as they ever hat before of vivisits of Trisidad.
 on move The camp followers, the Women, and the extri
tograme they wat kock to sants Fe, Whes last seen the party bousd for Re, Abginsian, numbering oweral hendred, they buat camped.

 Indians "Fity years ago there was an old Comanche ebief named
Iran shirl

 that it was a relic of this spanish expedision of threo centuries ago which bad appareotiy marched off the earth that

 corin and withblike that it mede a profound impersaiou on
the the supeestitious people they hat left hehied. They pamed the little river Blo de Las Animas, meranag the liver of the Lout Souls, and it is sulposed to hold the story of the expedi-

 Vrain came trupscigg in those waters from se, Lous, in A
 the riwer the trasalated unte of Pargatorio.
 it Pleket Wime. To this day the river weram nil there titlo-s is the reader would soon lesro ty turniag to th- Trindad having ther rance variously on the Ian Animen, the Purgatorios, ant the Ticket Wire.
"Every oan gocks out his name for bimsilf, but they all
menn the sume river. Iti-n't mueb of a rivir, either, obly
 Sesizs modburs tell their chatiren of the soldies who hindirnd of sears aso marched frote thero hut were betcr

KEEPING FREVT FRE- 1

A vad doul of fruit is whsted throughout this country is
nume, su a rale, people are igmorant of the test mays of car ang for or peseersiag
For examples bo
or cofricerstore. "What nonwom "" some will +ay, "Why erytu-dy does is." Tres, yes it is meveribebes a pernieions they graulmotbers, sperbeded, kepobuminal frait fresber and lougere that we do, with oun Ioc ebests han coniers, Io cool, well-aired pabtrics of elp. sets, of well-stonent dry cellars, luerious peaches, plums,
posin, appoe were kept for moaths underayed and whole Some of the best boasckiepers I hnow, nfter Horing ripe
of cooken fruits in ien elosets gear atter feor and tlating them milhdewed and spoiled, have ebanget the erroms of their

 of pieserving it. Every rige frust that falls to the gromadl is
 that bus lain on the ground all wight, at half-past 6 it the
toverning. No iov-kept fruit fogise to ccoppare with its ricb,

 dising rooms in hot wrotber, decay sets in with terrilile tore and rajplity.
As directly tue to oar nasional thatit of posing fruit no longer Gresh or whofesome, whicls his been kepe all day or night in How appetizing there monaints of yesterdny's frult look ny-aving homewkovpers You soald save more frust, besides clowets. Or letter still, stex strawtertios, raspurries, currants, Gackberries, left orne after they base obece toen of-
fered fresh to the family of guests. If nobody eares for them theged, with surar, of ooura, wby just strain theme nad put
thes juice into elfar jarn or lootsles. Hy word for it, the family will clamor for more of the delicions, heathfol, cooling siriske these frusk make mided to
water, and spethl less for harmfal componads at sods water roustaiss.
Fruito a
Or devayige

 Dry yoar lemon ant ornoze prets ubler the stove is tin ans of platters, sint they will then kimile fires spleadsaly
there is mo muet oil is the rind.

There is owe discovery that was made during the last yen
 earth. It relates to Marsin atmisplere. The grat Eoglab spectrosendist Haggins, the famous Italish astropomer Yopel, have all put oo reourd their beliet, lased apos stedica
of the spertrum of Mars, that that planet posserses an atmosphere rosmbling the evirth's and containang the topportant
 appresiatly from osers, snd erpecisily the Martian stwoSore recyat observathon haw upprared to cobllims those of
Yoget. But now comes Prodesor Campin1), of the Lick
 fis as the -pectrougjer is alde to inform as, there is no cti
 $18: 4$, ehow that the sublight reflected to us from the surfacs
of Mars undengove mo pereeptible aliongition such as woald arise from the esi-tenue of an atmoefthere surrounding the
 phere are really due to ubsorption by the atmusphere of the

 Walla, At one ebd three fees of the space s dug down to the
 thimenstons to form a fat gable root, and loope kroou is

 inmp they ate owod raven the peweerature, nus a degree of outaide. The Alwisu Noming Letond asy- that a similar de

 bigber sud the hutentered by a cotered way nut through at
sote room ta which the dogt joce and the theds nuif otber arbicher arv towed. with it fir
 Ward chauges into solef ke asd rewatos nochauged so lowe

hight on time.

The seimen of oarigathot has teen redoond to nuct socuMoet vpon the honr Take, Tor example, the "Campurio. 30 hoars and 18 minutes. In 1894 he made tent trifs, abd ter

 tript, nad bro aversse whe jast a trith slower- Af days,

 With an arwruge of 7 days, 7 hours and 21 minutes. TBe

why we cook roob

It wombl te uheard, in the five of thotempting vinote datly

 In the Eolern en, wlo ecerothing is ione with a rusb,
 Which wo elem oar tood.
Here we pervive the great province of cooking-that of an
 ha overtuxed stomach. It other words, cookisg may te

 Hisht ndit spouky locmi. It is better than the hard vaken of
 into the bread facilute its digestion, without the labor hure chering whish the caker demunded.
Heat and
 mosat are hish, a resalt which. it is troen, may be kidiliarily that it sh my to oftain proper reeults in poosing, of to
 eflurt may be the hat of rontour-why it sbould bee mutritions and usily taken eare of by the stomuth.
Iotherf,
tuetbols of croking, and so important amtering the proper
 thather as a sience than as an art.- - onff s Componion

AN EARTHQUAKN DETECTORG

It has become pocaible to discover an eurthgunken and to mark its force at a distabse of oter 7000 miles. This evems Some tiac ago it was stared as simple truth that the earthjuake in alocria uas tonde kitours to the simotista in Puris of sertnis delicale imetruments urer atrip of pown That the movemeats of the enoth conk thas transmit themselves almost instantaneonsly. Fegatering, as at were, nerowe the Mediterrabena asd acarly the uthole of Frowee more quiskly than a telegrapb meroske could bate beed sent, Was thousht
hardly flamalite. Inut it can well he believed now, in view bandly plausible. Hut it can well be beliered now, in view
of a racint mone marvelous demponstration of the self-registering of as eurshyuake mbech farther awny.
wake io Jama hat rerealed itsolf to the instmelafe eart Doman Coffege. The oscillations of the earth ontlinel them-
 ivg plamiy that thore were ite sparate that have just come
 ber. The practical part of the discovery is that the approach If an eartbyeske may betold With liftle chance of error,
though it must ise confecoed that the sustruments cive no hist of dirvetion, noe do thoy indicate the startiog poiet. Inolumuedk of this charaiter were at Nicolaief and
Charkow, cities in the oentral part of Rassin, and here the wapanosecirthquake mentioued was registered even more
 watconf at thit time and they unre weth tocecillate aud maris
 F this seisanograpb, whis was invented by Berteili, the its provitical bemedt to mankind was in 1 $=\mathrm{kj}$, wben the sensitive machine gaw waraing of in truption of Jount Ettan. Up bo this tisee, howeter, it has only beon valuable for lore-
tillug shocks comparntively bear at hand. The houk-diotusice instances recorded abovn are the llsst in the history of
the selsmograpth. Nev ? ouk IV ardy.

15URLDING" A Boots

"darneocon we are apt to spenk of the 'Writiag' or the
'making' of a book, mather than of its " building. ewh of
 thea made, Is llosily ready thay buen buit us traly as a
 Thusund details that हo to the making af acompueted whobe

 Tal author of talen of alconture, Mr. Museron is raslded by in authonithif, the trainimg that fits one for the profestop of
 when the preetous manoseript is put into is box asd sent of
 and we fint him exavining the nemly arrived masusorig Irom the puldisher's point of view. For the purposes of this aild copyright and soch matters spe aljusted, unal we ary led owwand through comporine-roos, jress-room, asal procoser that procesle publlicution. Natursilly, the moat quotsile portions of the artiele are Those relating to the creative periot-ab whory Mr. Munkw writing to tom ensy that most of those who desire fo earu it Imelibood without vyry hard work try their bants at it
 trow frame, fabls tecouse she has as rul experiences io
 muthor. Whes he, too, moots with failuns, be lismes every that the reason be canost becomen, a sacouselut author at hing time of life is lavause he bas bot !
ind duss net koow houe to write.

THE TKMDERATERE GNDEH UK

Denenth the proisoula of Lowne Mbhigan them anc lirises

riving frum still greater deptha-pirohatily th
that depoitiod the stiver orve-still at work.
that deposited the stiver orn-stiln at work.
Is the mines of shit region-the misers,
reeking with perspiration, driakige paiful pitur pailfig
 pousds per man, Were nsel vners days, coulat latior but tee minutes at the drifs (is imminent danger of being scabled by
atrikimg a kroam of thot watur) bedorn lefigg overcome ly thie thas asd roving to a coolor ploce. Fhisting, Selirism, evee
death, have lioes the efiot of the rention of coming to the surfaces. Verily, the Culas jroverb that s Yanlave uould be fowod to go nitere a snck of coiten though it were at the gates
of hell, whe not far from the itemil (ruth. However, the or bed, was bot far from the itemi truth. Howcref, thm
 ated willim toenty a white bent. Thimk of it T-e mile thess cold, far below zero, of interplanedary spare. To what
 flocel - The Popufar Selruic Nowhilg.

SHE UNDKEWEAR

Some years ago, a chibl, Beelile froes it- birilh nal the object of the tepderest solicituelo oe the port on ic- ricuts, Was, of
 pas had worked well for coore chiliren, but is this cuen the Witue one rapilly decliued is henlth and spirits uatil its Iriends were alarmed. Finally an elderly visitor suggested elothigg the child is silk. she said that niter yeara of inta-
Idism she bad foumd pure silk garments a moct agreeable IVdism sbe bod found pure silk garment- a moot azreeable

 of white crepe asi a silk putchwork quilt. Bespe wrapped in these, the seasation of whemth and electrio glow cume to ber aimost immediately. A she was nutjeet to these attacks. it oveurred to her that the silk might have sumethibe to do With the almost instaut relies. Tume nfter time sloe trsed the
exporiment on herself and memlets of ber family, with the oxpot sarprisise trults.
On her advice the litthe obe was peorbled with silk garments Hee kbitted under"car why ebabiod only every ocher day, being worn constantly day and night. Pesticonts. Whists and dresers of soft ank uere worn, had within te dsya the mproteron marked by every ouk
8 veral skl persons
bappiest resolts. Of eave been similarly treated with the oper, thet when there is s lops, the may not anouer for evers whe, ourdisary remedies wem ineftotive, it is well worth
 And for these the rule of average is not obly alodutedy with-

HINTS ON FOOD

It bas been demonstrated over and oivr agnin that man canot live on a diet comprown of any vase of the alimentary primappes, shansur the nttemp has bexu mave to sapyon Starch alobe of simple selatione the cosale has beno a joracti-
 ten days ob a diet coaspaeal vatirely of allmumen, derived from bullock's blood abd water. Bymptoms of an alarming nature soon rawed themselves, abd at the ebil of ten days
 bad leen supported estirely upoe lexis meat or upou cheese t-m bealeh bat ywiekly detervonitel. Is some cotblitions of
 deprise the patiest of cariolydrutex, berause of his itability
to avsiminte them and only ilsoe who have themelves sof fered or have clomaly whathed the sufferisks of obbers ean ty tails on the misery whiker a cecriele bousing for the fortiad den food. In the early days of his exietetare man is decmarkable and moet instrw-Live fare that milk robtaits as atmixture of all the alimeatary prituciphes wo have casmer
 tar allowed to stabd, the cream risesto the tops, utid may be kimmed off. This is the fatty rosestitocent of mik. If $t 0$ vagulate and exn loe sepprsted as card. This is the albami oate or nitrogevaus constituest of milis. The thaid left after
 taink the sugar of mill, or lawtib, which is the cariohysirate
combtitoest, is well as the salt. asil moet if the water. Howeghy spenkisg, tberofore, butter, fa nimect pure fat,

"Tanc-race" This titin Hogarth, the colelirated Euglish paistef, gase to his last work. Grobjued in as isgraiouk alt thimes u loraken tottlos: the trutt end of an obl muaket in oft lorom worn to the stump: in tow Histrane; a exow

 chaius whirh helt it dropping downs the majy of tho globe burning; Probtur and hat horeer lyitue dewi is the cloustas a a tobacco-plipe with the last whiff of smoke gofog out: a play.
 empty parse
Hogarth rev
bure. Alus momethiag lsoles. Nothisg is wanted but this hwo mistic up his palite be licolie it abd tho lifusber nas be cried. It is sald that be mown tok up the palette agaio.

WHERE THE PHESHDENT* AHE HEHED,

Goorce Washtugton bs burief nt Moust Vernop, Virginin

 Tork; Wimiam Heary Harrisot it North Hewal. Ohdo: Jobin

 vais A Amuham Lingoln at sipringileh1, IHinobs; Andrew

No, 510 TUN TVELANE MACHINE.

 B, may be changed to suif the meguirements of rock having

The wheel D, drives the main spindle by menns of a feather. The spisdle is fed fowand by menas of a nut wheel N: This
wheel is consected by a train of thrme spur geare to the togines pioion M_{3}, is onch in masuan that the motion miny be rerersed at any time, by the bapile θ^{\prime}. Thae thes Iriviug wheel Q may be thrown out of gear if desired, and the foed nut to turned, either Fry, at any sgeed. The jacks S are hinged as shows, so that they resist the twisting tenieney of the machine, yet may be readily turned down, to fovilitat
movisg forward or kavk.

minixa machixk,

deiven by a sprocket II at the rear end of the frames This aproeket is rotated by means of the gears F and E, and the engisen C, The enting frame is fod forwaril by menns of pinions which engruse the racks at, which are gtcursh to the itntionary main frame λ. The feed pinlans are Ariven ly beans of a train of fust and bose gears which operate in either direction, sceordisc to the positiou given to the clutech lever 3. Tbe eotting frame is guided by means of a eentral
lor 1, whirh
 which ebters into a narrow grveve atove the main kerf, which is cat by mans of the small cutter hesa X. Tbis liesd Is cotated by means of a speooket wheel between the wpper
and lower plates, whicto epagges the mais cutter chasio.

HOCK DRILE.

 ofof duly PA, 1 Na2. Fin, i is a longthways sectlon of the
 its an eod view showlug the plan of the cutting edgee. The
edpes 2 extends nercoes the face of the hit, nod the edigen 3 excend as right aniles with 9 , trot do got intersect with it. The ctreular edgera 4 are aloped hockerant nutl dowewnat as

Fi. 1

Fic. 2

 the chigs anil wuter shall pass up throagh them tholes while trilling. At the maper end of the drill tube δ, is a ralse l,
 op the borimec nad wnter, snd to drive them up throngh the 6it nad drill tute.

WNEEMATHC PUMP
 Soly 36 th 103s. The well A may be of noy desirel character. The kame ia uknally bored and provided with a lining-
tube extewling down to the rock, asd the gitake or itiocharge pige B is of a vize adagted to the volume of Biquad to lee ditharged, and ther lower end of this uptake-raper is alotted as

Onit of the reservoir D, and then the nir Will dischange the Wy the apwart movement given io tho ooltuan of gater it the sphtahepipe, asd in ko dofigs any pedinent or forsikt anterials in the well will he rapldy carried out, and the prossure sherwat neerssary to contioue the flow of water In the uptake-jipe will be bot littie in exerso of the Welatit of
the rolums in the well ahove the upper eel nf the perale ??
 uptakergipe at one of more placen alose the nir-rearsoir f, and with this objoct is viow piges n are provided with Elows serewed tinto the uptake-pdje If at several places, und theal separste tubes extend to the top of the well nad are

 the repuired filame of delivery.
PEMP VALVE.
 ond p, Thas. This imperted cuive is mude in fyo purts A Iar in form, sud both sible up nod down opon the stem N. The openige of the imier valies P, is resisted by the epring S, Which buars ngrinat the ring 8 an the urmos of the outer vilve The owiter vative is held dous by a apring focs whieh feart
 by an arm M. which is consected to the pistow rod or planger, so that it moves in uxison therewith. As the pluoger begins

Ita stroke, the arm M rises aud takts the prevenre nesurly of the ralve, The resisennce of the valves to the pabsuge of Water is thus reduced. As the plubzer beans the eut of its thus urging the large valve to its seat. Ther smaller valve p remains open sutif the atroke is Ilsiobed, but being rgalte small, it takes its sent without pereptible shook or jar. Thas thendrnatfaces of a ponditivity moving mitrv are nttnitind, Without pesitively arrestisg the curruat of water, allowing the momentum to le sjent in useful work instend of useless
shooks. shooks.

AIR COMPRKAsOR.

 10 and 11 show the coustruetion of the gorerbot eceentrie. Te-cylfsilers are different in sive, 1 tring the high preverre, and it the low premare cylisder. Tbe steam to drive the
machine is admitted to the nusular spowe betwen the piston

6, and the lower end of the cylinder, and at the end of the stroke it is expanded into the corresponding sjace below the platos 6. The air is taken into the space nbove piston 6; doring the down stroke it is compreseed during the up
otroke, and is shifted over into the spper part of cylinder whers, the oosepremion ts completel. Thas, the stam is used expaasively, and the air is compressed in two opers-
 contric 84 and fod 31. The air dochange vaivo sontrols both cginders, to moved by the ectentric 16 and rod 2n A - shown in Fie 10, tochlecceutricsare made in one plece,
 stifted by the goverbor 17, the throw of one will decruse
exursly as that of the other increand, abil vice versi Thus, exurtly as that of the other increand, abl vice versis Thus,
whes the governor niters the posat of eat-off of the stesm, ubes the governor niters the poat of eat-off of the stasm, Aliuts the wnik tape is the compecssor eytinder to the power evertol in the stenm cylinder. Both compreseon pistonk aro coupled by rods 12 and 12.' to douthe crask= which are exactly opposite to unch other. IVy the conctruction shows, s serg compaed macti
capoble of operating at ligh speed.

DUPLEX PUMP

 the ezlioders and it corropouding valve chest; Fiz. 2 is a cruss eection through the valce chesp; and Fig. 5 is a roos ovetion of the ralre on the opposite sble of the pomp. Botb
 plosef to the eylinders, in actual practice Eleth valow are etreular, and turned in twored crats, the valve on one side

being moved hy a lever E or S^{\prime}. Which engages the piston rod on the ocher sode of the pamp. The shaft R exteodia toto the
bollow body of the shaft N, and operates the valse p, , k,
 The valve L is moved by the shaft N and lever $J^{\prime \prime}$. Thesteam raltes L and f are so conatracted, that they mast move in
offwite directions to admit stenm to the corresponding ends of the cylinders, because the pistons are moving is opposite tircutions, it the moment that either value is retersed. The frew in pumber.

VUMP PISTOX

 $\mathrm{Yig}, 3$ is a jechpective view having the follower and one sec tion remornd and Fie, 5 is a vier of obe of the sestions. The paoking F in of any ordianry kind of elastic of stofous mater-

parking ut sll priats. Euch section consists of a Laynring block which fits upon the surface of the coee A, aud has a tolsue of rit whith slider in a dovetnited groove a in the lobe The ende of tho notions are gripped betweed the foldesired to expand the jacking, the mut is evasd off a littio then the eone g is forced forwaril thy the set serews if, smit f, is acsion tightened, thut mosimg nil party ifmig in flace.

METHOD OF ~\&NKINE SHAFF

 differs maialy from the mathechlo heratofore emphoynt, it that the liaing of the tose-totes with tuber, ir of ntufts with funsourg, is bot done sluring the boring, lut only ufter the groubd whish it in desices to reach. To coable thise to bee dons, a reatanee is ofteres by artilietial measat to the iarnish of the tfuit soil, to prevent the caving in of the sided
the prorpose of this rosistance the bote is flled with Ligubl having a heul codsalderably exceoding the astural
pressase of the water in the water-lageal gromad through which the bole passes, and the Iiquid if composed of n mixture of clay and water or similiar materials, Thanh liriscs toe specitle gravity of the liquid up to 1.2 The object of saiug ench a enmi-libgaid is to increvere ther pressure of the interasl columis of byuid agninet the sibles of Of the boring watec-tight doun to a cerinis depth by the renetration of the clayey materisls, and thus to perceot the uncaje of water to wnate, from the interion of the boring into the surroubting moil. A, Fugs, 1 nat 2, designates a guidinghinw or illimetuld of, the miki-is witer.
fis the ronter D Yip a desicuates the bottion fir the hoin

the tabe A. E. Fug. 3, deoispates the complete liaing on Ne isdicate the watir-level The oferation in as follows: In
the cise of twereholes of small size, such as are sboun is the cise of lwre-holes of small size, such as are shoun is
Fig. 1, abd is Fig. 2, the tube Δ. Which may be called o Fig 1, asd in. Fig. 2, the tube A. Which may be called a
"Hiling tatie." is flrst sunk aceondiog to the method beretofore io use for a depth of from tee to twenty yards lelow the water-lerel for the purpose of keenang od the apper intrath of loose ground and gravel, abll of thas obssiaing a liria guidance for the boring tools. Ac, during the subsequent Coriag operation. Whea this work is completed, then the mesns above desicilied are resorted to, For this purpose the tubing A of the hole, or the lining A of the sbaft, it carried
up ast aigh as poesoble shove thu satural water-level of on asd in fllet with water. The specilic aravity of the liquid is lirought up to about 1.2 by mixing with elay of similiar materisl. While continually nttending to these precautions, the siaking of the bore-hole or shalt is proceeded with by
 is reached, uthere the horing has tees completed, the liniug-fulies of the shaft-lining E is inserted and carried down to the betfoes of the hole, had thus the externsl sobl is kept ont.

COAL DEELS.

 through the driving slefor, Fig. i whows the vod of the deill spindles and Fig. 5 shows the strilling bit. The drill pandle N is oidstructed with a deep slot wbich flts

the flat shank of the bit S . The shask of the bie is noteched

 The air foses throogh the spublio puil esmajes from bale
 buin The spindle is fod fowand hy nusus of the himed bul
 Ticespiblle is tarusel by mesas of a fenther is the slecve a
the sleeres N abd K is frictional, and cas bee ndjusted so as
to K carfies severallain degree of rexistance. The tear etriven inward agninst the sleeve \mathcal{N}, try mesus of the cam plate P. If turaing P to the right, the blocks may be made to siece anything too harit to cut, U will alipand tanil still, while the mator olltinues to tors, The camplate io clawpel is any position by means of the inrge circular nut Q.

COAL DRHEL

 Moy 212,1595 . Fig. I is s section along the axis of the maehine; Fig. 2 is a cross soction through the wheed 6 ; and Fig. nomal feed serew io discanted, and the spiral blade of the auger is used to seeure a proper foed motion. The mati driving gear 6 is constructed with a long tubalar hub 4. baying two splines 10, chat or othervise secured to the inethe of the bore. Each spiral of the anger is notebed, as at 11, to
ilt the splines 10 . Thas the anger is mevolved witi the goar

Fis 2

6, the ovatral part of the tore remaining open. The feed motion is produced lyy the rerolation of the gear $\overline{3}$, it a listle slower speed then that of the wherel f. This is ancomplished by making the number of tenth is ${ }^{7}$, one or two mone than the berel evarn 22 abil 18 . The crink shaft 19 is fitted for a erank at each end. The feed wheel Tis fitted with rollers it which engage the suger blades, and feed it forward with Gittle frivion. Both wheok run on lisil fonarises 16, so that the muchine oparntes sery entily. The working parts afe
soounted on trunnions, in a yoke 3, in the ordinary manner.

FUMPINE ENGIVE.

 Fis. 2 in a a sade vieg of the samie. The ptotos rod of cand puap r asle vieg of the sames The pestoes rod of amb tached at 15 to a plunger G^{\prime}. The levere W^{W} is anspented on a pto 16, opos a crank a The crank together with the up-领 upwand into the cylisder F, it the begiasing of ench stroke, and allows it to despend darise the latter part of each
troke. Consequently the planger fr atevite some of the

 trokes and gives it out Henin daring the lattee part, the us yualizitug the driviag force. Thercylioder F may by supphied with presurg, of it may cobtain osly a charge of air, athith is alternately ecmpresed and exjonded, The form
of connection showu eusures that the pump will alungm make full stenters. Then stram valvea are moned thy evecutries i, epon the chaft v^{\prime}, which it revodved by means of rods I' coas:

The Colliery Engineer

IMETAI MIINEER.

The New PULSOMETER STEAM PUMP
 OVER 20.000 IN USE.

RECENT IMPORTANT IMPROVEMENTS.

 THE SIMPLEST, CHEAPEST, MOST EFFICIENT AND MOST DURABLEWriten for Tux coluingy Esciniker avd Mital Mogh PROSPECTING FOR PLACER GOLD.

A NOVEL AND GIGANTIC SCHEME IN CLEAR CREEK CANYON, COLORADO.
Showing how Gold is Obtained on a Large Scale from Gold Bearing Gravels under Favorable Conditions
By Prof. Arthur Lakes, Gols
Having given an account in the Sectember issue of TuE plan of the Roncoe placer scheme. dencribing the lecally

Fio. 1.-Strecto
the character of the andertaklog and its atm, we wllt procedd to give a detailed acoount of the construction and of the progreas of the work from its inception to the presebt. Two things had to be done st the outset; one was to bulld a bleg dhe water of the river and lesse the riser hed 4 ry for a space of sbout half a mor a space of sbout half a cmile or more; the otber wo bet work the noozles snd sand purges st the places choem pumgest the piser
Both morlss
Both works were begun stuvitaneously aud whilst flome to carry off the water snother wis inying plpes to bring on the water.
Beginnting then with the great flume. By a entural widentog of the bonk on one side of the river the water was thrown to the other side and compressed foto a comparstively narrow chsnnel, thas affoeding a sort of natural flume to start with to ald in diverting the water from the cov.

Fig. 3. - Making Evbankyrst of Flimg, Smowisa Pipi and Flume.
the river to a point where the deacent of the stream was somembat steep and rapid. There they built an intake thume of wood 6 feet wlde and 4 feet deep and 800 feet long to a penstock or sand-box whlch la consected with an Allen wooden stave pipe 48 inches dlameter. Before eutering the prustook the water passes through a serees or iron gratigig or sabd-box which catches the coarse
ruhbiah flasting in the water, and the overllow pasce rubish flosting in the water, and the overilow pasbes through gates on the south side. The main carreat feat high. At the bottom is a mell whinh collects any detaris go the water parapes clean snd clear through the penatock into the ts inch Alien pipe.

Abstract

eted area of halt a mile of river bottom. Startion with this naturna advantage an artificial flume had to the natural flume eo as temporarily to feeep back the water till a more muletantial ifiangular dam of timber partitions filled with stones could be built. Thus ground flame was constructerl as shown in agyter mill reoe, then frsme wark of timbur will triangalar rartitions aut apainst it and the latervals between the partithons filled with stones and pebthes faoed or rip mapped of the oater side mith heavlor stores, until the Gature of the gruund requiryl and admitted of a fume of wholly sawn timber being voo-

 structed.This flame that carries the river Is 10 feet wide by 64 feet ligh and 2.600 feet long. It averagea aboat 82000 gallons pee servend. The 16 feet loteg, with hrace col outet sifle at an anglen of 11 l degroess the braces are marle $2^{\prime \prime} x^{\prime \prime}$ and are fect loog bolted to the $4^{\prime \prime}$ ₹ 8 '/ sill sud upight poet. Floorine 4" thick, bearde 12" wide, length if fuet. A the fume is sot straight hat carves, the curving on the floor is done by elevnting the outside of the flome of the degree of carre like on a milway curve, which makes the witerrun level, the grade is $1 \frac{1}{4}$ inches in 16 feet. This grade is required by curving a flame and when the tume is stralght the grade is ? Inch 1016 feet. The angle at which thoor Is eut for folntug tes not over 30 degrees, sldes are mades of bearde $2^{\prime \prime}$ by $12^{\prime \prime}$ wide.
N-ast to get sufflelent hend and water power for the nozzled. To do this they had to go two milles up

Fig. 2-Makta Eymaximest of Flyme
DRECRIPTION OF TGR ALERN ETAVE PIPE.
This pipe is a modern invention by Mr. C, P. Alle日, Cblet Fagineer of the Catisens Water Company in Denver. It originated in the problem of having to bring water in large volume a distance of many miles to Devver, in pipes which demanded uuuavaly large lameter, abd whet if conatructed of the ordinary aetal, or earthenware material would have eotailed nery great espetses. Mr. Allen, therefore, had reourse to the cheapest maerial on havd, vizi wood, and the now oelebrated Allen stave plpe was volved, which has stood both the effects of time and preasure. The pipe is masde of staves of pine, banded wish steel hoops. The staves may be from 9 to 8 Inchess wide and of any length, from 12 to 24 feet, the thiekness from 1 to $2 f$ inchers according to diamshldes are dredsed to trute
clrcular lines and the edges are made ratial to those circles, a certain number forming a circular ring compoeing the shell of the plpes. Tbe staves are cut off equaraly at the enda and have a naw.kerf cut actosa the face of evely
 taches wide 2) Luchen louger than the width of the stave.
are shipped in buadles as stralght rods and bent on the ground around mooden tabies.

sophaltum or rel oxide

The elooes are made of mallesble iron The tooge which are useal is the bott joints are of strap-iron

The Alles stave piper $h=$ in use now all over the Weat,

ACETYLENE GAS

Its Properties and Its Commercial Value.

An exhibition and test of acetylene gas was given it the Hosud of Trader room in Scrabion, Pa, on the even-
tog of September fith, by the followiog geatletaen, who-

Fio. 4.-Finodante Steice os yink Fiving.

Fio, 5.-A Bad Bueak in Flexe Ayter a Fersiet

Thla slot is eo made that the fongua will fit bio it for long water work systems, for frrigation and for reprewent the " Acerylene Light, Hent and Pomer Coma. closely by tapptog with a hammer. In enu-fruction all misiog purposes, with moch snecess.

 tuhes. This insures groat strecgth of joint and the stoneembankmentandpassesby astonearchundertherail overlapping of the metallie toegue into the btaves on each side make a petfect butt jonet.
The bands are of round text with a brad st olue rind ong it the other, the two ong at focetion in a mul. leable Iroes oboe of peculiar anke, fitted to the form of the pipe, and bo srrangel as to cuable thes atares to bet Jrawn tigbtly ungether. Wben thase bacds are apaced for bigh pesssure, the power of th namerous auts turut dupat moderate tevelon is eufticient to crush the wood sud collapee it if careleasly exerfed. The Frect of this construction when the lands we at proper tenslon is toprolure 8tiff, hullue beam of mo.d of enotmous stresgth.
The pipe is conar racted in the trebeh wheme it is to lie which is masle uide evougeh at the bottom to give stand. hag rooul for the pipe layete on elther side
Two U blsaped ontslde forms are arot piaced in tbe
bottoe of the trearch 10 to 12 trot apart, nurd the boot. placed lu do with the fongued the dolit the radda, are placed loneely in presition fo form os ring of proper nige.
Thus Inlur mo
paitionalimastaves are muled, the bande are pat in peastion. paned the proper diarnaion hatart, blld the outs are ughtriod up part way. The sfaves are theo compered out to completer the true cirele. Whro the pipe Is round and true, and all the staver drawn op thetht, earth is tamped all around the jope and it ta covered over and the iremeh relliled. Where the prossure is
beavy the batis strbut two to three inches afust. Gangs beavy the bavd- ste-luat two to three inchess agart. Gangs
of nien po a loug pipe are placed every 1,500 fevt, aud

Pia. 6.-Pexatock and Istake Ditch os Fuene. road. It emenges from the groand on the other slde of the railroal track, and followis the grade of the road the rest of the aay elose to she track, to its jametion with the metal pipe. As this pripes has to wihistaud great
 wot more thas Ifout apart, hud al places whive a josittill clower toghor sill farther wopg the pipe with而
 hot ower t inebig apart The pipe is mashe to gove maller and enasller in dinmeter, ind is ilimelaturd and mablet aul suasion waited on the primedple of a teles

 penstock wifli a diameter of 48

 for $\$ 00$, 32'f for 000 , duwa by kralatiou to 29 loches diameter when if coourets with the steel plpe,
which alan in courno of its leangth thpers down to 10 Inchere. Thie ofert pipe is of a mile long Another pipe after a cerinin dis tance coentects with thes, formiog a doghte pipe for $\frac{1}{2}$ of a miles, esch threse is for hydraulle gluat nozzle
when working in opprosite directions and the gatige meet, coupling of the ends is efferted by entting the staver about if tmel komgor that the bisce they sere to areapg;
 tighty twgether make the batt juints ot the coupaling very thkit. Soon after the pipe is laid, water is mawly adeulted. ami the pliw allourd to soak, before the fuil presoure to spolivel which stopes all miteot hake. The busde are uselen of mild stovil teruting is strsis of 70.0 vo lise jer hyunre foch. At obe ened therg haver a sinate

purposes for blowing the gravel out of the banksaud siver
wotlom, the utber to supply the sant puap for forcting
 ven of the excevention up into thegravrl and goldslulews. Laying down the Allen pljee took 4 wreks and eniplayed 34 meen nod cost at the rate of $\$ 150$ per foot. The capurity ot paresure of thesen pigne given at the glant nozzle is 87 Ihes, prequane lach and will throw a columb of water 165 fret high frowa bozzle 4 faches diameter. With a closed plpe it woald give is pressure of 185 Bbe .
(ro us contisemd.)
[ctur" of Philsplelphia. Pa, Jo-eph A. Vimeent, Elward
 Kent.

Through the kindness of the Board of Trule, tbe exhilhitios rooms were thrown open to those of the public exhibition mooms were thrown opeen to those of
who are interested to the new artificial light.
who ary interested to the new artificial light. Philshluphinetromen from Phiskelphia Wrre imino-
dneed to the adience by duerd to M , andience by
Mr . M. Alieston, the Sr. D. MS. Alhetton, the
Secretary of the Board of Trule, elt. Vinsent pro ceeded te vxplate the propenties of acelylene pred, and exleium carthifle foom a hich it is obtained, subotantially as follons: "It is a well-kbown fact that estron will exmbine divecty with ratious anta, and the rowulting coul proubls are called cestbilva. The cartiders of the alkall aud alkitize varthes, buch as frumoivin, soelum, bariom. strontitum, Bad ealesium Those oxide is known as limee, have the properiy of desorsporing water upron beting bronght in contact luy it, nad therrby forma. mands! hate oxides of the Ot all and nertylve gas. bide of theor caibides, car luteren enclatu is the noost low cost of the taw maturini (limesand conl) and of the comamervint value of the ronbluem or by product (hydrate of limw) which is foraned by the sulionquest ifecomposition of the esrblide of ealecisin migent cobiact With Water. The etmolend formula for acrtylene kus is C_{2} / H_{r} which impliater ithat it is a astura ed bydro-enrbom,
 gell. That such a ghs ns acerylowe existed haw long lere cock-binl mercial uhes was a ponalhility, It 1888 Mr . T. I.

Pig. 8.-Snowise Coxxroriny With Cast-Inos 24 to 20-1x0H kspucen.
Whison began a swelies of exprimestes relating to the modaction of the refactory uefallie uxid-s by essibon ins Jer the interise hrint of un elevtrical fumare, nod found隹 brought to eballitton
Au widition of carbon caused decomposition of the
axides, carbon monox'de belng formed and driven of while the fased wetal lnstantly with the excess of carboci formerd a carbide. Further experiments showed that when a nolsture of powdered litse and coke dubt was introduced to tbe furnace, a syrupy masa of pare carblde of calctum was formed, shao that this carbide became upou coosing, a dease, cry-taliine dark bocoun haviance with a metaile fracture of blue or bromb, and having a speeifie gravity of 2.62, suin chrimial omposi37.5 rplestr win the formuls axposed to a dump atenuspere, bat is odoclecs in dry When lamps of is wers lopgr uspoed to the air the dry When lamps of hasirate of lime, is thin lager of whieh protected the hyydrate of lime, a thin layer of which
laterioy frotu sabsenguest decomposition,
for of calelum is now bethg mbeufactured at Spray, N. C., nt a cost of shout $8,0.00$ per ton. Expect Heents have demonstsated that 8 if lba of lime and 56 cism, and 43 ? lbes, of earboe monosidet and 100 Ihs. of costidde of calclum with 501) Ibe of water will produce 115.65^{2} the, of stacknd lime, and 40 e3 thes. of acetylene The carbon monoxide is equal to 18 ; ltss of carton and 25 ibs , of oxygen. The atove formulae will give gome underatanding as to the chemkal rewction.
"Carbsle of calclam is Eot inflammable, ned ean be exposed to a teraperature of a blast furnace without
melting, but when piaced in water or Its vapors, pach pound of it will generate over 5 ! cuble feet, (5 892) of acetylene gas, haviog a temperature of 64' F. It may also bedecomposed by exposure to snow at a tewperntur of $-94^{\prime} \mathrm{F}$. The gas is colorless but makes its presence knows by a atrong garlicy odor. It is solvbl, in water equal to the volume of the latter, and can raudily be condensed to a ligual form at mach lesa pressure than is required for carbonte acid gas $\left(O O_{3}\right)$.

Aortylene gas at 68.27 F. requires a preseare of 337 atmospheres to solidify it. Carbosic acid gas, requirea a premare of of 08.84 atmosphereg to solidify it, and
as this represents the difference between G00 lbs. and
and $1,000 \mathrm{cu}$. ft 4.000 candle power; as $\$ 100$ prodacea 6 acelyleue gas, 25,000 usudle power, It would be beces eary 10 grlil city gas at 160 jer $1,000 \mathrm{cu}$

As them is lress mas usod the ory bens.
ans there is hess gas used, the orygen of the sir is not required to so lisrge sa extent is fo oombostion, and it
 brillianey of the acentylebe thame would sougent the bighbrilluncy of the acntylebe thame would sugigert thes bigh-
 that that of an onlioary gay flame. Thestomjetature of in acotyletie flume is bigher than $900^{\circ} \mathrm{C}$. In fret thene is very ilethe difference ootween the hent of an fincaulvacent elootric light and scetyleop based upon the same Illambatiug pomer. If is appacent from this that in rooms where mostylene gas ta based, there will be lres dander of over-henting, aud the products of combuation will not bes so noxions iss in roons lighted with city ghs. Another very limportant polut is acetylene, as comparei with the ordinary illuminating gas is, that the amouns of carbon dioxide and water vapor produced is very monnat of eatoon burner of ondivary ises grotocese that would was! the exhale tione of ahout 18 sdults, whil the acetylene woul equal the exhalations of about 3 adults
"To sam up, acerylene gas is nssily detected by its odor. It gives noore light, throws ont leas beat, consumes leas oxygen and can be prodaced at much less coat. It la crpable of being stored as a solld, in the shape of carbite, $n s$ a lifuid or ns a gas. It may has oblgped loog distanoer ha oartblde or an gha mannafac tured from it, and as a liquid may bor applind to all purpoase of hoolated Iightibg, especially as in railiroade, treet-cars, carthiges, bicyeles, stunes-ships or sailine vessels, street lishting aud individum housor, or it may bue used to eurich the gha in the city houses, storen of manufactaries, Its applicatton for the latter purpose permitting the manufactare of a gas suflolently low priced
"With all thesefsctslo view it requires no gift of proph.

MINING IN BRITISH COLUMBIA The Mineral Wealth of the Provin

In a letter to the Loudon Times of Aug. 23. Mr. Clive Philijp-Woolry calla attention to the grvat mineral Wraith of Betish Co umbla, and to the fact that Y makea enterprise is fast making that provisece "Anericns in Won, matubers, boory and bentiment." Mr. PhillipsWoovy he Coy al Empli-krman, daplores this, bat he forEritish Ior brictos (otmuma in en yenra than British Conscrvatises mit ther movine, wht hos While the silloer depents
roved themselues rielosits of British Columbia bave fower than sh prong esongh to pay sith silver ewe tantsl found. Protige the puat yest in the only prectous ontsi foust. Parmg tban post yesse it gownibentiog belt to the mald beari ey travels of the proyinco wembe llied to give Britial Columbia a proculaent place anoong the gold prodicing stray of the morid.
Vancouser in 1886 , the Canadian Pacife Rall way to worlit, luat it is thy mo means auflectatly opened ap by mallroalt moalt and traila today. Up till 1890 everyope it the provieroe was too busy wilh toon lot speculation to do naything towards developling the country. Sloce 1990 Americail cuptat and eneggy have proven the tatrinsie value of the mions.
In 1890 atr. Phililips. Wvoley sayar
"Is 1 soo there Nece mo raliwags into Weat Kontenay. To-day

 mests for
bear Now th
What
 differebt coarn ter to the mith raise Nersabias tech upount

Of be rwo areat mitise in far are the Carthoo and the Horsefly

 Jienned up bet
-in ountider ne the resolst it is caly foir to remember that
mons ef the mines sro yet la fair working order, or as sny rate

as nubce in ouchation Mr. Philliga-Wooley says

900 Ibs , to the $8 q u a r e$ inch, it may rendily be seen that it has an inportant bearing upoe the question of safety in sustaining pressure $50^{\circ} \%$ greater than is pecessary for acetylene.

Acetylene gas when subjected to sumpient pressure becomes a colorlesa mobile liquald and as the pressure is silghtly relieved it commesces to boll and evoive a flame, but if suddebly litersted would instantly solidify and form into a gnow having a tempersture of $-118^{*} F^{\prime}$ and at this low temperature it possessen the same Illuminating power ss at the higher temperatures. The the carblde with water in a eloged ressel, conducting iquetled and thea drawe into tanks for distribution. "Ove pound of the liquid mhen evaporated at $64^{\circ} \mathrm{F}$ volame 400 times larger than that of the liequid, It ordinary service conditions the gas is not affected by the temperatare, as it can be cooled to $100^{\circ} \mathrm{F}$. below zero, or beated to 600°
As an illuminant acetylene possespes lightiog perer When burnen superior to any other illuminant known. When burned st the rate of but $5 \mathrm{cu} . \mathrm{ft}$. perr hour, its gas is rated at about 20 candle power, it wlll produc 12) times more light for the same quantity of gas. It has therefore $12 \frac{1}{2}$ times the value of Illaminating gas
"Assuming $\$ 20.00$ as a cost to manufactars one ton of arbide of calctum which will produce $10,000 \mathrm{ca} . \mathrm{ft}$. of acetylene gas, with a enndle porer of 50 candlea pec
cuble foot, this woald place the oont of the gas at $\$ 8.00$ per $1,000 \mathrm{cn}$. ft. of 50,000 casdles; 81.00 woald therntome produce 25.000 candles. With grod enal gas at $\$ 1.00$ ft . burned, therefore, 1 cu . ft. produces 4 candle power
ecy to foretell the early gubstitution of acetylene of lighting, nod while it will work a revolation in the methods of lightiug, it is tound from its very simpllety, Bafety, effectiveuess and low cost, to work as well, a grent revolutlon is all manafsoturing procesees. The city or town which can supply Its street lamp from the tank concealed in its post, will not be slow in doling awn moturer will aoog leam the ntility of cleaner and cheapar gas fuel. The suburban resident may dlecard his dangerous ofl or gasoline apparstus, and the elty bouse divoroes hie houan gas corporatiocs exa stores his six moethe' gas supply in his cellar closet."

A Successful Bialer.

H. E. Collins \& Co., Bank of Commerce Building, Phehung, Pa, , Sole Suied Agrots for the Cabsil Veck
 lowing recent sales of Caball bollecs for the use of blas furnace gas : llinois Steel Co., Jollet, $111,500 \mathrm{~h} . \mathrm{P}$. Souglas Furasce Co., Sharpeville. Pa, 200 h. Po h. P. Salem Iron Co., Pitteburg. Ph-, ifth order, 500 h. p.: Sharon Iron Co . Sharon, O., second order, 300 Those for the utilizstou of maste hest from heatog farsaces, ars $8 t$. Louie Stamping Co., Grauite City, III.: second order, $150 \mathrm{~h} . \mathrm{p}$.; Nittional Tuhe Works Co MeEecsport, Pa, 200 h. ph. Mahoning Valley Iron Co Youngstown, O., second order 000 h . p. In additioe thry have secured the following reoent ordect for the direct tire type of Caball Boilet: We. Tod \& Cos
Youogstown. O, 250 h . p.
Armstrong Corls Co, Pitts burg. 250 b . p. Mewars Colling \& Co. have just lesued Cahall boilers, the leagth of which shows the great Cahail boilers, the length of which show
fovor with whleh these boiler are recelved.

Writen for TuE Collikey knanker and Metal. Himer.

MINE SURVEYING.*

LATEST AMERICAN TDEAS AND MOST AP-

Rewritten for the use of Mine Officiais, Surveyors and Engineers, from Lecturss Detivered Befor
(By Edwand B. Durham. E. M.)
Chaptin VI. (Coxcleded.)
In the Hoosac Tanbel, t mork was begun at both ends sud at an interuediate shaff. At the shaft, two instrumeots were firmly bolted to foaudstions on esch side of
the ehaft. They had a silt tin a movable frame whoee postson could bee determined by a seties of observationg, noting its position ench time by menos of au attached venier scale. The wean of the different positions was takeo sud the slits were set in this positiou. Then two tioe steel wires were stretched acrues the shaft betweed the sides of the slits, nod between these were lowered the plumb wires, 25 feet apart. The wires a cre enclosed is boxes to proteot them from fallivg water and alr curreuts. At the hottom, a platform was built a tew feet above the fluor oo which horizoutal beales were placed behiud the mires, and by them the conters of the 8sioge were determioed, and from these the centor hive was prolonged in both direetiose. The shaft was 1028 feet derp and the tunsel excavated for 1563 feet to the east and 2066 feet to the west of the shaft. The tunuel was corried in 11974 feot from the cast portsi, and 10138 leet from the west betore meeting the headings from the shaft. The etrory in alignment it meeting were 0.045 toot on the webt abd ouly 0.625 foot on the east side of the shaft. The error in grade ls given as $1 \frac{1}{4}$ sod $1+$ tnches by someose, and by mother writer as oearly 3 inebes. Taking either Bgure for the grade so
correct the reaults show very carefal and ereditable correct the resulte show very carefol and creditable
work on the part of the eagineers. The total length of the tumel was 250315 fret.
Ou the Comstock Lodo, 7 shafts were satisfactorily plumbed to depthe as great as 3,000 teet, by hauglog plumb line to each of two comgastments, so as to get At the surface a plankiliz 12 inches wave placed across At the surface a plank 12×2 inches was placed seross
the shaft and the mires let down by the vide of this and the thaft and the wires lof down by the vdpe of this and form of two planks whe placed across the shaft a little above nach tub. One plaik of each pair was used as a walk, and the other was placed about an Inch from the wire. To thls was vailed a small plece of while board so as to be ouly f timeh from the wire. Then a light mas placed to line with th? two wires, so as to throw the shadow of one of them ob the beard. As the wire swueg to and fro the extreme possitions of the shadows on the bosrd, were maiked with a peacll. The mean of any pair gave the central position and a number of observations were made to check the mork. It in doubt as to whether the wires strunis freely, at a given 4 ignal, the man at the top moved them an sgreed diotavie, and they woticed whether they movel a likedlatabce at the bottom, which they would ouly do if they were free.
On the new Crofion Aquedact $\frac{3}{2}$ the sbatis were placed with the looger dimetations parallel to the axis of the tannel, so as to give the eogineers as logg a base as possible, and to oue olde of the ceutres so as to leave the construat a cors could peas aruund it, The shate oyen lapped the centre lloe $\begin{aligned} & \text { for } \\ & \text { tuches so } \\ & \text { so }\end{aligned}$ the angleer could plae their plambing wires exactly on the ceetr live ned the tro corters on thig lipe were reserned for them. The large shafte were 171 feet logg nod the them, The harge sharts wore 17y feet loog and the in ainking by lines in the four comers, and oo phem ine grade of the tuavel, the line was given for 50 to 100 feet on each aide of the shaft by stretching a line along the ceater line sa piven by two plumb wipes down the abaft, and marking it by points is the root. Whee work bad progresed a iltele further a more accurate lise was given with the tranile, get up in live with the wires, sud flanlly whee the work had aitranceal far enough, so that the pointa would not be distatiod by blasitng, the permanoent lloe was carefully deterialoed.
The wires were set, at surface, on the ceeter lise by a transit placed 40 to 50 fest from them, and over monument located on the libe of the tuvael. The further mire from the instrument was adjuated first and tben the near obe. The wite was No. \& pisno wire, asoenled, and wound oe a als loch reel with a braker fastened to the head frame and from there the wire was led to a clamp with a tangent acrew motion froen which they buag down the shaft, and by whleb they were brought futo line. The elampe were fastrned to pasts aet tin the grousd to preweut vibration from the machlerry in hoisting. The wire was lowered by one poued bobes, which were exchanged at the bottom for 25 poand ones. The wires were examhed to gee that they hung clear, by a man who cliubred dome the shaft After oulfastiog the bubs to clear the floor, thry were buug in buckets of linseed oil, which were theu covered Loosely.
To get a steady alght at the bottom, an Illumisated alit, Fig. 17, was devised to replace the wires. It conslisted of two vertical atrips of brass about 3 luchers bigh, each attiached to a horlzmal liser moving in guldes, and provided with sersante tangent +erwas so the vertical alit butwen them could be varied to poeitlon and in width. These were eecured to a plank orscket close beblind ew-h wire, so that the furthre one
appesred above the bear one whrin a Heht whs placed appested above the bear one whrin a lipht whs plased
behand each. The slits were adjusted untll slightly wider than the wires, sud then, when thoy were exactly

- Begun in March. 3ws

behind them the light woald appear evealy on esch slde tormined. The position of C, with regard to the base of the wire. This could be estimated very closoly by A-B, makea a good deal of diference in the ecror is the angle at A due to small errors in the measurementa of the sidees. The morst enses are where the angle at A is larke, as in the case of isosceles triangles with the base on $A-B$, and where the angle at A is very swall, sud $A-C$ is the bnse of an inosceles triangle. The best case is where the polat C is on a perpendicular to $A \cdot B$ from B and quite close to it.
Even under the best conditions a slight error in measurement would cause too large s ove in the results to depend on the method for accurate mork.
The "Colinerr Enansess" atrongly reoormends a similar method to sbove, but more accurate, as Buperior to setting the transit in libe with the wires. Four wires, $x \times x \mathrm{x}$, sre hung in the cornens of the shaft, Fig. 21-A, and are located on surfsce by radlating slghts from four statlons, whlech are arranged, one on ench side of the shaft. the ege placed is line with the wires. The plummets ${ }^{2} 0$ that the lises, jolning oppoitse statlong, ruo mere thee removed and the slits uased to sight at These remained fixed and conld lise trausferred to the root and aftermarde prolonged to the headaftermarde prolonged to the head. ags. The firct points were placed shaft, giveg a hape 300 feet logg. Herbeae nrst pointa, holes were drilked in the roof, and plags ln-
serted, Into which Iron spikes serted, Into which tron splkes
were driven, Fig. 18 To ench splke was bolted a brass plach silh was boited a brass plate lower edge, and below this was a vernier plate to whoee zero was nttacted the plumb bob, and briog the hob into Ilne. The postive of the vervier Fas then noted, and the plambing reperated until they got three pood determibstlons of the line, that sgreed closely. Tben the sliding vermiers wers set ob the mena of the observations, abd the live prolonged to the hesdiogss puting In permanbent marka is the root at intervals.
As the root was over 15 feet high, the engloeers used a tripod ladder Fig. 19, to resch their points. These might be useful for mine work. The creas-8ections were

Pia, 19.-Trifod Ladesr.
taken by a special instrument of their own deslgs, for the deecriptios of which the reader is refuried to the origlasal articles.
Mr. Broush, in blg "Treative on Mine Surreying,"
gives the followligg method of deterninive gives the following mothod of determinivg the aligursent of the underground nurvey, where it is not convenlent or possibje to set up the tranalt in line with the wires,
Fig. 20 . The two plumb wirns A and B, are hung in the shaft as far ngart as possible nDd located in the isual manier on sarlace. Then the transit in set is the mive at a polut C, on one side of the line through the mirus, sud the distances $A-B, A \cdot C$ and
$C \cdot R$ are $C R$ are mensured with
the greateat care. The three sldes of the triaggle are thus known, and the negles can be calculated
by the formula,

Sin. $\frac{1}{1} A=$ $\sqrt{ } 1+\pi-m) \times(\pm 0.8)$

$$
m \times n
$$

in which A lo any asgle of the triangle, wand π are the sides adjacent to that then thiee sidee.
The angle it
The angle at C can be atnsured with the tranbit tions, and the angle be$\mathrm{t} \mathbf{w}$ ees $A \quad O$ sud the bext course $C R$ of the mitue survery should also bes measurrd. From the dsta thus collected we know the direction of $A-B$ and the by calculstlon, the angle $A \subset C E$ by neranigrewent and the distance A - C, bevore the dirisction of the lline O 位 mod the lucntion of U is known, and tron these the relatlon of the whole milue surrey to the surface can be de-
north and south, avd, esat and weat, reapectively. These lines serve as bose lines from whlech the angle can be read by repetition from esch of the stations to each of the wires. The distances from each station to each of the wires, and the slx distances between wires are also messured. Then from the angles and distances, the co-ordinates of esch of the wires cas be calculated

Fio. 21.-Shayt Plumbiga witi four wibed.
for the position determined from ench station, and the results tisbulated. Any observation which canses mueb variation in the position of a wire can be thus detected asd repented. The mean of the four locations is taken Ines jolsing esch wire to each of the othens sce then computed.
There may be two positions of the abaft with respect to the gabgwny, F g $20-B$ and O, elther the shaft is in it or to one sidet, both cases are lectered alik μ, so diacription will spply to elther. Stations, O and P, are chosen as far apsrt as pobsible, so as to give the lougest avallable base line. From both stations, radlating sights are taken to all foar of the wires. reading the augles by repetition from the line $O . P$ as a base, and measuring the distances as carefully as posbible. The digtsnces between each of the mires should have been prevlously messured, to see that they agreed with the surface measuremests. Each station will then be at the apex of six triangles, each baving the line between two wires for its base. Then the angle between the sides of these triangles, ant their base can be calcalated, sud, knowing the direction of the bsse joising the wires from the surface survey, the direction of esch of the sidee osin be determined. From thenand the distances, there will be tweive locations of vach of the statlous, if sll the shilve of the triaugles are uscd, siboe thee co-ocdinates of esch wirs are kbown. Thess locations can be tabulated, examined, and the means takeo as the positions of the
two stations. The

Fio. 22.
Plombiso ay Two Smafts.
method, and the boge enn be this meethod, and the bose can be dety are claimed for rggard to the position of the shaft with relation to the gagway,
mine anafls. - Wbere there are two shafte entering a mine, a plumb-bob eso be hurg ln esoch, sud the aligo-
ment of the undergrousd sarveg can be olitalned much. jolulug the sitatlone cau be calculated froms the co-ordtnater, and will thus
form the base for the undergoand work. The dis-
tance down the tance down the
shaft will give the elevationa.

Speed and accurhoy are clsimed for
more casily than with only oba shaft and at the same time, more accurately. In Fig 22,
banging down their respective shnfts.
The locatioe of the two wires mast be determined oe surfsee by a travprap, snd the direeth
neoting the wires mast be calculated.

Proceeding underground the two wires, A and B, are connected by a traverse. $A-1 \ldots, ~ 9-B$. Theo in the oflice, the undergroued gurvey is calcalated, and the
latitude and departure of B is found, with relation to A, intitude and depmiture of $Z \mathrm{LS}$ foubd, with reiatoe to A , nalmath of zero.

$\frac{2}{2}$		Aseumed		$\begin{aligned} & \frac{y}{3} \\ & \frac{y}{4} \end{aligned}$	Latitude		Departare	
		$\begin{aligned} & \frac{f}{i} \\ & \frac{i}{4} \end{aligned}$	总		N	5	K	w
	bery		Nortib	176 24	${ }_{4}^{15.6}$		0	18
	9\%	100\%		19.9		81	is?	
	\%ver	1010	>	${ }^{14.0}$		167	${ }^{9.1}$	
	319\%	\%		${ }^{85} 8.8$	14		$\frac{81}{715}$	-...
	边	s-w	Yoblok	612	${ }_{0}{ }^{5}$		6.1	
	913y	80\% 14		${ }_{\text {S1. }}^{51.8}$	${ }_{8.81}^{61}$		3.2	T\%
					${ }^{148} 58$	56.6		9.6
					\%e.0		3s. 1	

In thls case the wire $B, 1872.0$ feet "porth,"and 558.1 feet "east" of A. The bestiog of $A-B$ will, there-
fore, be in the northenst quadrant and equal to the angle $C A B$, but Tan. $C A B=\frac{558}{}$
82*-38. The azlmuth of a line in the bortbeast quadrant will be the sarve as the bearing, Dence the azlimuth of $A-B=82^{\prime} 38^{\prime}$, on the assuraption that the ani
math of $A-1=$.eno. From the surfice guryen, muth azimuth of $A-B$ From the surface survey, the heoce the assumed aximuth is $35^{\prime} s 8^{\prime}$ too small. The true szinuuth of coarses of the umilerground survey, can be foumd by sidaligg 85 " 68^{\prime} to thelr ssimuths, based on the assumed meridian $A-1$. The true locations of A and B are known, and so the
The sursers connectiog A and B, both on sarfone and in the bilee, must be carefally checked, and the kame precautions takeo mith the plambing as with one shaft. determined by two aod cbecked by the others.
At Prabra a * In Bobemin, it became becessary to deepen the Frans Josef shaft, thee down 1,390 teet, to tbe depth of the Adalbert aod Maris sbafts, whlch were 3,280 feet deep to order to tacilitate the extraction of the matomal. In order to haston the operation, it was deelded to work from flive different levels. by risding and siokligg. To determive the poeition of the new portion of the ehats at esch of these levels, they first plasoed plumb linen in each of the three shatts, and ran a traverse on
the lowest level, which was open to all of them. the lowest level, which was open to all of them,
to determine the triaugle formed by them. Then by couneecting the plumb wiree to the two deep ebatts, the surveys on each of the five levelo could be oriented, and a cross cut drives to the site of the new
shaft, sad work begun. The shaft was detiven fall slize, shaft, sad work begun. The shaft was driven fall slay,
and lined up as it progressed. The holling through was so exact io every cuas, that oo change was nreded in the masonsry lielog. Eneh time a shaft was broken through from oue level to the next, the survey was ueced for the ment miles of the next deermishan.-The work required 11 On Stal
have a chaf and oneral -Here the engineer would have a choice of several ways of determinugg his alignment. A plumb line could bee dropped dows the sbaft, be ruecr there with an assuturd mertian the lise oould log it with the surface line and the sape, contuect. hg the slope, mensuring the borizontal angles oels, to tho the slope, measuring the borizontal angles only, to the The location of the plambl line lo the shaft would be known from surface and the line throush the would be be give the allgument. Where the slogen la flat so that an econtric teluscope will not be needed, a reualar traverse can be run in through the slope, most ensily, and the checked on the plumb-line is the shaft.

mgasemisg tile deptil of shapts.

The methode, slresdy descriked, of connecting the mine and surfices survegs through shatis, give oaly the horizoutal position of the undergroaud burvey referred elevationa of the workings, by melsuring the dop the the shaft.
If the depth is measured directly with a tape, ita melght sud the puil apon It will tred to stretch it. In ton, but in deep shafis the melght of the topes, and the becessary pull to kuep it taut, way excered the uormel In each cayes the upper eed of the tape mas be pessed over a roller st the top of the phatt, aud carried thaize tally before wlading on the real. In thls hor zental stretch, many be placed two poluts at nn exact distabce apart, then with the tape nuder temslou as it is being and to mearure the depth of the shaft, the diataver between the fixed polnts is messured, this will then give the ratio of the measurned to the true diatanee. Or the is normal tway be obtainard by merasurigeg win alaphat on the tape uuder the esceselve strain. The buttosutal "-shaft Surveylng at Praihern"" Proccetiage of lave of
plece of the tape thus compared with the standard abould be at least 100 feet logg, so as not
errora of observatina to too grest an usteet.

Another method of deternining thes depth of a shaft 1 by using a steel wire (pisno wire) with a welght attached to it, nod mpasuring the mire as it is let down the shaft, and aysale as it is drawu up. This can be dove by run50 or 100 teet long, then over a pulley nud down the shaft. When the bottom of the welght is juat even with the top When the botwan of the welght jo just even with the top of the shaft, a pencll wark or elip, is put on the mite opposite the end of the ganse bearust the twel, and
then the weight is lowered wutil the mark is opposite the other eed, thus one gaoge-length of wire has been the other end, this one gage-length of wither theot end and another leogth lowered. This can be contlaned and another length howered This can be couthued
antil the weight rearbied the bottom, when the number of leogths let out multiplled by the length of the gavge will be the septh of the shaft. If there is a fractioe of a leegth lowered at the eod, its leogth csa be messured at the surface, as it will bee the distapoe between the mark aed the flist end of the gauge.
Iustead of a wire, the hoistiog rope may be used in the same way.
Tbe depth may also be measured directly by applying rods, chains or tapes to the guides, provided they are
otraight. For this purpoee a wat is fuatened to the boieting rope, at the proper distance above the cage, on this aa assigtant sits, and holds one ebed of the tape, wblle the engibeer rides on the roof of the cage, and holds the lower eod. Thry cas then apply the lape directly to
 nessared is this way three thises in six hours, locating ight levels entering the abaft, and the listances agreed withle $\frac{1}{1}$ inch. Avother shaft 1,152 feet depp was
measured four times and the greatest diference io ans two distances was a little less than \ddagger luch
[Tas Esd.]

THE ORE DEPOSITS OF CRIPPLE CREEK.

The Geology. Character, and Extent of This Fam ous Colorado Mining Region.

The northern part of the Cripple Creek district, Teoderfoet, Gold, Glote, Iroo Clad and Bull hills coosisc of andtalte and andesitic breocin, boubded on the ast, borth hid west by gramito and goedsa. A toogue of granite runs isto this reglon from the hortheast just
 Squaw gulch. Mineral hill aod Rbyolite mountain are hills are capped by phomolited flows. Dykes of phonolite are common and infrequent exhibitions of other eruptiven many le noticed amoes mbleh, bisalt and dlorite bave been provisionally determined.
The ore occurs in Alssure velns, as Impregoated dykes. ins an alteration of the edge of dylies, as chimneys at the foints and cleavages of the country rock perar the mat joints
The valuable metals contained in the ores sre gold sod silver. Probably about i of an oubce of allver is but with moderate depths the tullarilus gold is free. country rook shows some pyrite bat the velas contals Ittie aud tbst low grade
While some of the ore gives surpristigly rich returns, the product of the carap will probshly average 3 ounces. This is to be consideved a very high average grale for a gold camp giving this tounge.
The primeipal associated mineral is quartz, both crysa very aud massive. Souse of the dull brown quartz por. Io the deeper workluga a grey blus quartz will often show sylvauite on exumisation. Fiuorite is also assoclated with the ores, and when dsrik purple or transparent it is coosidered a sign of value. The gougo in be thasure relus is urualy a brown clay bat somethued white and ravely black. Tbe golit tin the clay and de composed ores is fuirly true. The quartz may be have a "caring" of decomposing country rock, carrying smail values.
The impreganted dykea are usuaily sotter than the conntry rock, and the boundaries of the pay ore often indeflivite. The ore ocourring as a aelvage 10 a dyke in andesite is geoerally sa altered part of the dyke abd ains more silica than the eonutry roek. This belvige Hocaily called "'jasper," ns in the Moose miue. Sucb eegregutiona and hapreguations are apvarently in chlan-
neys aspocinated with a croshlug fisatire velu
Yet often negs associated with a crosblug fissice velu Yet often
the Hasure and the dyke too will bet tarreo at some distauce from the futersection. The Aous leee ehaft is on
 ahart tu the camp at pres-nt. The specimen and isugart
may also be put in this class. The dykes may betroced muy also be put in tals class. The dyker way be troced
for coossderable distances aid sbows tuwh irregularity Iu thlikurus.

The priucipal nasure velins in many cases cut through the dykes and are but litte a ffected by them. One vein has ecen scen to haur nosther, lo ther Zaiobin. Most of the tissures rus northwrst or roughly parallel to the
froet range sud mais dralmape syotems. Walle the velas maindain a general directlou they vary greatly in strike and dip is their differvat portions. Io sowo mines a particuise course mill correspond to a pariticular dip snd
besp apmar relation to then alan See L. Molvaciet. Observations on the Rieh Parts of thr Ladrs of Cornwall. Trans, by J. H. Collius, Loudon, 1872. Tbe Isabellis. Victor neio hes bere opeed ap for
a length of a mile almost continuously and to a dept h o five lerels at the maln shafts, and plainly shows this
pecouliarity. The Zenobis and Pharmacist velis have als. been traoed to sone distance the latter to a depth of 320 toet. In Cripple Crevk the weins seem in some isstances to be in groaps forming a plexus of velas with a
lange body of ore at their intersection. The Summitt and Deertiore mives are of the clase. The Portlasd in the Deerthore mibers ste of the clase. The Porthod in the pecaliarities of thasure velies such as splits, feeders. nobbers, splloes, borsee and throws may be notieed.
The figkes and fisale veina also oocar in the granite. In this case the ore ts unually an impregnation of the granite for soase feet from the flasark, the milca being replaced by the tellurides and the wall not well dellioed. It was thoughe in the early days of the camp that the dykes and veins in the grasite were lastreb. Neply a been found in the Home Ifun claim near Victor; and reveral seing have bere found in the graalte on the north slope of Teaderfoot hill which give prosile of turning out well.
Tbe borman contact of the andesite with the ubderlying kranite has not been systematically prospected an yet, but should be tried evee if at first slybt the chabeed naile toy a foulting fissure bay a high prospective value. The lance and vaiuable ore bodr in the Indeperdence in the soathern diatrict seems to Eil these coeditions.
Among the deeper mines ate the Ieabells, Victor, Portlaud. While I will pot ansert that the velus inerease in size and value in depth, yet I can say that the deeper rorktogs of the mines meetioued certatuly show that the average vela is as proditable below as bester the surface The change to unozidized ore in depth to this district is a matter of litile vote, for bat a manil part of the product is free milling ore, beuce no cheok io the output is to be expected such as occurred is Lesadville and Central lity on resching sulptides.
It is probable that a number of vents, through whleb the sudvalte was thrown up and spread out over the graate, exist in the district and they are probably of great exteot, so that in many places deep sinking will contiaue to show sudesite. In other parta the granite may be reacbed. In sotwe of the deeper workitugs an
increase in the inclusted grauite may b- notiont fodicas. increase in the included granite may be notioed. tridicaLing an approach to the masoive granite. Whee the veio artives at the gruaite. the change of walls may influence
the character of the piberalization, but there ts no the character of the mibernization, but there is no
resson to belleve that the velo will be cut off by the coatact with the grautte. The boundaries of the district are not yet elesrly deflioed and may be susceptible of conalderable extension.
Several outlyleg bod es of sodesite are known, the Home Run meotiobed above is a pay fisaure eatirely in be granite, and the new disconvrieg on the north slope Otiseral hill on phonolite dyles in the granite add largely to the possibilities in every direction. The
teritory pow being wetively morked to about six miles teritory
square.
For a time the woederful dlacoveries in the gouthern portion of the district samewhat overabsdowed the northera reglon, but durliog the curreot year a great minea such as the lasbella, Victor, Gold Kiog. Union sod otbers are sinking atiditional shafta, putting is heavier machloery, perfectiog their surface improve menta by exteeding thrir ore bibs and soring houses, sud pushing extonsive development work. Many new , Mor Mel Guev More than a dosen new stesm holots have been erected on Gold hill atoce lat Fetbruary. The outpat both in tonuage and total value la strasil y leereasing and bida falt to double the product of the state in gold.
The camp to exceptionally well provided with facllities for the transportation and reduction of ove. The higher graber rock is sold to the great lead amelters at Debver two ehlorinathon worke at Gillette and lawrence, and the tro cyanide plante at Flopence sud Lawreoce. The ow grade surface ores ary worked up in the local cuatoen stamp mills by amaignmation and cosceotration with a fair degree of suocess. Transportation is provided by two rallroals and good wagon roads in every dirrotion.
To one looking bsek but a few ypars, the change from pracotal cattle raoge to a group of a dozen cities abd hills dotied with puming bolate 12,000 , the suatrounaing ings, the air rent by the sharp blasts of gisent powder aud the roads blocked with eodless precessions of foarhonse quartz teams, is marvellous, mod a mobument to western, and prlaclpally local, miolog evergy. The esmp attracted but litite attention in ite beginsing, partly on account of the fruithess stampede to Moant Pi-guh some tes milles west in 1855. But an outpat of $88,000,00000$ in gold ti a yesr from the di-trict, indlcates tber cesuse of this wonderfal trausforimstlon

Cableways for Open-Work Mining

An ioteresting fact to contractors is revealed by the ube of the various syotems of handlisg rock on the Chicago Saln Draionge Casal. A day's work for a man in filling lime ptobe into shallow skipe, as used on the
Lideerwood cableway, averuges betwem 16 and 17 cublo rards of roek in place for esch tea hours' mork, whil the work of tilling the cars, whech are about ${ }^{3}$ ' high averages only about 9 cubl-yard- per mas. This is a retbarkabis sariug and al one woald justify the use of the in this conoection that thume ares. pow tweuty midner cablewnys, whleh, by the way, are masnufactared eolely cableways, whleh, by thn way, are masnufactured eolely In use to the constraction of the Chicago Mais Drainage Canal.

CABLEWAYS AT COAL STRIPPINGS.

The Suspended Cableway in Use for "Stripplng" the Coal Seam at the Coleraine Colliery. Beaver Meadow, Pa.

The suspeoded cable syeteos of hoisting and conveying bas beed in toee for many gears ia shate and stoue guarti-8, open wotk iton mibrs, excavatigg de. Fot these purposes it has attained great poput-rity, abd it a cousidered abmost fmpoebible to do without it. Howver, for "stripplng." (rewoving ground and rock from the coal strata) it is but reveu
Mensms. Cranford it Dugsu and Dick if Mustz, cotractors at the Leth gh i Wilkee.Barm Conl Co's miues tractors at the beh got ine firat fo introulace the gyntem in the authiacit,
 oy all taterested parties destrous of gettiog the trat oy ail toterested parties destrous of geltiog the best tbough lhere phante were noterected tooperuteon a large scale, they demoestrated that the syatem met a long felt want, and becaume of ita adaptability had cotwe to tay, and to a cortaio extent take the place of the oteam shovet.
Mr. A. S. VanWickle adopted the cable gyetem at his Coleraibe Collierg, Beaver Meadow, 'la and erected the firat plant in the carly part of last spring. The strippiog at this place is quite exteosiver, sud is order to rewove the top as quiekiy as possibled during the summer. In starting a neen plave thens are certsin disadvantages, aud while the cobditioes nere unfavorabte to work to the full cagacity at the begianin, the expression of eatisfaction by Wilde, shows that the resalts obtalned exceeded their aticigations.
The accompanying fllustration, taken from a phrto. graph, represents the flrst two of these cableways. The respective sjans of the cablea are 800 and 900 feet with an individuni load cajacity of 6 and 7 tons guaranteed. This bowever, is not the Hinit. Hocks welphing about 10 tons have been coaveged to the "dunup" witb comparative ease which democostrates its eflicieucy to handle rock of masuy tons weight mithout flrst bseaking into

Weistea for Tus Colueny Ewomerk and Mktal Migek.

A FLUME CONVEYOR.

COAL FOR COKE OVENS CONVEYED E.400

 FEET BY WATER.
Description of the Montana Coat and Coke Com-

 pany's Method of Reducing the Costof Handling Coal

(By B. L. Lugch C. Ey

The Montasa Coal and Coke No, operating mines and a cokigg plant at Hors, Moatada, completed in Aprit last a flume for conveging the washed cosl from the
 are $8,400 \mathrm{fc}$ diotaut fromes sud 1.000 ft . Jower altitude that the washer. Now biug 1,200 ft. nearet the ovees tave bevil cousirgcted, and the flume has been +xtended to them. The flume is coustructed over euch rough ground, and bas suet a vatiety of grades mod curven, that a description of it from if inception will go doubt grove interesting.
While the witer does not in any sense lay claim to the fuvention or conception of a thame for the purpose of carrying erusbed or washed voal short distances oo good gradee, the does claim that the trausportation of the output of a faise, except the lamp ooul, over a long distance abd ruggt conatry to the coke ovens is a woveliy. It is true, it is simply an application asd estension of as old des, but it is of such magnitude that it is worthy of
botice. It is bow traneporting all the coal required for botice. It is bow risueporting all the coal requirad foe the coke ovens at a cost of siwply the iutereat on the
luvestment and very slight repairs. The ohd method of tramoads abd ibclibes, Was becubarily t xpether and was LoC of sufficledt capacity to supply the de. matuls of the oveue.
The saring is the coet of transportation 1980 great that the whole cost
of the construction of the

When it was represented to Mr. John H. Courad, the owber and manuagre of the mines, that, having the water at hand, a greater and adequate supply of coal for the ov-res comld be traneported witbout cost by meane of a Slume, be, with the sautacity and promptness which charautorizes him as mell as the western mine mamager Hetermaly, saw a good thing in it mud ordered it put it at once.
When the writec tan the levels he found that there was 128 fret fall from the washee to the track at the Eirat "divife", which is at the end of the lirst tramioad and the head of the first encline. Thls gave bim a coimimumin gradient of 2.8% or 0.7 feet per station of 25 of the survey. He mase a recounobsace of the gtomed finding it rough on every route. Ove route wblch had been sughested to the Maumper, and which followed in part an obd pipe line amd led binally down the iast torplive (which has sin amgle of $20^{\circ} \%$, was conslidesed obs jectionable at first, frow the fact tbat the flame was to ter made of plank \& tnebes thiek, aud of course jointed. and the fecline being two-thirds irestles, the continued vibration would keep opees the jolats, which otberwise woukd fill up with fines csal, and because the coal and water comlug down the angle of 20° tuto the settling tasks on top of the drying bina would neocssarily keep the contents in a turmoil with litule chance to settle. Therefore, a route goiug straight down the moustain following the sithe of the first long linelibe, (average pitch of 22^{*}) and from the foot of this down a very steep ridge, aud over a bluff, to the bottom was adopted. About 200 foet ot this was on 45° grade or more. On reaching the bottom of the mouutaio, the grade was rounded out

Cablewaybat Colreaise Colletiy Stmprinos.
amaller pleces as has beeo the practice for the stean shovel.
To havdle smaller atobes and ground, sklps, or boxes are provided of suitable slze.
The third plant at Coleraloe is of the horlwontal type. A 2i loch diameter stod cable having a clear span of 1000 feet is suspended from two towens one of which ta 183 foet high. The amount of manterial handled with one of thene plants depenis on the conditions surounding it. A fair average, however is frotn 800 to 500 eable yards per dsy. Any doubt, or objection which may have existed is to their pructicabtity has been diapelled, sud other operators are molopting the system Doleon Conl Cos.s milnes. Mores, Ps., su erecting a Dodson Coa Co.'s mitses, stores, Pa., Is erecting in plant of the same cajnclty as those refered to nbove.
For opee plt mining, after the top has been remowed. the gystem will no doubt grestly faclliate the work of the gystem will no d
takligg out the coal.
The mschlnery, hoisting englos de., for the plants refeced to was furntabed, and erected by S. Flory \& Co. mannfacturers, Bangor, Penns. who sum jrepared to farnish cestimates for coesplete plants. Those contonplatiog the uee of plants of this kind will find it to their intered to commualente with them.

About Pumps.

A rise in prices is indicative of two important facts: Firat that there is a strong demand for the artlele, and secoud that the quality of the article is of so high a grsde that the producers to not fear the compenition of of cheaper and laterior articles. Whe favt that That branch housps and agents thronghoat the oountry demand for Laidlaw.Duno-Gordon pumpa, and ia aleo strong evidence of thelr saperlor qualities.
flume will be saved in a few months. It was the ne-
ceasity for a greater supply of coal that led to the ceasity for a greater sup
construction of the flume.
vonstruction of the tlume.
The locstion of the mines ls at the noothern terminus of the brasch line of the Northern Pacifle Rsilwny, which leads from Livingaton, Montana, to Cisnahas, the entrauce to the Yellowstoue Natioual Park. We are about 5 thiles from the liue of the park, and are, there-
fore, In the Rocky Mountsion Our railroul ntation is ont the tanks of the "Upper Yellowatove" in station is on the banks of the "Upper Yellowstobe," io the famous Electric Pesk, 12.000 feet high. while thetwern the the Lectric Pesk, 12,000 feet high, While between the mining camp and the station is the "Devil's Slide." This is
the out cropplage of a perpeodicular veln of the red ore of cinosbar, which is about 15 ft . thiek, sind which is of cinosbar, Which is about 15 fc . thick, sad which is ranging from 75 to 150 feet beigh, sud whleh extend from the top of Clinathar Mountsin to, the foot, ext form sight well worth travelling is long diatanoe to see. Wlaen sight well worth travelling a long diataboe to see. Wbeu
the traine come by bringing tourisis to the Yellowntons Park, they stop juat before they reach our statioll in order that the toarlata mose get a view of this beanlifal olght. Our station is 5,200 feot above the level of the sea, while the maive workings are 1,100 fevt higher. The works are satuated relstively ss follown: The washer ta sittuated about 80 feet below the mouth of the mines and is the point of discharge inte the flume. The lowing then, ubder the torcuer drying bins, is nis feet lower. By coal was haulod by mules over in tramrond 4,000' feet long; thence, down an ineline 1,300 feet loog, which is at as augle of 33^{2}; thenes, over another tramrosd 2,500 feet long: thence, down another tacline 200 feet loog. with as angle of 20 , to a ble ; thence, it was bauled to a "larry" by a "dumeny" engloe (sueh as is used on street rallwing) down another thamrosd with 8,4 and 5% grades to the coke ovens.
with a vertical curve by means of a trestle until the grade of the gmall branch which comes domn near by
was secured. This branch was then followed and good Was secured. This branch was then followed and good
alignment and good grades, starting with 15% aod aligument and good grades, starting with 16% and
gradually lewoming untit it got to about $6^{\circ} 6$ were 88 gradaally lesseoigg until it got to about 6% were $88-$
cural. The writer then went to the nem drying blag cured. The writer then went to the new deying bins
and locsted the lise back, using the same minimuma abd locsted the libe back, using the same minimuma
grade as on top eve.; 9^{\prime}, and followed this untul it grade as on top wir.; 48° and followed thls unta it
crossed the line coming down the branch. Then the $6^{\circ} \mathrm{a}$ grade was rounded into the 28%. Of conese when following the mislaum grade we took the best allgnwas side hill get without to much grade work. It cnough room for the boxes to rest on solld sverage chough room for the boxes to rest on solld ground, thashing about hait a dozen thorough euts, and puttisg wabout n dozer swail frestles. Some of the curves
were pretty sharp, hut we figured that when we made if thomoght eut or trustle. that the shortegivg of the A thorough eut of trustle, that the shortebing of the disfavoe would about even it up, and give ebough com-
peesantion for the curves the compensation required in this case belng to Increase inetead of lighten the grail. this
ent.
Nome of the "wlsemcres" of course critictaed the tlume abd were ready to say, "I told you so." They clalmed that with such a diversity of grades it would never the rary at the coal and water would travel faster on we did pot disputes, bout we the minimum grsue. This Wha groater, the wolume must be the somes that it could not go down the hill any fuster than it got thene over the long stretch of 4300 feat of minimume grade from the washrer to the divides and that after if got dows the hill. is would travel as fast own the minimuna graile of 1000 foet at the lower end os it did at the top. The successfal behavior of the flame has proven that it will work bwatifally on ewen ss light a grade as 2.80, and that with an egtabllabed minimum,
care being takes not to get Batter than the minimum and to comprenkate avea very lightly for cutvature, it of it may ber, and at almost auy curvatare
As was meotiound sbove brarly all the graling that Was done was on the side hills wheve wer eatabilished the molalmum grades. Pegs were set to grade at intervals of 25 feet, or on the "grade cootour." As we coanseneed the work on the 4 th day or March, the survying was done before, and st a tiase when the groubd was covered
with snow and wha frozen. It was found nocessary to with snow and was frozen. It was found necessary to
take a short drill along to make boles down into the take a short drill along to make boles down into the
frogrn groum, noing jugs a litule larger than the drill, Whlch weot li light and weres set to gtude.

The sid , hills were grabes! with the objects, flrst, of getting as moch as possible solid grousd b-aring for the bosets serond, of covering up before oobl weather to kerp from frowzing, the int-ation beling to makee embaskments at the sble and barris covre the tup, it hav-
ing beeu vbserved that the short llume fiom the washer to the f romer drying bing, wbich was cowered the same way, did not frew 20 nil 1
pretty cold wentber bire
Whrie we wrat struight down the mountain, the flame was buitt almose regardlese of grablez or curvec. It was simply pat in the quickest and unost coubruivat phave
sowee care betag taken to get through the suow, sul Weil finto the ground with blo sks at ewob joint. The taten-
 thon betige to put man mashinsent of carth at ench side. wenther comes.
The box*s were made of undressed 2 inch fir plank, having 8 luch bottons sod 10 ioch shles thus giving an 30 perney wire bails which were put at intervala of alous 6 Luches; sud collars of s" s. 6° piauk were fited with pome care at each jrist abd were put around the boses at the center to heep theom from warping or twistiug
Tbey were in lewghs of 12,14 and 16 fuel, Tbey Wrre in leugits of 12,14 abd 16 feet, mandy 14 to go arouad tbe vurves. Thery were set at silght anglen with ewth other to manke the curver, or as the carpenter would say with in 'bevel cut," which was so moch io some cases as 4 toches in 24 , of that wash moch deflection from the line of tbe last bos. To nsske the joluts close, the boses sere sect in poeition as they were ivtended to made; then belug set eod to end sud leveled up to the re. guired grade, a sam which bad the teeth sect wide was rua down through the joints, eattiog out where the
boxus didt touch the wath of the gaw ant If the did not make the jownt tight it was repeated, often thres or four times, ubuil it wis tight. Then the bottom plece of the collar buing alemily of the front end of the lase box In d, thee bowk end of the next box toing fltted was apiked down to the coilar piece. This beld it to position for the unse conslag behied who put on pleors of $9^{\prime \prime} s 6^{\prime \prime}$ of ethmr side affer tak igg a chisel aod maklug the sidee of the julut smooth so that the priovs would cover the
joint and have a bearlug on both boxw, theo avother plece of $2^{\prime \prime} \pi 6^{\prime \prime}$ was bailrd across the top thus complet ing the colise. The jointa could not bet bett-r. It was calculated that while at first a very little water mabt leak at the joluts, they would soos fill up with floe oosl, which was found to be the cuse, the If ume sot leak-
ing at all now. log at all now.
The tratles, bot being in any places very high, were built of $4^{\prime \prime} \times 4^{\prime \prime}$ stuff, with simply a cap plece $4^{5} \mathrm{ft}$. Joug
 nailed" to the cap plece. Whrro rresties oceur it is
interded to bux in the Ilume with boards and fill in with saw dast
The fume has almost exceeded our exprctations. It is working beautifully. It carries over all the ooal that
is put into it without coot exoept futerest on ite conoatruotion.
Iu s fer p'aces wbere the "frost" was pot all out of the ground, the flume settled sotue below the grade live, But elore we wrot ung a certain extent and overthow But ature we wrot owor it aus pat it true to grade it hes sive u bo trouble at ail. This is likes rogulating the
ittele decails of mavhinery or any other mechanical conIriruse, that we flul that likn some of them is la an triruse, but we find that like some of them it lo at imporiant detail, and the grod- mast be set with great whete there is a loug str-teh of miaimum grade we Bud that, as ambicipated, a stmper grade for a short distance with the mialimum on either side of it is o-ariy as bad as obe tou flat, by teuding to canct pulsations in the flow at the buttorn of this steep part. Thie is atisent rhers the grade is uniforio, or only compensated very lightly for eurvature.
We also And the coarser part of the washed cont, of pleoes "N4 lange as the end of the thager down to "buckother and tiorr past. The most of our coal belug tlae it Is barder to rarry than if it were pes coal or buckwheat size. From 49 to 50 pose cent, as it coment frome the mises
 Sastern bituminous markets, and when pat through the folls at the washer, erubbes to very floe coal. In far above smil mash it uutil it becomes alnost as liue ss menl. But it la the best cokiug eool tu the State of Montana, and as We belleve wet of the Allezheny Musutalus, I as used alonost exclusivoly by the smelters in Butte Ciry templating building 100 more oveng in the very near future, and nhoo to put in s lange thame to carry over the lump ooal as soon ias the lamber can be gotteu out.
Of coures there muat be settling tanks on top of the
 with au overflow from tirst to apcond usel from second to diecharke apout, They ure not bailt tetrel. The end at Whleh ts the rverflow betog bailt 9 or 4 luches lower thau the othre eod. and then qeoond tank lower than the firsi of eath phir. The cont evans froan the Howe and prorflist overflows, it is perhape $\frac{1}{+}$ full of coul, and the water
overfloming from the tirst to the excobd, cstries with it, in suspensing, very fite particles of conl, almost sh fibe as Bour. This will be carried over from the finst on ne little If any going out of thu secoud tank. Thia la nearly as thue as tlour, but will makerse good coke as any; it fact it is clainsed by the Yand bosa, that the llacat specihieas of coke eoming off the yard was mando from sotne of his verg litie
ovens to buri.
The power used in our washer is a Peltoe water wheel Thes 18 jucbers No. 3 motor, having a head of \$00 feet
This not only ruma the This not ouly rums the machiuety of the wasber, the erushing, the nlevating aod the jugs, but supplies alusobl cnough whier to carry oner the coal
cary of the roek discharge or waste
Thes thase on all except the minimum grade mas lined with shere ifon to jimsebt wear. It sectos to be soeneant the flame "Kodnk. Hous put lin the cosel sud wate anf the flame "does the rest."

A NEW ELECTRIC COAL DRILL

A Convenient and Efricient Portable Machine.

Tbe application of eleetrie machibery to mining is he combug move general every day. This is particularly the
 inborions operation in the getting of the coal in the drill
Daring the past yoar The J+ffrvy Msonfacturing Co of Columbus, Ohlo, has mande sonse nullical improveracute in machituery desigged to accomplish this laborious का irk
An electric power portable drill that is cooupoct, stronge An electise power proriabive drill that is cooupoct, strong handle it with ease lans long bevi desired. The dral which we Illustrate herewiti coablues all the beet points

St., Che Chicago Fire Proof Covering Co., of 48 Franklin
 sprial bleam gipe covrrigg for n ibe uses, that bes met
with gient favor and which io guarantred. Well rovernd cleam phpes at mitus are sot ouly debitable ber ause they furbisb diy steam nud bleher perkute to the chgierg,
 delitegratiog the icof. In fact got mine manerement drebebds the une of a gocd pipecoverisp both ovaccuant of ecobstoy and inereased sufety
Water Tabke for miue bupldy are a prime requesite at lank is ofteu a quertion that mbete to get a gor d erdar
 Micb., pake a spectalty of tauks, and thrtefore make
 A good chasin pulley block is one of the ment eno-

 Co., of Mitwanker, Wis., is notable for tis etreogth, veeveniesece uad case of opration.

Smecial Electrical Appliances for Mines

Altbough The Obio Brase Conpusy hus but recently
 usiog electricily for traction purjober, set the resulig which have eo far bees obtalued are of the coust pleas. log chantucter.
Among the largest installationk recently made on whi h fs minterini has bersused buay be wentioned the

 Kanawha Colliery Compuby, Mt. Cortron, W. Va-; SA,
Cluir Coapany, Eage, W. Va.a M. I. Davis Company, Eur-ka, W. Va. Coresin Cual at Cuke Company, Coroba, Ala,; Card Upson toal Company, Shandre,
Ohlo: Yinton Colliny Company, Voitotale, Pa, Ohbo: Vinton Colliry Comgsuy, Vintobdule, Pa
Pulask Irou Company, Eckman, W, Va: Mooongsh Coal at Coke Cimprny. Atobougah, W. Va,

Engineering Views.

Englneering Vivwas is the sitle of an exceedingly band some album of half-tous view of litidgre, blest funawee otrel works, watri worke, mibe tipites, coke pants, Wvalughouser, B'dd'g. Pathotoung, Pa. Though both young men, Messis. Wilkins abd Davison show in this album a scope of work, such as f-w of the whler mormbers of the profrsolon can show. In pribt of mapbitude, the album bbows that the tirm nojoys the coutidence of the lewding luvestors in fodustraal estubIlobments in wrstern Prankylvabia and Obio.

Industrial Railways.

The Ansonla Buas \& Copprir Cumpany, Ansoma Goned by the C. W. Hum Cowpuis Nowe pavge, de Thorbdike Company. Tborndike, Mases., haver alvo In stalind the Ilubt syit+m of narrow gauge raliways for haudligg materinls in thelf worl-s.

THE DRAINAGE OF FLOODEO MINES.

The Self-dumping Water Tanks Used at Luke Fidier Colliery in Removing a Large Body of Water.

(Hy Bains Helberstadt. E. MC)

In au article on the fie at the Lake Fidler Colliery,
 self-dumpleg water tanks used to nssist in remoring the water from the mine after the flre lad been extioguished and a deseription of them was promised in a later num. ber.
Bor
bod
The removal of water from mines by means of speclally constructed tanks, as well ns by utilizing old bollens or sections thereof, mounted on frucks for use in slopes, is by bo means of recent origin. In most of these apppliances however, the removal of the contests required from a comparative standpotat, too muxh time, whivether the dischurge was through valves either at the bottom or side pear the bottom. The time lost, though seemtogly short, smounted in tweaty-four hours to considerable, and to obviste thls s more rapid method of discharge Was desired. At the Lake Fuller Collery this was doubly necessaly, since an timmense body of nater was to be rermoved, and to put the mine in working order as quickly as possible mas of stent importabce. The couditlons here were eatirely favorable. The shaft whe se curely and flioely timbered and the bew shaft engibes were of great power, developing a high rate of speed, yet througb modern devices, sueb ss stexim brake and reversing appliances, suder perfect control
In the lilastration we show the elevation and end view of the tanks now is use at this colliery. They are constructed of iron boller plates $3^{\prime \prime}$ in thickness. They are tmenty feet logg and four foet in diameter, with a capacity of $15,500 \mathrm{lbe}$ or over 1200 gallons each When lowered to the nater, il valve til the bothom of each tank is opened by the weight of the tank striking
the water. When the tank it completely submemerged, is the mater. Wher the tank it completely subcarrged, Is foll of water, and the welght of this mater closea the Ine as Hooe as the hoisting buging.
fnatead of discharglig from valves sther at the slide or bottom, tbese tasks discharge from the top, the mhole tipping over as shoms and dischargiog the coeents in a few seconds. The tanks are suspeoded in Iron framoes fastered at A, this frume pusses along the along tbe guldes, the upper part bellig held by guide whects B and C
The frawe extronds severnl feet above the top of the tank. At point D a strong bar of toog eirves to keep these slose bars apart, st the same point the spreater distabce below point E the guldes are cut away. It will

Drainage of Floodrd Miske.

be noticed that a space is left between point \mathcal{G} and thr guile to permit the pasasge of the frome, bat Dot suftident for the gulde wheel O, which gassees through the guide, cut away below G. Galde wbeel B then meets aud runs along the T rall 1 , supporting the weight of the tank.
Under ordinary clrcumbtances, the rapid ans repented discharge of so large a body of water would cause, in in short times a serlous mashout. To prevent this the tanks discharge their losids into a wooden tank of sumfclent slise, from which the water is removed through an ${ }^{\text {aperture in the side at the bottom. }}$ From this tauk to the crerk ber

From this tank to the creek below, wooden troughs are latd, the fall of the grousd being too rapid to permit the water to rus over the surface of the ground wilthout serious washouts.
Depeodent upon the helght of the water in the shaft, these tanks dibecharged their loods at rates varying from 125 to 75 per hour.

A rate of 100 annks per bour for thrteen cosencutive homers was malntalned and in that thee 10,075 tosis of Tuter were removel.
The plan of bolstivg water in tanky is in use at a
number of the deep shafte in the regioe and it is claimed to give better resuits than could be obtained by pumpling. In the matter of cost the advantage la said to beo in faror of the tank scatem.
1 wihh to acknowledge the courtesy of Mr. Moris Willisms, Supt. M. I. R. \& M. Co., who planised these tanks, for klotily piscing at my disposal the drawiags trom whifeh the cuts have beeo made.

WILLIAM D. DODDS.

Almost a week after the terrible botet disaster in D-aver, Colo. in August, the wfiter was atartled and grieved to road in hils morning paper that "the boily of Willam D. Dodids, of Albany. N. Y. Whs taken from the raias of the Gumry Hotel yesterday. It was identifled by a letter fousud in his pooket from his little daughter in Albany, scroes which be had endorsed 'Raby's flist l-tter to Papa.'
Affectling ne this was to ordinary realers, it was doubly so to the writer, who was not only personally noquainted with Mr. Dodis, but who whe also cnomected with him in a tousiness way, as be was commissioned to repreent Tur Culligey Enaingre and Metal. MiNen is Colorado. At the time of his death Mr. Dodils had only been fit
He was born in Fayetteville, Irai on January 12, 1804. His eserly life wha epent in Imilana, Pemmey vabias and Ksnass. H+ 世ras pducsted in the pabile gehoolg, snd ater was under the private tutornge of his father, who was a Presbyterlian elergyouen in Topeka, Kansas Early is life he was drpeodent on bis own exertions, and it may be truly sold, he was a extf-towle mav. fis firet bositues experience was gatned in clectival motk. Ahout fourteen years of his life was apent in Colorndosand Sloutana, where be was comnected in diferent capacities

Whetav D. Dobine.

with the mining industry. In 1800 he went to Granites Moentana, as assistant suprrintendent of the famous linatios MIt. Co. nod Iater he berame manager of the Elizabeth mine ot Granite
On August 818t, 1891 he marreed Mise Enie Russel Buck, of Albany, N. Y. who with one doughter. the "haby" whose Ittile letter ideatified ber father's body, survines hims.
Doring the business depreasion in 1893, when silver tolulgg canee to a standatill, he with his family came wat to Albany. In October of that year be acoepted the position of superintembent of the Sauta Lucia Mising aud Silling Co's minns to Honluras, Central Abeerlen, whete he remained one year. Upoe his return to the Coited States he was employed by The Colliery Engineer Co. to assist in prepariog Instruction Papers on gold and silver mintag for The Correspoustence \&-bool of Mises. This work was completed a short time before his death. After the completion of this work, he decteded to go tu Colorado and visit the prinelpal mining camps with a view to suekiog a locatlon. While traveliligg for thbs the states, her experten to het as a apolat agom babits, and in conbection with his active work, was drep stodeot. Inside of two yeans be almoet finished the Full Miulng Course In. The Corregrondebces School of Mtowa, and mequifor a practical knowledfee of the Qeerman nexd Spanish lanicuapes.
His moral cbaracter was above repronch. A oon atatent member of the Fitst Preshyterian chutcb of Alhany, he rigidly ashered to the high monal stapdard expected of members of that dethomination.

Notice to Users of JamiesonFire-Resisting Paints.

This comprasy has bewn compelled to dispenee sith the services of Mr. Augustus Jambeson.
Out paints contimas to be prepnced under the same cheorit supervioer as heretoture, by the company' chemist and expari

Tue Jashems Fue-Rembitsa Paint Co
62 Willam st., N. Y

Writion for Tem Colaishy Emateses anp Metal Minen

Ventilating Fans.

(BI F. W. Bperr, Mictigen Mlaigg Sebool)
In Vol. XX. Transactions of the Amerlesu Institute of Mining Euginerss, pp. 642.3, Mr. R. Vas A. Norris has pablished a table, givigg the volumes of slr dellvered by a lsnge namber of different fans at various velocities. The resalte secre the interestling purpose of brlping to secertain the law of varistion between the tadial veloclty of the air and the number of revolutions of the fant. If we let x represent the number of revolutious of the fan per unit of time and V the volume of air deliverrd, V will vary as some power of n, the general equation belog $N_{1}{ }^{*}: n_{2}{ }^{*}: V_{1}: V_{-}$
The radisl velociry of the air varies as the volume. Thes, for No. 1 fan, A and $B, 84^{\prime}: 100^{\prime}: 396.684$ 336,805 ; and therefore, $X \log .84+\log .350809=X \log$. 100 + log. 236,684 .

$$
X=\frac{\log .836 .862-\log .986,684}{\log .100-\log .84}-2.02
$$

B and $D, X=\frac{\log .347,396-\log .336,862}{\log .111 \quad-\log .100}=29$.
D and $E, X=\frac{\log , 394,100-\log , 347,396}{\log .128-\log , 111}=1.23$.
Avernge value of X^{\prime} for the donble tans -1.18 .
For F and G, the single fan

$$
X=\frac{\log \cdot 247,876-\log \cdot 188,888}{\log 129-\log \cdot 100}=1,48 .
$$

No, 2, $A \operatorname{abd} B, X=\frac{\log .82,969-\log .09,587}{\log .83}-\log 0947$.
No, 3, A ant $B, X=\frac{\log .137,760-\log .49,611}{\log .70-\log .49}=1.82$.
For No. 4 fan we have obly one obeervation publiabed, and no comparison cas be made.
No. $5, A$ and $B, X=\frac{\log , 147.252-\log . ~}{\log , 397} \frac{\log , 28}{\log , 205,61-\log .28}=1.32$.
B and $C, X=\frac{\log -205,761-\log \cdot 147,282}{\log .69-\log .50}=1.04$.
C mod $D, X=\frac{\log 290,600-\log \cdot 205,761}{\log .96-\log 29}=1.14$.
Average value of $X=1.17$
No. 6, A nad $B, X=\frac{\log .92,160-\log .66,560}{\log 100-\log 80}-1.46$.
B and $C, x=\frac{\log .109,440-\log \cdot 92,160}{\log 120-\log \cdot 100}=1.19$.
Average value of $X=1.39$.
There is but one obectration published for No. 7 fm , and ove for No. 8 .
No, $9, A$ and $B, X=\frac{\log , 272,390-\log 234,8(3)}{\log , 35}-0.93$. No. 10, A and $B, X=\frac{\log , 194,200-\log .134 .6012}{\log .73-\log 66}=8.68$. No. 11, A and $B, X=\frac{\log .215,200-\log .175,280}{\log .180}-\log .150 \quad=1.06$. No. 112, A and $B, X=\begin{aligned} & \log .257,520-\log .217,388 \\ & \log .50 \quad-\log .45\end{aligned}=1.61$. No. 13, A and $B, Y=\frac{\log .57,130-\log .28,896}{3910 x 19}=.98$. B and $C, X=\frac{\log . ~ 66,640-\log . ~}{62,120}-.247$. O and $D, X,=\frac{\log , 78,090-\log , 06,640}{\log \text { im }-\log 20}=50$. $D y$ snd $E, X,=\frac{\log .94 .080-\log .73,000}{\log .35-\log .30}=1.26$. E and $F, X,=\frac{\log , 112,000-\log , 94,080}{\log 40}=1.30$ F and $Q, X,=\begin{aligned} & \log .132,700-\log \cdot 112,000 \\ & \log .50-\log .49\end{aligned}=.76$. Q and $H, X=\frac{\log .173,600-\log .132,700}{\log .60}-1.47$. H and $, X=\frac{\log \cdot 203,260-\log \cdot 173,600}{\log \cdot 70-\log \cdot 60}=1,62$. I and $J, X=\frac{\log .222,320-\log .203,280}{\log .80}-\log 20 \quad .67$.
Average value of $N=.87$
No, 14 aud 15 have but one oheervation published for eneb.
No. 16, A and $B, X=\frac{\log .112 .573-\log .84 .149}{\log .80-\log .58}=.32$. No. 17, A sud $B, X=\frac{\log .98,512-\log .85 .285}{\log .80}-\log .70 \quad 1.08$. B and $C, X=\frac{\log , 10:, 300-\log .98,512}{\log .90-\log .80}-.28$. Average value of X for $N o, 17$ fan $=.90$.
No, 18, A and $B, X=\begin{aligned} & \log , 29,498-\log , 17,640 \\ & \log .48 \\ & -\log 25\end{aligned}=.74$.

$$
n \text { and } \subset, X=\frac{\log .51,842-\log 29,489}{\log 104-\log 62}
$$

Arerage value of X for No. 18 fan $=-78$.
The qbervations on No. 19 fan were not falrly made, as explained in the bote, sad we shail not constder them
The obeervations on No. 20 fan were made on different mise orifices, and, therefore, do not answer the purrose in hand
No. 21, A and $E, X=\log .301,135-\log .177,853$
$=35$. $\log .1108-\log .88 .6$
The average value of X for all these obserrations is 1.14, and it will probably be found to be unity by more extended and careful determinations: or, in other words,
the radial veloctity of the nir varies as n.

EXAMINATION QUESTIONS ANSWERED.

the examination of candidates for CERTIFICATES AS MINE FOREMEN,

Heid in the Orfice of the State Mine Inspector at Birmingham, Alabama on October 26 th and $27 \mathrm{th}, 1894$.

Quxs. 22. What is the sate morking load of a steel rope $1 \frac{1}{5}$ inches in diameter?

Ass. Maltiply the square of the dismeter of the rope In taches by 9.4 , and the resalt will be the safe working load fu tous, ns ${ }_{8}^{9} \times \frac{9}{8} \times 3.4=12$ tons bearly,

Quss. 23. What is the prossure per equare foot at the foot of a stand ptpe filled with water to a helght of 105 fvet?
Axs. As a cubic foot of water weighs 62.5 pounds, the pressure must be, $62.5 \times 105=6562.5$ pounds per ${ }^{8}$ quase foot.
Quis. 24. It a water-gaveg of 2 inches passes 15,000
 30,000 cuble feet per miloute is the same air-way
will be the rosalt of dopblling the velocity, and quatity will be the result of donbling the velocity, and as the preasures vary $30,000^{7} \times 2=\frac{39^{2}}{15^{2}} \times 2=6^{1} \times 2-2^{2}$ gauge will be $15,000^{2}$
$2=8$ loches of mates-gauge tor the Increased quastity. Qeke. 25. If two borse power passes 14,00 cabse lincreased to double the quantity?
Ass. In the sanee alr-way, the powers vary as the cubes of the quastities; asd as the quantity has to be doubled the powr in the secood case must be as the
cube of 2 multiplied by 2 the power for 14.000 at $g^{\prime} \times 2-8 \times 2=16$ horse-poner to circulate $14,000 \times$ $2=28,000$ cubte feet of alr to the seceod case given. Ques. 25. If you have two atr-ways ueder the sam presure, one $6^{\prime} \times 6^{\prime} \times 5,000^{\prime}$, the other $8^{\prime} \times 4 y^{\prime} \times$
$5,000^{\prime}$, which will pass the greater quantity aud why? Ass. Call the nit-may $B^{\prime} \times G^{\prime} A$, and the other $8^{\prime} \times 4 y^{\prime} B$, then as the areas of section are both equal follows that the airway that encloses one of the equal areas with the largest perinoeter, will offer the greateat restatances and as the velocities (or quantitien in this case) vary as the square roote of the reastances in-
versely, and as B; perimeter is isrgee than A 's, if A', quantity is 1 , that of B must bo $\sqrt{\frac{P}{P}}=q$, tskigg A 's perimeter as p and B^{\prime} s perimeter as P and B 's quantity as $\mathcal{\text { q or, }} \sqrt{\frac{(6+6+6+6)}{(8+8+4 j+4 j)}}=\sqrt{\frac{24}{25}}=.97985$
Quns. 27. What is the horse-power of an engise, the
cylieder being $15^{\prime \prime} x^{2} 20^{\prime \prime}$ rumbing 175 revolutions per cylieder being $10^{\prime \prime} \times 20^{\prime \prime}$ rumping 175 revolutions per
minute, the effeotive steam pressure being 60 pounds per square inch?
Axs. If the total pressure on the piston in pounds per aquare tisch, be multipited by the piston speed in feet per minute, the result will be the units of work per
minute done by the engine, and if the unlts of work per miloute done by the eogine, and if the units of work per
minute are diviled by the units of work to one hore minute sre divided by the units of work to one horet-
power that result wili be the auswer required, namely, power that result wilthe the ansure
$\frac{(15 \times 15 \times .7854 \times 60) \times 20 \times 2 \times 175}{335.000 \times 12}=187.42 \mathrm{or}$
187. 42 H. P. the answer required.
shaft runs due north 3 ,600 fret. from bottom of second shaft runs due borth $3,6 \% 0$ feet. A croas-antry is started due east at a distance of 200 feet from the face and feet from shaft will be required to consect with the face of the crobsentry?
Ass. The base of the right angle triangle in this case measures sbiot foet, mluus the distance from the face plus the distabce from the shaft, that is $200+$
$250=450$, then $3600-450=3150$. The perpeodicular of this triangle is 2465 feet, then
$\sqrt{2465^{2}}+3150^{\circ}=3900$ feet Dearly, the length of the roadwny required
Quss, 29. In approaching an alandoned mine filled with water, 400 feet deep, how large a pillar woald son leave to be kafe, the seana being τ feot thick?
Axs. In a soft bitumbous seam 7 feot thiok, and at a drpth of 400 feet I would leave a barrier pillar 95 feet, of 313 yards thiek.
In the anthracite region of Peensylvanis, the accepted rule for the thicknees of barrier pillare, is: Multiply the thickness of the workings (in feet), by oue per opet.
of the decth from water level in feet), and adi to this of the depth from water level in feet), and add to this
product, 5 times the thekness of the workings (in fert) product, 5 times the thlekness of the workings (in feet) feet. For a soft bitumipous coal, 1 the time the thickness provided by the anthracite rale has been taken.
Qogs. 30. A shaft emploges 800 men, 85 day bands, aod 25 mules. How many cubie feet of air per minute ANs. The provialong to law ?
Miss. The provigions of the State of Alahama Mintog Lar, Section 24, read as follows: "Bee it
further enactel. That the further eascted. That the owuer, ageat or operator of overy coal mind. Whetber worked by shaft, alope or drift,
sasil provide and berentter maintais for every such mine provicient wentilation for ench and every person minem sumicient ventllation for ench and every persoun
emploged in sach mine, which shall be cinculated around emploged in such mine, which ghall be cinculated arousd
the maln headinge, crose headings and working places to an extent that will dilate, rebder harmlesa and carry off noxivas and dangerous gases geaprated theroin. Wherg no gas is generated we would therefore allow as
a minimum 100 euble feet of alr per mas employed in
the molse, and per mule 300 cuble feet, therefore under

Suen Ste Hee

Totat.....................ald
If the mine genernted nuwch gas, I w
eubic feet of air per minute per man, as

allow 300

2Uss. 31. Whest

Qu, Whin rooms are to be drivee from the sure from center to center in the entry, to make the rooms 25 foot th width, and leaving between them pillans 15 tort thicks?
Ass. Divide the breadth of the room and pillar by the sine of the angle the room and the piliar makes with The entry, and the reault will be the distance between the
rooms center and center as $25+15)-40=56.561$ frent; or the opening of the room by the side of the entry is $\frac{25}{7071}=35.348$ foct, or the measure of the pillar along the side of the eatry is $\frac{15}{7071}=31.213$ teet.
Quss. 32 How many gallons of water will a circular shaft 8 feet in dinmeter, and 16 freot drepp coatale, and how long will it take an 8 -tuch pamp haviog a velocity of 100 teot per misute to empty it?
Ans. The contenta of the shatt are
$8 \times 8 \times .784 \times 16 \times 7.48=6015.787$ gallons, and the time oceupled by the pump in exaptying the shatt will bo found as follows Let 8 inches equal if of a foot, then, $\frac{8 \times 8 \times .2804 \times 16}{1 \times 3 \times .765+\times 100}=23.04$ minente8, or the shaft would be emptied in 23.04 minutes.
Qeks. 33. How many 2-inches pipes will it take to sapply an 8 -inch pipe?
Axs. The plpes sre suppoeed to be equal in leagth. for $n 0$ lengths are given, and as the velocitles vary as that the velocity through the semell inversely, it follown equal to
$\int \frac{8 \times 3.1+16}{8 \times 8 \times .7854}+\frac{2 \times 8.1+16}{2 \times 2 \times .8854}=\sqrt{1+1}=1$. The velocity then through the 2 isch plpe, will be $\frac{f}{}$ of that through the 8 -inch pipe, and as 16 trou-inch pipes pipe has an area of 64 circular inches, and one 8 -inch pipe has an area of 64 circular inches, it is olear that
as the velocity through the 2-luch pipea is ooly t of that
 throagh the \& wach pipe, it
pipes to supply an 8 -tach pipe.

Mine Foremen's Examination in the Bitum Fields of Pennsyivania, Jan. 22,1895

2css. 1. Write an easay to detall explaising the use of tynamite is blasting. Is frosen dynamite fit for use? If so, or if not, any how you would treat it
Ased for Dlacting ased for blasting in mines, and is a shathering compound latter is a reading exploelve preferred for breaking coal The efficleocy of dymamite for breaking stone depeuds on the correct adjustiment of the diameter of the shot hole, the postilion of the drill bole is reference to folints in the rock, and the beat augle that the axis of the hole should make mith the plane of the face.
The meights of the cartridges require adjusting to the
 the uetphts of the chatrees in ounces sboull bos propor tionate in inches to the cubse of the lengths of the libes
of the least reslistances in the rook to be brokem. Dhe tonators s: opld either be of sufliclent strength to fire avery cartridge used, or detomitors should be provided or cise primes or greater and lesser welghts of other Tise primet cartuhgea blioula be used to fire the large toestor withineat cafe mubt lat lakeb in fixing the detecuring the detovator to the end of the cartridge, so tharing the detovator to the end of the cartridge, ao stemmingi further, if the flirigg is by electricity, then jadiclous care must be taken not to use sach stemming as conatsts of angular particles of hand stone with sbarp eattiog edges, otherwiee they eat through the insulation, and either short efreuit the current or canse leak ager, sod to etther cose the chances of misfires are ngeri sud in number
The stemming should be done with roagh round sand, or clay for upward or slde holes: water will oftea be sufficient for downward holes in wet ground.
Detonators are sometimes fired with powder threas fues, bat oftener by electricity. In electric tiring, care must be taken to use just such magnoeto-electric machines, as supply a carreat of sumbient atrength to fire a given umber of shots simaltaneously in circuit.
Frozen dyuamite is dangeroas to bandle, as the tatrition of ita particles is sumicient to explode it; it o that of the haman body in or at a temperature equal rozel, it should be warmed by being placed near a hot water plpe or steaum pipes, bat it sbould never ber heated becide s body mboso temperature exceeds 212' F
QuEs 2. Is machive miniog sate when the mines are dry sud produce firedamp? Is it safe to uee electrie motors in maschine mising? and dy you thluk machine mining is sate where there is no gas?
Axs. Wheo the mibes are dry and produce fire-damp, machine mining to bu more unsafe than when mintug to done by ordinary methods. Compressed air cansot be a source of danger, nor can electricity, for all sparkiog can 60 preveoted by using atternatiog currents, and polyphase motors that are absolately sparkless, as there are
no commutators and it is impossible, oo commutators and it is lmpossible, from the design
of these machioes, for them to produco of theses machioes, for them to prodoce a spark; there
fore the three points in the queation are ansmered by saying: No lucreape of danger can arise in mines that
are dry and produce flre-damp, by using machives for mining. It is quite saft to use electrio polyphase motors There to athing lo There is iothing in machine mining that can bo a the machive to cut along a timberless face.
Quss, 3 . What would you consider a guod grade for a buulage road and a watet way?
A Xs. A fall to the shaft of slope of 1 in 150 , would be a good grade for a haulage road or a water way in a Ditambous mines
deksth circular sump 20 feet in dianseter and 25 feet sud cubio feet ? If a double acting steam pump, with a water czlimiler 9 inchea bo 18 inches was of to pump Water ghaner 1 incbes by 18 incbess was sof to pump, sump? Aso. The cuble feet of water in the sump are $.7854 \times$ $20 \times 20 \times 25=7854 \mathrm{cu}, \mathrm{ft}$. The gallows of water in the sump are $7854 \times \frac{1728}{231}=58,753$ galloos. The theoretical number of cublo incbes of water discharged at whit single stroke of the putup is .7854 $\times 9 \times$
$9 \times 18=1145.1182$, and allowing 10 per cent. for the alip of the pump, the netoat number of cuble finches of water dischasged by esch stroke is $11451132 \times$ $9=1030.60188$, and the bumber of slugle strokes of the purnp to empty the sump is $\frac{7854 \times 1728}{1030.6}=13168.84$. Qess. 5 . A bore-holefrom the surface la 6 loches te diamuter and euters a rib tall in the mine. A mixtare of 50 per ceat. © H_{4}, and 50 per cent. of air is passing up the molume to ceble feit? sulficient atr was added to bring the mixture up to the sutichest exploatve polnt?
Ax8. In the first case
Axs. bore-hole is equal to $\frac{284 \times 6 \times 6 \times 150}{14}=25.522 \pi 5$
subic feet per minate.
In the second case, 9.5 parts of air to one of CH_{4} is the maximan explosive mixture, and as the mixture already consista of equal volumes of ges and air; the uult volume of the gas is $\frac{2502505}{9}-12.26275$ cuble feet; the volunse of alr required will be $12.76275 \times 9.5=$ 121.246125 , and the volume demanded that containe suf. clent nir and gas to make the maximum explosive mix-
ture, is equal to $12.76275 \times 10.5-134.000575$ cuble feet ture, is equal to $12.76275 \times 10.5=134.008525$
of a mixture of 9.5 of air to 1 of gas or CH_{i}.
of a mixture of 9.5 of nir to 1 of gas or $C H_{c}$
Quss, 6. If the bore-bole in the above quition was alowed to remaio closed up for 13 bours what would be the volume of the gas at the ced of the time, and what woald the volume expoif sumsent misture, and what volume of air should be aidded to the gus to make it a baruless misture? ANs. The volume of firedamp $C H_{i}$, that would cumalate in 12 hours would be equal to, 12.76275 $50 \times 12-918918$ enble feet. The volume of the max. mum explosive mixture of 2.5 of air to one of ghs,woald e equas to $9189.18 \times 10.5=9645589$ cubbo feet.
Th make the mistuke barmalese, I would mix 30 of air
 $9189.18 \times 30=275675.4$ cubtio feet
Qegs. 7. What would be the coest of an oreveast contalning the following material, and having spent on it for abor the following amounts?

Ques. 8. What are the todicationa sometimes met with at the face of workitg places, which should serve as a
marning that you are spproaching old morkings, and marning that you are spproaching old workings, and
What precautions would you take to provide for security What procautions would you take to
and safety under the clrcamatabces?
Ass.-In approaching old workings coetaining water abd ghs at a bligh pressure, water is seen rubnigg out old worliter ato and tarough the coll. Wheu the from gas is constiderable, an the danger is on you vien peotedly, and when the old workings contain water now more then roof bigh, the danger is very great, because the water fellom gives warning.
Whether the old worklogg give warning by bleedlog or not the Aet relating to The Bitumleous Coal Mines of Pennaylvanla, provides by Seetion 3, Article V.

In any place that is being driven towards, or in dangerous proximity to an abobiloned mine or part of a mine suappected of containing inflammable gases or which may be muindated with water, boreholee sball bo kept toe hess than tw-lve (12) feet in advance of the face and on the skles of such workiog places, sald sude boles to and aned diagoualy not more than elght (8) feet apart more place driven to tap water or gas glall not be an abandoned mine of fart of a mina sud no borehole from the surface shall be tapped untill the eoploged except thone engaged at such work are out of the mine and such work to be done under the immediate instruetion of the mine foreman
Sboul.t the proximity of the old morkings be unksown and water is bleeding out of the sdvanclez face, thes no further advaboes should be made withoat boring necord ing to the provisions of Section 3 .

Correction.

Editor Colliery Engineer asd Netal Miner:
Sul:-Answer (9) to quastons askiel by A. P. Smith. Chico, Mout., pulibhed in juor July isoue should bave berm supsile tasented with the following,
This is the theoretical relocity nuil orfflce necessary to dinctarge the requized quantity, but tu coosequectice of the contractive of the streami a short dastaser trom the ir fice, the velority of edlux is siliztily reduced from the thencotical value, aud the quantity diercharged is greatly reduced, friction also reduces the sperd. In order to ullow for these losseb Budge gives the foliowing rule:

$$
D=0.497 \sqrt[s]{\frac{b \times W^{2}}{H}}=23.35^{\prime \prime} \text { dinm. of plpe }=20.2^{\prime \prime}
$$

square Øume
$\underset{I}{\prime \prime}=$ Diameter of plpe in incbes.
$L=$ Length of pipes in feet.
$W=$ Cubto feet of water discharged per mimnte.

Estelwelw's formula gives $D=0.538 \sqrt{\frac{L \times W}{H}}$
$25.29^{\prime \prime}$ dlam. of plpe $=225^{\prime \prime}$ square flume.
Huphyg that you will manke this corre
Yoars ecc.,
Sternex H. Nomerney.

The 5th Root.

Editor Colliery Engineer and Meta/ M/mer:
Sis:-Plesse Insert the followivg to your valuable
 Port Mortes, in 3 our August, 1825 bsene.
The fotlowing in thu formula morked
 wethod emploged to extruct the Sth not of a mumber. Then let $(3)^{2}-i^{3}-i^{9}=\sqrt{9000000000} \frac{153+}{1}$

$$
5 \times 10^{c}=50000 \quad 800000
$$

$10 \times 10^{1} \times 5=50000$
$10 \times 10^{2} \times 5=20009$
$10 \times 10 \times 5=2500$
$5 \times 10 \times 5^{5}=625$
13185514062500000
$5 \times 150^{2}=231250090$
$10 \times 150^{2} \times 0^{2}=168750000$
$10 \times 150^{+} \times 5^{1}=\quad 5625400$
$\begin{array}{rrr}10 \times 150 \times 5^{2}= & 937515 \\ 5 \times 150 \times 5^{2}= & 695 \\ 5\end{array}$

$\frac{13728596875}{7 i k i v 0.125}$

In the above the root la only extructed to two deetmal piseeses, but by a consinuation of the above it can to be extebded to the requiral number.

Abesin Laffgety
Wиниран, Pa

PRIZE CONTEST.

PHIZES GAVF, FOR THN HESF ANSWERES TO

 QUESTIONS HELATING TO MiNiNg.For the best nnawerto each of the following questlons, the value of 81.00 in any of the books in our book catalogue, of hix nemthn sabecription to Tus colasmy Eselsker akd Meyal. Minge:
For the sreobs beat abswer to each questios, the value of 50 cents in sny of the books in oar hook cata-

 axanded to any one prran.

Conditions.

First-Competitors wust bes subecribers to Thes CoL Lakex Esaiskem and Metal Miskie.
secund-The asine nim whires in full of the conteatam must be algued to ea
ou a seprarate paper.
Third-A Anwers must be written to tok on obe slde of the japer only
the rescelope la which the anawere are oent to us
FiRA-One person nasy compete lu all the questione: Naikh-Ohar decision as to the meetha of the anawer nhall be flowl.
Serend-Answers mont be mailed ua not later that out musth afief prabilcation
Eignes - Thes publisation of thes answers and bames of Proviss to whom the prisers atenwarded chall her con
 diepposal they miab to make of their prizes.

Competition Questions for October.

Ques. 1811 um about to invent a new mutuer'd safety hamp, and 1 intend to make the caparity of thes tank of
 had as 1 mequire gour valuable nasbotance, will you aswer met the quastholls, as fotlows 1. What solume of atr will be reguiced to supply the veces-ary oxxje-ll to burn the oil?
2. If culy 30 per ceat. of the oxygen of the ale eater Ing the lamp is evossumed, what volume of air is necenary to foed this flatber?
3. It, ufter allowiog for the rena contracta and the interferevor of the mins, the avaluthe aperturag- is in the ration of, 3. and if the velocily of the air ou cotethg is
 हnume co
ot ah?
QuEs. 182. We have found a large fault in one of our
 and the fatronpace or velut bs filted with calctte nod
 me whith sarpulee that I have hern trging to extract the neetal by ratilng the ore to a high heat ob an open fire, but it ail nisted awny in white smoke. I will, theres
 do to obtaik athuat seveen pounds of the metal, abal while you ane buay pleares say what 1 must do to separate the
silver from ibe lrad liver from tbe lead
$0<k=181$
Qcks. 18, We bave 1.000 seres of a beam of good
abd clean cohing coal, 2 fowt 10 ierluy thek abd clran cohing coal, 2 foet, 10 iowheg thek, aed at an average depth from the sutfuce of 600 teet; the root cousists of 30 techess of bad shaley cont. or bone; the Hown ibelinas ion or dip of the sram think $4^{\circ} 16^{\prime}$ to the enat How do you think 1 stoould work this senou to obtailu all The coal, as 1 cat woly sisk the shafto os the Wroterii

Qoks. 184. 1 aut ensmgrd by a powerfal syndicate to be the chiet of a larpe staff of prospectors to search for
 great rivera, the Euphtater and the Tigris, and the
 tou beioge, that the country in bot opelord up with mill. Wuyn, uent therefore tbe water-ways are the only routcs opan for tratsport. In the North of Asia Mivor where lotig to the Ceoosabe pertod, and neerly all the espoord rocks fonud in the villoy of the Leviat beloog to the Mesuzole perifod such us those that are found on the rust of the Tikrif and the west of the Eaphrates, and bitwen the great rivens, as west of the Thgris and rast of the Eaplates, the rocke are mostly of the Eocote
 are cut oes blats of esppeus taken from tbeir bear hand quarri-s, nod I will bo ubllged if gou will give me such quarri-8, nod 1 will be en
Pirst.-We know that estt, coal, ligntte, copper, lead. silver, gold, nad fron abound witthln the rocks of the valley of the L-vant, then plense tell me where to sebd wy meen to ararch for tbrm.
Srevid.-Tell we briefly what class of toole I ought to givee.ch set of prompertors to flud the particular minivals they will bee serut to quest of?
Quss. 185. As I am anxious to obtain a good examplo of a nangortio survey. Will you give me your botes of oue mbrere the ligure only hias seciea sides, aloo the plot, , bd the resulte of the travense to prove ite aceearn's?
Ques. 180. We have a pamp that forces with two Ax fuch planpers the dratnage water of the milue to an elevathou of G6u teet. From the comenencement this puap hasl a besvy "knock" and it mas found to occur at the wonisto whes the plungeve began their adeance oo the forcling stroke nuil it serewed to nosult fiven the chambis not leing nimed close we watro wos the knoek by the plunger advabing oe the foree, and the heary strmin that destroyen then packing of the klatudo and ulthating the "SAln" of the phangers that herame that then liated. honsen mines the softuess of the Iron plungers that breavee fla ed and leaky, and that the only cure would be found in gruing stekel steel or brouzs plungerof our ebsiver, howner, thugbt diff-reutly sed rald the only cute would be f.uand to n . ackling the glamalo abd droasing them with water. Ite then tixed cave water whina the kniek was conepletely eured. Wht you theo explate to we the cause of the knock and how or by whut uvas, It mas cured by drywoligg the glasdo?

Solutions to Questions whioh Appeared in the Aujust Number, and far which Prixes Have

 Been Awarded.Qogs. 105. Fur an extensloe of the hanlage in a coal Qesum we are about to make a brabeth road golng due mast from the main wutry nod goteg doe north from
the shafig. Now the juoctiou of the beanch ruad owe shafis. Now the justrou of the bratich roud fect raillus, and as I would libe to show off a bit with this carm, will you give ner a plan showling how to get
 mosasmenents requitiod for a vouplote quadrust, the

Ass. To plan tue roud whount the aid of a tmasit
 $2 z^{\circ} 3 y^{\prime}$ voch. This ts then hate number of equat pats mites which it may tise divided for thember of eques
The chanll of ewch are, as $b f . j k$, whe, will hee two thers the slue of I the wingle muitipited by nulitus, of
The deflection diatances, be, $f \mathrm{~g}$ nol $A i$, are equal to
twi, then s the. ntioe of \& the angtin of f wultiptied by \& f.
The aggle $b /$ e being equal to the centrat augle $b u f$.
then we have $\frac{1}{2} \delta f=11^{\circ} 15^{\prime}$. Twice the stne of $11^{\circ}{ }^{\prime} 15^{\prime}$ $\times 9.8634=3.6534$, the deflection diatabce. Fieslly

we peed the tangential distance $C d$, or $b D_{1}$ whele is equal to $\frac{1}{2}$ o e, or $36134+2=1.8267 \mathrm{ft}$.
Having male all urecsuaty
Having made all weceasary calculations 1 would procoed as follows: Mark permabebtly the polst b in cruter 9 nor of mata entry, measure south the chord distance $936+\mathrm{ft}$, and mark the main evtry cestre libe securate Iy. Ther swing the tape is live, $c d$, with of for cemter and mask permabontly pint d, making $e d=1.88 \mathrm{ft}$. Drive on line $d b$, undil point fyis be placed in ralke ac $9.26+\mathrm{fl}$. from d. The with f as Neter, swieg tape o eration at A nud j, ant when $/$ is reacherd, if is is dein to ceoll wis on wh by polet in of derin pass 1 would nopat the first nperation. With l as eveter, swing tape in live ; k, mahiog $j k=1.85 \mathrm{fc}$. The direction k ? will then be square to male entry.
E. M. Puktre,

Secosd Prite, W. A. Goodergad, Nelsouville, Ôlle.
Ques. 169. Our mine to eitunted in a reglon where denu boft water cancot beobtaived for feeding the steam from the nudergaond feeders thet sw highly chanter with sulphate of trall, sulal as you no donbs expect, the bollers last 10 vers shart timesed entail on us expene that me wish to avold if we can. One of our operators bas returned from South Anserica: and he saye a mine superistendent there can beutralize sulphate of tron with common att and he thinke 1 should do the same. Will you theo explain to me the chemical sction that taker place wheo sale la thrown tuto warm maver contale. ing sulpbate of trou abd how it is that as the water coole sulphate of soda crystalizes on the trottow and sidea of the tank, and 1 will also be obliged if sou will explain to me the chemical action (if sBy) of soda salphate 00 the shell of the bofler.
Axs. The chemalcal action to which the question refers proceds as followss

$$
\mathrm{FeSO}_{4}+2 \mathrm{NaCl}=\mathrm{NaSO}+\mathrm{NeCl}_{2}
$$

Soda supphnte theo reanins lueviuito fu the bot wster and cryalsilizes from sataration, as wben the water cools. Sulphate of suda produces no be jary wa the ntell of the boiller, but does good to remaving litae gcale

$$
\begin{aligned}
& \text { J. Jkxkixg, } \\
& \text { Dioges }
\end{aligned}
$$

Sceosd Prise, J. Vibers, Holsogple, Pa.
Ques. 170. A wealthy land owner has just granted me at lense to mine a higuite bed 10 fert thick nas maklug an angle 20° with the plase of the horizous. The lease coufers on ne the right of why aod the power to otilize say of the sarface or underiging strata. The gurfsen ts on a bed of sabd 20 feet thick atud at firsef alght that would appear to bo as unfavounale cosalituo, but the liguite coal is good, and can becure an oppon market at a high pites; we have however certain dim. catiles that must be overcomes in the moole of working; for example, hits oual is esoceedingly suliject to sporalaueous IGuition, and any sumall in the gots, or paliars
left in, takros fine ns left in, takes fire ns soou as subjected to feereaserd pressure. Therefore we must extrout the whule of the
oxal, aud 1 wi-h you to tastruet nue bow to do it with orsi, and 1 with you to laotruet me how to do it with
the uase of very Hitlen thater, at a mmail cost per ton, the uss of very nitule thatier, at a muall coat per ton,
and with safety to the mivers. To secure a good plan, and with safety to the miners. To secure a goos plan,
thtuk over all the modes of eein aud bed melelvg to general ure
[Nime of our friende are even approximately right with This question, und basuy give eviloune ta theik miswera that they have But catefully rewd the qurgtion befure annuwering it, as "any smath tu the got or pilders left In,

Ques. 171. I am the priselpal director of a mining company, and wo have the chalce of oue of two milue poue valuable grata of bitumbures cosal at a depth of 900 foct. There are two sentuy of coal overlyligy the one we wish to woek mud wew will eall the botten oee No 3 , and the oue uhove it is No. 2, nurd the tup oue No. 1. All the scatus ane lying level aind their dhaths ane No. 1, 4.10 feet; No, 2 , 650 tent; anal Nur is, 100 feet. Bet

sheds much water, and to one of the offered propertle A, the top seam thas been all worked out, but is the I will themfore drem it a great favor if you will say I will therefore drem it a great favor if you will say weatmest, mid for zhat reasons?
Ass. The property A is of very little commercial value becnuse by worktug out the top swam first, the cove is broken apd the naturas arcit over tho he nad 3 arama in A may be thicker thas those of β, ther latter will be the beet fevertment, becanse the boitom or No, 8 seram cas be worked firat with safery, with a cover of 900 trut lo thickues. Sermed, No. 2 nisi No. 1 can thes be worked to, ether, and No. 3 will babke an excelleat sump of lodgement for the mater of the sand teeder.

Wr. A. Thouses,
Nautlooke, Pa,
Seeond Price, Jons Furtours, $4 \approx 8$ Tooll St., La Sulle, III.

Quse. 172. In prospecting for coal, rotary tube boring Is the best, because the cores furnish thee exsmples of the fossils peculisr to the etrata in question. Thia bedng 60, will you tell we the names of pome of the focails
pecullar to Permian and silurlan rocks; for example eappose sou are boring tu a beed of fue shale, aund the core when broken shoms a featherlike foceil, made up of cells arranged in regular order, aftur the manner of the structures of the hydrozon. Which formation would that shale belong to? and zhat is the gevenal name of ibat variety of fnssilas? Agalo nou are boring fu a limestone, nud the core wben broken sbows several exnmples of a starllke Betted structure sumething $l i k e=$ a spid-r's $w+b$, and undoubtedily bolonging to the hyfrozon, whtch formation is this? and what is the name of the foesil in question?
Ass. The fosell the quistion refers to as common in the Silurian shales, and distinguishing thea by their profakoo, as they sre foumd is nearly every sample of the phale examined, is Graptoites, and the example of the
brdrozoa that distlaguishes the Permian llmestone is bydrozon that disting
the Aster Reticulatus.

Jas. Verers,

Holleopple, Pa .
Quss. 173. For the purpose of haulage in a level eeana, a branebing road bas to bo nasde, at a right angle with the wain enry. and me have make the comed be 23 fret for the inside, nod 29 fret for the eutside of be 22 fret for the inglde, and 29 fret for the eutside of
the carve. Give a plan with all the secrasary explans. the earve. Glve a plan with all the necxasary explans-
tion of how you woald proeed to secure the correct tion of how you woald pro
curvature for this fauction.
Ax8.-Tbemean radius of thecenter linels $\frac{(22+29)}{2}=$ 25.5 toot.

By this method the quadrant is divided into five angles as $\frac{90^{\circ}}{6}=18^{\circ}$, and therefore, taklog the radlus at 25.5 , the veraed glise is 1.25 feet, and each of the five chords are 7.88 feet. To togle, flist measure tor, on the radius $\frac{1.25}{2}=.625$ equal to halt the versed slee, and locate this point at a; next lay off on the taner-nt from A, a distance equal to the chord 7.98, as AB. N-xt
bireteh a cond to cut a, and to locate the polat C, 798 streteh a cord to cut a, and to locate the polat $C, 798$
feet from A. Next menoure to from C, the distancen

equal to the versed sine -1.25 feet to c, then a stralght line from A through c, will with the interseetligg live or flelabing as we b. gau with the bait of the regsed sin flushing as we b.gau with the halt of the versed slam
1.25 $\frac{1.25}{2}=.625$ as G_{g} and on to the tangent at H.

Wicleas Wreis,
Washington Pa Washingtoni,
Seowd Prize, Jos. Vinars, Holgopple, Pa.
Ques. 174 . My Uncle G-orge is a mine superintemdeet snd he asked meto-day if 1 had given doe ntteation to the study of miue raschinery, and steam about them, and nobody can teach me muy more than I know; and be sald, "hem," and coutivued, solve me this questlon and let me have the answer in a few dass Wo hare a sumi-portable bsuling englue in the Burfore, slways runs with full ateam. It is 80 horse power,
and the blghest pressure of the stesm at blow-oft is 90 pounds on the pquare linch.
The traten bas a ipeed of 10 malles an hour on the level truare Inch, and op curesingre falls to 50 pounds on the the trais of cars has to secrnd an inclitm, when the spued reduces and the prosenre of thes strain in the bullets rises to $\$ 0$ porunde oe the mquens lech. Now the boller ire (hefore thestart) is luankul up to kenp the botes power of the twiler aniform throukhut the journey.
The questiose maker thice demanis :
tst. Why doess the boiler presearn vary?
lind. Whast in the rpoud of the train on the ineline :
I fronkly coofera, i hatan mashe a bildrake in bouncing to byy beele Grotgr, and I hoper yoil wil help the out of the dilemma by answrring the qu'stiona for mem.
[Weare eorry to say thi- "ensy" quertiont has not bern miswored eves apperoximately, tho show ing that imilasdon is a v-ry poor subsilitute for undentandind. The velocity on the theline can berti sewin without calculation and the grade of the trellise chit be foubd mently as rasy. Oar utjeect in framinge thesen quwstioes is to show our
 their study, aEd we hrve caught them sleeping. ED.J

The Crawford and McCrimmon Crum.

Measms. Crawford and McCatmane, of Brazil, Indiana show to their advertisesurnt, in this insue, a pair of Soleting engises equipped whth a dasble cooical drum. To show the construetlon of thla deum we preevet our roulet- with a view of it lafge euough to make clear the
features elalmed for it.
Thls drum reacmbles two similar cones placed base to have, whleh furnblues two exds of equsl diameter shil
a centre of comalderably greater diamuter than tho ond. a centre of conolderably greater diamuter than the ands.
 The dram la grooved from one end to the other, and the by Wm. C. Day, which is an extract from Part IV ropen wlods from the suasll diametur at one ead over then rupe whods from the smasll diameter at one end over the
Ingige dinmeter in the middle aud thence to the emasil Thrace dinmerter in the metidl
diameter at the other end.
This plan starts the load easily and slowly and grndually licr-apes the spesed to the midhlle of the bolst sud then groduaily reduces the speed till the lauding is Therd
That la, this woold be the caee if the engiber werm rus ut the cames peodicontimouely. But, as the englues brought to a errtain maxiaum point and held there till the kosd is almost at the landing, when it is cratualls toweat down, it is evldent that thes gremsteat spouet in secured at the proper time abst the slower enpered in eze sured at the start and end This principle of construe. Ifon embodion the requirements for an Idral frum. Broidea rerrulatiog, in a large meveure, the speel of bolsting, it also makeg poasible the nueverasfat then of a smaller engine than would be othermise required.

Bоок Review.

Tus Minebal Isposeby, Its Statietice, Techboloey Vol. 1II, valited by IV. P. Rethoell, C. E., M. E. and published by The Screntific Pablishlig Co, of New York,
is at hasd. Priou 8500 . s at hasd. Priee \&5 00 .
The twe fornart volumea, embracing the atatisties to the eod of 1 sin2 and 1893 respoctively, have been previously muted in car columes. The present volame
lorisgs the suldect matter down to the red of the year t894 and is fauy up to the standard of the preced-ng volanuee, Yol 111 is a book of about 900 pages and covers the oubject is is waber bighty credtable this sud the vilitor. While pere
 critifism by serveral promineat spreialists, it must be borne is mind that the work of eomptibig such a velume is oue that few man would care to wodertake, ant the promptnees with which it is issued materially eubsnces paratively slight errors is beous of the elatlatica, the eritios sbould bear in bilud the fact that the volame gives practically correct figures defore the official figures

Bull-4ln No. 121 is a bibllograplyy
of North American Paleoutology from 1888 to 1803 ,
by Charlea Foullin Keyen
Balletio No. 122 is the resulta of primary triangu-
intion, by H. M. Wisson, IR- U. Gurde and S. S.
Ganneft. Ganne-tt.
We ha
We have slao reveived through
Mr . iharlve D, Walcott, present Director of the
U. S. Geological Survey,"The Producthon of Tin In the Various Paris
of the World" by Charlea M. Rol. ker, whleh is so
extriet from the Sixteenth Annusl Report of the DArector. Part 111., and "The Stane
Industry in 1804 "
shobitainatie from the ntatistical departments of the sovveral governmects. Apsib, the fact that the statistics are all grouped to one cosvenlest volumes, sud those fofinilloss latoor in searching for desired information, U. A. Gnotobical Korviy Enponits.-No reporta isued by thr-Natinal Government are of mom practi(a) value thas thoee l-sued by the U, N, G.unlogleat SarNry, unler the directlon of Minjor J. W. Puwell. We lave before $u 4$ in two quasto volumes the Foarteenta
 eoding Jane 30, ises. The firot volume is the lheport of States, stowing, graphically, the work thone during the year coverod by the report, as woll at the tatal ares ther reports of If of the amouna reporis condalna fe defail g-ological festures of various localities, Illustrated with anja, sretions and views.
Alonograph XXIII is a profusely illustrnted and in-strin-tive velume on the gecology of the Gren's Moundalas In Masanchnoette by Ruphast Puajoily, J. E. Woiff and Y. Nelson Date

Monorraph XXIV, treats of the Matluars and Crustacen of the Mhernu formations of New Jersey, by
Hebbert Parr Whilftell of the Geologiend Survey of Nuw Jereng It Is Illustrated by twenty-fou: five plates show-
ing a large number of fosells.
Bulletin No. 118 is a gengraphle dletionary of New
Jervey by Ilenry Guanett, Chief Topographer of the U.

Bulletin No, 119 is entitled A Geological Reconnaleansice in Northweet Wyoming, by Givorge Homans Eld-
Bulletin No. 120 trents of the Devonlan Sygtem of Eutnen Pennsylvaniannd New York, aud is by Charles
. Proseer 8. Prosser

Industry in 1894 " by Wm . C. Day, which is an extract from
of the Sixtmenth Anouna Ifeport of the Tirwetor
R--out no тug "Nkw /kan" of Breks and Mosto aovent Couvnied, Pexsevivasia, by Thenjumin Soulth Lyman. This an antot's wdition, and is a repeint froma
the Punsslvania State Geoloriosal Summary, Final The Pounszratia Vat. III, Part II. It is illuatrated with maps, secolions, foselle, tite, sud treats the subject in a thorough aud scbolarly manner.

Self-Extinguishment of Fires.

The geverul klids of automatic tire spriaklers now in ase in many lange establishmentr afford familiar exnmples of self-nstinguishment of Bres. There is, however, bothlng anexpeeted ibout their action; they are deesgued apecinily to pat ont tires, und when the spriukler houds of fusible moval let go, and the flatues undernesth are delug'd with water, we have simply the legitimate outconare of what mas figured upos when the mitiukter Bys-
tem was puit in But there are in pumber of Iustanoes Tem was put in But there are a number of lubtanoes On revord where the menns of fire extingrisbment were Wholly uulooked for and of purely sccidebtal character.
Oon of them wian forninhed Ooe of thrse was farvished e-veral joars ago is a large church whros a fire, caused by spontaneous lgnition in a atonroom, melted the lend water pipes, and the water
Issuing from themaquenched the lanoes. Avimilar instance Issuing from themquenched the lamees. Asimilar instance buppersed in a tinemitb's ebop, Somes sheet mettal pails,
whinh hat heen made there, were returaed by the parwhich bat heell made there, were returned by the pat-
chasery with the complaint that they mere not tight. The chasers with the complaint that they meve not tight. The
makve resoldered them, and, in order to test his work, Blird then with waterased bugg thean upon books screwed futo the shop ceilivg. Doring the boos hour, a flre brated the upper part of the room so that the hasdle Cuntealng becane unsoldered, and the dropping of the pails of water pat out the fire. Agnin, in the engloe rooin of a errtain factory bome olly cotton waste, l-ft ou top of a steam pump, ket fire to the woodra laggligg supply pipe, shere it melted the soldered nttachment of an astomstic alling device. The sleam from this pipe ancapell throueh the small tulues formesls thas pinge eschped through the stmall tuloes formerly lesding to
the oiliog apparatus, and sperdily exilngulahed the flames.-From Cassecr's Magyeine for October.

Automatic Dump Litigation.

A rult is in prygrene, brought by the Sallivan Machinery Compsing of Chleago, Against the Phillips Mine Mitehell and Wilson. Automatic Dump Patents owned by the former company.

The Colliery Engineer

METAI MINERR.
PUBLLSED MONTILY AT SCRANTON, PA. Wria wnich is conemgd Tes Movino Heasle

 THE COLLIEHY ENGLEER COMPANY, TOBLBHER TERMS.
Subscription, (Prisec octe ets, comse.) \$2,00 a Year

Exprean Money Ordera cuid bo obtalived at any offee

 We Camnot He Responatbie for woey orat in

EXPIRATION OF SEBSCRIPTION.
Sion tate stur four name on the wrapper of TuE Counshy fion bes tweos pald

RENEWALL, ETC.

NOTICE OV DISCONTIVEANCE.

Change of address.

 All commenkentionn shurila be ndareeeen,

THE COLLIEKY ENGINERM COMPANY,
Canto Abarese-" Retwot, Scranke." Coal Exchnnge,

LONDON AGENTS-

gegan pauh tebich, thebser a Co, LTz, Patkracorke Bodse, Cuasina Crica hons.

LONDON, W. C. ENGLAND

VOL XVI. ОСTOBER, 1895.

For Table of Contents see page ix.
NO. 3.

THIS JOURNAL HAS A
LARGER CIRCULATION COAL AND METAL MINE OWNERS AND MINE OFFICIALS

${ }_{\text {Ala }}^{\text {Alabnana, }}$	towis	Nor
	atuc	,
Arkanoms,	ma	
Carnita,	Mrehig	
ar		
rsim	A.vis	
\%o.	Avw	
Itimais,	N-	
$\operatorname{lun}^{\text {and }}$	Now yort	w
TH	OT	

It goes to 1395 POST-OFFICES in the above States, Territories, Provinces, etc.

TO MANUFACTURERS OF MINING MACHIN-

 ERY AND MINE SUPPLIES.T(HIS jouraal has a larger bona fide elrculation amoeg mive owners and mive officials than any other publication. Its malling list ts op*n for the inspection of advertisers or prospective advertlisers. The publisbers will furniab proof of lts circulation to any advertiser for each lesue containing his advertisement. Circulation is a measure of a journal's value as an adver thating modtum. Circulation and class of readers are the only messures of value. We prove the lirst by U. S. Poet Ombe recelpts, the second by showing our canlling Hest.

A MISTAKE IN AMERICAN COAL MINING LaWS.

PENNSYLVANIA was the firat State in the Uaion to cosect laws for the protection of lifo and property is coal mines. Her flrst lawe on this subfect were, naturally, crule, bat they have been revleed untll now they are, fo the maln, excellent laws.
Other States, in traming mining laws, tollowed the ex-
smple of Pennsylvania, and modetled thelr miniug laws on bers.
Those States, which were progressive enough to realise tbe value of mive offilals equipped with well digested theoretical ks well as practical knowledge copied the Pennaglvania law In regard to certificated mine foremen and made the same mistake.
The Penneylvana, Illinois nod Alabmas lnws requitIng theemployment of certilicated mive foremen are wise easctments in all particolste bat obe. That particular is the requirement that applicants for exsmination shall be citizens of, and shall have had a certaln number of years practical mining experience in the particular State in whlch the exswination is held. This restrietlon provents the competent citizn of any other State securing employment as a mine forveman to aitber Pennsylvasia, Illinols or Alabama. It also prevents a ettizen of Penssylrania securing employment as a mine foreman is Alatama or Illibols. The other coal mining States will, in time, enact slmilar laws, sod io justice to their citizens they will place the same conditions in tbeir lams. Tbis will result is a great hardsbip to an istelligent, and valusble elass of Amerlenn eitizens. It is, If not a vinlation of the lester of the Constitution of the United States, a volation of ite spirit. It abridges the liberty of a cit/zon of the Uaited States in plying an bonest and useful vocation in any part of the nation. No other industry or profession is so handicapped.
It may be urgul that a mioe forewas from Pennsylvanta is not familiar with the local conditions in Illizols or Alabama and rice cerac. This reason to a weak one. If he is capable of passing n good examination, he will soon grasp the diferenoces in the local conditions. It might as well be urged that the molve foreman from the Connellsville or Pittsburgh regioe would not be familiur with the local conditions existing in the mines of the Clestifeld regton. Or it might be still further narrowed dowa to the statement tbat the competent mine foreman tn one mine would ont be competent in the adjoining mine, for the local conditions are seldom the same in two mines.
Every cosl mibe foreman In the United States should be compelled to have a certificste of competency mon by passing a thorough examination before a competent and fair board of examiners, and he should be compelled to show that be has had at least five years practical experience in ccal milnes, bot of any one State, but in the United States.
The law sbould be go tramed that a legal certificate of competency lasued in one State should be good is snother until the next succeeding exsmination in the district in which a foremsn from the first State has secured employmeet. Then his morthiness for a certifcate from the State in which he to working could be determised by admitting him to the examir ation and the soceptance of his first certifleate as proof of cbaracter and practical experience in the mines. If he passes a successful examiastion be sbould be certiflcated. If he dous not he ahould be removed from bis poeition. In this way mine foremen will not be tled doms to a realdebee for life in any one State, bat tike other American citizens, they will bo at llberty to seek employment as mive foremen in any State thry wish, or in which they think tbeir chances for adrancement are best. We do not adrise that the questlon of practical experience tn coal mines be left open to experience in forelgn coustries, but it should not specify experience It any one particular State of this Unlon.
We commend thla subject to the attention of the mben laspectors and mive ofticinls of Pennaylvania, Illinols and Alsbama, sud truat that they will see the wiadom of unging the amendmest of the present laws on this subject.

LOSS OF GOLD IN REDUCING.

Ithe processes of separatiog metals, ores and miaerals from the particles of their associated gangue there is consblerable trouble in getting the mivers to know and undenstand that unless the cruabell ove is first sized, and the alimes classified a considerable percentage of the metal will be carried off as loss in the tailligg.
This statement is takee from the experience of the government of Vletoria, one of the Australisn Colonlee of Great Britaln; aud to prevent the coatisued losa due to imperfect dressing, the goverbment appolated Mr. Henry Rosalea, M. E., F. G. S., to report on "the loes of gold in the redaction of auriferous velastone in Victotis, and to make such recommendations as are becessary io the aystem of treatoent, more espectally relatlog to the dreesting of sllimes."
It appears Mr. Roaslea has found that the Lularlg gystem gives satistactory results, for the report says: "Consequent apon the contteued lovestigntion by this department. Mr. J. Coamo Newbery vistted Europe and
reported favorably upon the metbods of gold abd ore anving kDown as the Lalurig system. Following upoes this an inspection was made by Mr. Newbery and myself of the most adynoced gold saviog and treatiog plants on the principal gold Belds, and we found that theeo appilanoes falled in all cases in ope twportant polnt, namely, that no attempts were made to classify the manterial before conemotration, and that the concentrates sbowed very large percentages of quarta grains, which were not only valueless in themselves, but hindered the proper working of the vanners." It was foubd that the lose due to the noo-classification of the allmes was very coasiderable for "the estimate was made that the average tallings of thequarta minivg distriets of the colony might be coasldered as contaiolog from 2 drta. to 2) dwts, of gold per toe, or an average subual loks at the present times, 1894, of $\$ 1,795,010$ on the 898,506 tons of quariz erushed." The report nest refers to tmprovements that have beed as follows
"The waut of classificntion of material, to whleb I have time and agsle drawo attention as obe prleclpal cause of the loss of the gold aed mineml has beea partially remedied in some cases. The Lubrig plant erected at Starrell. North German Mine at Maldon, and Long Tannel Mise at Walballa are object lessons of the highest value."
This report ouly amplifies the evidebeo, dally tbereaslige, of the lmportance of prastical miners having a better educational equipment to secure suevess for themselves and their emplogers. The merely practical mau need not be jealous of the merely theoretical maso, but both bave good reasons to be jealous of the practical man with techaical kvowledge. The report next proceeds as follows: "To successtully reduce auriferous velnatove and extract the gold therefrom, clamilication sbould unquestionably commence from the beginting of the tritaration of the gangoe, whether it be done by stamps, rollens, or a bsil mill." Again we are told that the particles of the crushed gangue shoull not be smaller than the satural size of the particles of gold, or the grains of the contained sulphides, for it says: "To reduce the stone to a floer grade than reguired is a mistake that sbould bo avolded. Elsewhere I have already uttered the same opinion, and farther, I may quote an expresslon used by the late Sir Warrington W. Smyth, M. A., F. G. S. etc., to the effect that by orushing the stoee unnecessarily fine, the gold is 'stamped dead' Implying that the particlea of gold mould be carried off in the slimes as Boat gold," Altogether thlo report is suggestive of the steady progreas that is belng made in miatug in every lasd and it is a signifficant fact is the whole matter that all the stepe to this sidvance bave been made with the Ledispecsable help of technieal sllied with practical knowledge.

THE COOSA COAL FIELD OF ALABAMA.

THE report of Coosa Coal fleld of Alatama, by the State geologist Eugene Allen Smilth, Ph. D., and illusirated by the sections made by his assistant Mr. A. M. Gibson, to at haud. It is a very satisfactory presentation of the facts arallable to the writer. But for the abeful minerals obtaloed by milulig. little would ever be known of the presence or abersee of any series of rocks, in any locality, becsuse the relative superposittion is only fourd by such sections as we obtaln by siokiog and boriog, abd where this is not done. very little rellance can be placed on specalative optulons. This is espectally so in coal bearing strata, becsuse the existence and preservation of such a tender rock as a stratum or seam of coal is the result of it beling protected from the effects of the denuding forces, by lying in the troughs or basios of crumpled and contorted strats, or sheltered in the deperestions male by one, two, or wore grest faults.

We cas theretore never determine the charncteristics of a cosal Beld until the areas within the boundary lises of the outcrop has been plerced In all directlons by masy boriugs and slokings, from which rellable sections can be made. Until, therefore, more sections of the Coosa coal-flesd are known, the comercial Iedustrial, and atate value of the mineral, will remsis an ungolved problem, but we are huppy to flod that the people of the State of Alabama realize the Importance of thelr flrat class resources in colling conl, fron ore, aod lime, and that in the near future thoy will see that apending money lis a good investment, whee it is spent to furnish good reasons for commencist apeculation.
The Coosa coal-fleld in its greatest leogth is 60 milea long. It extends 34 miles throogh St. Clair county and 24 willes into Shelly cousty where it terminates. Ite brendth to vearly six melles, and it theretore has a mean ares of 345 equare milles. The coal is of a fine coking variety, with a small percentage of sulpbur and it to therefore, adapted in a superiative degres for the manufacture of iron and steel. The seames vary ta thelenes
from 2.5 ft. to 4.5 ft . Like all the beat varities of cokling coal, the seams in the Coosa coal-field are soft and tender, sud do not, therefore, command their true ralue when eols in the market for housebold fuel.
To make theer seams reach their real valoe, the coke will have to be consumed in the smelting of Alaboma ores, and in tron and strel mabutacture. The field is in the shape of a long dish or basio-like trough on the south-enst slde of the terminus of the great Appalachian seld. The report coetains a number of tables of analyses of the cosle of the different basius in the conl-tield, bot Hike all other tables of the kind, and we bave Euglisb and Australlan lying betone us while we write, the solvents coataliod in the coal, such as nitre, common salt,
sulphater of lime and magoeala, etc., ame not piven These solvente play an impertant port in the cohiog and combuston of the coal and should, therefore, be known and especially so when ne are aware that some varieties thas others.

LEGAL DECISIONS ON MINING QUESTIONS

Inerticney of Notice of Location of Clat
Insufficiency of Notice of Location of Claim Uoder tbe statutes, requiring a porsoun manking a location on oath, a stateatent which, on its face, appears to bave been weritida a y ar before the location of the mine, is beec verinsed a y ar before the location of the mine, is
insaffitent, to the abence of proof that theaflidavit was Berg v. Keoge), (Suprorne
Berty v. Keogel, (Suporme Court of Moatana,) 40 Pac
Rpp. 606. A Subscription by a City to the Capital
Stock of a Corporation Invald -Chapter 114 of Stock of a Corporation Invaid.-Cbapter 114 of
the Laws of 1885 , entitled, An act asthoriziog the Laws of 18sy, entitied, Ans ast sathoniziog to encourage the development of the conl, natural
gns and other resources of thelf localities ly subsertiong gos nbd other resources of thet localities by yabseriting
to the stoek of compailes onganized for such porposes, is uecoustitutioual and roid. A subseription mase by the city of Getreseo to the capital stock of a corputation
organized for the purpoess of prospecting for, developing, aved operatiog natural gns, oil, coul, sale, mod other miberais, is invalid, and although boods are lssued, and nourt of Kausis holds, does not reoder the eity \& stock. holder in the corporation. The elty, having issued its boods to the corporation, which it is allegen io the pettion of the elty, may reeover from, the corporation the proceeds of such bouds ill-rally lasued to puy the elty a subseription to the eapits stock of the od
and wrongtualig converted by it to their own use.

Valid Notice of Location. - A notioe of locatioe of a placer minigg claim, which contains the barme of the
locator, the date of jocation, and a suffilent deseription all as required by the statute, is not invalidated by the fact that the date is preceded by the words "dated on the ground," and such words are to be regarded as meta
surplasage.
Preaten v. Hunter (Clronit Court of Appeala, Ninth Preaton v. Hunter (Circuit Court of $\begin{gathered}\text { Circult.) } 67 \text { Fed. Rep. } 966 .\end{gathered}$
Right to make New Location-A locntor of a
uarta minigg clatu, who has allowed bis location to quaris miniog elatw, who has allowed bls location to
lispae sud beoome subject to relocation, under the apae and become subject to relocation, under the the required anmual amouzt of work bas not bow done, bas the right to make a new lceation, covering the same Warn
. DeWitt. (Supreme Court of Utah.) 40
Pac. Red 200.
Sufflieney of Marking Claim.-A mining clatm
Darked by a disoovery monument, on which was placed marked by a discovery mobument, on which whs placed the corners of the clain, and a monument at the center
of each end the, leaving one corver of the claim unmarked, was suffictently marked, under the statutes. providling that such a claire shall bo "distinetly marked o that tis boundartes cas be rexdily traced
Warnock v. DeWItt.

Pact. (Suppreme Court of Vtah.) 40
P05.
Daties of the Mine Boss.- The mine boss is an individual 50 deslgasted by the atatute, who trust be employed by the milue omper, aod put in charge, with retereace to its satety and its security. He bas the es. the mive, likearise of its eotries, drifts, and rooms, and all mactibery sud applacos wbled are used in 18 operto the mlue Inspector, and ta subjuct to severe penaitles for any violation of the statute. Of becesselty, thens would include any fallure on his part in the supervision, tuarection, and care which the statute requires. Miners machinery, elther in person or by committee, conjoflatly with the owuer, or otherwise, ais they may cboose, and to take sucb steps as their prudence may dictate to And a right of action is prevent ascidenta.
asted partios in case they suatula dsomage certain desigany fallure to comply with the provislong of the statute, Colorado Coas \& Mine Co \geqslant Iamh. Court of
Colorado Cosi $\&$ Stine Co. V Lamb, (Court of Appeals
of Colorado.) 40 Pac. Rep. 251 .
Location of Mining Claim.-The act of provides that the hucatur taku so more than 1,300 fest of the vein. This contemplates a location to bo side parallel with the line of the vein, and if a locator, knom-
figg the line and course of bis wein, and willtully, nad with a fraudulent purpose, locate hls chaim in disiegurd
of such line and course of the veln, and establish its of such line sud course of the veln, and establish ita
length, not along the veln, but acmess it, to an rxceus of length, not aloog the veln, but across it, to an rxcese of
severai busded feet or wore beyood the 300 foot limit
 ailowed by congross, for the fraudaleat prorpose of gnin-
log snd approperiating such excese surfsce ground as bis log snd appropeiating sucb excese surface ground as bis
miniog claim, this woald be in dellbente violation of the naw, and a locator so netiog could gation po rights what ever, but his tocation would be alcolutely nuil abd void,
nod he would be left in as buid a postiloe as It ooe had nod he would be left in as bala a
never been atterepted to be made.
Walsh v. Mueller, (Supreme Court of Montans.) 40
The Rule of Safe Place.- The doctrine that a miming company can send its employes into the bowela make carth to conduct its malshg operations uithou tuaking any prorision for the proper supervision and in-
spection of the miloe for the security and protection of the miners and the mine is useupported by authority, in Niposed to sound publice policy, and is cruel and tahuman ordiwary and usual risk of the busibess; but what are these ordinary rieks ? They are the ribks locideot to 10 the businces when It it condusted by the mine oswed accorking to the cussomary alid approved methods and
with due regard to the saffety of to mibers. The neg:
to lect of the nitoe ownee to dlachasig- bls daty in this is a a begligent aet oo the part of the mine owner which renders bin linble in damages to any miner linjured thercby. It is the duty of the mlve ounver to provide a
competent forvanas or fugpector tosupurintend the work ing of the mine ; is is the duty of this forveman to direet Cue mbuers when and where to work; and it is partict and walls atd roof of than mitoe lo oriler of the timb-r may eome to the miners from canke which a capable nbd diligeet inapector would discover, and when dis are used in a mines, it is the inperative duty of the fore man to be diligent la discoverting the effect of the blace upou the timbers, walls and root of the mine, and to point out to the miners any dagerons conditions resalt
 as little danger to the ceen as practicable, Minlug is a becoseary and permanent busineas, and mast the con not alooe for the protection of the mluers, bat for the preservation of the mine fitelf. For these reasovs, the The pers muat have as tatemgeot aud comporent bral cosducted, there is no pursait in the conutry carried of mith greater regulncity, bystem and order, and with a against aceldenta and property from loek or itamage The cobdittous coefronithg the moloers from day to day, as a rule, are beither vuexpected nor unusual. They
are the common and expeeted Ineldents of mintigg, and when the foreman doees hila duly tbey are provided for and met wittoont accldent or any special danger. There is nothing hasty or baphazzrd sbout the buatinesu
Finalyzoes v Utica Mintug \& Milling Co., (Cireult
of Appeals, Eigbth Crouit.) 67 Fed. Rep. 507 .
Liability for Injury to Miner- Wbere the superthually falling down the surface of the mine ot a certain place, and that it was wore dangerous than other parts
of the mine, pat a miloer at aork lumediately under it without fuforcilig alaer at nork luwedately havig he gurfsee raked, the owder is liable for the reautiog bjury to ewch miosr, who mas igmorant of the danger.
De Weose V . Meramec Iron Miving Co. Supren

Wesse v. Meranseo Iron Mhing Co. (S
Court of Missoari.) 31 S. W. Rep 110 .
Duty and Liability of Mine Owner and MinerUnder the Kev, SL. section 4,871 , which reade as follows "The owner, sgent, or operator of every conl mine shall keep a supply of timber constantly on band, and shai ho miner elall bo held rispeg pisco of the miner, such may oocur in mises where the provisions of thls aection have not been complled with by the ourber, ag-nt, of if cator thereot." By another part of the 8ame section oof wade tbe duty of the miner "to kecurfly prop the pemalty of kjo fles por 80 dlays in jail or both, If he ntentionalily and wllfally meglects or refuees to perform such duty. Uud-r this sectlon of the gtatate it is the duty of tbe omber, agent, or operator to keep a supto the working place of the minert, acd is is the duty of the miner to sccurely prop the roof of any work log place and-r bis control. The duy of each party is clearly
defined by the statue, and for is neglect of suet duty by defined by thin tatue, sud lin a neglest of sukh duty by eitber, resulitig in as iojary to the person or propery duty of the agent, omber, or operator to tave the timber constantly on habd. and to dellwer it to the workligg place of the niber, abs hence the miloer is not concerned as to the manner, is which the deliveey is made- All he his to prove to make hls cave, ss to that poiet, is that to fact the dellivery was not made. He is not required to ask for the timber or kive sny potice. It is his right to have the timber delivered at ble working place at all times without request on his part aod without im tioe to any ooe: and a failure on the part of the oman $\mathrm{r}_{\text {, ureet, }}$, the mloer is negligner labe if the worh b is ee wately raused to the miner, an acthury is will lie theremer.
Coal Co. v. Estlevrnard. (Supseme Court of Oblo.)
40 N . E Rep. 725.
Interpretation of Contract.-A coal dealer, entered wito a coutract with thice coal compasies, sgree -
ligg with each otber as follows: The dialer agrevs to ligg with each otber as foilows: The drater agtens io
represent the entre intereats asd sales of the othrit threp parties in the Detroit trades that he will couflne bime if same from them to equal gquatities: that he will turn is
all his present trade and orders, at the price of 70 cents per toe at the mineer, that be will labor to improve the
marke, givieg to said parties the nivantage of whatover inprovement may be made, askitug no greater part ot such liorease than his fair proportion: and that be will keep his books, sales, hand contructs open to thetr laspeotion. Sabd otber psarties asree to aid and ebcourheld, that surh coutruct was eeveral, and tiot jolet, and that the parties cootractiog with the dealer, were beond eorda contructs wade by him for future detivery, is as
 made, and not at the market price at the time of actual dellvery
Shiptana V. Straiteville Crot. Mib. Co. 15 U. S. Sup. Court Res. 856.
Orant of Mining Patent.-The grant of a patent to a miutug clatu from the Untted States to one wbo
procared if for and assigned it to an allen is the jailg. procured it for and nsalgued it to an alten is the joilg-
wwent of a sperial titbuas and cannot bo coliaterally atwewt of a special tubuesl and chonot be coliaterally at-
theked. While it is true that the mineral lauds of the sovernment are open to location and purchase ooly by a atizen of the United staters, or one who has deolared bis
inteation to breone saih, and the fact of alleunge if inteation to becone saih, and the fact of alleunge if
ralsed at the proper time by any noe adversely futeroted, will defeat the nequirement of title, yet the quallof dlows of no npplicaut for a patent, st wril as the fact repervery, and entitle him to parchase the minernal ladd of the government, beling cogulantle by the oflicers of the land department, when in the exerctse of thele fartadiction, they ap. mebt, when in the exerclse of thelr jurisdiction, they ap-
prove the apolication, and allow an eatry, the finet of eltizonship, as well as all other questions of fact, is prevaurd to have been establisbed, abd is vot opera
Justice Min. Co. v. Lee. (Supreme Conart of Colotado.)

$$
40 \text { Pace Hep. } 19 .
$$

Liabitity for Injury to Employe in Mine. Under the statates, whech require the operator of a coal mine to keep the same free irom gas, and to have the
the working places nxamined ksfety lamp before workmen are ullowed to enter, and sive cause of action to a person injured for direct damage occasioned by any riolation or wilfol fallore to comply
with the regaifemmenta of theo statute na emplome canoot With the requirements of the statute, an eaploge cansot masintala an section agniast bls employer for un injury
followiog such violation, ueless at the time the was injured be was in the exerclise of due care.
Krause va. Morgan, (Nupreme Court of Otio.) 40 N.E. Rep. 886.
Admisaibility of Statements as to Dangerous Premises - Io an action for injurivs to as emploge as to the coodition of the root, made br persons not coll bected with the mining congany are iosplaisibible.
Treager v. Juckion Cual Δx Mising Co., (Supreme
Court of
Ordinary Care and Prudence. - The courts have very frequently, within the last few years, been called upora to define the meaning of "ordlesry care and prudence.
New loventlons in steam sud electrical machisery bave resalted in new occupations for men, and new me chanical appliabcos mhervby their labor is enuployed. Thus, are uuforseen and nlee questions of the law of bergligence constautly arising ha the ber relations of employes abd employers are discussed abd considered by
the courts. Findiar underlying prifectples, evolved the courts. Familiar uoderlylog principles, evolved trom geoeratlons of esperleace and thougst, are to bo
applied to the peraliar phaws preaented by the facto and applied to the pesaliar phases preaented by the facte and Aud so wn find the optulons, in discuasivg the dv-nution of "ordinary care," recogula that no fixed arbitrary ruto can be lald down, but that the degree of care and vicillance required varies accordigg to the exigencles which requife atteon. B and vighasce, conforming in amount ther gre to the particular ctrcumstavees uider which thry are to be exercieed. The care and attention necesis y on so employero part in fornishing a atvana boiler is restive the wor to be doee by the boller, and the capacity of such instrumeut for harm as well as good. beeded, ageregating about 200 bonse-power, it requirea no techalcal knowledge to say that many min are necce日sarily emploged about sach machloery, and that the dangers and respoosiblitises of the owners and the men employed are gront; hence ordinary carr in furnishivg suitable bollera for such works wou d be a mach bigher to furmishiuge than, for lubtance, would be ordinary care tratee from the wagon wherewith to bsul the concenThe Circuit Court of the United States for the Eastern diatriet of Mtichigno charged a jury in relation to negll gence and ordinary care an follomy, "You fla the stand. ard for reasonable, prodent and cautions men under the circurablavees of the cese as you find them, socording to your judgnent and experieoce of what that clase of men involver thess circumatances, and then test the coeduc judge whond try it by that atabdard; and neither tho ply you with the criterlon of juilgment by ang ona sup moy have on that gubject. Consolldated Copper st Sllyer
J Johoson v. Boaton $\& \mathrm{M}$. Con

Min. Co., (Supreme Court of Mobtana,)

40 Pac . Rep. 278.

Liability to Aceidents to Traiss. - Where a rall Way compsoy delivera cars to a bibiolog company by
I avieg ther on a siding, it is boucd to gee that they are left aad maintalned is ruch a poostlion as pot to ioter fere with tralos on the main track; add if the minlog compsong begligently permita them to rus down on the
main track wherely strain is deralled and one is injured mand track wher-by a trais is deralled and one is injured
the railway comrany ia liable. Union Pac. Ry Co la liab
P. Harris.
Rep. 843 U. S. Sup. Ct.

THE PROGRESS IN MINING. ABSTRACTS FROM THE PROCEEDINGS OF THE MINING SOCIETIES

 And Journals of Europe and Americe, Illustratingthe More Modern Developments in all
Branches of the Mining Industry.

The Efficiencies of Mine Pumps.- Mr. Per Larsson
 Piants on the Smborimer lange, Befote the Enembtery Thia pappr cannot be tatien as evee an approximate

 steam pipe leadlog from the bollers to the lasempont of the engion bouse is fous inches is diampter sud 250 fert
This pipe is apparently too small, as abown by the sharp vacillation of the iedex of the stram gange during each revolution of the engines"" In reply to a question by Mr. W. J. Oleott, concerning the small reenle of the Worthington pump at the Arapon, com
pared to that of the Woriblugtou pumg at the Vulau. pir. Lersion asld: "The pamp at the Aragon has been working for foar years, and the plungers are pretty well woru out, and it is n scaaller pump than any of the
otbers," Agaln, the qually of the cosls used is an fanportant factor ls ohtaling good reaulte, sed so are shloo the speeds and sizus of the pumpe asd engiber. For,
slow runding large ungioes give better results, so far sh elow rumbing large ungioes give better results, so far so
econemy in the cousumption of conls is cubcerned, than emall fust runeing exglues nod pomps; mod to support of this conclasion Mr. W, C. Bruwy, during the discus-
slon on Mr. Larssoe's paper, ssid " "It is foand is buildslon on Mr. Larsson's pajer, ssid. "It if found is build-
 fact la espmplill-d in the case of the table of resulta
given by Mr. Iarseos. At Chapin a lingeo nem Cornth pump with plungess no lese than 28 lnches in dianerter, sud the exgine making ooly 4.3910 fowt strokee prer
minate, the doty was no less than 63.715000 foot pounds per 100 pounde of coul consumed. The ressalts of two pumples plants that mere tested hy a meechanical engioeer was sent in atter the paper was road. "Owe plant none feet stroke, and geared with a single redoction of elght to one, The rogtue is of the Corliss type,
$18^{\prime \prime} \times 60^{\prime \prime}$, and ts contected to a Bulkley couteuser, whish is nupplied fiom the colum a pipe," The lift of
 mluute, and the duty is 62
pounds of coal conaumed.
We cannot over-rate the value of sach papers as Mr. Lsrasou's brcause the ther aluays applere comebow in this case we hasi perfection of rep air, agalnat three that
were out of repair, local mistakes as in the case of the over rmanl steam plpea, sgaisos aneple provision for lue jection aud *missoti, Bad coals azaiust good ones slow ransing engives, agalust that rusuluge obes. Nomer, the results collocled thy the writer of te psper brougbt
out in strang relle? the pucaliarities of the sumeneses amd itfeets of all the pampe and tugives in the Menuminee Range
Peshaps oee of the most remarkable tables of reeulte Sitirllug Iron and Zine Co. New Pumpligg Plast of the It appoara that after siaking a shate
Fatered strata, the tanuron or slinktug pumpros werm ris Whaced by a Triple Expuntlon Dugtes Worthiugten Puap, to forer soo gailous por minuts agniast a bive from the bollere ated the preparation of the station wan $\$ 10,000$ and the ettimated saring per day was $\$ 18,00$ ned tho daty per to0 pounds of coal coeskment was mo
 when during a trial of so mluutes duration the duty Was $i 8,254,625$ foot pounde.
The Mines of El ba.- Mr. Herbert Scott, a Fellow of the Geolceical socilety of laly, la-t May, read a paper on
the atonesabject betore the meabers of the "Irou and Stepl Iontitute of Grat Britain.
This island lo derply interesting not so much from a mining or metallurgical p fat of vlow no from the prand historical assodations. It was to this gmail Leamit hat Napoleon was sent to govera in pesce abnat 25,000
prople, afure he bad tried and failed to couguer and Iroun mined and manatnetured in thia island was used as weapresame of the inland, of the const of Fuscany in the very bame of the island, of the const of Tuscany in the
Mediterrasan Fand and Beosciblee to the ships of Grecee, is derived from a ore has bece mibed bere for 40 coturivs nasd it appara
that nfter all the timber fael was consuged dee the iolaud
 of mood was ineshaustible, to be suelted.
From Mr. Soott we learn that to ancleat days the pro. ersars of colctilng sus smeltifg were about the than as that practised by the Chisere nad the natives of
Hindastan, living oes the slopes of the Himalayn Moantalea nom, that in, the furnace conststed of a rode bearth dicided ition pockets of cells, and to ooe the ore was
moanted, and in the other the ore was smetted, and in abothve the front of the bot oms of the pocket was opro to the alr, and tu it logs of wood wero kept burntig with a fleccrines prugortlonate to the speed of the wind
blowing over the tops of the mountins, for the furnace blowing over the tops of the mousting, for the furnace
was almass set at a bigh el-wation on the monetale sloge. Is the ancleot dass, as the rosult of not uuder. standing how to construct a reverberatory furnace with
a chlmbery fue, the waste of fuel was ewormous, for to
make a ton of hrou bloom, it required 9 tous of mood for fael.
The anclents dip not use the iron as castinga, and Cherefore usde it at once into true sted, or a hlud of if the character of the latest steel, known as Sivmen's or Brastreve. During the prockes of staetlitug cast fiou is
 convert this into malimable tron the cartoon mast be
tarnet out un in the nooll-ro procest of puddlieg, but the barst out an in the wodern process of pudding. but the
absirnte burnt it out, by sdilime somer calctind ons, the abciputs burne it out, by shlibg some calctrind ons, the dxysen of which eflowted the parjuse requirnd, and thry
found that when dif. reat quantities of the ore mere mitded to the mertal in the furnace, they obtaits malleahle irue, or milhd or band steel according to the Weight ndded, ther r-wult was with grod ore they were able to
produce the linest uxamples of strel, as the celebrated produce the tiuest uxamples of strel, as the celebrated
Damuscus stowl. The noclente did sot ueed a Ilux for Damiseus stowi. The naciente did not ueed a llux for
suelling therr tron orms, the result was a high per centage of the metal combined تith the silica of the ore to
 with oxile of iron instead of oxide of calcium, or lime,
and we fled according to Mr. Seott, the slags contatu and we lion mecordug to Mr. soott, the slags contain
no less than $\omega 0$ per cent. of ferrous oxide ned 12 per no less than 00 per
Throogh all the 40 centuries the minting of the ore has been most peimitive, the deposits baving ouly a quifed and is now required, is to remove the overbur deu aud mine the ore is the opent
Coal in Illinois -The thifteenth anoual report of the Ilituols State Burenu of Labor Statistics is at hasd, and containg valuasie tahles of untwerical facts of great of the coantry and to all mis the colsmerclal propmote the satety and happluss of their fellow creatures eas-gag-ud it the hazsudous pursalt of minting
Erery repurt contaius the records of a cyele in humsn expertesce, for men continue to reprat their follive and autakers and recefve the rewards thry do bot Funt. The cycle of the year 1894 is remarikable for a triad of mis. un alarmitug tocremen is the number of fatal add nopratal accldents in the mines of the state,
The resalts of the strike were: First, an average lose
 abd future hoss of tade 1y the oppratura, a hoss in the tujary to the wealith and resourcers of the nations; ance oed, atore then surize a larger number of men were emploged, snd many of thrim mot bering proctical miners, in the purater of futal sud pou-fatal accibleut ingesose

 tory for their hard-working ledavery, for the yearly outvat in tose of conals prodoced per man ts gtvater than in any of the otber coni-fields of the woild, and wwwill the miners of Uue Unitur Stutes as unity of tome of takis prodaced. The results are calculated frome the tables given by the Buresu in thetr reyroct, and the tablen in quastion were cepied from the taties of "Tbe World"s Produ tion of Coul," published by the Britieb Goverument.
Actual outpat of coals per perans emploged in the miner of six great nationa. Year 1892

Proportionate output of coals per person employedi in
the coul fields of six great matious. Year 1892.

Vatiea suntes	\%0
Treat britais	6
Yrimes	480
Etsiom	\%
Austris	52

Lake Saperior Mining Instituto. Address: by Che President, Mr J. Park Cbanning.-Is has oo nasgestive of wise stepas that ought to be takien io reduce aud alleviate the suff-ring arising froes mina acoblemts. The epeech exidently was bot made of short cates elose, interested. sympathetio and polangel observatios in mastering sall tbe importust phanes of the su-joct, Sr, Casuaing hopires couthrucs to ha be uses to the measuienient of others, and heps bo what be says:

As Sir Wiliam Temple has sald, The abilities of a mann must fail short on oue sade or the osber like a goar sbmaiderat your you atere abed, if your if soull it syon tome to gonr feet, your shoulders are ubowvered.' In oue short paragraph be thuts a place for the phase of mining experievec on which the treate, sud bers it is. Thave deterained for the tive to beglect the strictly cousumical side of miang and to call your atkotion to matare of a pelyhoting, we mather probse was, is in the sud augles to fully approciate the cergotal."
11- comanaters bits reference to mine accidents by soufrouting us with the awFal, and oft repeated truth, bamely, that many of the sorrous of hamaily are self Iutheted, and that the presidest spreaks.
itheif, whe puopatilon of bumaity will not take care of nature. I rigret to say we muat wee force to conppel them. Only a few days ngo the poress moted the clostug doms of a Coutory in the Suath where Bists are ground, becanse of the enormous death rate amoug its
veaployes due to lehallug duct. Masks and resplratorg
wrre provided and yet the meo peralatently negleeted to Wear them. He coutinues bis remarks, bowever, and not with
lausutation, but with a noble declaration of duty, for be rays:
"While

While the natural carelessuess of mankiod is dimcult to overcome, it doro bot excuan us who know Mr. Chaneleg dorg not, in a cowarilly spirit, heap repreach oa the every day miner, but Hind more to say abcut the want of oversight manifected by the mine insyectors or guardlaus for the exreation of the law,
and here is ooe, out of soveral givea from the records of then State of Michigso.
at Cryatal Falls, of uitim nael but falling to pive setting forth the death for 1 e93, shoming the denth of two wen, aed a equecial report for 18238 ou the Slansfield cave-le fall to record any fatal a clid-nte.
tics, and so the whole county bas has been ouitted in compiling tables
"The reports for 1888 in Marrinette coantr could not be foued." Mr. Cbaoniteg then giver the Pruseisa and British methody of clasuifying aceidents in miner, and
shows that they are worthy exauphes on which to binse a classification of our own
In sbort then, the Prestdent's adidress is so compre: hensive in dealing with the lame that are required, nnd the stepa that ought to be taken to enfurce the exrecuthon
of the laas, sund the efhical princlplea, that sbould ensure respect for the laws, that wethope it will bear the frult that bas been nouilabed by a wise well meaning tuan.
The Lake Mine Hoisting Machinery, Cleveland Iron Company, Isbpemidg, Michigas. - The enginas for this bolating plast, are of the crues-com-
poubd, coudetining, steam-joket igpe, with Corlisa valves and an indeperndeat Denne condenare. Thls holsting plast was made by the M. C. Bullock Manatacturivg Co., Chicago
The compounding "ythinsers are $20^{\prime \prime}$ and $82^{\prime \prime}$ in diamoter, and have a 48 stroke, and nfe constructed for a so cousiected that changes in the leught of rope for differ-: ent depths cas be adjusted Titb ense, expedition, and nerracy.
One dr
rugiue shall we will call A is kegred or thatesed onto the loome shift, whille the drum B when out of elutch is the leogitha of the mopht io be to enable the slteration io to selze on B and bold it statlounry and fast while the engine minds rope on or off the dram A for the yeoersary sdjustment.
For hoistieg
For hoisting, the drame A and B are bolted together by a quick conboction, that takes the character of a fast
oiat- h sud sercures both the drums and the eugiver uoder clat-h sud secares both the drums and the engiver uoder iben coetrol of the one bratie on B.
The posieg of the valver for roversing the englues, is dine by turuing through a portion of a rerolution the is dinat by a but or telle that is prossed aloug the axis of the shaft by two ateam cyltaders that are proviled for that purpose.
What is csiled an Intercepating valve, breally a replemisher valve to restore a supply of stenes to the low prossure eylinder, whes the Tereiver from the bigh in dianeter and the troad surfice for the zope on esch Is 3.5 font whide, making the trend surface of each dram sumicient for a ropes 13 (teches is diasueter ana) 1256 teet in length. The following parkienlars are devply inter-
 fent of ropes travel per milute.
No gates are used in the shatc.
The angle of the shate is 50°.
The akip lond ts 34 topa.
Frome the dump to lat jevel is 310 fren
Frote the dump to the 2 ned le-ed is 440 fonk.
Holsting has been done froce the and asd 3rd levels at The nate of twenty-six skips is twenty-fies mieutes.
With a pressure of 100 tise the followlag are the earvent resalte, but the farines are masle bur 125 pounda dxaser et 21 per cent
M. These finct have beed takes froen a jefor by Mr. J. Sujerior Mining Institute.
Open Pit Mining in the Mesabi Rewnge.- A paper Outhe the last moving of The Lako Superior Minting losbtute. Mr. Deston's paper dends directly with is depesit of Iron ore to the Mesabl Nowige, that liea under doctione of the sult
"With the discovery on the Mesabd Range of large. more or less flattered masses of troa ore, with is many cases a shallow covesing, tuteresting prublems in mis me have arisen, giveh ns, how docpo wint pay her the milued? He sbows there are two methods of miniug ores with
 temove a limitral portion of thes overbarden, and where the bed is of consideratile thick mess, to uudereat it with ovels hud ccesbect the surfaos and the levels wibh nises what sfter the ore is blasted, it cas be filled by the that litsthe cars in the levels and then brat ou to the agces and disar holsted. Ho discusses the adnow for liftogg the ore sud deltrering it futo the cars, and cobrludes that thls device is bot ecobrmics exeppt whee the work alvancea upgrade snd the drainage tak μ place
 has not the extended application of the milling system,
but will be limited to the favorable conditions, such as
easy gradro of apgruau'h aud vasy dnulunge. The ideal
 ere lie is a side bill ased dip in the sasme direotion as the hill, with its lowest pulut at or alowe the level of the adjotulig couatry. Soch oocarreber of the ore sufforianately are rare. The strum shovel from a nerchaneal standpoint is a vesy
ecots of reppairs are blath.

Locumantive expetibes are Increased rapidly by adverse grute, for a locometime cut hant os a two per cent. grube ouly abuat oue elghth, and on a three pur
cout. grade ouly about oue-twelftio of what it can haut on a level. Ihe ecreowy of stesm shovel mituigg depends on kereptog the stiovel coustautly at work, Iu
order to maintuin a large output. In the miling Order to maintuit a largo outpur, Io the milling
eybums the work grows in depth, and after a givril ayount of stripplig bas been dhur, will of the ore un-
amoveral tasy be reasoved before further stripplang is coveral the
beconsary.
"When the block of ore has been mived, the pit thus may be used as a place of drporit for the oert strippita. It ought to be possible to utilios this allvantage to materially rodace the oust of sutserqueut stripping.,
for the thalage would be short, mad by systruatic for the hualage would be short, misd by bysiruntie
methods. the toottou of the stripping could be damped methots, the tottoum of the saripping could be dumped
luto the bottoss of the pit, aud gravity would thus bo suate to asolat throughout the work."

The papris is an excellent one foe reference and here

 roof and blasting, asd the chaners of tre are hess.

2 Ecorvany la minting due to the poasibility of using
 row working places nece-sary in underground mining-an
advuatage ofiket fiecreases with the hardiess of the ore. The ensier sund betier susperiestradetice: The savilug of The easier suld betier sulperibtrindetice: The saving of
the cost of timbering. The saring of the coust of tram-

 solute ortalaty, this avoodug the luas of ofe mors of
less great, which must aluays necowpany uudergruaud work, ${ }_{4}{ }_{4}$ Savieg of the expense of making stock-piles and sutsequent lenaling.
where frum twa to niver filin per day is increasel aing to an liocrease to wases with te hesg

"1. The brecreliy of providing a plese for the wate materthis removed. This hus trwa a chiof noure of dith. ealty elas
Mexnbil
"I. If masera of glacial drift; betls of eavd. or quant.-
 or at lrat would not bave to be baudled.

 up to tbe point wben stripping to no lovgira poselbility." Horumburra Coal Fijlds, Victoris, Australia of the coul Belds of Victuria, we fled that: "Duaing a
pretimiarry exiaulumtlou of the seedions of a portlou of a
 Koraubuara, it mat vheerved, that the sabiotones,

 the wrst of Euruabaira wus first nirweyed
A Singular Esvanatry for Coal.- I 1 have before,"
says Mr. Jaues Suiling frous whine repart Wequote
 fornastion of solls, and fimisl metrrence was made to the work perforned by the lasul conth is brisging sp pleces of the neik furculug the subsoil, and nustested that
these dinaialtive excavalurs mizht prove useful tu nestat. log the miuer is thating cosl srazus in Soath Grppsland aut Mr. Bellamy informs me that vou of the youvg weed worklug with hum, has sueressfally utilized the hiut, and by carefully ob-erving the material broaght up, and
forming a small beap round the orifioo made by the crab, he deteoted suall plecers of coul and sauk as obatt on th ${ }_{8 j p o t}$ Ond cut the cial seam 4 tert below thr saface the Kurumburra sud Jusubunis coal Herds are of Ovilite 3 age and the cont la guod, bet there we only ahout three 3 feet sratus that will probably yleld $35,255,511$ toes of
coals, but the two things that are reuarkable about coals, but the two things that are reumarkable abrout
 cordiog to the clatime of the secopted lheary that. "The

 the niteos of the bedls by floode, for the cosl scans ounmint of different varikties of cual nuore or lese laminated

 of counditions that ovild nut exint in the depoetitom of Hent are Mr. Sirituas's, numelustonis. Thn explanation off-red thy nais
that coal bechs a o formird by the growth sed deray of plaust whik th-rurb hed is sita lu marohes dows bat are tug the cartownewous ilvposits in South Gippoland, aind

nlahing an excellont hollog,-yot there is nothtug to show that such bauds represent olf soils in which the plants furming the vegetation of the coal beds grew. mptints of the noullets of plants, soch sh the stigenuria issocinted with the ubderclays of the trae carbonifferons beds elsowhere
"Sreold. On the costrary, thre is rtropg evidencu that the vergetstion has ber
thed tich it flouristied.

Thind. Among other inatneces, I may refer to the existrace of therly water-worn petbles of glassy quariz
 bhatr master aspreciatel nith some of the seams
"Fourth. The differenos is the physical structure of the coal in the sarue brd, one portiou cousistine of " harvoal, while another base nli-routing bright aed dull bands of leyers, oue of which is higthly bitumbous auid the ofther earithy

Pifth. Tbe remarkshies variation th the thiskores of Aorbe of tha seams, the falee bediled nature of the strata be taul below them, sind the occutuben of portarly de prosited tin the sasustoser brds, alf polet to difitial ugenvice to the nccumatation of the resotatioe forming the coa. seams.
Mr. Stirilig does not allow or fudorse the accepted Thenry, that the coal seaus cobisist of the miberalized tlains that the driftel theory aloune cas account for the rxistebce of these coal deposits. The report however claims no buatisy tu the matter, but furnibbes facts that abun lant everlence that ther region of these conl flelds mas during the deposition of the seras sud the framedi.
 and wastied tin the fouts, botachion aud truak of tores nitendy referved to, and in the aetloe of moviag water,
wre have sumfieret to ivengerice form the comman origie of conl scatus The fotlowing is Mr. Stirling's blatemeat of these facts

Reforring to the go as Buleria and to the scareity obudance of feris, cyents, aed equisetacea, it is reressked that thoos plauts grew near thes shores Beir remalias were more readily poroserovi in the reati. rocut sceumulatieg in the still shallow waters. When ever the atrata was of such a chariveter as to fefll-ate (be presence of water is motion, sunch as rivers or tlonds Trou the highlauda, then we do flud atbusdaat traces of soulf-fous vrgetation.

Thus in the sandstones of the lower seriea me find coniferous wood usually bithelard, but it is eapecially in abouant of grabite sand that we thut the kresifest number of contferous relics. Often levisted trees whik b munt In the ena foot or more in dlameter, occur cobben which are now thatteurd liy pressure.
Is coeclualon it is latervothig to know, and to rotion, that the coal Alelds of Australla like those of Iudin are not of the Carboniferous, but of the Trinsele aud Jurassle periode.
Mine Locomotives with Sec-ndary Batterien B. Y. Cambesaedes in American Manufacturertien bas been applied ta is gallery jotulug too pits, 1575 methens apart, lo which, to avold the coot of oviethead arndactors the pelinelple of driving by recomtary bat-
 of the live, whinh is laid with flahbrinted flatige ralie welyhing 12 killograms per weetre, is fite millimetres, the age gradient (in favor of the load) I iv 350 . The flrst tocouvtive, built in 18is, resemhlied a low-gided geoplywazos, havlog a rectagelals body 2.525 netros hovg noil the leuge bromil, cartifel on two axies 1.1 murtro apart, driver aud brakesman at elther eud to a totsl of 3.969 metres. The secoedary bstterivs, on Jullen's sybtem, hochule 86 nlecuents, rach conataining 12,300 by 200 -uililitotal of 40 killogranas. These are arranged in four groups of neme fu covered eboalte boxes, two belug placed at elther tod, traving a spaco of Ses millimetrog logs in the centse for the motor. The boses are consected by balied copper wirs, sud the malu couductors to the motur are in tisued-apper, issalated with valcuniz-d rubber their sectiou is 28 square uillimetrea allowing iby puansug of a curreat of 100 amperes mithout belug anduly hasted. The totai capsely of the battery is
stimatrd at 465 amprra bours, of 15 ampere bours per killograns of plate emploged.
The motor is of the Lahmeyer type, with bipolar feldmasparts of cast frue, suries-woubd, and slemene' dramdiaks of ebarcoal fron and vegetsbile parchment. The brushes of cerboos, electro-copperot, mulatain a fised posithon on the coasmatator thitip pesdint of the direction of rotation of the armature: and no the brradth of the puln pleces is limited to about half the cif-unal-retere of on provent danger frous ararklog. Tbe armatare makea Wibs) revolutious per miante, which to reduced by two motion from an the driviuk nxie, the hattor triwining halisa. The wheelo are 500 mil fimetres in diaweter, Hiving a travelling spowd nbout 24 wetree per eecond,
of 8 hilowetres per hor
The total weight of the locomotive is 3,200 kilograms, asd that of the rale drawu 9700 kilograns , wate op of
 of 12,050 kllograms. The juaruey of 1,025 metres is per-
formed In 11 minates, giving a nseful effect of about 150 kilograutrentive (two horbo-poser)
The meran potential at the tevminals of the motor belng : 00 volta and the current 90 smperes, the ebergy consunerd is 2.100 watts, or 214 hidegrato-wetres, giving
an -mlcivicy of 20 per cent. According to the chlalatioe of the sulhor, the disposable ruerey of the bastery may be takron at 4.a hurse-power hour, to be expeeded durivg eikht working hoars it the shift, equal to 5.7
horse-pomer gmas Hxented contlanously, or 4 horse-horse-porner gras exerted conthenously, or 4 horse-
power allowitg 70 per cent, eth lency for the motor and rausuisslon. This, howover, is saliject to some redacthon, as it is neversary not to leave the batteries cum-
piltily un harged at then end of the day's work. What Twect is rallzal from the batterive has bat bero determibod, hut experiments marle with one of the same 1 yre
 and maximan of 85 per cent. Allisking 80 per ernt and the sante tiguon for the primary dymane, the meechanital that of the driviog engline at the surfice. This 1- subFet to a furtber deduection by the hosd due to resbstamea In the cables counerting the dy namo with the chargheg experituentally. bat to cempated by the suthins to bo equal to about 42 per cent, ne the d-pith of the gallery collow the surfuce is ouly 28 metres, siod the length of
 1,100 melres of cabler, this hoss would bo very much
 of the primary dyuamo. In the persernt casse we obtata as the surface is mproduined ta the driviug wher exp-eded locomotive, or abyot twioc as mu-h as cau be obtaliund with compresed air, Thith nurely gives mone than 20 per crat, except spectal weans are adopted for supplyTheat to the air during expetision.
The daily morkitug cost of the locomotive is given as

This, upon the work done- 300 tubs, with a net lond of 120 twos, hasicd 1.575 metres-corrapponds to a cost or rather lese than balf that of borse trnction, whith is is entimes. In this vatimate the duralloe of the positive plates of the necumulators la taken at a mininumu of oix
woothe, bat in actual work thry bave beon fousd to be in prrfectly gowal workiog order nt the wnid of that time. The locomotive described above has sutsequently fering is construction in several particalares, thos most tmportant of these beling the subsititation of two fourwherled bocie for the two rigid axies of the first one, and the division of the power. ench jair of axiss having its own motor, with thaismikalon by epicycloidal spurgearing tastead of a combination of -pur nod chala-genrThe Prevention of Explosions in Mines-The mary of a report that was recently published to the Austrian Mising JJurnal.
As the majority of colliery exploslons are due either directed chisefly to theae two polints. The danger of at exploslon belug cansed exists at the very tharnent a shot is fired. Drepite the mumber and variely of the methods of detonation that have heen proposed of late jesra, there is th Austria a hasiked tend-ory to return to the
 account of tis chespures is still largely urve, is not unatesded by danger. The dangers wero well shown is teling found to mpplode gas mistians Collheries, the fuce Por ernt. of flreduap. At severnl coillierles in the Untrau-Karnin dh-trict, the uee of this fuss is ouly per-
 employ only the gutta-perch pattern, as sparks are bot ko frgupst. The Laue friction heuter, an Aastrian Invention dating back to 1897, is now roployed ouly to a limited -xtrnt in the Ostrau coalbeld. At firot its use led to numerous accidents caused by carolveng hus dling
In tranarort, br tampleg tho vigoroualy, aud by the wing In transport, be tamplige too vigorously, aud by the wirve
becoming vetaigled. This in strument powssorl, how. becoming vatangled. This is struwest prosessord, howerer, the sdvantages that when an axideut did baipen,
as a rule ouly the pursou suffered to whuse faulty as a rule ouly the persou suffered to whuss faulty manip-
viation the mocdent was dur, and that no serthuls firealation the nedient was dur, and that ns sethuts fire-
damp of dast explosion teaulted. damp of dast explosion resulted. A mose recent
luveotion, the Tirmasur percusalon factitur, han uos as tuvention, the Tirmauna percuseton igetiter, has uot ns
yet comes into any geveral use, althougt it has been tried In a bumber of colli-rira. It is quite as cheap as the Laver igniter and it is exally baudled. The nutuber of prove that this to due to the want of streegit tu the Thering which proj-cts the bolt againat the ixplefive The vectric method, which appears to be the suret, hag
 roming luto use for other parpases. Laylug loug Ilines , howno mater os difliculty ; the method is sucertain in its actiou lu wee welisht of edrectic firiug nyparatus is remilered do mivit in. aterp worklegs. The duger of the ignilion of firedamp in the colliery from sjarks at the detonating machlue
 the fusulation of contuctora phould to ss perasly prifod as purable. Wbrover puablicable the wions atuald be Dla ed ou spproito niles of the roulwny. At one of the electric flring plast bus leen limposted from Fuglad.

The carreat in this is so well regulated that the spark produord does not explode tiredaap. One objection to
the electile method is that when several shots are fired together, the various explosious are to bearly simbul-
taneous that only ove report is audible, and mise-fires
 Adverting to the precuations takes io the Austrinn
collieries durivg shot-frimg. Mr. Lampecht reters
eeperinlly to the employment of a eopecinily to the employment of a special clace of rork.
meen to Ilre shots. Defore firing the shots thege men carvfully examise the workings tor gas. This practice Is now generna is Austria shot-firing is often very to eutrost the average coal-getter with a delicate tustrus. ment for gas teating.
Turuing to explocives, it may be woticed that in
Austria ordioary blisck powder in rarely used in milpes Austrin ordinary black powder is rarely used in nalpes
that are at all flery. Compressed black pomder is frequestly used. Although it is cbesper thas ordinary powder and easter to habdle, it is even more dangvrout
than black powder to the presence of gas. Dy is rery largely used in the Austrian and Humgarian fiery mines, sud the water cartridge, which is used only in rare instabice, provides a certain method of obviating explosions- Of the explosives in which salts, cootaining
water of crystalization, are added with a view to reduce the temperature of the gises produced on explosion by this water belog cooverted into stesm, sods flameless dyasmite has foasd the moet exteoded use in the a great drawbeck. The use of explosives, containlog ammontum nitrate is attended by great satety in fiery
minee. All the high explicalves bave, boweser the dik migred. Alt the high explusives have, bowever, the disagreable property of detlagratiog instead of exploding. recent years must be nscribed. Lime cartridges were
(ound quite unsuitable in the Austrian wines, nod the found quite unsuitable in the Austrian mities, nod the
metbode of wedgiog down the conl adrocated at various tethorla of wedgiog down tor conl adrocated at rartous powder.
Turning now to the mathods in vogue for lighting the Workings, it is found that in the Austrian and Hungarias It is undoubt-dly a good gas-tester, and the device that inables the lacup to beorelit without opening it presects masy adrantages. In the Ostras pits the aversge ve and the Woit sump is sate for suct in velocliy ns that. The magoetic lock is oot atsolutely faultiess, as after miners easity find meesng of forctog it opera without damaging it. The extent to which the recklestoess in gome minerg may go is well abown by the tact that
the period from October 20,1804 , when a seriouscolliery acestebt occurred at Aniss, to November 20, in that three cases of unauthonized opening of Wolf berozeo lampe were detected, in two of these the magmetic lock haids viotedtly agsinse the groume, the Roomanian miners in the fanat collieries succeed in forcing the betisege out on to the grousd 60 as to light their
clgaretles. The Mueseler lamp has beven lused for everal jears is the collieries of the fossitz district and no accident has bees traced to it. The Pieler lamp whs largely uaed for gas testing, but to moer
Banat ooliferies ita ues has been discootinued.
Although sta ionary electric lights have been succoben. fully introduced is the Austrias collieries, no portable electrie lsmp bas 5 et been found to replace the safety
lamp. The chiof oljjection to apech lampe is that they lamp. The chief objection to aveh lampe is that they
afforded no ladjration of the character of the surrounding attuosphere, and florther that the e ength of tian darivg
whteb the light wilt last is uncertani. Oue of the best whies the light wilt last is uncertain. Oue of the best
is the Bristol lamp, which is now uoed to the Karain ollierlive in dangerous places.
A uififeroua Depoaits of New Zealand.-From an
paper by Mr. Heary A. Gordon of Wellington, N Z. paper by Mr. Hetry A. Gordon of Wellington, N. Z.
and read betore the members of The American lastitute nt Miutng Engineerg, the folloning extracts ars takea:
In the Uper Taieri diatrict, ""wire gold" is occaslon. In the Upper Taieri district, "wire gold" is occasion-
ally met with in considetabla quantities. It is always obally ment with in coasdetabla quantities it is always ob-
talued at or near the surface, nad was in the early days of the diggings considered by many of the minera to be
petritied frase-ronts. This form of pold is bow less petritied grass-roots. This form of pold is bow less
frequently wet witt ; but in 1881 MeKay, the mining prologitt, saw a pareol of 40 az of gold of this character at Naseby, and purchase1 a few peawyweights of
it, comprising ibost remarkable pleoee, frow the bank it, compriaing uost remarkable pleoes, frow the bank
where it was sold. There were this wires of gold where it was sold. There wete thin wires of gold
straght or beot, one side of whtch was smooth of striatel, the otber allie beling covered with small cubleal crystals of gold. Thls sample, or part of it, whs taken
to Sydney and exhibited at the firot meeting of the to Sydney and exhibited at the brot meeting of the Australian Assonctathon for the in the possession of Mr Johs McKersle, a tioe specimen of the same character
of gold, whlch was oftainrd sumewhere in the neighborhood of the Carrick raige. It was about $1 \frac{1}{2} \mathrm{in}$. in
levgth and about 2 hm . In diameter, mid, Hke the spectmens alrendy ment oned, smooth on one sile and cor-
ered with crystals on the other. Such gold might pos. nibly be derived troen the denadation of lotes, thet the probs the samples hitherto found cmme from districts where the quarta drift deposits of cretaceo-tertiary age
are aurifermas, and an the strata are tilted to comeldee are aurifervas, aud ander gold.bearing babds are thus exposed at the surface, where a partial solution of the gold might be
again prectiptated by organice matter sod crgetallized at
 elpitsted froms 80 ation is reported is the Marrowhesua
fleld, tut the occurrence requires verification. Last iled, Mrt the occurrence requires veritication. Las gold which mere supposed to be derived froas a green sand baud on that riveld. Samplea of the greenamd
sulbequeatly gent to Wellington ylelded no gold, but the
 The greensand is a marine deposit, full of ohsrkg' teeth
and stells of various molluaks, and conslets of glauco-
note and vory fline quartz sanil, that has evidentiy been
deposited in comparatively dexp and still water, and is deposited to comparatively deesp atd still mater, and is
therefore very ualikely to contale mechasical gold Ther thie
The underiying quartz drift has aurifecons layers o Gands through it, sud exteods over a very large area of
Otago. Slophtg sa it dow from higher to lower groand Otago, Sloptg as it docs from bigher to lower ground,
as oul the Itsuka of the Kavanil range, it would at the lower levels become saturated with water, poasibly
chlorinated water, which would dissolve a part of this gold in the lower drift, abd, under pressare, would rise into sed astarate the greeband band, while the organte
matter in thls luand would be sumliceot to effect the prempitation of ther gold now present in the greensands.
Nectionical Drpowts. - Fecent and pletatocene gold Nechinical Drpanis. - Fecent and pletacocene gold many of the later pliocene gravel deposits are, not
readity distinguiahable from those of still younger date. ceadily distinguishable from those of still younger date,
the mont modern deposits that will be mentioned bere the most modern deposits that will
sre probably of older pliocrne date.

Pliveche ond Upper Miocen Deposits of the Wat Cant of the South /hiasd.-The youngest of these are the
gravels of the Humphreg's Gully rauge, on the southera adde of the Arahura Valley. Similar gravels are noticethe Kumara Christchureb rond. At the latter locality, though gold is present, and the bed of the creek bat proved worked, the gravels iedicated have not as yet proved profitable. At Humphrey's Gully goldmining years, aud there is yet an unlimitted supply of material to be operated upou. Auriterous gravela-it mav be of a slightly greater age-are worked in the Totara district Moust Gremand, $3,000 \mathrm{ft}$ - above tbe leve near Ros, narer the sen level in the Mount DYor claim, marrin of trose flat whlle on Rose fot the same cinter ane foued 910 th below sealevel and coetalo igravil posits of gold. The same beds have a very large devel. opement in the northwestern part of Westlabd, bat, owivg ot the small pere-ntage of gold yielded, they are no rorked at the present time. They also have a large more eapecially in the valley of the Little Grey; and at the souree of thits stream they fill the valley betreen the Paparoa rauge aul the hilly country to the soutbenst of Reottob. In the lasogshiun Valley they bave an import cot dovelopmeat betawe the aid southweet part of the upper Buller Valley their distriluo tioe has beeo leas definitely ascertained; but between the junction of the Oweo abd the outlets of Lakes Rotoros v. donta, borth of the DevI'g Grip, an enormous de - Iopment of these gravels flla the northern slope shores of Bliud Bay. The same gravels are largely developed along the east coast of the South leland, but are ther to the Starlborough tor in the Canterbury districh rict of Otago they have agaio a large developenent, and are mod for bold at the K yeburn, on the eastern side Ida Valley nod Plain. They ate larzely doveroped io at вeveral places in the srolypeux Yalley below the juacMeteorology and Mining. - " Meteorology and Mining" whas the subject of a paper descriptive out changes in sud shome coal matines, which was read iffore the members of the south Wales Colliery Mhicials' Associatios, at Pontypridd, on Sept 14th, by
Mr. Josept Thoupson, M. E., of Cardiff. Mr. Thomp. on sald there could be bo question of the absolute anazimity of feeling that it was deairable that explosions of gas in coal mibes should, if posgible, be prevented, perty which occasionally oceurred, bo avolded. The axiom "Remove the cause sod the effect wilt cease,"
was as true to lay as ever, and as applicable theoreti. whas as true to-day as ever, and as appolicable theoretimume the problem of thow contery explesions were Tbe sbility to pass a quarter of a million cuble fect of ifr per minute through a main sirway was oee thing, but the advisability of dolug it was abother, for if it be pos. nible for the seat of a explasion to be in the main tatske
 a gale, such veluelty must necessarily preclude the por
diblity of searchtug with the eafety lamp to aseertalo the presebue or otherwise of Iredsap. Making a passugg refereuce to the coaldust theory, the speaker thought ties were responsible for such large quantities of the ities weve tesprousible for such large quantites of the in the air-carrent, abd depeeiteol in contililerable bulk at poinos where such maght not otherwise bave oceurred. originatiog in mach a curreot, itppregnated with this indammable dust, the teulency must be with such a high velocity to elongate the flame of the explosion, abd thus not only most aethously increase the capacity for damage the explosion iteelt. The bjealker theo gave an juteresting deecription of as tostrument which he submitted to We meting, it had boen called a meteorograph, or a
detineator of the atoosphere, and was inteeded to be houg againat the wall; sud when tixed up to represeet any set of conditions of clrcumstaniess. It presented uttrely free from the ambitifuons confurinon of tegy, and termes. In its secope for coal minling purpoees it embraced time of obis-rvation, together witb o diagnosis stating Whether the fudications given by the dlagram were fuvorable) ss compared with what was indicated twentyfour hours perionsly, so that thereshould be little, it auy, difticulty on the part of those usiog the apparatus
kerpliug in constant touch with the operations of those pbysicit laws and forees which nitmittedly exercised so
daup is coal mines. Structurally the apparatus was belt-contalved-when flixed it had no loose parts to be coter mislata or lool. Dealige with preseure (barometer) se had made an entirely new departare by dividiug the arometer scale lito zowes of high and low presaure.
mgly tuexplicable mystery which usually qurrounded the problem, atter an explosion, of how it was cassed; bat. go far from regarding it as one of the hidilen thinga of stance of combinatioe of circumstances into which only experts might pry circumstanecs woch ns aresooettiones set up in connection with blomp-out sbots. coaldust, and such-like theories-he vestured the opision mbich he had held and contioued to strongly hold that, if fire.
damp were prevented from c.ming finto contact with damp were provented from c,ming tito contact with might go further, and say that it was bot the gas we know of in the mine whlel gave rise to difficulty and danger, bat that which we do not know of, which vor
overs' Inguirles proved abuodantly. The cobcluation was thus forces proven thementhat it became an essential demest of duty to make a special study of this gas "we do not know of, nad it whs at this pobint that meteorological knowledge came to their ald. In the dayz whee he acknce of ventianng coal mines-it selence it could ne calied-was in its roded Dorm, contetoporner with and aterior to sir Humplerey Davy, observad od colliens Whow workling plaves were ofteo found to be foul with are-daisp were woet to Assoclate that condition with the fircetion of the witu, probably due to the fact that vertalns directions of wind in the particular locailty were assoclated with a lower of falmog condition of atmaspould thus be seen that the association between would thus be seen that the sssociation between
stmospheric conditions and the presenoe or atsence of tlre-damp is the worklogs of coal mines was not by any means novel. It those daya meteorology was an insigulficant branch of the sclence of astronomy. Meteorthe atmosphere-had, bowever, established for itself a worthy and bonorable poetisoe in the fueccastile world, and this conaparstisely yoang branch of sclebcenow specaand thas comparstively young branchof acleben oow epecubeld by ali intelligent and practical mining moen of the preeat day, that atmospheric pressure sud motstare wene Hilloces of great potersy in conbection with the ven could be conoplred than that of peglecting to apply to the beet purpoese the useful intormaliong to apply to whleh this branch of sclence plated within their reachWhat this orsocb of scleace phaced wise tolr reach. well astablished aclentifle truths, and in deciding what to accupt or what to reject it was at least ilealrable not to err on the hazardons side. It was not to belmplied that in the well condacted operalions of conl mining this lmport ant branch of sclence was oeglected for be knew that it secured in many places a wery full share of atudy and con gideration, and with useful resulta. He conld not imopio how anyone having seen the sound evidebees of its utility in matters concerming atmoepheric isllatmoe orer zeotilation,could ever think of redaxing his hold upoe it eashling h / m, an itdid, to settle many important poleta with certaluty and which must otherwise have remained in the region of dancerous doubt. He must not overlook thoee who日ecmed toprefer to lim entirely frue from acientific considerations, and who were content to go just so far as mas required by the provislons of the Coal Mibes Regulation Act, which made the existence of a barometer and thermoeneter a The with coal mine ventilntion were the barometer, thermom eter, hygrometer and suecombter, which respectively indicated the condition and changes of preseure, tem perature, motature and volume of ventllating current Although each elcment had an apprecinble abd mport ant significance to the tesporisibie odlcials of a mine in the economy of ventilation, the preaner positioe must ba secorded to the barometer, which indicated the oond. tion and varlations of presaure. Tempersture played a lese important part in these days of mechanteal ventilathe farnace, though it was a coodition which bad to bef the furnace, though it mas a cobdition which bad to be
carefully reekoned with as belig liable to exercige it most deleterfons influepos cono verse circumatances of the working of the mine. Moisture, as indleated by the differeboe between the resdiugs of the wet and dry balb thermometer (hygrometer), was said to be respoessible for the variation of resistance to the phesage of the current of air through the alr pasages
or galleriva of the talne, but of itself it wns, in SI . or gallerivg of the mine, hat of ifself it was, in sir. Its inffuence for evil opersted concurrently with other adverse elements. With regand to the volume as ascer taived by the anemometer, be confessed that his mind was not free froms doubt as to the ibsolute of general heard of both in practlee abed in project.

Artesian Wells and Water Motors

Among the most interesting watel power installations now in existence are, witbout a quection, the arieslan differnt plaees is the western part of the Uuited States. lacklentally they have givels promeenee to the maeh seglected water motor, which for yenes pat has led modect hind of exlatence, notwitharanding its very fair claims tien of exbence, botwistabing its very fair many declded advantages as a meansfor supplying small power, and even for comparatively lange quastities some of its various modiflestious bave been fouud to give very good nocousts of themselves. Prsotically, a water
motor is na faally managed almont as water foacet Ita coet for repaifs is mominal, and its firat cost is excevdingly small. With this in its favor, is pretty heavy till for water power can be afforded, and yet a couslderable profit be left over stesm or compreseed air.-From

Easy Lessons on Mining.

 This Department contain; articles to assist ambitious Miners to educate themselves, and obtain Certificates of Com-petency as Mine Formen, or to tecome Mine Superintendents.
The articles are written to be understood by the unlearned and the learned alike. Plain language is used, no obscure
terms are employed, and each subject treated, is made as clear and easy to understand as possible.

Further: The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors, are printed and answered.

MINING MACHINERY.

The Mode of Action of the Fan.-The Piston Analogous to the Fan Blades.-Velocities and Den-sities.-Balancing the Mine Resistance.-Veloeity into a Vacuum.-Pressures and Squares An Example in Fan Calculation.-The Blowine Fan.-Pumps and the Velocities of Fluids.
65. The Mode of Action of the Fan.- In commeoclug to stody the privelple of scilios of the veotilatiog fab, we must at ooce dismisa from the
mind the bdea that the fun io erther a puzale of an mind the boen that the fun is enther a puzzle of an
euigman, that can only bo solved by beetug fomersed In the profandities of abstract mathemastice, for all the hazse sud obscurity that euvelopes the subjoct, is the Fesult of belleving that the mode of action of the ventilating fan is a riddle that cas ouly be solved by speetal deepply learned experts, whereas any student in mintug can, through the medium of ordiany arithmetic and the Well koown laws of mechanies, balance any equation
relatiag to it. To make the mode of action of the relatigg to it. To make the mode of netion of the
ventilating fan quite underatandeble, let us proceed mith veotilatug fan quite
the belp of $F \mathrm{Fg}$. 112 .

Fi6. 112,
86. The Piston Analogous to the Fan Blades. Here the cuse of the fau is substituted with a cylloder abd the blades with a piston $p^{p} G$. The centrifugst
machine is contibuons in Its action, but the pistos and machine is contibuoas in tis action, but the piston and cylinder has an alternate action for intake sud dis-
charge, but so tar as the pausping action is concerned, charge, but so tar as the pansping action is coooerned, both sre slike: and to make the pistoe and cylinder analogous to the fan, the port of entry on the upstroke
is made to take place at C and the diecharge at E. is made to take place at C and the diacharge at E
Now it the cylinder be disconvected with the vessel A Now it the cylinder be disconbected with the ressel A
$D B$, and it the ports C and E are equal, we may now $D B$, and if the ports C and E are equal, we may now
proceed to try such experlmente as will denonstrate the lams that govern the mode of setion of sucb a pump. Let the aren of the piston $F G$, be equal to one square foot and the atea of the port of injocton at $C, 4$ equase
locbes, and leet the area of the port of ejection at E be noches, asd let the area of the port of ejection at N ioe
square inches, or equal to $e_{\text {; }}$ further, let the piston be moved with an upward force of 2 pounds. Uuder the cooditions given, the pump is similiar to a fan, when altuated in the open nir nod not subject to any mine relsance. is ens.ce of cotiy suaved at the oenter of tha than, is the exact auslogue of C ubder the platon, cyltoder is incerased or dimitished dire tily as the depresaton under the pistoe to tocrensed or diminuished, and what is true in the princtple of sctios, when sir rusbes into the depression under the piston in this caser, is equally true of air entering through the oentral oritice into the depresesion is a fan. Let us here notice one thlag homerer, and thast is the ejection of the sir above theg howerve, and that is the ejection of the sir nbove of the entry of air at C, or a greater peessares will be reguired for ejeotion, but if the mass of the sir per cuble foot is the same at the discharge snd entry of the purap, then me difference can aribe becourse the velocity of discharge cannot exceed the velocity of entry: therefore it follows that when the deasities are equal, the preesures are equal and the velocities are are equal. Is the case of an sir pump or fan however, the densithes of the injected and ejneted air are vever equal, consequently the pressures are different, and the velocities are diff-reot, but the masses of air centerting and leaving a pump of fas is a given time are al.
ways equa. All thrso pecaliar slatementa mar serm yery strange, hut whe caminot underatend the acthon of a tan without belng first made aware of how the elasticity of the air affects its mode of action; and further, if we reter to the figare wo mill see, that when the piston moves upward the air above it is compressed while that beosesth it is rafefed, with the resalt, that a poupd of compressed air is smaller in voluase than a pound of
tbla or rarefied air, consequently ns we mean by mass
the quantity of welght of air, it is clear, that a greater or less welkht of air cansot lesve " pamp or fan in a
given time. thay that which menters it, tutatarge volume
 volume of bravy air, absl if the votumes are different the velocities must be diffrout. For example, the density or welght of air varies direetly as its pressure. Then take the pressum of air to loe about 2.180 Hta . Rer enuare foot, nud it the pressure be lerreaced 1,000 poubole, and it the weight of 13 cuble feet of air $t=1$ pound, the same volume will now weigb $\frac{[2,130+1,0001 \times 1}{2,130}=\frac{3.130 \times 1}{2,130}$
1.469 pounds, or let the pressure be redaced 1,000 poundor, theo the welght per 13 cubte feet will be $(2,130-1,000) \times 1=\frac{1.130 \times 1}{2,130}=, 0352$ pounds.

2,130
Velocities and Densities - Here then mes clearly that to make the masss catering the pamp equa to the enast discharged by It, the velocities will be to versirly as the weltshts of the manees per cubic foot,or per 13 cubic feet. Tben if we take the velocity of the beavy air to be one, that of the light will be $\frac{1469}{5.592}-2.744$.
Let the reader be careful to duly appreciste these nue potnts, and bls progress will be quicker after. Now et us introduce the mine resistanco that the fan must matters we have just diecussed. Coeviect $A D B$ with the port of cotry at C, ned let us observe that we are about to tmitnte the mine resistance by causigg the tocoming air to blow through a stintum of water 2 liches deep as at L, and when the pistom nasoends, it is clear R will require extra forow like the weisht M / R to owercome it; and second, the Incressed nolse retistance will reduce the atmospheric pressure, and bence the air will
be rarefed 2 inchess of uater. gainge belne equal to 10.4 pounds per equane foot, the weight of air mast be reduced as $\frac{(2,130-10.4) \times 1}{2,130}=995$ or from 1 to .985 .
This appears to be a small reduction, bat wben we riofice that the mine resistance and the consequent rarefaction affect the result as a square, we can realize the importance of the matter, as $\frac{2,130}{\left(2,130 \times 10 . ⿻^{7}\right)}=\frac{9.130}{2238.16}$ $=.851$. It will be shown further on, that the mine reslatance slone gives to this class of centrifugal pump a diminlishing ratio of exbanating effleleocy, bat there are other negative or antagonistic factors that couvert a dimplabing, tuto a vanishing eflecetcy
We see that a centrifugal fan can only establish a perfect racoum at its orifice of entry, by making an totnite number of revolutions in a limited time, bat with s considerable mine resistance, the tofinite bumber of revoluthons nould be reached log hefore a depression
equal to half the prespure of the atnosphere was equal to
rearhed.
68. Balancing the Mine Resistance-Refer galir wo tor ngue sud botice that if tim conntertmance wolght $M A$, weighed exnotly 10.4 pounds, of a welght equal to the curreut perseare due to 2 inches of watercauge, so air would enter by O or leave the cylibder at N, becsuse the pistoe would only rise until it had made a depereastob equal to a reduction of pereasure of 104 pounds per square foot, and the air could not euter through A and blow through the water in bubbles, vs. aping at L. Here, then, we see clearly that weithes $a_{\text {puiop nor a tan bas any spare energy for injection or }}$ oj-ctlon untll the mine resostanco is balanoed. Sot above
the weight $M R$, the weight $V /$ nod thls will reporvent the weight M / R, the weight $N /$, and this will repiesent
the forve repuived for injuption, and wan $M /$ place $/ O$ the forve required for injection, asd upon $M /$ place $/ O_{\text {, }}$,
and this will represeat the force required for ryection,

Fie. 113.
now the platoe will move, and air will enter at D and pace through C, under the plston at a, while the alr exaetly what takes plave in the action of tond that in
 and yone will flad it does; and to aselat the fovestligation Fig. 118 is introduced. The flgure is that of a lever bal-
nince. A P^{\prime} is a nessy woight to indicate the stmoepperic prossure snd $N R$ is the mine resistance, A $P+M R$ engase our attebtios. A $P+N A$ are bolanced by E. E is seen to be immetaed in water W inarietern C, and the ofject of this arrangement is to illustrate the dimisishing porer of the fan as the result of the rarefaction due Cot balunce the Wrights A $A P$ and the weight E, coald
nif is was entimely fmberved, so the ratothetion of the air withia a fan fixes an vualtrable limit to the velocity of the air into it, that cansot bu fucrensed or dimintshed without fnerensing or diminkhing the velocity of the fas. Cosemquently, to find the veatilation due to the action of a given rebulating fan, the factors required are:

1. The revolutions per minute
2. The dismeter.
3. The radial leugth of the blalea-
4. The arvas of the veritices of vutry and dlacharge.
5. The mine resistance.
6. A fractional constant of ellimiency.
Kewping to vier the fort that Fig IH ustrition of the thoten of thet Fig. I12 is a complete Hocered to still farther establioh that conctusioe.
7. Velocity into a Vacuum.-At atmospherle preasure the velocity of air ruabigg futo a vacuum is
equal to 1341 . feet per swcoms, nod thes arnare of that velocity gives a number that we often require in fan cal. culations, mamely, $1,800,000$
The realer nill remember that O and K were supposed to have a aectional area of 4 square ivebes, and That after making $M A=10.4$ pound- pee equare foot, MI for the depresaton whs 1 poand and $/ 0$ for then compression of ejection was 1 pousd, therefore the total weight, of the analogue of the evgine turning the fan was $104+1+1=124$ pounds.
70 Presaures and Squares
8. Preasurea and Squarea - Again we boticed the effect of the nurefaction nut restatance of the nir, and to allow for theses wo proceel as follows Call the mine retistance M and the calculated ceutrifugal forve T, and the moving force remalining after the mine restatavod
has beven deducted F, and the preasore of the atmoaphere in pounds per square foot is 2130 pounds and remers Io pounds per square foot is 2,130 pounds, and remembectig that the presores that ive motion to tuids are of the tule propordoo of the sigares of the velocities of the thana, we can by an pasy procest in rigures, deterthrourt the rowistanes in the bottle ADP For if the brough the resstasce in the botte Abhe For if the other, whlech they are, thee T - Is equal ta the pumerator of the fractlesast portion of $1,800,000$, which is the equivaleat of the square of the velocity of the air in feet per second. In the cane before us $\frac{T-M}{(2130+M)} \times 1,800$, $000=\frac{2}{2254.16} \times 1,800,000=1608.46$, and the velocity is, therefore, in feet per minnte, $1608.46 \times 60=2,400$. We can now see bow to find the velocity of the air entering a fan, and wh must bet curefal to notice two thluge to relation to thls matter. First, by the water gnuge me can llod the velocity of the ventilating current in at ait-course, but we canmot by the water gauge nloue find the quantity of air pacelog through a fan.
Alithis appats platis whough, but there are other modifying factors that must be explatime before calculatious cant be manle that will give correct tesulis.
For example, the melativenareas of the oriflees of intake and discharge seriously futhucuce the results, but to keep the crail- atinenst of the subject so far as me have advanoed with it, let us give so esample to Illastrate what has been learned, asd let us fartber any that after the whole master has received exhaustive treatraent, bumerous questions and answers will be given to show bow the valines it eace case ar determinmo
9. An Example in Fan Calculation.-A ventlist Ing fan for a mine is 20 feet is diameter ; makes 80 rovolutioun per minute; the radial length of the blades is 6 feut ; the orinioes of intnike and dischange are equal; the mise resistance is equal to 12 pounds per $\theta q u a r e$ loot, and the reduction of now dae to the contraction at is . 6 . What then is the quantity of air per mituute pass: ing through this fan
Ass:-First find T the pressure due to the radial columan. Tbe radius of gyration is $4+3=7$ or half the leogeth of the hisules soleta to the radus of the Thice of entry; and tbe insin dianseter then is 14 feet $\frac{14 \times 3.1416 \times 80}{60}=58.6432$
Taking the sevage welight of a cubic foot of air to be 0766 the melcht of the radial colume will be 6×0766 $=.4096$, and as the tangential force varied as $\frac{y^{2} \mathrm{~W}}{3.1416 \mathrm{~g}}$ $-F$, then T will ber equal to $\frac{66.6422^{2} \times-4596}{3.1416 \times 39.16}-15.614$ pounds per equare foot.
Aud the bquare of the velocity of the air entering the otithee of the fan mill he
$\frac{(T-M)}{\left(2130+M^{5}\right)} \times 1,800,000=\frac{(15,044-12) \times 1,800,000}{(2120+12)}=$ $3.64 \times 1,800,000$ $=2841.32$. The relocity into the 2974
orifice of entry π ill be in feet per minute 1 2xal. $32 \times$ $60=3222415$. The area of the oritice of entry into the the treas contracta at 6 , the quastity of air passiong the rena coulfock at 6 , the quastiey or gir passiog $3232.415=97186$ cuble feet.
Let us not forket that for reasons that will afterward queot tesd resalts. The exnmple just worked out demonstrates the accurscy of the process, and to still further fustain the cooclusions arrived at, let us take the case of a fan set to the open alr and therefore having no resistance at either intake of discharge, and to waske the costrast bhow a marked diference, er us the mine reintance, whid will not occur. We can see at'once that the whole of T will be available for the ivjection of air nto the orifice of eatry and for diseharge, sud it is also lear that the presaure of the extertual air is bot by aby speed of the fall reduced at the entry, but the density and pressure of the air st the moment of discharge is in-
creared, therefores the reaistance pet up is directly as the $T \times 1,800,000$
pressure or $(2130+T)$
required velocity
Carefulls botice the T is not squared before beting added us was the case with M, becnuse there is no rare-
faction olue to T, then as we found in the last exsmple that $T=15.644$, it follows that the square of the velocity in this case is $\frac{15644}{2590} \times 1,800,000=$ $15.644 \times 1,800,000$ 2145.845
 quantity in cuble feet per minute passing through the From this exampte wo leara an interesting fact, namely. that with the same velocity of the tho the ralue of 7 remalins, but the mine resistance reduces the quastity from 207,303 to 97,156 cuble feet; or 12 pounds per square foot of mine resistabce reduces the quantity in thls case from 1 to $\frac{97,186}{-20,303}-4689$. Atter thls the water gauge can ooly be takes as a negative and un79 erfain index of the facta under discussion onhere we tutroduce Fig. 114

Fig. 114.
as an illustration of the mode of action of the blowing fan, and it will be suen that two thlage occur that set the blower in strong contrast with the exhauster, and the first is the presure of the external sir at the oritice of intake is invarisbly al mospheric pressure, and that the pressure at the oritice of dlacharge la alwaye above stemoppherie preasare. The gecond point of coatrast is the parptog efliclency of the blower is greater thas that of the exbsuater, abd the diminution of effleclency to the blower takte place more slowly thas in the ex.
bausting fan. For example, the atmouphimie presaure is bsuating fan. For example, the atmoepheric prebsure at D, before the port of eatry C, is unlform, whereas the compresslon at E incressess, and to prove this, remove the realatasce in the bottle. for the water in the tube T wIII just reach the button without b'owlog through, Thernfore $1 / I$ and I O pepresent the deprusalon within the fan and the connpesslon st the exit from the fan sa the fan and the compresston at the exit from the fan as let ua first notice that lasteal of the denomiostor of the tractlon for fludine the square of the velocits torine se fraction for fluding the siguare of the velocity being se Illustration let us use the formet valors of then, nexhamerer to fled a result with the hlower. T was 15 fit ani If Was 12 ; the siguare of the veloclty will therefore be $\frac{(T-M)}{(2180+N)} \times 1.800,000=\frac{8.844}{2142} \times 1.800,000=3,062.3$ and the velocity in fect per minute will be $1 / 3,00538 \times$ $30=83803$, and the cuble feet per mituute pascigg 100,138 . Then unuler the same conalitions of minu rew satance and velocity, the same fan vxhanats 17,186 enble feet and blows 100,128 or is differenees in favor of the blower of $100,189-92,186-2,902$ or an advantage oi a little over 3 per coat. At bigher velocities the blower
leaves the exhanster far behind; and when the reader has learned the lessom, as taught with the Illustratlous, be csubot fail to see the lose due to the rarefaction In then drift
75. Pumpa and the Velocities of Fluids.-Fig. 115 introdaces another phase of the operation of the

Fio. 115. came law as If lastrated with a plston movtog in advance of the asoend. Ing water colamn.

The relocity of water rushing into a van lum is 46819 reet per sece velocities the velocities buids vary as theots of the pressures it pressures, it follows that the bqustes of the velocither are directy as tbe pressures, ure of the st moaphere 18 , thervfore, proportionate to portionate to equare of the water rushing into a vacuum. Water rises to su clevation of 34 feet in a vacunm, but it requires theme to asperd to that height, because of its ibertis and the friction of the sides of the chamber it moves in. 46.819 feet per second Is equas to 2800.14 feet per minute, and as this velocity Is calculated without allowing for frictional realetabos, het 108 make it for illustration vearer what it should be, 2, 400 feet per minute, of 40 feet per second, or the oquare of the velocity in feet per second is 1,600 when allowabce is made for incidental realstance. To taske the matter clear, let ua begin with an example.
16 Toe pibton of a pump is situated at an elevation of 16 feet above the ingoing water that is in course of being pumped, what ghould be the maximum velocity of the ploton?
And- - Now as a 34 feet column of water will balance the presbure of the atmosphete, it might be thought that the velocity would be as follows $\sqrt{\frac{34-16) \times 1,600}{34}}=$
the relocity per secood, but before the column can move, the fiertia of the 16 teet of column must be overcome, blowiug fan the velucity will be found as follows: $\sqrt{\frac{13+-16)}{(34+16)} \times 1,600}=\sqrt{18 \times 1,600}$
per becond, or $24 \times 80=1,440$ feet per minute, and ± 6 the valves require force to lift them, abd a still further Interference of the resa contracta takes place, it is probabie that the velocity is still inuch less. We see ratio, for let us supproee the ptston is to be bituasted at an elevation of $2+$ feet, then

$$
\sqrt{\frac{(24-24)}{(31+21)} \times 1,600}=\sqrt{\frac{10 \times 1,600}{68}}=16.6 \mathrm{or}
$$

996 feet per minute. A double acting pamp then, with a 6 feet atroke sod making 100 strokes per minute woald lose the $\frac{(100-83)}{100}$
howa at RC and at a hicher phaton apent tio water lift would
become
or $P A$.
The nena can-
tracfa so power. racia 80 powerully interferes
with the fofluw at the oriflee of entry, that the cotry, that the piet to mork be low the level of the feed water blgh epoted it may outrun the colvmil as at Fib mod ag Fig. 110. \& to the aurface level of the feed water. abd bya thought. ful inepretion of the last two Ag ares the
esalises of the esuses of the
diminishing etilctency of machloes of the
fan clases can be

so understood, that the sucoeeding lessons on the rultiont will herighten and deepen the Interest called forth is the inveatigation of the matier.

GEOLOGY OF COAL.

The Varieties of the Cephalopoda.-The Conifers of the Devonian Period.
51. The Varities of the Cephalopoda.- Therecurreuces of invarinble law, make the past nad the present one grand harmonie, and but for this coucord in the pulse of life that beats true to the sume time for ever, the past would be concealed in the impruetrable darkness of the inflinite. We can therefore read the past by the presens, because the blology of to-day, is only a reprist of that of all the sgeg that are gone, and knowing this, our faith is as satisfying as the evidence of a fact, and we can therefore with this assurabces date fo restore as a mental conception the life of former seas, abd the fauma sed fora of former lands.
From the standpoint juat assumed let us then associate the present with the past by finding exaroples of progression in succession arising from the aitrted and improved life coeditions of each succeeding vast pertiod of tlme, abd mbere can we look for a bettr example of these progreasive and succesalve changes, than that which characterizes the most highly organfzed mollusks the cephalopods. They first appeared in rocks of the Cambrias age as the orthocerns and perslated into the CarbouIferous period when the orthoceras vanlabed forever. Fig-

1.1

\rightarrow

\square

F\o. 85.
80, A, B, C, D and E, are SUlurian examples of the stralght shells or long-horns or orthocerites. This singuInr nollusk lived fo a shell divided by septa or transverse whleh parsed the sighon of siphancle, and the hesel with its beaked moniti wes get in the midat of the roots of Its tentacles, or arms for selaing ite prey, bence it was head footed, or mas a cephalopod. The tentacles was head footed, of was a oeplialopod. The tentacles were and still are covered with racuum disce or suck ers, betuee the dabger of
By Fig. 86, it will be seen that the orthoceras became early in the Sllurinn period an open colled "ram's horn" or a modifled orthoceras. ss Litsiter cornur arietis, at
D, and thla change contlimed until the coile of the ebell becsme close, and then we had examples of the beantl

ful ammonit sa, where the jnoctlons of the septa with the hornlike shell cans d these pretty ourling ridges soch as are ceen on Z as libes, and on A as indicating the boundary lines of the septa where they are jolned to the
ebell; bat these ridges are still more developed on C, and are the embryo of the spineilke processes of the magnitf. tosat shalls of the a a nopaltes of the Cretaceous pertod. The ceptaslopods are fousd as long horns in the early Cambrian. and cootinued right on into the Carboniferous period. Durligg the Silurias period some varieties became curled as opes coils, abd otbers becameclosecolled as ammonites and the true ammonites are only now repre-
ocoted in our sens by the pearly nautilus, bat thecepbalobeoted in our seas by the pearly nantilus, bat thecepbalopods as naked or shell-less cutlue fisbes swarm inour seas
to-day, sud they arediatiogulsted from the shelled variety to-day, sud they aredistiogulsbed from the shelled variety
by being Dibrabchs, the other belog Tetrabranchs, that is the naked peesent day ceptatopods, are moro highly organized than their predrecessors belog Dibranchs, or tro gilled, the shell varlelies belog Tetra-
branchs, or four gilled. The gills of a fish are thet subbraschs, of four gilied. The gills of a fish are the sub-
stitutes for the lungs of the higher orders of animals, it is stituats for the lings of the hilcher ord from the water to
by the gills that orygres is collected avate the blood of the fish. Nor as the ceptalopods thactively different, they furnth unsurpassed todices of Unotively diferent, they furnbh unsurpnassed todices of
the periodls, sud therefore are worthy of the closest the perionion
attention.
52. The Conifers of the Devonian Periods.Fig. 87 is an Illustration of the cell walle of the woody tibre of the fir or coniter.

Theso libes or veskeles and

disca bave given distivetive character to the wood of the conifer from Devonlan to the Intest times, A is an exnraple of the fosall mood, B is an example of the ist. eot firs. Perhaps bone of our forest trees have altered They are first foubd as gymoospermas, and they are
 contured in nakedpeas. The conifer of the Devonlan period then is of great interest as proviug that the dry momalng of the period wherelu all the life forcee made their strongest masifestation in the production of the prodiglous plant growth of the Cartoniferous period.
[TO BE costisueg.]

CHEMISTRY OF MINING.

Units of Electrical Measure-Correct Ideas of Eleetrical Terms-High and Low Tension-Amperes and Volts-Volume and Intensity-The Coulomb
and Heat Units-Electric Resistance-TheTransand Heat Units-Ele
62. Unita of Electrical Mensure. - The basis of all nowledge and civilization is found in units of exteusion, lifference between tgoorsnce and knowledtee can be the covered on beariog men speak. The igmorant man says, "there was such a tremeniflous lot of people there " the educated man says "he estimsted the crowd at 360 persons."Fancy mes saylig., "It le such a strovg current of electricity," by this statement we have no idea whatever of triee value.
We clearly see then that units of measure for estimatlog the value of energy are indlepeceably mecessary, and farther, as electricity is a mode of molecular motlon the anits of its ewessure mast be of a llke charscter to those ased in othee branches of mechanicas such has troe, mase and veloeity. And sucts is autuaily the casa for we lasve fow and the volt for velocity or preseure. I volt maltiplled by 1 ampere gives. 7373 of a mechanital unit of Work per second, and what is called a Watt conslets of 746 of these .7373 of a foot pound unlts per secood. This makes the electrical mechanical units harmonlze with thase of stesm
For example, a borse power per milaute cobelsta of 38,000 units of work, as establisbed by Watt, or $\frac{33.000}{60}=$ 550 unlts of work per seoond, and $\frac{550}{.7573}=746$, or $745 \times$ $.7373=550$, then ws an electrical unit of work is oaly pounds done per second, $\&$ true Watt. equal to 500 foot 63. Correct Ideas of Electrical
fore-fathers called electricity a fluld, we continus ayen fore-fathers called electricity a fluld, we contioue even
yet to speak of it as foving, and no doubt thla mode of yet to speak of it as foning, and no doubt thls mode of have foumd out all the possible usper and the machlaes requisite for the sapolication of elentrlelt, when those that follow will reform the terms, and introduce others that will courrectly express what is meant. In the mesutime we have to say much to make the terms understandable, for exsmple, a foot pound is elither the equivalent of one pound belog lifted one foot high, or that of a force of one pound belug exerted through the epace of One foot, in overeoming a realatance of one pound, 60 done, when a force of ooe rolt lifts one swpere through the length or resistance of one Ohm.
Fig. 106 is to explain the relationship of the volt to the ampere, or the velocity to the mass. At B we see a small welght shown as $1 . A$, that is 1 ampere, at an
flevation of 10 V , of ten times that of 1 V , now $10 \times$ elevation of 10 V , of ten times that of I V, now $10 \times$
$1=10$, that is 10 of the 746 units of a Watt, sgaln $1=10$, that is 10 of the 746 units of a Watt, agaln
$10 A \times 1 V=10$ Joules.
64. High and Low Tension.-From the stand
point, however, of heat, the voltage is sometimes
spoken of as high and low teealon, or of greater and leseer intensity, abd as the neoessary explanation of the
relationship of manas and intensity as fueuif, say in dif relationship of mass and intensity as found, say in dif-
fereat volumes of water, will aptly illu-trate the nare of the electrie units. We will now consider the matter through the medium of light and beat. Let the circu.

Fig. 106.

lar dise (i), reprueent the fare of the full moon, and we cas realize the fulues of the volume of pale soft light and althought the inteusity of the surfsce of the carth; quantity of that feeble light is enormeus, or it would the 8nld in electric tertas, the nomperage is very great
but the voltage is very anall On the diac is aen but the voltage is very scusli. On the diac is seen in white apot in the middle of a black one at k; thls emall white spot ts to show that the intensity or tension of the light of a candle very far exceods the reflected light of the moob, yet it is so small is quantity, that at a distance
of 20 feet, the more Intenso, and yet influituly amaller of 20 feet, the more intense, and yet influitely 8 maller
volume of the candle light is drowned in the cocona volume of the caudle light is drowned in the ocean of
moon light. The voltage then of the eandle Bame is very high, while the volume or amperases is very smanll, on the prineiple fust exptsibed, of 1 A falling 10 feet
being equas io work to 10 A falling 1 foot. Now ther being equst in work to 10 A falling 1 foot. Now the
srea of the illuminated bemisphere of the moon la so vast compared to the surface of a cabdle flame that to make their Illuminatieg powery equal, notwithetabling the high intensity of the candle light, the latter would bave to be go increased in inteealty that the light of
every sun in the usiverse would be darkbese compared every
to It.
64. Amperes and Volts.-Fig. 107 faraishes an wample is cobtrast, of a great inteusity accompanylug a great volume, and a moderate inteusity associated the ann exceedingly 8 mall volumee, the former is that of Now the sun not only Hlumisates the earth, but sll the

Fio. 107.
planets in the solar system, sad while the light of the casdle would be washedout by the vapor is the air at a distance of a few feet, the light of the sus penetrates the measureless depth of spsce. The candle would Clumbnate a few feet, white the sum covers obe-half of 65. Volume and Intensity. The ele
to made equal in intenalis to the sumlight light can to made equal in intensity to the sualight, but the
voluue of the electric are la not larner than the flame of voluwe of the evectric are is not larger than the flame of
a gmall candle, so integse is the light of the arc, how a emsil candie, 80 intebse is the light of the are, how-
ever, that if it is thrown on a acreen, sod s burning candle is interposed, the light of the candle sppestrs in the dise as a shadow, as sbown at S Fig. 10e, E aed

Fig. 108.
L are the carbon penclis of the electric lamp. Here then we find very high tenslon of light in the electrif sco, accompanied with a very small volume, and there-
fore a relatively small ares is illuminated and we now fore a relatively stusil aren in Iluminnted and we now located in one small space, they would conjointly only moon. The electric light then is high in intensity, bot very small in quantity, while the nooon's light is low in intenalty bot very large in quantity compared with artificial lights.
66. The Coulomb and Heat Unita-Water furnLabes some excellent illustrations of the volt, atwpere, and coulonab, for exsmple, suppoge the temperature of a point, and that the temperature of 100 pounds of water is ralsed from 87° to 89^{-}, to which of the two masses of Water bas the most heat been given? Here it ls agais a very hot, ite temperatare has been ralsed from $8 i^{*}$ to 212°
or increased by 125°. Now if the one pround is talien as
the unit volume for measurigg quantities of hrat, then the unit volume for measurigg quantities of best, then
$100 \times 2=200$, that is to say We bave Imparted to the oue pound of water 125 hent unisa, wheress we ham given to the 100 pounds of water 900 hent units, or we may kay the hent unite in the one pound of mater are 912, whereas the hrat units in the 1100 pounds of water
ares $89 \quad 100$ are $89 \times 100-9,900$; or we may say the latenaity or voltage of the lieat in the one pound is equal to 212 volts and the volumse or smperes are equal to 1 or $2,2 \times 1=$
212 foules, and the Latensity of voltage io the 100 poands 212 foules, and the Lutensity or voltage io the 100 poands
is 89 . und the volume or amperva are 100 , theofore $89 \times$ is 89 . nod the volume of amperva are 100, therefore $89 \times$
$100=8,900$ joales. The coumon Illustration ts that. of $100=8,900$ joales. The coumon Illustration ts that of
comparligg the enengy due to moving fluids, with that, comparting the enengy due to moving fluids, with that
manifested by electric action, and to malke this mode of manifested by electric action, and to make this mode of
jresenting the case clear F ig. 109 is introduced. Here

Fig. 109.

a vessel is contrived to such s way that water is made to pour out of four orilkoes all of differest eizes and aubject ro different preasures, now the pressures are takee to reptresent volts, and the quantities per eccopd as amperes, and to secure contimalty in the pressares or volta, the sater level is the tank T is kept unifform by making an exccalvetindow froma the upout 1 , sud an overflow as as at $O R$; furthed to keop a steady level the inttow fo
lato a funvel R, where the movement of the agitated water at the foot of the fall is prevented freme agitated the level. Now the preseure at 1 V is istended for one volt, whille the outflow beling 4 unit volumes, to made to volt, while the outfow belng 4 unit volumes, to made to
represent 4 amperes, thee $4 \times 1=4$ joules, then st $8 V$ We bave double the depth made to represent 2 volts, sod We outflow lo 2 unit volumes, then $2 \times 2-4$ joules as
the betore. Agsis, $3 \times 1 \frac{1}{4}=4$ joales, snd $4 \times 1=4$
 joules. Now the presaure of volts is greater for 2 V
thas $1 V$, but $2 A$ is contracted so that the outflow is only tbst of $4 A$ but as f the volume or amperes is subject to trice the presesure voltage, then the joules remain the sames for $2 A$ as for $4 A$, hard the same 67. Electric Resistance.

When transtritied through a cable electrle current mode of setion as gases snd ligulds tranamitted through plpes, and the lliquid, say water, may be taken illuatra tively to represent smperes and the presaure, volta; and If the ssme volume, or smperes is passed through a ptpe at clouble the pressure but with the same velocity. then the same flow will do double the number of uaite of work. The same characteristic is found in steam, but perhspe the moet peculisr phase of the matter is thia: If gou double the velocity of water through pipees you very much tocrense the friction, so that to double the units of work in a Himited time, by doubling the volume or flow without iocressing the ares of section, a grest loss of useful effect ts the sure resalt. The same law is found In the transmisalian of steam, when the steam plpes are too smail in transverse section, the velocity of steam on its way to a tast runbiog engine lo retanded by greatly Increased fifetlon and congequent loas of ebergy; and stranger still, electricity behaves in its transmienion through a cable Like liquids and gases through ptpes, no
thet if you increase the amperes or flow to locrease the that if you increase the amperes or flow to lbcrease the work doee, the chances are that you may fuse the cable, or destroy the folebolds of the motor; becnuse when an electric current moets with resistance in its path, the electrio, is at once converted into heat energy. But if
sous double the solts or pressure of thes current, you you double the volts or preasure of the current, you
double the work doee without increating very mach, double the work dooe
the resistance and lose.
Miners are apt to confound current pressure with the total pressure of, Bny sir, and conclude that the velocities of the sir through the pipes will vary ha the lequare roots of the total presaures. Thls not beling 80, let us at odee set the matter right by sayligg that if wi
double the total pressure of the sir we double it double the total pressure of the bir we double it Welght sod tberefore, double ite current friction, but we have not altered the percentare of loas due to current friction, the speed of the sir in the pipes being sitill the sames, and two per oent of thin atr has exactly bait the reshatance doe to $\frac{1}{2}$ per coot, of air twiow as beavy, abt the heavy alr does twice the work for twice the friction. Total pressure ans current pressure are theretore ver lifferent thlugs.
As it is such a difticult matter to incresse the amper age of an electric current beyoud the conducting cajacity of the wire, you will hear people spesk more of lincrent ing volts than amperes.
68. The Transmission of Energy.-Fig. 110, lo

skion of exergy by gases
abd IVquids avd 114 aides
through pipros and to coredate thla $f: \begin{array}{llll}1 & a & 1 & d\end{array}$ transminsion with tbst of
electrteity througheables, Teshould keve Teshould keep fact that the rate of speed or rater of flow
is a matter that neust bo cousidered as well as thearea versesuction of the pipe. for through a large area the vol-
wome, Ray 1,000 guls. per mis. ute, may flow velocity thas the same vol wae through a
small area, and bere sagain, we flod the same fisct exempll.
Fig. 110. Psct exemplt
quatity Howiog fled in the electric cable, but the same quanty nowing through the small plpe can only do wo at ank acreasel introduces the electric unit of reaistance tbar Obm. Through the sections sbown tn the figure, at Q, \mathcal{R}, T the quastilies are $49 A$, but the prossures are diff-rent, because the currents are supposed to have shorter and longer lines of resistabce, thas tenching the leseon that the amprrage belng tbe same, the Ohms of rwhiatatice are proportionate to the roltage of the curront. If and X as througt U. It is seen that the voltage has been increased to 40 and 190.
[To BE costismgd.]

MINING METHODS.

Mechanics of Fiuids in Motion-The Water-Gauge -The Difference of Petential-Static Air Pipes.
62. Mechanics of Fluids in Motion. - The watergsuge does not oaly mensure current presbare, but isferebinaly it also measurea carreblopeed, the direction of determining the current speed, because in the mine Itself, the preagure producing the veutilation is Jirectly proportionate to the curreat resietauce. Fig. 110 Lllug-
trates the use of the gauge for three porpones. Finat, to

Fic. 110. deterialse the value of the presoure producing the draught to determine the quantity of air used in the consbastion of the teaperature of the hot gnoes it the chimoey. It is irues, the gauge meawisps dtrectly, pressute only, but from
the presaure can be deduced the velocity, because the current pressure vaties directly in the resblance, and from the currest pressure gauge the ad from the motive colum the tempersture cas be calca ated, 60 we gee the galage W G, coubected at P with the chimpey aue C, is of grent value in gauging the efliciency of a furuace, and tbe wasteo othermise of best thst is al lowed to eacsper with the pro-
ducta of combustion luto the chlmbey tive.
Now, if all these facto cas be determined by fludivg the motive eolumo $M C$, who chas
undert, te the ecobomic use underrate the eco
of thls inatrament ?
63. The Water-Gauge. Fle. 111 is wuother modiffcation of the water-gauge for deternsising the current polential between two pointa Is an alr clrcuit; for example, the ordinary gauge can be, and is used for this purpose, but there are condition under which it cannot be so used. When the ordinary gauge is conDected with the fan drift it measures the potential or total pressure of the ventilating ciarreut from surface back to surface, but whwn the water Esuge is liseal at the bottota of a downenat shaft, and there conbected with the returs air currebt, befort enterting the upcast shaft, the gauge now only morasurva the poteutial of the curront betweens sbaft hotpreseure or potentlal dive to

Fres. 111.
the underground galleries is subiracted from the fan deift rowiling, the differetwe is the potential of the shafte. Soppose, bowever, we require to know the current pressure at the working face, then with the ordiasiy gaugr, that could only be dobe fy carring a small plper rown the loxtom of the domncasi shat to the face, and Srewing on the gange, when the state preseure in the uge would be If would be the poteatial betwern the tro poiats. Now thaf eise was distabt fruar the botfom of the downchst haft ouethird, aud frows the bottom of the ugcast siasit whet thes of the, entre fength of the current circult, thea the potenal lise the face and the botfom of the downcast shaft. By poteutial is mesant poselble power, but as the veloelty is poteutial is miesod presible prower, but us the velcety ib the potentials and pressures will be directly proporthe pot
tionate.
64. The Difference of Potential. The instrament before us is uased then to defermine the difference of potential between the bottom of the domseast shaft, or the fan drift at the surface, or between any required
points in the workings, and before explaluing its points in the workings, and before explaintog its atruction. It first comslats of a glase jur, or white glass bottle the wouth of oxhlets is clowes with an india rubber bung E, through whlch a small gloss tuber ts made to fit tight, and the lower end of the tule is usade to dip lato be water W. A thermorueter T is placed within the bontle, and is oen to to aloo dipping into the water. The principle of action is na followa: First, the semali lass inbe is drawa up a little, so as to atnow afr to evter te, of the st the poiut of maxtunum or mimfanm pressconer the bothem of the tube ned allow the air to enter of leave che instrument, and so pqualize the greenure withlu and without. When the pressare is balancoll the thermometer is carefully read and the temperatare pecurded.
The gauge is now carried to the polint in the workings Fhere it is required to hoor the difference in potential when if the water rises up the tube A, to an elevation reater thaw the pressure of the air within the bother ie reads $5: 38$ inches, then the difference of potectial mould be 588 luches fut for thw iuterfernefe of the stime temperature of the alr withlo the lootule, abd for this, \& correction muat be made. Supromee the tewperatiare wheo the balance was made mas $65^{\circ} P$, and now it is $70^{\circ} F$ st the workiug face, let us find how high a rise ot temperature of 5° weuld ralee the colunan within the tuber, if a column of 408 luches of water balances the pressure of the atmosphere.
By Bogle'd law
$\frac{(460+70)}{(460+65)} \times 4 / 6=\frac{530}{525} \times 408-411.88$.
Tbat is, the preasare of the ntmospbere would be incress ed by a rise of 5 degrees of tempevatore, in a confined opace, from 408 to 41188 or 388 lurhw, but the g'uage Trade 0.88 ibches, therefore $585-3.88=1.5$ inches. 1.5 tnches of water ponge.
65. Static Air Pipes - Haviog made quite clear the nesbigg of a "differebce in poteutial," we can how apply the pitinelple in elucidating othey practical applications of it; for example, at the Senbsin and Silkworth colleries, Eogland, static pressure pipes are carried fromi the jonction of the return airmay with the upenem shant, as at $\overline{5 P}$, Fig. 112, up ink uphat slaft and to gome poltit on the surface as at G. The coarse of the static air

Fig. 112.
pipe is up the dumb detft DD, and onward up the slast. At Q the gange suengurve the potentlal betwren the polot whece the fresh af eaters the top of the downcast
shaft, and the point $R P$, the result is the frietlon due to tbe upcast rhaft is not mesambed but as the gange at tbe upcast shaft is not men-miced but as the gange at
Seshas.1 Collivery at Q need to read $4+$ freburg sud the pauge that mensurvd the diference of the potential of the mise, from shift bottoen to shaft bottom read 2.1 inebrs, is was clrar that the difference of potestial for the downeast sbsft was 9.8 inchers, aud that, therrfore, the diffrence for the upenst shaft must bet the gaspe, not consquently the differesice of potentind froen surfuese to 113 furnichers a plan of the sirrampement of thes static pipee at Seaham Collierg, s/I to the gauge to the mive mapriotetalebthe offlee at hotne, of to the top of the $e^{2.1}$ is the resding of the waiter gauge at the bottom of
downeast shaft or B of P. FH is the mine foremas' θ oflice at buar where the seoond gange is fised,
the colliery offle where the third gange is tised.
At each of thage claree ata'lous the gauges read alike excepting during stormy weather, when difference of one or two-tenths often occur, sor need this be woodered

Fio. 113.
nt when when we notice thst a velocity of the wind of 14 milles per bour 18 equal to a pressure of one-tenth nt an llech of water gauge, and that a velocity of pearly
20 milles an bour produces a preseure of two-tenths of 30 milnes an bour produc
Here is abother Dllustration of the care required In looking for causes of error in water gauge ends of a block are connected wit st opposite ends of a block are conaected with ganges and D. when the wind fon drift

Fig. 114. , when the wind is blowlug as indicated by the arrows, the kiage at O Wways reauls higber than the jainge at A. Now as velocity of the wind will produce s presoure equal to $\frac{1}{4}(\mathrm{Na})$ of the pressure of the atmorphere, that is to say t's-tweh of water gauge is equal to $\frac{1}{4060}$ of the total presaure of the atmosphere and therefore the readings of the gange are very susceptible to false indicstlose. Fig. 114 to an illus trathon of the water gsuge in comatmon use, and it will be sers that the syphon tube bas one Jimb opeu to the external sir at C where It is somewhat coutracted to exclade dust, the other
limb is convected by a slatic pipes A parsing to the fan drift: a morahie scale is seen ot $D E$, and this scale is movable aud adjustable by the screw G that is turned by the milled head T
To read the gauge, turs the knob T until the zero of the scale O, is level with the water in the limb O, then rod off at the high level in the limb A, and in this case of $2 \times 5.2=10.4$ pounde on the gquare foot.

[TO AE CONTINURD.]

THE CAPELL FAN.

In response to a personal letter from the editor regarding the Capell fan, efected at the Youghlogheny Coal Co's. No. 1 Mlue, Scott Haven Pa. Mr. W. S.
Grealey, Geberal Manager of the company, writes as follows :-

Scott Haven, Pa., Aug. 26,1895,
"Regarding our Capell fan at our No. 1 Mine. I would say. It is a single 8 ft , fan. It runs at about 208 revolatious per inluuten (exhansting), and at 1 Is . W. G. It is pasalng about $85,000 \mathrm{en}$. ft . of alr per mitunte throukh the mina. The air traverses aboat 9 mallies of catries and workings before arriviog at the fan. This fan was gusranteed by Mr. Cliford to juss 65,000 cu. ft. at 825 revolutions, sud gou gee We get $20,000 \mathrm{cu} . \mathrm{ft}$. more than the guarantere at ogpeed. We are driving the fan with a Getheral Electric Co's, 25 II. P. 500 volt multipolar motor, belt eonnected, sud the eotire outft is glving great satisfaction. I bave known the Capell fas for about nine yearo abd can bourstly and very strongly recomaneud it. It is, I thiuk, eapecially sadapted to compstatuvely high speed taotons. We are now puting fins more of these lans, oue an 8 ft . baze as No. 1 Nine fan, and the other a 12$\} \mathrm{ft}$.-also single inlet ronchive. Both of theae facs are juterded to bee operated by elec: tric motors, the smaller one belog close upos 3 millee away form the beowratieg of ceuthil atation.
Spring Valles. Illinols, a 12) ft. Capull fas, 1 Sbaft nt Spring Valley, 1llinols, a 12$) \mathrm{ft}$. Capell fas, to force air through tbe very extelutive loogwsil workiogs under bigh water guagos. This fun bowever is beting co
' Mr. Clifford's faus nre thestrongest built machilues of the kiud I ever saw.

Very truly yours,

Gen. Mrage Youghlogheng R1ver Coal GomenikY, Con. Mining Engineer, Spring Valley Conl Co., IIt." Mr. Wm. Cliffurd, M. E. Westíughoase Bullding. Pittoturgh, Pa, is the sole Ilicensee aod manufacturer called Cereal fens Anserica. There have brog Howhich shlle equal to the duty they were enlled out,
 not conetmeted esadly on Dr Gapell's Jines. They Were purposely musle different in eeveral eacratial polices to as nos 10 infringer oil the Casell patente. As are sult the exeellett results obtainal at S ott Haven were not obtained with the so-called Capell fans.

- Miscellaneous.

hiving and learnivg in oldex times

Aman , who spoke trom experieace, thus discriter the
Amper of stuteats livise to vears aki, Ho heras his ex perineore of Whtuliston Seminary. He anid: "The stadents
 pored over my books of Grees, Latis, abl matbematica ti "Oar seminary fess weec not more than tiso a tera, was ine paywent mat mot required in the chus of a stuteat who
coofesmed inabaity to met them, while Froident Clark, Wha apedaily gravious to such a stuteat, of ubose impecuniosty no oes eise Whe ever made anare. The crot of my room ti overy room wne good enough for ita prorpow. A- for the
 ictashs thrico a day. A lot of as formed oarselves into elab, one of the members of whieh went cost isto the town
and negotisted for rater of payment with some honowkeweer of eobombinal mind who could wetommothte perhaps twesty or thirty of us st a loas tatlo is her hivase Thero wers but we were the spartans, asd thid not care for that. Plesty
of the studeots boarded at the bouses of factory workers, Whose wive perepared the meats As for the dearer places over is a wow. At aur clab we hat eaough of that nourist ng prorender which is the very best thing for sonns
tudeats who wean to apply theic whole miud to their
 Nep had hash, nud other thange Every day of the week No had a chaugsen and sumblay was the hest day of the Wrech
There was not a scrap of waste of oar tatio in oar clut which Wha for those of the stodents who bad no coint
poverty. Whiliston Somimary, in Maconchubtes, forty yonrs aso, wes
 The trainlag at the semimary uas of the very treak kiad and utted a stadent for any colluge
ieft the aeminary, 1 visited beth Yaie and Ambleret for the purpese of Endimp oet the cost or livisk nud learribg at tact

 means. Erorythise there then was for the sons of onhinary
 years ner Amberst win a yood place for na nopiring youti clavicical edacation; abd it bad A theelity the members of whist encoungell a stadent of that kisd. One of the very
best of the professors there thes was Dr. Edward Hitrbeock. thituk it is to ter rokrotted that
 that the chances for the poor young aspimat are not ns good sots to go through seminaty asd college in these days would
te at leat twice or thrice the nmount it col me Wbee told my oldeet hoy about my expeditures as a stubut, ond
bow I varnod them, and hou I stadied day and night, bo
"1 roul is Marwollan's Magezize a witle ngo as accoup of the meagre ivine of many of the stodents at the old scotch usiversitice forty or Hity years so, when the write
of the aricle wha a froshman at oes of them Ho told of
 meal oet of whet teay wouk make theis ous porridge fo A mostb or longer, tilt they weet bome and got asotber nok
 nad the thourtht of that made the porridse and buttermilk the pride of their life. It whs learning they weec after, abd

 ose board at of

THE ESEPVL MICROBES.

There han been so much writues for some time past about the microtes or disease that, to moet persons, the sery pase of microbe sugesse poisos, pestivence and denth. It is just as closely conpected to the menus of protecting hraltb,
and that, uyon the pribeiple of the old alige " ot a thief to
 totting sil worts of infections ns soil so being the fosatidbrewing. 8ome experments have recently bees mate in which it bas been coselavively shown that to make ni.h
 flost experiment a lliter, made of colke brecze, sa nere in
 putrid.
In the seroond experiment the elter xas merely nubd and plowe in the nlitrite wore kept alive many aves. pablished report of these experiments states: The concla-
 action of a niter is two-tuld. In the firat place it sparatea
 and cousiderntion is the more strikiog. It is the netion of
the fiter in effecting the oxilation of orgnute matters, both those is sapessios abil thom to whothom, throagh the Merency suberuent cuitivation of thes orgnansms wisich is to te The ordinary purretactive and other simular onzauisms com-
and couverting them into bess complex forms -pritucipally

 muat rake plae je the dark "" Futrution ou bwhatinatines a limit." Wo are ssorred that "Ebere is no dimicuity is atainig nay dessred degree of paritivation by mease of an

 ant airuwly exem
untifely obviated.
The experiments mate in this country mi Laurvowe, oy the - ith suad liters and show that purilicathon by precipitation And filmation solves question of ewerage disposal by harge These experiments show bour by the use of the microtes on varisering masy be nowomplithet whith would to very
 oevive mote of good frose the mberobes than of harm, and
those bervous jeoplo to whom there uxetul orkankme aro those becrous Jrople to whom then uselul orkanime are that are of uar, and remember in rekard to those that are

> Fles have other thens to bite 'em, And to ob nd ioluitum,'
and that miverober arv no exeception to this rale

ARAHIA AND ITX PEOPLK.

Arabas romprises a wide region, which in its soutbern ami

 irist of Yemen, the sarient shetis, from the tatle-ladi, above nethonod, of the Nej. TBra to the north mowntainous slly flae oases befe nas there estend likewise fur to the cont
over to the raliey of the Eaplirates. This extensive conntry, berefore has alwayy afforied esportunition tor settlement
 physicat elements has beurs that ifs propile have berin dirished
 coamed kreat numbers of tept-dwelling trilles, eho, beaidetheir hereditary privirke to mall the caravans of the cky ander one goveroment, bot are feom therr position leclioed
 rell-aligh invitable undr sh circumetnacte. Beal Aratpocts, tbo el Werdi, nays, No man ras fail to Ewve his Another. El Tarals, equally dhatinipuisbed, ottered word

 home widergronad cellize, The Arab disposition in thet in Wber botn pot unilike their great natioual sumal the camiel
 agnin ofjecs, ahowing thas the realiy objects oe priveiple:
As miktt to expected, these national traits chow themeix
 Fots is nature, sbowing that its people are the children of
 and in its grammatioal stracture it can tom masde the tebich Or the aicot compresed uiteranee that can be imakiaed. The
 tic, ironkenl. and mocking natum That wisa tran Aral's naswer which Job gave to his lecturing friensh- "No souk

 the verb is is the Aenbic sulynbetive, snal hevce menns that

Connitcial propucts from Acetilene.

It ocrassonnily bappess that the enacy sybthesis of owd mercial production of a room full of others. It is decherm may te made for fosi thas thenty dollarg pr tos Now from one ton of culcium me may ottain b12 pound of asetyene tus, cratius less that two ceets and a hati per ture of innutweratio substasers used in the arts which may Te male from avety ben by proceeses which, up to this time,
 the ndser metbocis.
Acetylebe, on being passed through as imas tube hestod t

 With the formsong of antine the roud is bue olar for the
production of the inaumerable dye sabstabecs uhose karied
bues bave shoroed the sisters and uives of the lave twenty
years, nuil whose dixcorery and pregaration alowit, the Instead of pussigu into the dye substabces, bowever, We may trataform our nulline isto cartolle acsid. Tbeoce it is But a step to pierie actio, the fouddation suthetanes of many mosern explowises. Or agais, we may boit the aniline with
weetio acid and we have trasolorsod it futo avecanilide or asti-lebrin, the nell ksous fever specinc
other chatezes juse as startine For fintance of usdergoisg throngt a tabe beated to tright reetpers, it is chamged snpthtiaions, asd sspptbabene ngrin will pass isto a malti-
 ctatuge it into estywse ass ninaly into ethane. Extyleac,
 phases bio aleobol, whikh is nusoter domisary to to Etbyibee on treatment with jermanganate of poush readily
oxiftum, first ioto oxalic acid, nid thea isto formace acid. If the formie arid so ottained to treated with asmontia, and The resulting product beated to 150 degrees C ., it is transformed into the deadly pruasio athl. Aves inde the cie mere
presemee of salts of mieroury uaites readily with the elements of water to form abietyde, so much used to-day is the prostartiug with ncotylese, by the agency of such cheap cotumercas products as muriatice acid, sulpthuric seld, potast, systems of dyes, medicians, cosmbees perfames, poisons and are koous The miethodel by whith this masy thoy toomptashed mercially amd eoconominally prartionhle with the cheap syothrsis of aceeylene. siace this has leen ac complisted by
 tos throughout all organic ethemistry. It has a vtilsty out of

AHOXG THE HASKEEY MAKERES

Is the stony valleys amons the bills of Consectheut, where the bowlders lie too thickly for the plowmat ever to disturt There the haskot makers ky wail their quiet tut uestul lives. Eughad that enubot be turned to some nacouat. Io theso lithe communities the cruft of basket making bus pasoed for many mofe, for, it apite of modere tavention, the mond abite-oak taster promise to be as much in deenad is the tropical stre may do some por iu sotring the baken proshifis will be fonat the tough prodets of the almost irrechaimatle stony forsts of the mesposion regiose
sowetimes were will to a harge, rute stop, varrousded
 foel is wioter. Other fatilics will have a shop by themwive Outdide the door one will see froloently a pair of
oxva hitrhed to h henvy woud sled with a lows of tavkes
 stje oue sees an assortment of drawiag knire, vome of them Wasbed, Wortu and groubd down to a barrox strip of steel, cudy to bexak ater many years of use. There are wooden
enech viues where the men sit to shave off the splins, and
 No litile skill is reguired to split up the cood to an to asd to bevd them into proyer shape, to split out the - niling asd detily weave it in. The black cat is fortumately oo pet
 by cach year's growth will woparate and he all ready for the
 ester tioto buaket making mofe or less but white onk to the glapdard wock.
The basket makers who prejpare their own material look oplinta are cut out ty machinery. The mathene mercessarily Sterp cuts arross the grisis of the wood, cansiss a weak or cours. One cas buy a bustol tasket of this kind for 36 wat- ubee a hasd-made basket, streogthened and bownd with boop iron, may cost t2, yet one of the latter will out-
Wear 10 of the former, the ones may woint five pounds, thas other 10 to 12 . Sometimes an order will come for a tig mool haskef, to hotd 12 to 25 bushels, of a dealer may want a few turbears of Long Ithas and New Jerory, The thvorite
 latcoer.
It in nn exeltiog day in the baskes village when one of the big rick whyos to husded up with tarkets to go to the stesmments it it from halt a dosen families to haif s dozen dealers out of eicht till the chater momes back from the Now York murchant throngh the mall.
 precarious obe, and its followers genernily make obly a lare viug However, oue Fili sind the people hospitatio and with aickory and hoop iroo, the workinemen's beafs are as open an any. There is no more chrectal blaze than that
mate in a shop stove ont of hirkory shavibice, and your bosts are not on'y peacrulty ghai to welcomen a visioior, warm him nas chat wius bim, bot will, if he likes, wive him a tig rmful of ebavings to start his own flee- Tin loers Trilame.

OAT MEAL URISK

Those who work in hot flaces must drink lange amounts
 The drinkios of clear water soder this se circumatabecs ap-
 of cold of even cool हnter, under these circumatamer of as empty stomweb is very dangerous nid may fioduce denth. finceous subtanow, particularly catmenl, with the बater to The osimeal ss mised in the propertion of a quarter of a
pousd to the gallon of wuter, aud ueed awrording to inplisation by the tlemen ant oxd.b-aves. It would be dimen bemeara seem to think it fis, whray, millet, etc, but too firemed sem to think it has the "ffect of making them
strong. We may safely allow sobething for this eort of pre)-
odice, which we know to be wery potent asoog the influ: encesson bealth and disease. The pecaliar volor of the cats

 perieove a mometatary relbet, followed hy ndititi

 propriates, of coarse, aty latie food whith chme nu hit way such an expedition without much apparecut sufferibe or in
coavenience. Searly niny otber grain or grass seed seems

THE PEDANTEY OP SPECARLSTS.

Ot cotning many uordt in the scientifle world there has of
lato yours been uo cud. This is the ato of specialists, and a
 An dinersitied nomenclatures kometine it in true it bi

 hat seemol as if the wond forming batit bus become almose a disease in certain circles, abd more than one protest bs It mpild -ame
It woald sewm, howerer, that there are certain department
of reanch where the eqposite fault of uedue alistemious nese is the eoining of names is to bo olserved In in recent
number of the Auk, Mir Willism T. Horaday, the famous taxidermist lodges a compinimito of this kiod ngainat Amerrcab naturaists. The particular sin of omitesion agninst
ubich he protenta is the fuilure of working naturalists to supply sowly dianoverod asimala with Eaglish names. It appears
past in the last decade sowething like three handred new
 this country. Enct one of these has been at once supplied
with a Latinized panee long couvzb to more or less peariz
 is that for all bust be melest for of the inser citcle of ature lines these animals are penctically namelose.
Mr. Hornaday urges that this is all wroog. He cnlls atted: ton to the very pertineat thet that onscieatifle persons for
the mose part furnish the money with which slentitie re-
the most part furnish the movey with which coventine me
 If po other, the uatochaical masses are catitied to some cou eneratios at the hands of the techaoligists He uftes the ises, and christen the neglected unimals.
Thece io certsinily a lange mass of intellizeot readers whe Will teel that Mr. Hornaday's protest is timely and important
 techajeal pathicstions fall more or less commonily under the ege of uatechnical rusders, who wromed like to plean some
 whetber the creature they are resiligg about it a lowat, bird,
or Ilsh. - From Harpor's Wrig.

THE ART OE BREATHING.

It in rerlaye obe of the kigus of the times to thase slert and moev a subjest of attestion. Oculista as weil as physiologises go deeply into its study in a way bardly to be towebed
upos bree. Pbysktans base eared augrevated cases of
 tieats bsve bote quetel, tubloors forma of indigoution wis
 cloariy yemonstrated, by exercises in breathing. Senaickness. too, may be surmounth, asd the victim of byimotic la flueace tanget to witbetasd the forco of nny energy directed ngeisat
him
 mate to walk sithoot lostigg breath, white sufferers Ifom weaknesses of the beart are carmi. Ai Murno, is the Austrian

 minates in whict s potivet mus waik tow given distance, the
 prozeeses the an
Burper's Bitar.

ontahiors movisg hiles.

An isteresting and woulertul fusture of the naturna senery

 to dienstores of trilk thim the thore mand nand tatits, mare

 300 tow in width. When viewed from the surrounting
epantry it appears like a must gumetrically forieed gaat's osantry it appears like a nut cymuetrically formed ghast

openigg into a vast fuannelstaped chases, with elites nearly vertion, which extepded dous to a preat depth. The toitom
of tis great nophitterater was eigbty fees in diameter, and

 playeer No trace whatever is now left of thin ernter. Many
Here the formis the bill has assumed siece then. If it is the action of the strong sonthwestorly gales, which upon the hooee sand of the cliff, why are other hills not that hormed thy the same force all aloug the shore in this locality
where the satil appeast the same no bure? There is a kand wonat close to the take hill neerly forety leet hish, which
bus the appentance of krowiug similue to the others. It is nclosed on three shes with a thick growth of large trees

 In time, ins the buls mover ob, these trees are agniz rewealed, maimed limata wars ago the summit of the larm thill wa

 beltig mowe of the lake
Co Buffolo Erpurs.

thsser stanlation.

stricsty speakie, starration is "an isyumeient supply of
the nutrition whith is becsasy for the proper wapport in th the nutrition whikh is hecesasy for the proper apport of the
body. In the light of this dellaition it beemes evideot at one that there is a condition of bodily fasino which is not隹 Mun neet the requiresemts as exatily as [noibiot if tos difernit
 Yor instance, the disense wheh somedimes attweks childree in their manary, and whieb is perhaps better hiowa as mar-
 autrients, is useless if the sysem is niatide to draw out these nutrients on their way through the digedise canal. A marasmis haty dies from starvation se suroly as thougb be hail Rivkets is shotperer poudition duaper.
 L chouly allied to the proceding, The patient is unatie to
assimilate, or take isto the syotem for its nourishmest, the particles of fat in food.
Many diseases, more especially thoue of a "gorm" origin. kreater jart of the food taken into the body bs seimed upon by the ditano or erem tor it own bouristmeat. This peocess The various tabercalous condition are examples
Extremies of cold or beat niso interlere with the sutrition of the body, coid by lowering the vitality of the body, hat beat by raiaing the comblastion of frod to soch a poist that The dirat is ereater than the supply.
The direct result of eytemice starration ha of course a lower ing of yitality, by which the boty bevomes not only lew shle
to perform the work required of it, but is more or lead open to the ravners of disease of everg tore
Many bersous disturtances and diseases, like neryous prostratson, can be trwed direstly to on disturbabee of nutri
ios. Isdeet, it in doutitulif a condition of nervous \%rak sess is not symonymous with theue sarration.- Xoufin' = Cowe

A CHILDSGENIES FOR ASKING QUESTIONS

Child instruction stould in the frst instance proceed upot
 posidility just as far as may be townid its realization. The ctich's mind is as thiselly studded with interrogstion points
 tweeb top miod nod the truth, Ispalsitivesess is as
 destroy that amnity. Intelle tual estumg is the nursery or

 Cil they are sixtena base knowledge a good desl mores thas
tbey do sin, and if they bed the courape of thest impulse Whent hasumisate thear instructors asd practice hilhilism oa aithilism are disowraite is ewory enthosironm that hed loit used for educstionsl parposes moro than six moothe This intelbectual demporilization of the s-hboirom will pursue it Tree at cartow fill fee tors are selected who have wbough of coa of the child is thelf prescriptive of the courem to to
 teseber to carry out the inteationa of nature rather than to
coms

THE vinst cownovs

The cor-puasther's play-ground in thase ilresizlorioss day, Iesth pis every-day mattere. From 1855 to 1578 ind Texas be fougbt bio way with kuffo nod gur, sod any bour of the texenty
 hat fobded together from some alolo bovel. Serenty-fve Wkies; nod when the nuwz of all this escellenere tritted from
 Vorth, from every town abd conatry. Erery sort nad docre
 Nememhtry haus ise eveniug bymin at one time, others could yoke ซith the geotlo atowet of Virginis, others is the tialece Thaked lanas und codith ; bere nat there was the tacea zireste alrealy becinuing to torges bis Grew siphatet, but phon aiwaya marobes opon the next stage of hia journey.

Hither to the eattle country they flocked from forty kiads of
 for Luilaws, guarding bage berds at night, chasing cattle,

 maia nul stine, to the flerenosa nad to hastis awd darkuess. Destiay tried her latest experiment pponity the savob, and wackiog bim frow the litorary, the haysurk nod the cratter et him upon his borse ; then it whs that tsee to tace with the eternal stmplectity of deatb, bis modecn guise tell away and showed once asain the mediashal man. It was no nem type,
mo product of the frontier, but just the origisal kerbed of the

HOW HINKHAL WOOL IS HADE.

Of thom who know what mineral wool is, or salicate cottoa, as it la sotnetimes caliel, probatly only a smail ummber ure
familar with the simpio procere by which it is maile. The
 condustige covering against beat asd cold alike, for steam Mipes nod cold stornge room wails, as a sound "dendener" is
hiours of tuildiugs and as a weals of flepproitog, among

 Weltg one another in every diroction, asd thus forming an
eudless number of minute air cell. The wool appears on the market in a variety of colors, principally white, but often jellow or gray, had occusionaly quite dark, and is mado ty couverting scorial and certais rooks while in a molten state liquid material. Blich furnace slag forms the raw maserial Tor ane vuriety of the woal, snd sandsone (or anotber,
Yeldiag, respectively, slas rool nad rock wool, the ateence from it of sulpture whipe corering beenuse of the beconses as setive corrodiog ngent. Tbe farnave slag of the
rock, an the caten may bo, meited in a larce cupola, and as
 it tricktes out at the tap hote in a somewhat sloggish strusm
it meet a high-presure seam jet uhich atomizot the woolen mineral, it it mayy be so termed. Howing it in theery cloods stuf setties wherever a resting place afordatiself, the beavies and coarser wool coming down fliss. while tbe lighter portions
 settle in the more distant rorts of the room, the material thas
Baturally gradiag itself into varioties of differvet quality. A thousands poueds of wool per Lour are turned out by one of the copolas, nad after the storago room has been blowa full The uthole pracas aturdo an simiration and isterestiog dilustration of the uthization of as utterly waste product--
Cassiar's Manatine for septomber.

No book typographically conmect

1 remomber oseo of a pablisher to Lowdon who made up
as mind to putaish a book that should hare no typorrap
 own proot-resders, untill they all hasured him that thery were no bager nay errors in the text. Then be sest peoots jrize of seversl poands sterling in cosh for every typographbeal mistake that coold be foand. Husdreds of readers examined the pages in the bope of earning a prize A few errory mure disoverod. Then all the proot-sbecta mis book would appear before the public an abonlately perfect plece of eomposition. He had the plate enst, the edi-
tion pristed amsl bound between expensive covers-becsume as a perfece speciluen of the pristers art it was of course as a perfece specimen of the pristers art it was of course
unitque in literatures, and exceedingly valuatio to biblibophiles. The edition sold well and was aprend sll over the coantry. The pablisher was very much phewed with himest for havimpountility. Then his pride hed a fall, for six or etght montha later he recelved a letter calling his sttention to an

THE MOON AND THE WEATHER.

In as mdress of more thas usual isterest, deliverod at the president, the sumervus fallajes uhich prevall with respect tup as Mr . In wanta khows the influence is meruly aupraitions As batie taso we 1zt, Dr. Harsluy uxamined the weather tables of that year as tarnished by the Boyal Socinty, and out of 36 changes of wedter onily ten occurred on dayn of humar inhaebut caly tho
 takes when the mean whe fartbest from the earth wereremed 755 millimetens, nad when aearest, 754 millimesers, khowing a difference of 1 millimeter, of .-4t inch, and thit in a direstion neningt the theory, the pressure beisg greater by that amount
Whrn the maon Was farthest from the earth. The cycle Whea the moon Was farthest from the earth. The cycle
theory, such as that adrocnted by Mr. MacEenzie and more recutly by Mr. Hugb Clements, bas, we are atior which the woather chankes, ryp wat themselvere The marion, tells vis, asd the widess that the follile moon flemm awny clouds, that beaus stould not be sown or treer cut down on the wase of the moon, that two full moous in a
 phinaso, mere moonstine. They sre not ouly not anpert-1 by sclestifc observation, bat sro epposed to obeerved tacts. The heat reaching us from tho moon woun ooly nifmen our temperature by 12 molitionths of a degree, and the atmor-
pheric tides couved by the moos would ouly affect the
 trom other csuses. Eren the istlornce of the halo round the as oftes followed by floe weathor ns by tuis Atogecther. the intluesce of the moon many te summed up in the words of the old rbyme

The moon and the weather
May change together
But
Donge of moon
Does not change the weather

PNEUMATIC WATER ELEVATOR,
Na 682620 JaMEs E Facos, Fucusoosp, Va. Pabsath Juty 16, 1245. This apparatas operutes upon the priaciplos
that a nolumn of mixed air and water, Elighter than a columb of kollid unter, is proportion to the awopnt of air babbles
 few isches aloore the eble The csing is closed at the top and is provided with astamag box D, theoush which the pipe Crowss. Compressed air is mdmittel through the pipe E, to the spons between the casise and the pipe C. It drived the wator down to the leved nf the hotes 6, asd then ewspoed up the plpe in the form of tubldes. The air presonre bay
oely to lift the water stoove the bevel to which it wonld bat. uraily rise in the well. The spacs between the cosing noil pipe Cformes as air reservoir of safferent capwity, so that the comprevaor may lee conpected diroctly to the pipet F, nad wo other rescrvoir is mended. The air pasing in at the lower
moved by means of the arms C on the mpper end of the
 con is es'imber A operntes the vaive G whise sontrols the nimiasion of stenm $0, A$, and the piston in N mores the
Valve F which controls the sapply of stenm to vylinder A.
mivine ma
No, S44,426. Ja*erw I. Bever axp Joux Y, Cabener, Bathy, W. Ya Patrotal Ang. 131, 1sas, Fie. 1 is a top view of the Tareside anil top vieusthway of the conter cotting cbain. The outting is dobe priucipally by two eirculae sotw = 32 and 33 , which run it opposite directious. Tbe saws are, rotated by 29, 29 to the dricern 25 , 2n Theseare Ariven in plovite lire.tons by menas of the hewel geare 22, 23, 26. Power is furnished hy a motor E, throush the speokets 5,6, a 1 कhais J. The methine lo mored forward abd back by mestoof the right nod left wormes 14, 15, the geam 17, 18, and
 the fratue harrthe tam IF, which iasugported by a truck E., ruanisg upon
the frame 1. The sface fetween the saws is matelarge so that the cosl whbh is boken ont from tetween themis of marketatile sizr, and is not wasted by being gromed teto alack. The elat of conal oflech ia lefe stavoling fatureen the two naw*, is dixided hy meathe of the auger Be, sud is thun

Mart of the optake-Tipe is utually sumesent in volume
ightes the columm but with deep wells or with coosider afle bife for the water above the water level in the well, it is cometimes advantageots to employ as nusimary ift by firco still furtber lesemb the weight of the columo of Liquid. To effect this object the slide-valve 3 may be provided over si ogening in the ugtastilipe at nay desired level, and a rod a extesding from this valve up throggh a otuffigg-hox 5 allow it to be opened by hand more or less, and thus to admit the volame of air repulired for operating the auxiliary lift to thebest adrantage.

DUPLEX SAEAM FUME

No. 512.342 Casstes 3 H . axp Encash E. Hitlen, Castox,
 valvee: and Fig. 3 lo a perspertive vier of the lever which is ased to move the ralres. Each pition is souble headed

as shown, and the enlarged exd of the levers H play between and $G ; F$ verving the cylitior A, and $\frac{F}{}$ controvilive the cylinder B. The ports necossary to oodduct the steam to the cytinders eross each other us shown in Fig. 1. The salves are

made ensy of remonal. The ehains K, whichare armed with waitabie cutters, eater the anger bole nhil carven a jaseagee why for the beam 5 . When the khath betwon the now cuts ing coal will b" properly thrown forwarl whe shot dowe

CORE DRHLLNG MACHINE

No, 548,227. Hoakr Beal, Farmi, Oupo. Palentrd Ju's 2ard 1 Ni6, Fig. 1 is a frodt siew of the working parts of the are top views of the collars I and J. This machine is

introded for hand yower, asd for use in places where larger machines oould not be taken. The drivis, geaf and cranks anotber hifacket F st the roar of the woat A. The drill t in be

port A, which masy be out in the loeslity where the drilling is O te dobes The mais tate K is made of aquare piper which alises through square hackes in the hub of the gois C, and Ts thrended to .
 the rols 0 and cranks n, and which are eounented by boun to the awivel P, at the top of the tutes. The feeding is Ierformed by basd, ly minat of the lerwer Λ, which hooks ubiler De piths, ither rum $\not 2$, ath benes upon the shomblers of wear out, is wry darable tube string himg no hey wass in it to rear out, is xery darable and stromg.

BVDRAVLIC ALR COMPRESSOR.

No 643,411. Cunilan H. Tavain, Mostazal, Casabs. fas be otenibed with this apparatus degends upon the differroce is level of the water io the hemd abal tail races. The Chamber of mast ulso be sunk kelow the whter in the tail ruce to a diefance equal to the working bead. The water esters the stum pipas 2 throngh a conical funsed b, and tor
 corered by a copleal cap f, which can ta adjusted up or down, by menas of the screms abd havd wheel f, to regulate the quastity of whter flowing into the fansel, A large number of air tubes g, having evwral cmall jets undb, are ar-
maged in a circle arount the rim of the funnel, asd these

Can te submerned to any extent desired by mesns of the s.rew asd habi wheel 5 . As the water nisbes into the funsmall nie jets os sir bubeles to drawe ost from ench of the down ly the Fater into the pige 2 . Thery are grndually romprowed as they deserod antil they reach the box \& Here plates, and kiven a rotary motion by suitable deflecting the water. The sompresesed air which aceumulates in the mox bis conducted awhy, for use, hy the pipe w. Although the air box is showa us though locatel is n wril, that eonetruction is mot becesoary. It is only nevessary that a muffifrom escapisg throegh the boles n .

COAL DR:LLL.

 The end of the anger A is formed into a soelet B, baving in-

Cline delde tlanges h. The central hit D has as thperioje flat mule wimb bereled ofges Two site cut.rs e, Which ar Ut D and the tlang+s of of the main socket. The single
clamptag toit E serves to serure nh three bats flembly bite phese The bits C magto shoved koruant in theit suckres they become dulled they vai. be very quickly replacel with sharp obers

LOADING CONVEvOR BUCKETS

 and roliess C. If is the loading -pout. In orlinary pratioce the coal would fall thrivich tetoven the trackets A, nul be

θ is employed. This is formed with a aumber of spouts 3 , tarongh which the conl frota $/ f$ must pass to reach tbr
bucketc. The wheel turns op a pis F, upou the standard being rotated to the engagement of tbe teeth 7 and s wnith plas epon the chain timks, nand With the rollert C A the buckets move aboths, one of the Nrouls 3 turneqquarely dow over the center of each bucket, and if any coal should poog
ouf either of the other spouts, it would fall fairly isto one of the buckets. Theas all spolling it its waste is prevented.

METHOD OF SINKING SH AFT

Na 543,230. Jeak A. Dowhe, Frtroveron, Pa Pafroled ofy this process; Fis. 2 is is verti-al eection hour the foctom of the shatt: abil Fig. 3 is a cross section, on a larker vinle,
of the priles employest to ebelose the shalt. The pibes 1 are

made of tutiog, nuid are providen with tongue ant groove
 shaft TVey ars then irives ilow through the quirkamb to tor reck. The earth is the chrobel but of the tuber, nut

obe, nad an irouptis 3 is driven into tweth hole. The pins
 water ane removil lrow the central part of the sbaft. In many caw the pibse will form a sumeriest lisise for the shafi and tho sertional cising 6i tmay tee omitted. White not from the iteterion of the pele uldien it ix lefag driven down so he to permst vxamination as thus dirsetion of mavement of of the fithe, mbetber it is twing shiftell laterally ne Boct, ant affording upportanify of correcting any lateral deviation.

GATE FOR COAL CHETES.

 showe the proiton of the gates a here opern. The gates C,
are hubig upan sivots a, which are nttarteat to the shise
 A bud herer S , to ubinh they mar tee opernted. The sur-
face of the

Ilics with sabd. A simalur wabd joint is provided at the top, to tiring thooke jvket may be recolved anount pljes imto rango with any of the tubes, A stemat thow pipe K, having fis whuch ruge with every row of tules, is attarbed to the
 potht withont stopptige the toiles. The farnace 2 is square The feed whiter is istralucet at $?$ where it muess bot water descending from the mul chamber F Fisto the that coil MI The water circulates ewitly through that coil iwhich is of Litae Pu M a
 down into the quietest purt of the boiler at γ, from whewa is cually remoted

MININGTHEAMERL.

Xacha,152. Rohent H. Elbott ang Jours E. Can ishous the ranmer as at work, falurging the isner cod of a bore bole, to form a powder chamber. Fig. 2 is a oretional

Thaving its tenter at the pirot 3. The pirot- are located
 fatek, is aloout the same. There is mored to opeses of close the coul while the gates sre elcoing conevqueptly they more casily; snt ubee shot, the coal has mo teodency to jush
them open.

STEAM HOHLKE

 the top by a crowned ring Q and it the bottom by a conesbaped ring or crown-sbeet R. Sibce these heads corer a
 scoomitualate any isequality of espention is the ivo shell. Tabes \& \& of small tinmeter, fallate from the iunor to the outer shell. forming braces for each. These tabes are phaced in vertical rows is the inner shell σ, asd are "stageered" is tbe ooter obe $P_{\text {, }}$ By this arrangement the rapid eirculation

of the water abs steam uguans boraf the finer shell for not ohetrueted (llfy Jer cept, of the watire ares being greservel)
ond the downwart mocnment of the moler uaker near the

 vewon jorket A, jart of thom return through the fulies fort Tow then wher lime, to the smakn hox 3. and the remminder

view showing the construction. The object of this improveavent is to ceuter the end of the renacer is the bole, and coesper the cuiter 0 to cat equalily on all sides of the bork $\mathrm{H} \mathrm{H}^{\mathrm{C}}$. ublech urn infuted to stover. Pand E . When the reamer is thrust into the hole, the stoere F ftrikes the botom, and the ecutering the anain spiodle. The parts theo bevome statiosary, asd the plag C whth is surewed into the end of the optadle, farns wishin the collar 0 , forming a awivel joint, the thrust twing borne spon the enlargeal hesi of the sleeve E. As soos ns the pressure is removel, the spiral spring K sill operate to drow in the toggle links, so that the tool mas
be readily remoned from the hole. GRBNDING 3 41
No, 54,294 . Juirs D. Evass, Br. Loels, Mo, Patenied Auj. 181, 150, Fig. 1 is a top view of the grinftig machine partly in mertion: Fig t is a erien uection of the same showing the grinding diocs. The diwe are thick at the ceoter and Lapor towarit the rim, anil the beveled faves sre corrugated to suit the materind to be grousi. Thry ran in the direction being right hauled, nod the coher a left banded wrow 'The

dises are threubled to suit. The edge of each dise rewches Wimost to the shafe of its matrs, and tbere leving a largo difFreenew is apect nt the rim nod at the eye, it lollowe that the
 flective grimstiag: It is claimed that the divers will asicenachally hock themarives ith pesirion lepou thear regjective

The Colliery Engineer

- ano
 \qquad
 MMETAI IVINEER.

VOL. XVI.-NO. 4.
SORANTON, PA., NOVEMBER, 1895.
THE MITNING HEREAKD.

The New PULSOMETER STEAM PUMP
 OVER 20,000 IN USE.
 RECENT IMPORTANT IMPROVEMENTS.

THE SIMPLEST, CHEAPEST, MOST EFFICIENT AND MOST DURABLE

STEAM
Serd for Fres Catalague.

THE PULSOMETER STEAM PUMP co. Lock-Bin 2511 , MEW YORX CITT.

Wrhtee toe Tus Columay Emarsers anil Metal Miser
PROSPECTING FOR PLACER GOLD.
A NOVEL AND GIGANTIC SCHEME IN CLEAR CREEK CANYON, COLORADO.

Showing how Gold is Obtained on a Large Scale from Gold Bearing Gravels under Favorable Conditions.
(By Prut. Arthur Lakea. Gotiden, Colo.
In our last, we gave an account of the arrangement of plpes, flumes, ete., and of the general plan of the eeterprise. In Fig. 1 we give a skeleton sketch showing is
detal how the morks will appesr when all is completed and bedrock resched. Fig. 11 also shows a panornme view of the works from the intake flame far up the canyon to the penstock and from the penstock the bla plpes to thelr flan connection at the lower end of the placer with the
are forclag up the material as excavated to an elevated aluke to be winnowed of its conrser gold and thence the gravel to pass nver a Aner gnthering broed undercurrent mongat theoce agsin by a narrow thame wlodmg flisal long updeccurrent where the finest materlal ts col eeted on "Burlap" a spectes of rough sackteng matertal well known to the trade
We mill pow describe this latter and most important portion of the works is detail. It will be rembered that the general plan of the esterprise ls to raussek the contents of the creek bed, down to bedrock and mheo peeded altele below bedrock, all along and up the course of the bed of the creek from which the stremm has bown removed. After all the machibery, flumes, sluices, pipes and ginole were in place, the pext thing to be doue was the excavate a pit down to bedrock at the stone dam at lone by help of glant nozzles and flevators. The plan is to keep workiog up stream making ooe loag con-
are directed in upon thls pozzle, the lower portion of whke will be sunk in bed-rock when bed-rock is sttained, it drives the debris nod smbiler boulders up the fonnel of the slevator abd into the flume, where a plpe (Ree 6, Fig. 1) communicating with the masin great flume aende a food of water into the gravel slukse to help push along the boalders and gravel that have thus come up. The other pipe that is also seen entering the cod of the box of the slulice abd jasaligg down to a steep slanting direction into the pit, is a Ladlam water lifter sunaemes catied an elevator pump. It works sona what ower portion whleb caasens the water in the pit to ascend into it. The power pressare nogzle is inserfed in about a foot into the piper. (see Fig. 2.) Its purpose is to irals the pit of water, accumalating from the glanta sud In other ways, so the glants tear down the fanks and the elevators carry the water and gravels and gold up into The main gravel slulce (8ee Fige. 6 aod i) Is a narrow

 giast bozaleg, and ob the opposite side the river, the big / tinoous aod deep trebch the full width of the river bed fume carrging the water of the river ont of Its batural abd the full lenath of the portion lald hare. The
coarseand leav-
debrls of the advanclag exesvation fo thrown back into

Fio. 9.-Issminies of Nozatis 1xT0 Lubers's Watek Jaytell.
1, blaNr sozzLe; 9, woonev Blook 3, WATER LaFTEN PIFE OFEXED, siteminal Nozxt.E.
the portion worked ont and abaodoned behiod
In commesosigg the excaration, the ginnt bozzlea were brought to play with their tremendous iorce and the materinal as the pit deepened whs forced up through the Clerator gravel pipe into the elevated gravel slaice (See Figs +80 S S. This Liadlams elevator gravel pipe, inNeated hy Mr. Ladlum, is simply a ble steel pipe eveneWhat funnel-shaped and towards the bottom this cocues right down futs the botlou of the pit whete both mater and gravel are accumulatiog under the work of the blamts.

Right underneath the open end of then elevator pipe. at a distance of 16 inches belor it, is a noazle Imbedideal in the bed-rock together with a portion of plpe, as shown of water from one of the main plpes prowerful pressure the gravel and stones keep rolling down abd by as

Fif. 3-Abaptave Nattue 70 Cinctestavens, Roncoz Plack:
trough or box 208 feet long by 48 feches wide and 8 feet high, laid down at a geatle lnclination on the top amartace It is male of stroug, inch thlok boarila and raved on the bottom with struare 8 Inch hlocks of pine pocal os the end mo that the grain bac uppermogt. These block rifloen and so that the grais bo uppermost. These block rifleter of the sluice from shde to stde. Between each set of rom of blocks is laid a narrow strip of wood 3 finches high by t an isels thiok. This is laid on the bottom betweven the rimles as shoms in Fig. 7
In layleg in these block rittles the Erest row of blocks
divided tuto a gartes of eompartments or boxes set logeitudlnally. The divisions sre by long boscds about a foot deep, at the bottom of theoe boand on the bariap strip of wood is lald and hattened bown on the burlap or sacking material which lines the burlap carpeta bre flam off by milens on sulvele and tranaported to a mooten tank where ther roca oner a serles of rollers which laya them conventently of on for inspection: every visible partiole of pold is collected and the rest drops into the water In the tank.
Through the middle of this undercurrent slulee passea
pit to a depth of 30 feet, shows a reculise section. The great looge rocks, by forming the so-csilled stoee dam acrues the stream, produced a batural gathering place from above. Here we may expect at this point the from above Here we may expect at this point the is reached. Soune of the boulders are several feat In dlsweter and of grmat size and weight, bee Fs. 9. Some of thees have to to hlasteal ont whitat athers, tater, witl be hoisteal out by a decriel worlial be a drnamo. Mised with these boulilers ate a great number of stumpo and

Fig. 9.-Skctins of Pit at Rowcor.
A. BoURDENS, BAMD AXD DHFT Le日, 6 FT, $B, 2$ YEET
 PBEBLE AND GEAVEI: D, wG bocldem.
pleces of driftwood, some of which show the marks of the teeth of some noclent besvers, About half way up the sble of the section is a thin bed of peaty earth, relice, doubtless, of an old surface sot. Above this sre lietts of coarse and fine sand, which, by their uneven bobling,
show the action of torizate and rapidly changing cpr show the action of torrente and mpidly changing cur-
reote. Gold has been found all the way down from surteots. Golt has been found all the way down from sur-
face to bottom for 30 feet, but they expect the most sud coareest gold when they rearh hum rock, which then expect to do daily. They are obliged to wall up wilh cobblestones partions of the loose aldes of the pit as the jarring of a passing train is liable to ahabe down boulders and endanger the workmen below.
[TO WK COSTISUED.]

Combine Bollers.

Mr. L. M. Moyes, the jatentee and manufactured of the "Combive Water Tabe Boilers" informs us that h " has leased the factory premiens 1434-30 Randolph St., Philadetphia, Pa, where the manufacturing and as sembling of hto boller will be carried on, and whece the geveral ottices will be maintained.
He is at present arranging for the incorporating of his buslaess with it view to the devrloping of the manufacturing ilepartmens. The "Combine Boller" is in successfal operation, and a series of teats have sbown gratifyiug results.
Mr. Moyes is at present ervetibe holler plants at varl-
are placed closely slde by skde. Then the gtrip of wood \mid asmall llume with perforated plates at the upper end. is nalled along the lower part of them with headleas whem the next row of tifles is laid down they are driven up againgt the points of the protruding beadless naila and made fast whilst a strip in belug lald agsinst them The granel as it is belog borne slong to the slulce, drops Ite gold which is collected in these cracker or gspe prepared to recelve it between the rinles.

On the slde of thls main slutioe, sad connected with it at the hemi, are two smaller slde slulees a littie below it oele carpes instead of with rimese blocks. Thls earpet collects the flner gold whllst the main flame uaually col. lecte the eastreer materinl both bouldens gravel and gold .

Nearly towards the end of the main slulee a fer of the block rittes are omitted and a grating put in their place (SeeFig. 7) mude the full wilth of the box with a epace between bars of ? Inch and bevelled on the bot. tom. This grating only allows stones of krarel of a certain slase to pass torether with finer materlal Into the mext sfuise called an "undercurrent." This ig a brow

Pig. 6 -Chosan Settios op Sunteg.
 THAT THE FIDES AHE BCT Z FEET HGG AND
sballow box, as shown in the cut (Fig. 10) dipplug at an inclisstion of 16 isches in 24 feet whinh is the leugth of of the undercurrent, its widh belog 12 feet Io 00r oketeh than itis but suct is nat the cuse and lis fault in Itm han this for sucls is bot athe che and Therapectur or of the leas lo
rifte. These rifles constst of narpos a peepliarkind of woed laid down on the trattom acioss the of strips of box ant on top of esch elst ts a plece of straplran meilet tlat, whicae edjep overlapes the slat ou looth sides of ther lower alde oply of an irch. The water pos alog through there, pasars to and frollke an endlezs puiley snd from ritile to Iiflo, dmpping it a gold aboneght them by the ehbles so cansel. stili them is a evetain amonnt of finer material carrging still tioner gold whleh eacapee this flrot ubleccurrent ans must not bue lont, so from thia a narrow tlume wloding through a curious puassge ani crevices in the rocks (See Fig, 3) pasasa out into a still larger and longer undercurrent whleh cateheg the finust materlal, to the present cuae very largely compoceil of floe allt and tailloga frosu the stamp mills. The long wide lower undereurent is feet long by \& 4 feet wide is
carefuliy ingpecied for gold. This leaves the bottom of !
Deek board

Abstract

This thume is inteuded to catch and dispose of some of

 The coanser material that may have jaseed through the it drops through the perfornted plates leta the feum in It stops through the perforated plates into the geueral river. Whent dee costser rubbish being carried out to the unecertsin intervals, the block rimes whe taken oce at at ubcertain intervals, the block rimles ane taken up abd

Han

 and golit and quickellver bas collected. This be care Kin, Phila, I's 100 II, P. for St Ans's Catholic folly sboveled into buchets snd examolned, the gold Inbd Schools, Palla, i20 H. P, for the Marietta Electrid
 ore takeo up aud gold and qulekallver collected, aleo the tural College, Pullona, Washtugton.
Brusscle curpets in the side slulenes iand the led, aloo the hane described in the lower unlercurrent. butisp, Bs we
Tbe bed of the struam na at prosent exconated by the

Mr. Moyes is about to isene the seconil edition of his atalogue on "Steam Boilers" which wIll be sent on
spplfation, ani will contaln some intensting nead appltcation, and will contalu some intersting readlag
for stcam usots

ELECTRICITY IN BITUMINOUS COAL MINING.

THE EVOLUTION AND DEVELOPMENT OF

 MINING MACHINES.Practical Tests Made in Various Ohio Mines with the Principal Electrical Mining Machines. with a tabulated Statement of the Results.
Dy M. M. Easeltian, Miaing Enciuest. Chlet lanjector of Mine toblo

(From ailvasee ebecte of bis Amnual Mepote)

The subject of mising coal by the aid of macbinery has reoelved renewed consideration each year, as its importance has bocome more apparent to the lndustry. don bus fallen upon the commerclal morld. Coal has been mined in Oblo is thly way to a greater or less extent during the past seventoen of elghteen years, but not uotil within the past two years has it beoome plainly manifest thast, upon tbe preseut basks governing the evela-
tions of plek to toanchine miniug, the latter bas such a tions of plek to tanchloe miniug, the latter bas suech a

Fin, 10,-Bimarys Visu of Roboor Placke, Lookiso Dows os Sutuks.

decided advantage. It is believed that within this pertod the subject has reeelved more atteotioe than during any other period alinee its inception. Whlle thls is true, the subject of mining coal by the ald of machinery
ts ly mo mesus of recent blrth. The records in the U. S . Patent Omee show that as estly as 1858 it bad monterialized to such a polat ns to be coosbdered pstevtable. The first claim filed in this country and the firat patent gabted on a mining machine was No. 19,645. It wha
isaued to $\mathrm{C} . \mathrm{A}$. Clamberinin, of Allegheny City, Pa. on March 9, 1858 . Thats ploveer inventor concelved the iden of attacking the coal by means of a borizontal acheel in the perimeter of which be inserted cutters. On of the ssme plsen filed a claim upon which Eatent No of the ssme place tiled a claim apon which pateat No.
21,918 was lisued. The Inventive penius of this man led him to coocelve the idea of imitating the miner with
nature's store bouse, This plan was first made public of Mesdelle, P_{s}, who Aled a claim on a device which of Mesdellee, Pa, who bled a claim on a device which was between them. It was claimed that by this means a cat coald be made as deep as desired. They were granted a pstent covertug their clatu on Jasuary 17 , It was bumbeved 46,917. The gingt claim on of Leeds. Ev Eland, on which patent No. 76,41 it wne issued, on Aptrl 2. 1868. Whitcomb's erst patent on a rectprocrativg machive was issued Jasuary 18, 1876, and Hartisos's flrst patent on the same psitern of macbise Fins lasued on September 2, 1879. I. Alexander, of anshine"" whleh was designed as a side cutter and on whleb pateot No. 135.874 was lasued to hlou on Vebruary 18, 1878 A A patent for a double chals mschilue coestructed so that they moved la opposite directions was issued to C. S. Lechiver, of Ohlo, on October 23, 1883, and in 1886 a patent for a sigigle cbsale end catting machive mas issued to V, \& C, 8. Lechiser. On October 6. 1874 , a patent for a rotary bar machine to which was to P. Sheldou. This is the first record of a machtoe of this type. The patent number is 100.50 . During Jabuary and A aguat, 1829 patents on the details in eutters were isaned to
F. M. Lechner, of Colum. bus, Ohio, to whom, durfog Janasry aod Septembor, 1890 ratents were issued on an end cultiog rotary bar machine. B. A. Legg also secared a
patent on a rotary bar pstent on a rotary bar
machine on Jabuary 3 . machine on Jabuary 3,
1884. This by no metaus embraces the list of claime that have beeo Eled or of the patents that bavo beed allowed upob mining machines in this country. It however givea
thoee whinh were first to those which were first to exhibit gribciples of merit
as well as those which as well as those which
contained pinclples of mechanics that are now betng uaed to the construction of maschlnes that sre regarded as havIng prased the experl. mental polnt. There pateats also exhlblt the range of thought over which inventors bave gone in thetr endeavor to produce coal by the aid of mechanics, and with what eagerness they have tried to 8olve a problem that even to-day retalus many
mysteries. To thooe who sre famillar with the progroe mysterles. To those who sre familiar with the progress
made in this brabch of industry, the small percontage made in this brabch of industry, the small percentage of the ciaims which have beed found to possesa merit
will appear quite startllag. It is posalte that then will appear quite startllag. It is possible that the auccees for want of anitable power with which so port of them, the gcienoe of electricity being in a primitive con them, the 8 cienoe of electricity beigg In a primitive condition and the sir cowpressors being very lmperfectly it is doubtfal if the pumber of economis mining machlae on the market at the present time will exceed a beif on the
doseb.
There are conay reasons why the energy of so many
order that the machine may withstand the resistanoe offered by the coal. It will be readily sees that the mising machibe is thas deprived of suggestions, alterations and improvements that woald be offered by both mechasles and inventors, were it operated where it would
lee expoed to the publice eye an are other Inhor sinving jevteres. Even since the introduction of the finat eeo. nomle machine, which was aboat 1876 of 1877 , there huve bees scoress of machloss patented and placed on the market, many of them possmestag fenturns that wouk have been of great value to the miniog fudustry had they been fully developed, but upoes trial they wrere found to be too frall, ned after a bumber of vexations delays, caused by breskage, the were conslgned to the日crap pele and the disheartened inventor found himself focced to sbandon his hope of reward, and return to his formes vocation. Hal be bee possensed of a knowl. edge as to the units of mork that are required to under cut the cosl, be would have incrensed the factor of safety in hts calculations and the result might have beet more sathathetory
But fer coal velos are alspted to machine mining at all and in a still smaller number can the preaent type of standard machlve be used with economy. For protit able mining the roof must be strong and free from slips or bedl sbaped bells. Especially is this true of the rotary bar or of the eed cutting chain machine, elther of which cannot be well operated if the props are eet leas than twelve feot from the conl face. The floor of of the relin must be nearly if not quibes. There is no instagon withis the writer's knowledge where the mining machtiset have given sattafaction when ojerated on an uneven floor. The thickness of the vein has been oonsidered as the index by which its adaptabllity for the introduction of mining anchines is to be determined, sud with bat few exceptiotis, to attempt at any installatiou bas been made except is the very thickeat of the velns, and so machine builders have desigred ooly for the mining of high coal. For this reason the practleability of using machines for reclaiming the coal in thin velos still remains undecided. This is largely owing to the fact that the fiber of the coal is as flrm in the thin veins as in the thlek, 80 that the power required to umiermine tho cusl remains the same, bence the Weight of the machibe must be as great for obe as for the other. The dimlaished space in which to use the bare ly which the nasobine is moved, also the Decensity of uslog a shorter bar, thus ditsislehiog the leverage, makes the moving of the machlee very Inbortous and slow and thus dinalnishes the opportunity of profit that might be derived from their Installation. With a view of widening the fleld of machine mining, sume manufacturers bsve turned their atteotion to the designing of a macbise that would be of such a height as to bot come in contact with the roof while being mosed, bat The weight of the machine was so great that it offered mere fact that a machine is of s belght that mill. The of its lelog realily moved is no guarantee thas it can be profitably rand moved ia bo guascontee thas it cas minlog pory ubcin that wis the san old rule in coal vels is the us ar judiclously used, the conl will be liberated in ita best possible form
The present type of bar or chatn machine is designed to ubderout from bix to seven feet and whete the vein Cofrogs eight to twelve feet in thickuess, this is of such an instance groat dimicalty has been expeclenoed in produclag merchantable conl, owing to its finking off in producing merchantable coal, owing to its inaking
It has beep fognd that as to not stand handing. mucb beavier thas one that fo desigoed to undercut but

Fig. 11.-Paxonamo Virw of Rocoog Placer.

his plek. This claim stands to-day as the only application ever having been filed for protection oo a plek macbine.
Grier and Boyd, of Hatton, Pr ., secured a patent July 12,1854 , on a machine which consisted of a series of augers working in unlaon in the sawe plane. Their pstent namber was 43,493 . This would be classed as
an end cuttiog Eschloe, and was the first "aager maan end cuttiog Eashloe, and was the flrst "anger ma-
chine" upon which a ohaim was presented at the Patent Offlee. A number δt machloes of thls type have recently been designed to be drfven by electisilty. It bas been foond that the bit being in constant contact with the coal becomes heated, which revoves the temper. It has also been discovered that as the sagers advance while diaplscing the coal they become lose rligid nod bave a tebdeticy to become tangled. The elrcalar 8sw bas
suggogted one of the popalar lideas among laventors si suggosted one of the popular likeas smong Laventor ns
to the maltable device by which to reclsim the conl from

Eyeyptian darkoess into which even ivventors who have this problem under couslderation rarely enter, hence the maschine escapes the gase of the inquisitive mewhich tho is constantly pryiog into ingenious devices the skilled mesthanlo and the of day, Tbsentor resuring little of no knowledge as to the requirements of a successfal malsing machlae or to the amount of labor that it must perform. They are equally frootant as to the rough esage that it must withstand io oriler to reclaion a ton of cosl with economy to the mine opentor. Although the most intelligent and skilled miners, thoroughly vensed in their vocation, are uanally selected to operate the mining machines, as miners they are eotirely wast lng in the koowledge of mechanics and sme thooflore
anabie to calculate as to the amount of additional strength required or of the form or place to apply it in
ais feet, bence it is the writer's belief that if in theee chas the machines were dealgned to undercut from thlckness of the ve four and one-half foot as the reduced is meight as to be resdily moved into position Such a machine would be designed to undercut the full thleksess of the velo and the coal thus produced will inter the markets in as good form as if it were the prosnet of pick mining
In makiog installations, operntors have gebersily aslopted one of the three types of mashine. These are the rotary bar, the chain abd the reciprocsting patterne, and in these favestigations only the two former hawe bees coosidered, for the reasou that they received the greater conslderation among the operators, presumably from the fact that they have been reganied as the moost protitable to operate. The manufacturers of the recip-
rocating machime lay claim to holding a priority in
entering the field. The age in this case cansot bo
deflitely settled withoat first knowins whilth was the first to pass the experimental point. This type of masiodustry and $t s$ isilsp paable in a mine where machtines of the other types are installed. In such enses it is used to do the cutting near faults where the coal con-
tains balls of iron priter, eto., or other foreign matter It is a maschiue that can be employed adrantageously In driving garrom entries of ta minibg vuder tender
root. This type of machine is also reparded with much favor by the operators in the thin velas, oring to the ease with which it can be trabaported about the mioe.
It is desigped to andereut a depth of four and one-half feet, whbleb is many of the thin reins is ample to insur the preduction of a merchautable coal.
The carly Installations of mining machines, beginning
about 18%. Were confived to the use of compreed air
 jear of tose, mhen electricity was first succesafully ap-
piled to a rotary bar machine by the Jeffrey Manufacturing Co, of Columbus, Ohto. This machine is still tit use
in the mine in whleh it was first installed The ease in the bine in whleh it was flrst installed. The case
and ecouromy with which this pew power could be couducted about the mine commanded for it at obce the attention of the inventor and operator. It plawd the
esmployment of the mintgg machloe within the reach of employment of the mining machlne within the reach of
Δ greater number of operators, nod the development of A greiter number of operators, and the developement of
machine mining has gote formard rapidly stuce that date.
The guestion of operating miens by eloctricity has
received mote discussion during the piot six rears than reeeived wote discussion during the phat six jears than
any sulject before the miming palsic. And the few yenrs elapstng since the first introduction of electricity has
witnessed its succesflul application to every labor ssvwitnessed its suecrosful application to every labor ssvformerly been atlilized. Furtherwore, it has been
knomz that the amoant of power requised to operato the knoun that the amount of power required to opernto the
mining machines has been redued; also that the construction of the mining wachine has beep froproved and that new sud improved wachiuery has been desigbed to
attack the coal is a more savantageous manoet. stlll sttack the coal is a mores sidxntagseous manoet.
there has been no cespeful investigation of this progress or no prbblisbed information tor which the pablic has power, its ndaptability to the uses of the mines, the power, its ndsptability to the ases of the mine, the lose in trabsmissios, ete., Fere questions which should bave received ewe thls the most careful investigntion and
the results placed before the mining pabilic. The absence the results placed before the mining pabile. The absence
of this information can ooly be accounted for on the of this information can orly be accounted for on the
 wuch les
acpuired.
By reason of the scarcity and incompleteness of this Information, which is absolutely beccssary in order to
intelligeatly discuss the subject, the writer bas deroted isteligently discuss the subject, the writer bas devoted
several weeks to the making of practical teats as to the relative eflliciency of the listor saving machines in the
mines of Obio. In order to set forth the resalts of this mines of Ohio. In order to see forth the ressults of this
labor in a compact and lucid form, they are here prelabor in a compact and luctd form, ther are here previsits were made to serem mines located in varivas parts
of theres of the moet important coal belds of the State. Testa were made of twelve mining machines of the several types that nre now regnofed as standard man-
chtues. In securing these reauts the circuit mas opened near the maschine and meters registering potential sod carrebt mepe foserted. Slmultapeous readings were taken every fifteonsecous while seventy-threb cuts were
beling made. It will thus be seon that the results as they appear in the table embody the averages of over with the utrovest poesilite prection.
with arranging thls table it was thougbt desirable to show the comparative efticiency of the varions types of
mining mochtues while at work under the clrcumstabees whicb the ordinary daily routine piesents. It whs also the parpoee of the desiguer to exbibit the resalta of the
toest made and the deductions draws therefrom, as well has suct other ctrcumstances as would bear upon their value.
mines, abd in the next theno placed the names of the county in which the minets locatel and the character and capacity of the power plant. In the next column is
represented the patio of the machine, wbich also initirepresented the name of the machine, which also indi-
cates its maker, and in the next the type of the machine. The fifth coloman exhbits the sumber of cuta that the machibe made while belng tested, It will be poticed
that the pumber of cata varies with the different machines. This whis caused by a sertes of uncontroll. able exigencies, which are liabie to arise at any moment
durivg the progrese of sach sn inveetigation. For instance, on serveral occosionas it was foubl that the
machize had but few cuts to make before a change to another part of the mine, perhaps for want of a place in which to cut and several tmes the testing was interrupted by the stopping of the geoerstor nud by break:
agea of the machine \#ork was atopped to allow the experinoenting party to
catch a train. Thus it will be sexp that it \#ia almoat catch a train. Thus it will be seen that it Tras almose
impossible to ceeure ail equal number of trials to impossibse to cecure an equal number of trials to avernge depth and breadth of each cut. The form-
er mas obtaibed by measuring the depth of the er mas obtalised by measuring the depth of the
undervut is several places abd striking an average
These figures should tiot be considered as represent. These figures should not be considered as represent
ing the depth whleh the thachlbe ts cspable of cutting ang otteu the contour of the coal fsco 10 sach that the machise is prevented from getting tato an poasitiog
that will permil it to moske its foll cut. The averag What will perralt, it to poske the fasde duriog the trial, which apposars In the next columin, does not repreget the capabilitied
of the machine with regard to the width of the cut. The reasoe why the machibes are seldom set to make their
full cut arioxe from the fart thet a lar mechlue, 80 . full cut arises from the fact thst a har machine, so vel,
by resson of the lmposability of making the tro adjoin-

dercut, while in the case of the chain machines, when the cuts are made the full witth, there is left a projecting angle, at the lack where the two cuts ndjom. In either ase the shooting down of the coal is seriously toterfered soconical with the precen reape of thain oe har machine to cut less thas the width of the machise, The nest column reptesents the number of square feet under. mined at esch cat, asd the nest the time occupied by the mactibe in making the cut. By this is meant the peciod elapsing from the time the machine first caught add the machioe reversed. In the next column is regls. ered the average grocs honse- power consumed in making the various cuts. The lustruments were read every tifteen seconds during the time oocupted is cutting and tbe first two sub-columns give the maximum nod minmum readings, respectively, while the third gives the given the fractional latd, whell wasobtained by ruming the machibe light, with and without the feed. The best columin exhibits the average net hosse-power und in the frictional load. In the next colutau is reprosented the average hota powes renuiral loy the machine to unThis is dealgned to reduce the emficiency of each of machine This is designed to reduce the emiciency of each machine
o a common standard for comparison. In the last
Cole columns appears the average voltage for each cut, which has been introduced to show whether or not the machine By referting to the average of each bache
By referring to the average of each machive teated as seen that the average maximum horse-power of the five
ser har machines is eighteen and one-half, nineteen and fourCenths, twenty-two and nine-feoths, tweuty-six and nine taths and twenty-8ix sud egbt-teoths, while the ebsin
machise shows twenty-oDe and six-tenth, foarteen and serco-tenths, ninctech and six-tenths, nipe and eight teaths, seventeen and two-tenths, twenty-two and tweuty and one-half borse-power, respectively. These resalts ate of the highest value to peroolly who contemplate the
inetalling of mining machioes. They should ase the highest porerer exhltifted under the types of machine se lected as the multiple by which to deternine the powed of the geurrator newessary to insure satisfactory regults Neglect in following this rale is a very common error practiced among the manufacturess of maschines. They Appear thmid is presestiog proper estimates of cost lest stailing of a plant. Heoce they take the chanows of the maximum power not being repuired, or of being able to reinforve tbe power plant after the operator bas discovred that a miatake has been made. Thus it is that at the capacity of the plant. The minimum borge-power in the pext column is of po particular value, beyond giv. ing the amount of pouer required to undereat the coal column will be found the average homseppomer the pextired to make each cut, also the average bonse-power requifed at each machive dariug the time that it whs tested. Tt ouregs the annount of power that must be ready at an From this colume there can be obtalned a geoeval koowl edge of the resistance offered by the coal is difereat portions of the State as well ss a geveral knowledge as that are is ube is the tidustry. It will be observed that in the columan of averages for machines, the horge power consumed by the rotary bar machine appears as sisteen wenty-two and beveu-tenths, while the chain machines show eight and slx-tenthe, trefve and flve-tenths, foursxteen and three-tenths and cighteen and onetenth. if the number of cuts are taken into consideratios, it is foubd that the geoeral average horse-power required by the bar machive is eightees aod serea-teaths, while for fentha the coal cat furing this tuquiry, that the chaln machine required four and threetenths horse-power less than the Bis frictional lond of a machine is of rital importance, as it is so much power masted to the operator. Under this healing in the subdivision of "Peed on" will be in motion, entirely apart from that used in cutting onsal This column sbows that oue chain machise required three and sisteen osee-huindreths borse-power, one, three and lifty-one one-humiredtha horme-power; obe three and seventy-seven one-hundredths horse-poner: two, four sud thirty four ooe-handedths horse-powef; one, four sud three-denthor horse-power. The first mentioned was a seer machine of the most approved workmanabip, and Nas doing ths sexcud days work. With the totary bar hudredths, one other was six and three-foarths hotse ower, while three were betweed seven and one-tenth and sereb abd sevea-tenths horse-power. It is obvious
that cach horse-power saved in the frictional load is y clear protit to thie operator. If from the average horee power required to make esch cut, is dedacted the horsepower required to ovetwore the frictional load, the This average mill be found to vary as does that of eneh out. We agnin fibd the lowest powers indicated to be that of the chasis machine which wove five and four-
teoths borec-jpower and eight nubd tro-tenths boras power. Then two show ten and two-denths and ten and throe-tenths respectively, then ove elever and elght.
teetha, one twelve and two-tenthe and one thirfuen and teeths, one twelve abd two-tenths and one thirfeen and
elght-fenths. The lowest arerage for the rotary bar elgbt-fenths. Toe lowest arerage for the rotary har
machioe appars nt niue and three-tenths and the high. at
The average, as seen in the foregoing columns of the the eletuents which are important to cobsider in machine
minaing, It will be observed that each average con-
sidered is in a messure dependent upon the others, also sidered is in a measure depeodeut upoo the others, also
that they vary with each machine whether compared in thast they vary with each machine whether compared in
distant mines or in the same one. The relative eficiency of the several machines being ubder consideration, it was therefore desirable to compars them by a common standard, which is atteoopted is the column headed "H. P. Required to Uudercut One Sq. Ft. of Coal in Ooe
Mtuate." It will be observed that the results include the frictlonal load. This was becessary, se the resistabce offered varies with each wachine, betee the power
here indicated represents both that required to dlgplace the coal and that required to overcome the trietion of machinery. If the trials bere considered had all been made in the same plece of coal, the results would give as absolute comparative efliciebey for the machines here considered, but for obvious reasons this was impracticable, becoe the comparative eficiency will differ if no far as the awount of resbistance offered by the coal in obe mine is greater of less than that escountered in abother. It wlll also differ with the
amount of variston in the coal fitber of the different amount of variation in the coal fiber of the different
parts of the same mine. From this colume it will be seen that the lowest power as shown by a chain machive Was four and two-tenths honse power. This machibe Wxs at the Kinake Hollow mine, where the coal is sald to
bo the bost for piek mining of any in the Hocking be the best tor phek mining of any in the Hocking
Valley. The machine had the foll power of a 150 borge porter generator, which gave it a unitorm potential. The next machine in order required tive and seven-tenths horeo power. This is followed by four requiring from
sis sud oneteeth to six and nibetenths, and ove which was consuming eight and five-tenths horso power. The rotary kar taschine requirivg the loweet power was located at Murray City, in Hocking countr; which was eight and nine-teoths horse power. Tthis Ls fol
lomed in order by ooe requiring nine and two-tenths liorse pomer $\mathbf{o n o y}$, nioe and tive-tenths horse power; one, ten abd eight-teaths horse power; and one twelve and two-tesths borse power, which is the bighest in the list. coal they would at once eatsblish the pree eminent superiority of the chain maschine. By a further comparison it will lee geeth that at Murray City, where both typer were together in the same coal, there is a difference of two and slx-tenths horse power in favor of the both types under the same conditions exhibit the sdboth types under the same comditions exthbit soe sd-
vantace in favor of the chaln machise, of three and oosehalf horse prower in the first lestance and two and threeteaths hosse power in the secoed. At the Congo mine in Perry county, there appears the best opportauily to forma fair comparison as to tbe relative telrciency of the In making these terts each machline had the fall potenthal of the ptant, and esch was startel with sharp lenives. Care was taken that eacb machive be givell an equal of any machloe mige in the State, and the machloes that have so far been installed here bave been built with incrensed strength to withstand the severe stress. The amount of resistance offered by the coal here will operator fully appreciated when it is kivown that the sald to exceed is sumber those made by the Jeffrey Manufucturing Company, sud the oces of whileh bas been estimated to mrount to two and one hait oeats per tou of lump coal produced. It will be observed that the two chaib machines, which differ in the former comphirpower each, while the rotary bar machine reguired twelve and twoteoths horoo perer or forty-five per chioes to power than eithere of thot chatin man one minute. By deducting from these averages the frictlonal load of each machbee, the result obtained Whin hee the amount of power reyuired to disphave the coal atone at the rate of oue equare fort in one
nolsute. This calcolation ehows that at the Walboustrig mibe it would require three and thirteen one-hundredths borge power ; at Ave Fittsburg the chatu machine wonl require one and fotty-three obe-husdredths borse power
and the bar machine two abd foar oue humploathe int Orbiston the bar machlve requires two and fourteen onehundredthe horse power: at Marray city the chain required two and 6 frty-nine one.hundreath, horas power . and the bar three and thirty-pine obe-humdredths horse power; at snake Hollow the chain required but one and four-one-hundredths horse porer, the lowest ever twom: at Coggo the two chain mactines coushed thre onesing-bix obe-busdrediths and two abd fortythe rotary bar adrantages, required foar and tifte-cne oon-hundredths horse power, the highest to the list; at Rook Rua the
chain machine used two and twenty ouehuniloctibe chain machine used two and twenty oushubdredths horse-poner, and the rotary bar four and four opehuodredths horeo power, In the mices were both typer at Ner Pittuhure the chaln anachion saves sixty.one one hundreiths horn power; at Murray City, eighty one hundredths horse power: at Coogo, two and elght obe hundreltbs and two abd iftiees one-hundredths, or forty eight per oest. and forty-sis por cent, respectively; at
Rock Kan one and elghity-four ouc-bundredths bionso power, or but afty-four per cent. of the power required by the bar machine. These tesuls beem io vindicate the theory of the writer expreseed in a former article, ln
wbich it mas asertal that the chaln wns the most ap. proved instrument by which to cot coal. This belfet Who cuts with the graill of the wood. The coal which is composel of clexayed vegetation bas retaibel its strati. Bratios, the difference betwees the tuo prop-cithoes
bevog that in the tree the grain is vertical, while in the boveg that in the tree the grain is vertical, whille in the
coal it thes lioflonetally. That ls, that the chain maChthe, Hke the miner with his piek, attacks the cosk
with the gruin and pot across it. Tbat is, it aplits out a with the gruin and bot across it. That is, it eplith out a pod bylor smooth aud mulisturbed. The misapplication

TABLE OF EXPERIMENTS

Name of Nise．	Name of Arat operat． log mibe	Name of machlibe	Trive of matian.	$\begin{aligned} & \frac{y}{2} \\ & \frac{1}{2} \\ & \frac{\pi}{3} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & \text { Dopth od } \\ & \text { cue. } \end{aligned}$		$\begin{gathered} \text { Wiath of } \\ \text { sut. } \end{gathered}$			TIme Is making （स）		Rlectrian 11．E． uned in contilag．			II．F．required to ocervothe fric． timeal leat					$\begin{aligned} & \frac{b}{4} \\ & \frac{1}{d} \\ & \frac{1}{6} \\ & \frac{1}{8} \\ & 8 \\ & \frac{3}{3} \\ & 3 \end{aligned}$	AEaernal Hemarks	
					\％	$\begin{aligned} & \frac{8}{4} \\ & \frac{2}{2} \end{aligned}$	2	$\begin{aligned} & \text { y } \\ & \text { H } \\ & \text { in } \end{aligned}$		$\frac{e}{\frac{2}{7}}$	$\frac{4}{3}$ $\frac{8}{8}$ 只	$\frac{\text { 关 }}{x}$	$\frac{d}{\pi}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 븡 } \\ & \frac{8}{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1}{6} \\ & \frac{8}{4} \end{aligned}$	$\frac{\vec{i}}{2}$					
	Cam Con Cosl Co बінет． Babli envine， 1 Ta If F， tro Storgab－hardast cegerstors，bo it．I ench：mala condue－ tor awni Cebshactor listo montia Ne I．			$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{3} \\ & 3 \\ & 0 \\ & 0 \\ & 6 \\ & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	3 3 3 3 3 3 3 3 3	$\begin{aligned} & 8.0 \\ & 2, \\ & 2, \\ & \pm .0 \\ & 2,0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 14.2 \\ & 14.2 \\ & 14.2 \\ & 14.2 \\ & 14.2 \\ & 14.2 \\ & 14.8 \\ & 14.8 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 5 \\ & 8 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 20 \\ & \text { \#7 } \\ & 10 \\ & 50 \\ & 30 \\ & 3 \\ & \text { is } \end{aligned}$		$\begin{aligned} & 10.3 \\ & 12.3 \\ & 12.3 \\ & 12.0 \\ & 9.3 \\ & 11.8 \\ & 19.8 \\ & 11.8 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 15.0 \\ & 16.1 \\ & 16.5 \\ & 13.6 \\ & 15.8 \\ & 15.6 \\ & 15.8 \end{aligned}$				$\begin{aligned} & 10.8 \\ & 11.2 \\ & 12.8 \\ & 12.8 \\ & 9.8 \\ & 14.0 \\ & 11.8 \\ & 15.1 \end{aligned}$	6.5 6.5 68 8 8 58 78.		asal whert－grain and enta easily．	
					4	6.3	a	2.0	14 \％	1	5	21.6	13.6	150		977		12.2	6.9	？	u＊	
	dotanson Beos，Ilork． One U，\＆sud one Mathlas Gentrater， 60 H．P enech．Eegibe 160 II． 1 Thle compsing In mone extennivels known as the NV．1＇itte burg Conal Co．	Jeffruy	Bar$\square$$\begin{aligned} & \because \\ & \ddot{*} \\ & \stackrel{1}{n} \end{aligned}$$\begin{aligned} & 44 \\ & 84 \\ & 38 \end{aligned}$$\begin{aligned} & 38 \\ & 31 \\ & 38 \end{aligned}$		$\begin{aligned} & 4 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	4．s is is 18 is is 4.8	1 3 3 3 3 3 3 3 3 3	4.8 in in in in 4.8 4.8 48		4 $\$$ 1 1 1 1 1	45 34 10 30 5 45 $\frac{15}{35}$ 35 45			15.1 11.8 13.7 17.9 17.8 17.8 17.0 15.9					$\begin{aligned} & 93 \\ & 9.3 \\ & 3.1 \\ & 3.1 \\ & 9.4 \\ & 9.1 \\ & 3.1 \\ & 7.2 \\ & 9.4 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 25 \\ & 25 \\ & 515 \\ & 211 \\ & 211 \\ & 208 \\ & 218 \end{aligned}$	Hisck roof Cent yers varly nod hand． Cutser tour a feet， 6 Incobes tone．	
					6	48	3	48	215	4	5\％	is． B	14.	15.5	5.88	7.15	L．88	＋3	3.	224	Aversges for toveblae	
		Jeftrey	Chaln $\ddot{\square}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{5} \\ & 4 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 96 \\ & 95 \\ & 96 \\ & 35 \\ & \hline \end{aligned}$	3 3 3 3 3		$\begin{aligned} & 504 \\ & 304 \\ & 204 \\ & 501 \\ & \hline \end{aligned}$	$\begin{array}{r} 4 \\ 3 \\ 3 \\ 3 \end{array}$	$\begin{aligned} & \text { 告 } \\ & \text { " } \\ & \text { so } \end{aligned}$	$\begin{aligned} & 14.6 \\ & 14.5 \\ & 15.4 \\ & 14.6 \\ & \hline \end{aligned}$	38 686 0.1 182 8	12.6 12.8 12.8 188	$\begin{aligned} & 1.24 \\ & 1=1 \\ & 4=4 \\ & 4.24 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \frac{\pi}{3} \\ & 4 \frac{7}{5} \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \kappa \\ & \kappa \end{aligned}$	$\begin{aligned} & 5.8 \\ & 29 \\ & 5.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 57 \\ & 56 \\ & 5.5 \\ & \hline \end{aligned}$		Hock roof Clont bard ab4 curly．Dhais demirwed to cuts feest，要位cheo in width．	
					6	36	${ }^{3}$		25.4	3	＊5	14.7	＊	12.5	4.51	4.5	43	8.2	8． 5	$2{ }^{2}$	bever mavilue．	
Orteston \qquad 48 $\qquad$$\qquad$$\qquad$$\qquad$$\qquad$$\qquad$	Esaybould Broe，Atb． Fingine 150 II，P：T II fenerntor ise if I．	Jeffrey \qquad \qquad \qquad \qquad \qquad \qquad		1$\frac{1}{4}$$\frac{1}{4}$544833	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$		18 3 8 8 8 8 1 1 1 3 4	$\begin{aligned} & 100 \\ & 10 \\ & 10 \\ & 1.0 \\ & 10 \\ & 10 \\ & 1.0 \\ & 1.0 \\ & 10 \end{aligned}$		$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} 18 \\ 5 \\ 8 \\ 80 \\ 10 \\ 10 \\ \mathrm{~s} \\ \mathrm{~s} \\ 5 \\ 5 \end{gathered}$					（ex			5.7 3.2 43 3.5 193 5es 80.4 3.1		Cutur bar 3 feet， 3 inches	
					5	7.0	3	10	17.1	3	51	34， 4	11.3	17.0	5.81	8.35	18	9.2	＋s	20\％	averagen fer mavaibe	
Murray Ciss	Areendsle Furs Co． lionsiar Syerry Gees＇r， 125 LI F． Burkeye ong． 120 IL． F	deffrey, ar	Bar \because	$\begin{aligned} & \frac{1}{2} \\ & \frac{2}{8} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$		$\frac{1}{4}$		$\begin{aligned} & \text { Is } 0 \\ & 28 \\ & \text { is. } \\ & \text { is } \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { si } \\ & \text { tiv } \\ & \text { ion } \end{aligned}$	$\begin{aligned} & \frac{2.2}{2.5} \\ & 19.4 \\ & 50.5 \end{aligned}$	$\begin{aligned} & 3 \times 1 \\ & 36.1 \\ & 30.1 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 17: 2 \\ & \text { ive } \end{aligned}$	$\begin{aligned} & 3.54 \\ & 3.56 \\ & 3.56 \end{aligned}$	$\begin{aligned} & \mathrm{s} . \mathrm{mi} \\ & \mathrm{~s} .81 \\ & \mathrm{~B} .81 \end{aligned}$	$\begin{aligned} & 1: 7 \\ & 1: 7 \\ & 1: 7 \end{aligned}$	$\begin{aligned} & 141 \\ & 113 \\ & 14, \end{aligned}$	$\begin{aligned} & 3: 2 \\ & 8.7 \\ & 8.3 \end{aligned}$	108 198 195 108	Kulves but mato firus to fere testiog begne Conl of avecuge bardarss．	
					4		\％		140	4	3	w． 5	149	189	3.64	5.81	177	E3．4	8.1	1 T	Averagee for mambion	
		Indepesilent	Calo$\overrightarrow{\#}$$\ddot{\sim}$$\vdots$$\vdots$$\vdots$$\vdots$	$\begin{aligned} & \frac{1}{2} \\ & \frac{3}{4} \\ & 4 \\ & \frac{6}{6} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 9.6 \\ & 96 \\ & 36 \\ & 3.6 \\ & 9.5 \\ & 9.6 \\ & 9.6 \\ & 9.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 34 \\ & 3.6 \\ & 3.6 \\ & 3.6 \\ & 8.6 \\ & 86 \\ & 86 \\ & 3.6 \\ & \hline \end{aligned}$		5 5 5 5 5 3 6 4	15 15 15 5 6 10 5	22.5 30.3 30.7 15.8 17.8 16.5 17.6 16.8	16.8 13.4 10.7 10.9 11.9 11.8 10.8 11.7	$\begin{aligned} & 31.0 \\ & 19.4 \\ & 18.8 \\ & 19.8 \\ & 14.8 \\ & 14.8 \\ & 111 \\ & 311 \end{aligned}$		$\begin{aligned} & \mathbf{1 . 3 1} \\ & 3.51 \\ & 3.11 \\ & 3.51 \\ & 3.51 \\ & 3.51 \\ & 3.51 \\ & 3.51 \end{aligned}$	$\begin{aligned} & 17 \\ & \frac{17}{17} \\ & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 15.9 \\ & 10.3 \\ & 8.8 \\ & 10.8 \\ & 10.8 \\ & 10.6 \\ & 10.6 \end{aligned}$	$\begin{aligned} & 5: \\ & 7.2 \\ & 6.1 \\ & 5.1 \\ & 8.9 \\ & 5 . \\ & 8 . \\ & 57 \end{aligned}$		First two cuts werv made vith dull knives in thlind cut sharf：EntFes Nete set i6．Coal of arerage bard－ oess． Cbale desigues to cut if feet， 6 ibecher in wisth．	
					4	0.6	3	1.4	22.4	5	${ }^{3}$	19．6	281	13， 1	1.34	301	15	11.5	6.1	25：	Arorapes for mactise．	
Sonke Hol＇w（aes）	C．L．Fostom，Bonkiog Beweral Elertrio Gemo erator， 150 if $\mathrm{P}: 3 \mathrm{Mc}$ msin conductor gown new sype of pownt board sutomation dr－ cult breaker．	Jeffey	Chate$\ddot{n}$$\ddot{n}$$\ddot{n}$$\ddot{0}$$\ddot{n}$	$\begin{aligned} & \frac{1}{2} \\ & 8 \\ & 8 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \frac{6}{5} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & i z \\ & i z \\ & 72 \\ & 7 \% \\ & 7.2 \\ & 7.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \frac{2}{3} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 8.6 \\ & 8.4 \\ & N .4 \\ & 8.4 \\ & 5.4 \\ & 8.4 \\ & 8.4 \end{aligned}$	15.1 15.1 15.1 15.1 15.1 15.1 16.1	$\begin{aligned} & \frac{3}{3} \\ & \frac{3}{2} \\ & \frac{4}{3} \\ & \frac{3}{3} \end{aligned}$	$\begin{gathered} 10 \\ 6 \\ 01 \\ \text { o1 } \\ \frac{1}{7} \\ 00 \end{gathered}$	9.9 8.9 9.7 10.1 10.6 9.5 9.6 9.8		$\begin{aligned} & 9.9 \\ & 8.6 \\ & 7.8 \\ & 3.8 \\ & 3.8 \\ & 88 \\ & 8.9 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 3.02 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 3.02 \\ & 3.02 \end{aligned}$	$\begin{aligned} & 3.16 \\ & 3.16 \\ & 1.16 \\ & 1.16 \\ & 3.16 \\ & 3.16 \\ & 3.16 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.8 \\ & 5.1 \\ & 1.4 \\ & 6.1 \\ & 6 . \\ & 5.6 \\ & 4.8 \end{aligned}$	$\begin{array}{ll} 1 & 3 \\ 4 & 1 \\ 3 & 3 \\ 4 & 4 \\ 4 & 4 \\ 4 & 3 \\ 4 & 0 \end{array}$		Wachloe bas full pouer of geocrator，whik his 2，bat it． diatane from the machlus． Cool ia very peare natiol cuts enally．Chate destgace to cut 3 feet． 8 ibches in wiath．	
					5	\％	2	8.4	15.1	2	57	9.8	5.5	54	108	315	14	5.4	17	219	80\％for machis	
	Turney \＆Jonex Teery Two I X Gesernton 60 IL I＇eat：Iaven－ 2foc，100 且．P．		Chsio． 4 4 81 $1+$	$\begin{aligned} & 1 \\ & \frac{1}{2} \\ & \frac{1}{4} \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 9.6 \\ & 9.6 \\ & 9.6 \\ & 9.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & \frac{2}{8} \\ & \frac{2}{z} \\ & \frac{z}{2} \end{aligned}$	$\begin{aligned} & 7 \frac{2}{2} \\ & \frac{1}{2} \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{7} \frac{2}{2} \end{aligned}$	15.0 15.0 15.0 15.0 15.0	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 91 \\ & 40 \\ & 12 \\ & 85 \\ & 15 \end{aligned}$	$\begin{aligned} & 35.1 \\ & 15 . \\ & 17 . \\ & 19.8 \\ & 161 \end{aligned}$	$\begin{aligned} & 504 \\ & 10.4 \\ & 126 \\ & 15 \% \\ & 12 \% \end{aligned}$	$\begin{aligned} & 19.8 \\ & 13.5 \\ & 15,4 \\ & 16.9 \\ & 118.8 \end{aligned}$	$\begin{aligned} & \text { A.84 } \\ & i .81 \\ & 1.81 \\ & 1.21 \\ & 1=1 \end{aligned}$		$\begin{aligned} & \text { es } \\ & \text { of } \\ & \text { t4 } \\ & \text { o1 } \\ & \text { i4 } \end{aligned}$		5.2 6.0 518 7.3 6.5	$\begin{aligned} & 263 \\ & 24 \\ & 24 \\ & 24 \\ & 34 \\ & 24 \end{aligned}$	Cont very hatil Mbarp，Kntres on first cal．Ten aets of kaises requirel to the shiff． Cas b derigoed to eut 3 feet． 	
					5	96	\％	72	15.0	5	3	17．2	12.3	14.5	4：24	45	4	we 2	67	64	Avenuges for mectian	
				$\begin{array}{\|} \hline 1 \\ \frac{2}{8} \\ 4 \\ 4 \\ 5 \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 80 \\ & \% 8 \\ & 10 \\ & 20 \end{aligned}$	3 3 3 3 3	7.6 3.6 3.6 3.6 3.6 8	80.4 30.4 30.4 20.4 20.1	$\begin{aligned} & 8 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	3 3 3 3 3 a		14.9 19.4 18.8 107 13.7	$\begin{aligned} & 18.9 \\ & 21.6 \\ & 150 \\ & 11.3 \\ & 17.9 \end{aligned}$	$\begin{aligned} & \hline 4.81 \\ & 4 \\ & \hline \end{aligned} \frac{17}{17}$	1.54 1.14 1.34 1.31 4.31	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & \hline 10.4 \\ & 30.3 \\ & 10.5 \\ & 10.0 \\ & 15.6 \end{aligned}$	6.8 78 6.1 60 6.6 6		Coet vers hard．Macblse bes beed langely retrail at the mine by the Cungo Co．Sharp knivences latcut Top andves agnin changed su tilh cut．	
				6	29	3	8.6	20.4	3	2）	38	34.1	18.1	$4.1 \dagger$	4.34	\％	18.8	6：	235	Averaces for mactior		
		Jeffrey $\qquad$$\qquad$	Kar$=$$\ddot{\circ}$$=$$=$		$\begin{gathered} \overline{1} \\ \frac{9}{3} \\ 1 \\ 5 \end{gathered}$	$\left.\begin{aligned} & 4 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned} \right\rvert\,$	6.9 68 60 60 6.0 6.0	a $\frac{2}{2}$ $\frac{2}{2}$ 2		148 118 118 14.8 14.8	$\begin{aligned} & 4 \\ & 4 \\ & i \\ & i \end{aligned}$	$\begin{aligned} & 6 \\ & 45 \\ & \frac{15}{5} \\ & \text { is } \\ & \text { is } \end{aligned}$		132 13.4 22.2 17.9 15.6	an3 2． 3． an 2.0			$\begin{aligned} & 60 \\ & 60 \\ & 6 \\ & 60 \\ & -\infty \end{aligned}$	18.6 10.6 17.6 14.3 15.6 189		20 28 25 54	Ceal very hand．Sharp kniven on first and fourth cuts， 19 tots of knivos required to the shilth Leogth of cutter her， 3 feen．
				5		6.0	2	＊ 4	14．8	4	\％	\％4．9	1\％．3	m：	7	7． 5^{3}	6）	14.9	12.2	as\％	Averugen for machibe	
	C $=11.2 \& 1 \mathrm{Co}$ Ferry． IT． 4 Generator， 60 H． P．Fogine 100 il P， mnis cooducser， 00 m			$\left.\begin{array}{l\|} \hline 1 \\ 2 \\ 3 \\ 4 \\ 1 \end{array} \right\rvert\,$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	4．8	2 3 2 2 2	3.2 3.2 9.2 9.2 4.8 8.2		$\begin{aligned} & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 35 \\ & 55 \\ & 65 \\ & 30 \\ & 45 \end{aligned}$	$\left\|\begin{array}{l} 21.1 \\ 31.5 \\ 20.3 \\ 20.4 \\ 20.0 \end{array}\right\|$	$\begin{aligned} & 13.6 \\ & 14.2 \\ & 11.8 \\ & 3.6 \\ & 50.2 \end{aligned}$	142 16.5 14% 16.6 15.6	$\begin{aligned} & 3.71 \\ & 5.70 \\ & 5.70 \\ & 5.70 \\ & 5.70 \\ & 5.50 \\ & \hline \end{aligned}$	6.30 6.30 6.30 6.80 6.30 63	$\begin{gathered} -60 \\ 69 \\ 60 \\ 69 \\ \text { 69 } \end{gathered}$	2.3 10.3 10.6 10.3 10.3	3.8 88.6 8.5 8.5 8.5 8	$\begin{aligned} & 399 \\ & 296 \\ & 218 \\ & 301 \\ & 209 \end{aligned}$	Cont of noe quality and ensily cut Starbiue malt to beve made cocutsio seven hours Cbola designed to cut 3 foet， 3 inchos is wifth．	
					618	4.8	2	8.3	$\overline{17.3}$	8	4	38.5	12.1	166	5.70	430	${ }^{\infty}$	10.3	8． 3	23	Asarspes for machise．	
		Jeffrey ＂	$\begin{gathered} \text { Bar. } \\ \stackrel{\circ}{*} \\ \stackrel{+}{*} \end{gathered}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{3}{6} \end{aligned}$	1	$\begin{aligned} & 10 . \\ & 10.0 \\ & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	a 3 3 1 1	$\begin{aligned} & 3 . \\ & 1 . \\ & 1 . \\ & 1.1 \\ & \hline \end{aligned}$	10.2 18.2 18.2 18.2	$\begin{aligned} & 1 \\ & i \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 23 . \\ & 36.8 \\ & 21.2 \\ & 29.8 \end{aligned}$	13.6 15.8 21.4 17.8 15		（est	$\begin{aligned} & \frac{6}{86} \\ & 8.76 \\ & 6.76 \\ & 6.76 \end{aligned}$	$\begin{aligned} & 81 \\ & 61 \\ & 21 \\ & 24 \end{aligned}$	12.6 14.3 16.3 16	9．4 11.1 113	$\begin{aligned} & 305 \\ & 30 \\ & 308 \\ & 217 \\ & \hline \end{aligned}$	Coal essily cut，	
							1	18	18.2	7	7	258	25.4	22.7	6，54	6.76	3	160	10．m	28	Averagus for marhina	
N．Pusburg				$\frac{1}{2}$		9.6				$\begin{aligned} & 1 \\ & \frac{1}{2} \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { is } \\ & \text { is } \\ & \text { is } \end{aligned}$	$\begin{aligned} & 8.6 \\ & 2.9 \\ & 2.9 \\ & 2.6 \\ & 8.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 1.2 \\ & 1: 2 \\ & 1: 2 \end{aligned}$	2.8 2.2 2.6 20		3 3 0 0 0		$\begin{aligned} & 1 ; \\ & 1, \\ & 1, \\ & 1,1 \end{aligned}$		$\begin{aligned} & 24 \\ & 20 \\ & 20 \\ & 201 \\ & \hline \end{aligned}$	Cats a tricinis bole．	
				45	5	日． 4				3	a）	3.2	1.6	20		n		1.6		240	Avernken for mactibe	

[^0]of power as exbitited in the ratary bar machitne masy ap-
pear clearer, if the reader wll imagioe a revolving shats pear clearer, if the reader will tmagioe a nevolving shat set with knived so arraugel as to cut parallel to its axis, send attacking the eol of a piece of timber. To be com-
ared to thls wontd be a saw rumitog fiortznotatly aBd pared to thla rontd be a sam rumn
being spoglied to the side of timber.
The ecobotuic resalts that accrue from machine mising form the vital factor of ther bubject uuder consideration. Io the parenit of isformation ob this sulject it
ras foubd dimlcalt to obtain a wlide range of recond as to mas foumant of coal that manchloes of the reelprocating potters are capable of producing, Grent dimculty mas experienced, also, in secouriug tata by means of تhich to compsse the resuits obtaiked by this type of machine,
with those of the rotary bar or chatn marhine. This, in mith those of the fotary bar or chato machine. This, in
the main, wis owigg to the fact that the velne in which the rectprocating machibes are most exclusitely install. ed, differ greatly from those in which the other types of
 are much thinner that those io which the latter maschines are emploged. A gain, is the latter class of misee a portion of the product is otten secured by ptek mining,
of which the amount of small coal is not kept separate, tberefore the results here coosidered lack the breadth of olservation that the writer had desliced. Futhermore Where all types are emploged in the sames mine, the pro: foctles machine is mostly used to work around fraits and In places mhere the cosil is defective, hence its capactity to not considered tuportant and oo recond is kept of the
work performed even mhen it is cuttlug undet favorable circumstances. However, the following interestivg Ggures were obtaloed with reference to a reciprocating machine using nir as a motive power, and by compar.
ing it with electrical machines of the same pattern, and of appareatly equal eflicleocy, we may arrive at a fairly securate conclusion mith regard to the geoersl mesit of the machine when using electricity
as a motive power. The facts that were obtainable as a motive power. The facts that were obtainable
show that in a four and one-hall-foot vein which is show toat in a four abd one-hali-toot vein which is
free from lmparities, the reciprocating machines averase tweety-elght tons of lump coal daily, which equals forty-two abd ous-halt tons rum of mine. In this vein squarefeet. The cost of mining is hased on a ton of 2,000 pounds of lump coal. This is considered equivalent in this mine to 3,030 pounds ruu of mibe londed in the mibe car st the room face. The practice is to subdivide this, glvigg to the machloe maso aud his helper, coejointly, ose-arth, and to the losderd one-half of the price pald to the plek miber tor the same amount of conl. undercutting would cost twelve cents and the loading thirty oeats per ton. At this mise the power is eatimated to coat five exats per tom uilititionaliy, which, if sidded to the above, will make the total cost of a ton of
lamp coal in the milee csr at the working face, fortylamp coal in the mine cse at the working face, fortyis lomp. 2,000 pounds, nut, 424 pounds, slack nend pea, 065 pounds, 8 total of 3,060 pounds. Is mother veln, Which has so average thickness of three and one-half leet, the average space ubdercut daily dustiag $18 \% 4$ is gived as 16 s square feot, and the average dally produc-
tion of esch machive in twenty-ope and thro-forthe tion of esch machise is twente-uad hid throw forthy
tons of lump cosi. This is after it has passed over a one and obe-quarter--Ineb screen of sixty feet area. The coal in this veln ta strong to fiber and has well detined jotuts, hescu it mineg inasget that. Thesta will be ture sists of seventy and eight-tenths per owat, of lamp, eeven and seres-feoths per ceat. of nat, and treaty-one and anc-half per ceet. of alack: or is a toa of conl, 2,000 pounds would be lung, 217 pounds nut, sud 677 prounds At this mine during the two years previous when the coal was produced exclusively by pick mintag, the proportioe of nut, elight and elght-leuths per cent., and of elack, elghteen sull elight-teoths per ceot. Thus it will be seen that the output of the mioe, when produced by machines, coetaiss two per cent. lese hamp, one per ovat. less nut, and three per cent. more slack than whe displaced by the pick of the miner. It is regretted that chines of this type coald bot be obtaioed for this article. bat it will be goed hy referring to the foot notes of the table, that a Morgan-Gardner electric machise of this type, and of apparently equal efliciency, was tested is Whe Walhonding mine in Guerosey county. It was and three-fourths botse-power.
In the consideration of the rotary bar and chain machivee it will be observed that the wage seale, whlle
issed upon the price paid in pick mintug. suffers is mueh loseed upon the price paid in pick mining, suffers a much
greater subtivistos. For leatades, mhen plok milalog is greater subdivislos. For matados, when prok for cutting
alsty cents, eleven cents per ton is paid for entries, room neeks and all narrow work, while for undercutting in rooms and for all wide work the price is eigbt cents per tou. For loading coal io the entries and room necks and for all nartor work, thirty kix cente is pald, for londing out of breakthroughs betwove roons, thirty-govel and obeseventh cents, and in rooms and
for sil wide work the price is thirts centa per ton. Drillor nal wide work the price is thirty cents per ton. Drilby the machlne man, pays two orets per ton, while, it the sachedule it is found that the cutting and drilling costa tee and four-teatha cents per tom, and the loading, thirty and geven-tenths per ton. Thus it mill be seen the coat of the coalon the mise car is forty-one nhe threefound that the eoat of power per ton of cal produced bas not been determined at nay electrical mise within the range of iths inquiry. Therefore, to compare results,
the coast of power in the Brat case must be deducted. It then cast of power ither birst case must be deducted it
 one aul therestentha cente. It will thos be seets that
with elther type of machine the cost of the coal, exclasive of the cost of power, Is aubstantially the same.
As the cost of mining is tased on a ton of 2,000 pounds of lump coal it is erident that the amount of five coal produced is an lmportant factor to the operator ; and
the redative amount produced by any typa of machind the relative amount produced by any type of machise
enters largely futo the question of its adoption. With entens fargoly into the question of its adoption. Wind
the projectile machtue the ubdercut is about four and necbaif feet in depth, and in order to get the necessary beight in which to maske the full cut, it is custonsars to block down the coal along the edge to a beight of clghteon incbes, gradually decreasing to a helght of about
four incbes at the bnck of the cut. When coal is mined in this way it contailes a large amount of ont, peas and miack. Thevectigations on this point show that in a veli tour and oeebalif feec in thisknesa, the lump conl equals axty-sis per cent., the nut forten per cent. abd the pea abor that by plek pering in the same relo recorde shor that by plek mitutgg in the same rein the lump the slack aut pea tweoty per ceot. of the entire outpot These proportions were the regnt of paselng the con oud arcer of sixty square feet area with gpaces of one and onchair licbes beween the bars, whine the sut pase. wherer threc quarter ibch spoces lin another thatace
 har averago proportion for the ket two years hus tead loup, beventy and elght-tenth jer ceot, nut, seven and halt per cent. During the two years precoding, when the conl \#as all produced by piek mining, the proportion of lume was all produced by pick mining, the propportioe eight and ejght-teoths per ceut., aod slack, eighteen and eight-teath pee cent. The coal at this mine passed over a sereen of sixty pquares feet area with obe and one fourth inches between the bars, whille the put pasted over is three-fourths ibech screen. A comparigon of the bove recults shows that the results do not differ greatly in the production of small conl. It therefore folloms reciproastine, machioe is a deairable trpe to inatall Agnill, where the cant ts mined under a leste in sutich the royalty is based upoo the lump coal, this type of macbine will compare favorably with the plelk miner nhom it imitates. The rotary bar machibe is found to arve a space about five ibchee to wisth, the chippinga Hon which, oe account of thelr finewess, are knoms ns fore a total loss. As a rule this comes fron the best portion of the velu. In the cnse of the chain machise it has been found that the space excarated is practically the sames as that of the rotary bar machine. It is saimed that tweaty-Give per coat. of the cutchugs ate of to secure this it is necesandy to take out the endire muss and screen it. It is therefore questionable if, after the duat has been bauled awsy and dumped, there is any proft in removing it from the mibe. To get a comparisoe of the amonot of tine coal proluced by his type of machine with that produced by pick milning. has bow found quite diflicult, ns, to seloct differeet
 refighed separately. Therefore the range of comparison If of neceseity touch narrower than was expected when ahis inguiry began. The comparison bere made is besed on the production of a mive located oo the diride between the Susday Creek sod Hocklog Valleys, where pick mining has reeently been supplanted by machioes, abd the product of which is atoont equally divided beoween then rotary bar and the chain machines. By referthig to the first comparison it will be seen that when the coal was produced by pick miluing, the lumap coal represented sixty-six per cest., the nut fourteen per cent., the pea six per cent. and the slack fourtora per machines the lamp coal represents arenty-LWo parcent., the but twrive and one-half per ceet., the pea obe and one-balf per oent. and the slach orttern per cent. of the production. It will thas be seeu that in this in tance the machive lincreases the amount of lump six per cent. and that I decreases the nat one and one-hail per ceot. and the pea four aud one-hal per cent, while the percentage of alack remains the kamer go that wher the coal was producod by ptek miniog, a ton of lump represented 3,004
pounds, but slinee the imstallation of macbibery a ton of luap represent but 2,777 poubds rub of mise. It will he cratilly otertion that the projectll unctibo tia the herst instance in producing 3,000 pounds of tump conl prosluced 421 pounds of nut and 60 poumds of slack, whte the plek miner in the kaine bulue in prolucting 2,000 poumis of tump conl anded 4i2 pound ot nut and 615 pounds of slack, il total of 3,077 poubds. At the mive wherd
the secoud comparisoe was made the
 3,0elprocating ponchine in recisiming
pounds of coal added 218 pounds of nut and 107 pounds of slack, a tots of 2.855 ponmits. Here the pilets mine bemining 2,000 pouteds of lump coni also mitues 243 pounds of nut nod 51 poumbls. Wf slack, a total of ${ }^{2,563}$ made with the rotary bar ned chal maschioe it to found that while they is an adided tonnage of 347 pounds of nut, forty-tmo pounds of pess and 381 pounds of slack, a total of 9.2 t
with every 2,000 pounds of larup coal, dellivers allltion- /seritch and the shaft hea 1 as shown. The preeent ar

pounds of slack, a total of 8,098 pounds. It will be deduced from the above comparisons that owing ty the variation in the amount of Giee coal produch by the the matative enst of tamp cont wnatd to mistendity. Therefore, to mathe the matter elonme the comparative coat of a toe of ran of mine conl on the sixty-cent scale will be taken as the tasls of the following calculation. In the case of the projectile machine firat considered a ton of run of mine coal, exclusive of power, coats tweoty-seven nod suven-tenths cebls, while a ton pro-
duced by plek miving coets thirty-Bibe cents. In the duced by plek mining coets thirty-blbe cents. In the second conparisons made with the same type of machine covering a period of two sears, the cost of a ton
of ran of mine coal is found to be twenty-nine and geven-tenths cents, whlle coal produced by piek mining deven-tenths cents, whlle coal produced by prek mining per ton ran of mine. By compariug the rotary bar and per tou tan of mine. By compstiug the roary bar aod coal. exclualve of the power, costa twenty-nine and even-tenthe cents, while in the same bine when produced by pick mining it coats thirty-nine and six-teaths ente. This comparison isdicates an appanont advantsein the use of the projectile machine, waich will be largely equalized when the number of tons that each
type of machibe produces daily is taken into consddertypes of
ation.

A pertibent phase of the mintng machine question, and obe that has attracted the notioe of the writer is his officisl capacity, is that of casualty in machine minlug. Whebever coal has been mined by machlnery and tbe records are avatiable, a toarked decrease is sbown county daring 1494, As st illustration, in Hocking Was mined by machlnerg, which penornted to the cosi toes mined by bunchmery, wbich acuounted to $1,453,991$ tobs sod but one fatal accident oceurred in producing Athens, Jackenes Athens, Jscksoo and Perry each of whlch produced oubstantially as equal amount of con, there occurred was produced by A very senall percentage of this conl durfing 1894 produced an ontpot of 11910.219 tons Ohio durfug 1898 produced anin output of $11,910,219$ tons. In mining thic there occurred forty-tive fatal, 116 Berious and fibety-eix accidents of a miluor character, of a total the attributed dipectly to the mining imachine one could the principal reasons to be assigued for this is the fact that the pumber of mee expoged to for this is the fact milues fa peluced nearly one half Agelo the melected to operate the machines and pgain, the men for their suceasefal operation ans usualls of the highest order of intelligence to be foasd among the craft. Then there may be ps element of felleboes whect Then the operator to use additional procantlon to prompts protect hla $\$ 1,500$ machine, and thereby furnish greater security to the mine ereploges.

AN AUTOMATIC SWITCH.

For Rapid and Economical Handling of Coal at Shaft and Slope Heads.

At the Packer No. 5 Colllery tear Girandville, Pa., which only are in vase at the present time
In Fig. 1, the geoeral arrangement of the eoveral tracks is shown-
For the "empties" returning to the shaft a single frack leanivg froen the breaker joins a straight track號 either cage as deoired.
switch and the shaft hea I as shown. The present ar.
ravgement of the timbor track is bat temporary sad
will, when the contemplated improvements are completed, conoect with the straight track at a point between A and B. It will be obastred that by the preseo arrangement,
meat No. 2 .
As has been said the holating is done in tro compartmenta. An empty car or wagon retaralng from the
 point a spring latch is placed. The grade of the shaft tioues on ita course on an ascomiling pride wot! its momentum is oversome, when it is socranged and beld momestues is overocmes, when tis spragsol abd bold The cor is then relensed nod rups ooto the cage pushine the loaded car ahenet of it and starting it toward it breaker
For example, suppoae tbe cage in compartment Ne. 1 has arrtved at the heat of the shaft with a loaded wagos, the switch is then set for the car to ran on the track lesalling to this compartment.

It poists D and N (Fig. 1) are placod hooks (Fig. 4 the passage of the car axle over one of these drives it in Fig 4 . Attached to these hooks and fisaling back wardly to the lever bar to which theng are attached a polnts B and C (Fig. 3) are two round trou bars (f Ibch) whleh impart the nsotion given the hooks, to the lever bar whleh in tum imparts it to the switeh rails drawing theen right and left to the main track as desired. If tbe hook at polnt D In to the poaltion ahown by the dotted line, that at E is in poeftion shown by the full line (Fig. 4)
As the eages in the shaft are lowered alternately the passage of a car over the toook on obe track sets the awith to run the next car over the otbet
In Flg, 2 the switch proper is shown on an enlarged sonle. At point R is a plyof sbout which the switcit moves. Between the points A and B, the switch rails sre tapered as shown. At point C the lever bar works on a pivot. At D the switeh rails are secured by a inch iron plate 3 incbees wide. At point B are the doable bars and rail seats. An oularged drawing of this is shown in Fig.
Under the frog an iron plate (t inch) is laid which permite of the free motion of the awitch rails st this polnt. In Fig. 2 the switch is shows bot fixed for eithet track. In Fg . 3 Is sbown, of an enlarged scabe, the lever bar and the double plate bars, a section of these last is shown in Fig. 0. The apparntas has been in use for a number of yesars at the colliery and it has given and continnes to give excellent sathistaction.
The switch was plansed by Col. D. P. Brown, Division Superintendent of the Lehigh Valley Coal Company, and it was made by the colliery blacksmith under Col. Brown's direction.

A NEW CONVEYOR.

important improvements in Conveying Machinery

Through then, Ore, or Oin Rer Heavy Materiais
Throgen the courteky of the Lisk-Beat Enzibocriog leseribe in this tasne an important improvement io conveying machinery
Monobar ta the name given by the inventor to a nen chain for loog digtance coaveging abd elevating, which combines strength, lightness, simplicity and durable gualities, and ts destined to take a lesding place among bew and useful spplistices for work of this class. Monobar may be briedy deecribed as a seriea of bolts, flexibly connected, with attachmenta for coeveyor alghts or elevator buckets. Fig. 1 shows its appearance the em. ployed in a convegor, and will suggest to those familiar with chais conveying a superior ndvantage in that uo material can lodge on the clasis, or be carried under the wheels. Its construction la sbows is Fig. 2, in which the malleable iron foint is in light tint and the abutting ebds of the bolts in full shaiding. Maving oo welds, which are the chief poists of weakness is wrought chains, and the malleable joints being so proportioned
as to be in all cases gtronger than the wronght Iron
apart. Aecurate adjustment to piteb is secured by ursige the nut on the eod of each bolt, and, as the nuts are locked while in worklog pesition, this sidjustmest is permanent. The wearing sarfaces are larger thas in any knoms chain, and are designed for free lubrication whtle in motion. There is absolutely no weat on the

dition requires only a renewal of the joints, a hen, after The first cost of manufacture being materially less than that of any standand chale for loug distabce conveylug, the tirwention prearits the doublet advantage of or Mopobse spe -abetontigted by the recon it has made for Slouobar sre substantiated by the record it has made in actual service. Convegors to whinh it is employed ns
a chala, varging in leogth from 260 ff . to 600 ft . from
ate, and are necvecarlly fatiguing and destructive to the chain, prodreing a violvet increase of the normal strain The munlizing guars are desirnel to impart tion to the drixige aprocket wheel exactly pulsating Ang the variations in chale sposits aboce explolged, and this is accomplished by making the piteh dlameter of thespur wheel conform to a wave line the number of elevations and depresclous in this line corresponding with the sumber of sprockets of the chain wheot, and drixing sbown io the out, the sprocket wheel and spur wheel beling keyed on the hend shaft is jroger relative positions.

A series of exhanative tests has dereloped the facts stated and proved the value of this gesaring By its ase less power is cequired and the destructive strain due to
driving with dircular grate is eliminateal iriving with eircular gesty is eliminated, hue permitting inslallstions of greater lengtha The nboye , tescrithed in
tistinet advasoe in the arpentication of modern apethode to the batuding of matcbiolern apetboila to the batuding of matc-

Why a Fly-Wheel Burst

The following elltorial in The Electriont Eugineer of the 3 th ult, explains the caure of the buratiog of a IIJ--The batstiog of a its-wheel abd par
The batsting of a thy-wheel and partial wreck of the polats a lesson which may well be impressed upou those ad to end, have
 for some time joat.
one of them, 451 voe of them, 450 poct long, has bee日 past six monthe by the Klader Conl Co, at Wilkesveylug culm from the bank to the veyor has bee in steady use ten hours per day, exweather, and has been rua without lubrication or atate of Octaker h, the superintenCosl Co. Writes:
" We bave used hain, and fimil the tonotar conveyor sapeclor to any of to discoenect, and coste practically yothlog for repalis. The equallaing gears targeliy overaneven motion enuaed by the long

The equalizing gears referred to are Illastrated in Fle 3. and are of safliclent interest and importabce to juatifs a somewhat complete description. They ire desigoer foglve uniform speed to elerator and conveyor chalns They counteract the palsating motion imparted by the ifvatg whecler terolvige at suiform epeed, to chsias of long piteh. This jerky motion is inherent is all chait and wheel mech snisms. Lnforta nstely it eannot be rendily counteracted when chains of alx inches or less pitch are employed, though
equally destrueequally destruc-
tive, if lees noticeable, than in cas of longer links.
In the Illustrathon a seven-tooth sprocket wheel is chain of 18 " links. As each liuk engages the driving
aporokat. it is coll. oprocket, it is cons. trolled by a radius ured from the center of the sprocket wheel to the center of the hinge joint of the chatn. When masle obe - four-
boits, the stcength of the chain is that of a bigh-grade wrought iros bolt of the diameter employed. This, tor a one-tnch bott is about 29,000 the. No distortion ocMonobar is stronger for its weight than ans other chalin In u9e. Its design permitting and indicating the use of long bolts, the jofnta are relatively few, add both weight and wear are cousequently reduced, it is delachahlen at every joint and rendily and quickly neaembled or takeit
tevath of a covolution cor omeshalt the movement neced ary to bring the next lisk of the chain tato engagement Ith its sprocket) the controlling radius is redueed to ink (mesasared frots ceuter of wheel to midele of cham borlaontal movement varying in apmod, though the wheel to wbleh it is attached revolvos uniformily. If the sprocket wheel makes ten revolutions per minute, these
in charge of central stations. It aexuse that a short elrcuit on the line had blown the fuses, and during their eplacemeet the engiber had slowed dome the spert of the engiue by rasing asd holding up the governos. The few fuses had no eooner been replaced, however. Wben they blew again, and the ragineor becomiag "rattled," in onder to slow the cogine down again, held the govcroor slawn. The resul was natural, and the tregitue aced until the fly-wheel buret. The unfortunate ongloos palid with his life the penaliy of bis carelosebess. But it seema hardly credible that noyobe should lake such a means of reducing an eggine's sperd, instead Thettiog off the stcan at the valve
The flywbeel was on an ensioe built by the Philn. delphar Euglneering Co . of Phlladelphia. That the acondeat was nut due to sny tauit in the construction of the whect is errucot from the above cditorial and the fact that the Hudson Electric Light Co, ordered the Phlladelphia Eugineering Co. to replace the broken wheel with one exactly like it

Interesting Books.

"Cablemay Sketcbes" and "Contractons' Methods emploged on the Great Chicago Drainage Canal "are the itles of two very interestives illustrated paraphlets is-
 atblished to adveatise Lidgerwood engines and cableways, they are of broader scope than mere trade estalogoes. The illasiratious are attractive and the text is

Large Boller Sales.

Mesers. H. E. Collins \& Co., Fittsturg, Pa. Sole Salem Agents for the Cahall Vertical Water Tube Boller, maunfactured by the Aultman \& Taylor Machivery Co. Mansifeld, Oblo, ndvise us of the folloring qules of Cahall botlers within the past ten days :
Sahouing Valley Iroo Co, Youngstorn, Ohlo, second order $800 \mathrm{H}, \mathrm{P}$, S Sharou Iron Co, Shatow, Oblo, secood
order 600 H . P. Phoenix Glass Co. Pittbure H. P. = Clizeas Gas Co. Betdgeport, (It 3n H P Isaac Harter Milling Co. Fostoria, Ohlo: Haluswotth

INGENIOUS MINING CONTRIVANCES. This Aegartwent is intewiled for short and plain deserip. tions of uspetented ingenious contrivances or meetbodr

 send a chear proel strted f
wake the newsary imnining.
If the ifleas are clearily rapoessol we will make alt needed corrections in compsisition.
All accepted intiotes neil te fovid for at the nate of 45.00 per cotumn, pasablu is ang
that of any ofler publiskern

An Automatic Switch.

By 3. 1 Orauntere, E. M
At the Westmoreland shaft of the Westmoreland Coal Co, bear Itwin. Westmoreland county, Penna, some years ago, an socident vecurred from a car of slate runaing into the stafl. The surface arrangensents wore about as indicated in the aiagram, Fig. 1. The loads wend rum from the shaft to the tip by gravity. The enspties aud slate cars were cartied up grade from A to
B by means of an endless chalo, the lincline hoist bedig A by means of an endless chato, the incline hoist being
driven from the besd-frame sheave. From the kruckle

Fig. 1.
at B the cars ran by gravity to the shaft, or to the slateump ria the awitch at C, ha the case might be. The to gastd agaitust any repetition of it. Mr. Robt. Ramasay, then Sapt, devisel an automatio switeh that gave fuil satisfaction. It has not, to the writer's knowledge, been described in print heretofore, although its simplicity and

the two beidlea urar the eode of the teatures. To the the two bridles bear the ebds of the switch-rails were
fasteded small rollere, $\$ 4$ shown. The hrilles were prolonged and conbected to a mocker shaft, to mhieh a cougeder-weight was attuched. The raila leating to the slate-dump were depressed belore the level of those lealto the shaft, ated the etringers underneath the switehtalls were made with a bevel so as to bring these rails to the right level for the slate track wben the switeh was throws for it. Plates of Iroe were inserted in the paths of the rollers. The counter-weight was so adjasted that

Fig. 2.
whes an empty car camenlong, the switeh retosibed in its dormat position as shown in the aketeh, sllowing the car to po to the shaft. Bat the weright of a loaked car fig the connter-wulptit. Jonnediately after the passage Ing the counteg-welght, Imbsediately after the passage
of the ear this welght, acthig though the rocker shaft, beought the sritich to its normal poaltfon. So well was it laslanced and so nioely did it mork that in havy man in an enpety car would theom the switch to the slater In 8 B "
dump

Compressea Air Locomotives.

Wi, are informed by Measts. II. K. Porter $\&$ Co., of Pittslough, Pa. that their comprossed air taiee locomo. buildiag four for diffenent parts of the eountry

Writien for Thi Colureny Esumene amb METAL, Mismen.

THE CAPELL FAN.
An Interesting Account of the Invention and Subsequent Improvement of this Wonderfully Efficient Mine Ventilator.
Great inventions, like great tiscoveries, are some trues maler it seeking for sowe other thing. The Rev. G. M. Capell, Fector of Passentam, Stoney Strat ford, England, when he made a fan after hle own fanoy, To dry bis, was the work for which he dealgned it. it his case, becersily was traly the mother of invention. Season after season, the glelee bay ccop had been spoiled by the powish persistesces of ist. Swithee, the patroe Soint of wet weather, a mouthfal of 8weet bsy had become a very scarce article in the rectory hay mow when Mr. Capell concelved the iden of putting his green buy under cover, sud drying it by blowing frosh air through, thas fomoving the risk incidental to exposure in the ogen flolds, is the elimate of Eagland.
With the village blacksmith, as executive, und the parsob, with bis physies and mathematice, as desiguer,

Ca'ble Fax, Dmyen by Beit fron Enoing.

Was produced, the germ from which the prosent fan erew Was produced, the germ from whtch the progent fan grew,
In $1818-1894 \mathrm{Mr}$. Capell suoceeded in making great Itmprovements in the power of his fans. He placed the the innet mings at an angle, cansing the sir to be driven screw-propeller fashion into the fans body; be thed formed the ends of these wings in the inlet into a scoop of special form, the portion bearest the center (or at point of alower mations prabanting is lapeer collecting Gurface than that noer the jumction of Inner ant outer wlogs to whble the fance wioge set on an facline and gradually lead up the air.
The result has been to increass the power of the NeN Coperl Finu an aversge of 30% compared with well knome fans of the carlier patent.
Fans on thls system are now at mofle at Gargoood double int. Wigan, England, 17 ft .6 in . diameter, double inlet, capacity 450,000 cubio feet per minute and 6 in . דater gauge, Two at Allertouble inlet. Gree it, IIenry Colliery, Wingate, Durham, England, and at nbout 20 ather places in Great Britain. Germany, Belpiam and Fratire. ${ }^{4}$)he fin 132 ft , tlameter and 5 ft. wide, at Sanguhar Colliery, Sotlsud, gave 100,000 cuble feet of air per minute and 1 in . water gange at do revolations
The table below shows the performance of two faus each, of bext ani ohd constrvition.
The Amerticus fans buit under this patent have hitherto besten the best British nod Germas prac(iece, ns was shown in our last issme, when wo give the record made by a Capell fan at the Youghlogheny Cosl Co.'8 No. 1 Sime at Kcott Haven, Ph This In a single, elght foot fan, it rume exlasugt. frons per minste niog sbout two miles of entries and worklugh through whlet the air traverses. It (1) onsertactaos Stantan Cubry, Manstutal
 Whatic
is
Chotal Woter ganes
Co th sir jot mat inotion Old Constrovika Pan at Dighy Stecte Inted, Gistised. Wheth
Hosntint Wstef kaves Co it alr jer

NEW Cowstructios
 thanwor
cubic feet of air per mibute. It was gosranteed to pass 65,000 cubic feet of air at 325 revolution8, 80 that it 18 doing about 30 a trore work at leab than s speed. So that the guarantere of Mr. Wm. Clifford, the sole licensee and manufacturer was certainly a conservative one.
Mr. James Blick, Iuspector of Mines for the Seventh Bitumibous Districe of Penbsylvania, sebds as the fol lowing ressalts of a test of a Capell fan, nt Moon Rut Mine in the Pittsburg diatrict
The fau is 8 fect is diameter and 7 feet wide with two inlets. In drawiog sir from the mine it was rue st a spead of 205 rewolutions per mioute, developed a water gringe of 1.1 inch and produced a current of 108,000 cubic feet of alr per mimute. After carefally checking this test, the mine was sealed off, and no air passed to the fan. It was then ran at the same speed, (208 revolutions per misute) and developed a wnter gange of 2 nebers. It will be noticed that when the mine was sealed off and the fan was passing bo sir the water gauge was doubled. In boting these figures, Mr, Blick says:
" I have tested other types of fans under similar conditions to the above and found the W. G. to be practically the same, when passing air from the mines and

when sealed off from the malbe and pasaiog no sir. Tbis fact clearly demonstrates the superlority of the Capell fan to produce a high W. G. and also clearly indicates
that it is much supering as a mine ventilator, to the tope that it is much superior as a mise ventilator, to the type of fan in common nes, esfectislly for our bituminous
mines whercin the nme of our alregys am aftem linalted to 40 fest or lews. ara of our airmays are oftan linatted was not consensent to obtalu the exaet usefol effect of the fan but s amas apposimation mould be about 78 per cent. 1 bey that cent. I may sny that the above 8 fan to more than equal CoL N F' Sisforl of the Moon Jun Coal
finst opomater in Amerlos to adogt the Copell fans the strictly on Dr. Capella deelgo He reeognised it etroug features as soon as be gaw the ebspes of the luside of the fan.
It is claimed that in this fan, the ebergy of centrifugnt foroo is practically undiminisbed by impact against nonenergizing surfaces, and that its lines allow of the freo

Slow of flable in accordance with those well-known laws Which povers them
The Capell fan has beven the subject of severec critictsm aflen usually falls to the lot of tuventions no intimately atlecting coal mining. The asperity of British criticistin arose in the matu from protesstonnl prejudice against the manber in which the fan was first described in mielng pajers, Its force being principally Girected agalust soch sitatoments put forth in Wen. Cspedles name, as Shat the fou gave for couk of mechuncal eflictency 18 the result of bumerous and utulnent m-chsuloal enginears
This controveray was notived in Tus Cozenery Exa. SERE AND Mistal. Miske at the time, and to many of ,or the
 explalined. by Mousieur H. Bochet, Chlef Inepector of
mlues, Parle. mines, Parla. Mots receutly, experfmebts were made by a Belglan
Cocamalsaton on fans ; with the latean, Capell and other
fans, in which the Cap-ll mas piven a poor place. In nearly every forelgo exichange which reached ug, the facts that the commesason was a commission of one person, and that he was the engineer to the owners of the sdreat of the Capell fan in Americs, where our own experts cas see it and teet it for themselves.

This fan ts driven by belt or other rope like mont other tmportant veatilation installations abroad beilt durtog the last 10 years. Hat we thlok with the so meng dur able and quek running eogives to choose froms bere and the freedom from prejudice ou part of our engloeen and opesators, direst driviog mill in mavy cases be adopted.

A Mine Foreman Killed.

Mr. Thos. West, mine foreman at No. 3 Mine. Sberodeville, Oblo, was instantly killed on the first nit., by the explosios of a dyasmite blast in the bottom of an aif-shatt. He was at work is a hole being drives from structions the men sinking the sbaft fired A shot whicti broke through and caused the sad meceldeat. Mr. West was born at Cammertob, Nomereotebires England of May 3, 1866. As a boy he attesiled the puble solvols an early age, be was ambitious to secare a technical edocation. At the age of 19 be took in spectal course in niniog ubder Mr. Wm. Tate, then editor of Science and Art of Mising at Wigan, Bogland, and mow assistant editor of Tur Colcieer Exarnege and Metal. Mtiven After completiog this course, he suecessafully paseed his exansibstion and recelved a certificate of competebey as a mine masager from obe of the British exnmining
boards. Mr. Weat cames to America in the fall of $18 / 8$, and soon hecame foreman of a mine at Dell Roy, Ohio In Fetoruary of this year, he resigned that poaitioe to accept the foremanship of the mive in which he loat his life. He was a man of most exeellent hablts, and a close sud constant student. Had be not been eat of in bls esarly manhood, his induatry and stady mould eventually
have reaulted in his attainiug i high place in the mining indastry. Mr. West is survived by a wldow and two small children.

A Large Air-Compressor Plant.

The Ingersoll-Sergeant Drill c'o. has just reoelved a large order for a complete plant of alf-comjresaing ma Chlnery for rusuing drills, eugines, pumps, ete, ou the urome Park Rweerwoir work, New York
The contract for the constraction of the reaervoir was awarded to Mr. J. B, McDonald at $55,473,060$. It levolves the removal of upwards of $3,000,000$ cuble yards of rock. The oontractor has since the letting of the work made a thorough lovestigation looking to a desermination of the question whether or not machiuery for excavation air plant. The central plant syatem has been adopted as the best sud cheapest, the saving in expense being largely is labor and fuel.
The plant male by The Ingersoll-sergeant Drill Co. and adopted by the coutractor lavolves the use of compound coodeusing Corlisa alr-compreseors run by high class boilers trausmitting and distribatiog coeupressed It is conitemplatel to $u-x$ a hitters of work resaons placed side by side. the unit adopted belom jressors placed side by side, the unit adopted being a dupex compressor with stwam eylinders 24 \& $44^{\prime \prime}$ in cylisders each $244^{\prime \prime}$ in driving two platoo folet als capucity in free air of this taschine being betwoes 8,000 and 4,000 eubje feet per minute. This is a dapilicate of the compressors at work at the Anacooda Mines in Stontsua
obtalaed.

Cahall Bollers

Messrs. H. E. Collins \& Co., Pittsbargh, Peona, sole sales sgents for the Cabsil vertical water tubs boflur of Mansfield, Ohlo, have opened a branch oftice in the Havemeger bullding. New York Ciry, for the sale of Cahall boilers for that district in charge of Measrs. Wm. R. Nattler $\&$ Co. Mr. Wes. R. Sotuler is an engineer of Bational repatation, having been for goone time at the other member of the Brm, ls well and favorably known throughout the New Eogland and Easteru territory as a very suooesstal salesman in the line of engines, bollers and geoersl milli machibery, and Meakre. Collius \& Co ate fortunate io baving secared their services.
Collius so Co. aleo alvise us that they are now ahlp. plag the second lot of bollers oo the onder for 10,000
II. P. from the Apollo Iron $\&$ Steel Co. for their mill at Vandergrifi

WATER-POWER IN MINING SERVICE

A Solution of the Problem of Regulation.

A problem which confronts every prospective user of Water-power-and not a fen actum users of it-is the
regulation of it to eveure conatant speed of the manhinery driven, under the inevitable changiog conditions of losil and water persasure
Tbls problem assumes setious proportions Whed electrical geverntors, in turn drixiog other machloery, are to be operated. For in such cuses not onty the eniciency of the plant, ered, but suddes chauges of speed materially effect the life of the masobinery.
Koowledge of thege facts sud lack of knowl.
edge of means for overomitug the troublues odge of mens for overcoming the troublerg period. lack of such means, has prevented atterapts being made to atilize what in many Instances, are highly valunble Watet-powerd,
But with the roevat ncoomplishments in the trausmisaton of electrical energs over long distances, and in the use of compressed air, the utilization of water-powery at poiste far re-
moved from the noweseng location of the moved from the necosasy location of the power plant proper, is recerving nerlous
thought in tinny places, ind, here and there, practical appileation.
It is probable that in no part of the progreas in this dinection examper of engluearing mining distrfets of the Rocky Mountains in the United States. Hece tbe conditives are la the higbest degree favorable to the development abd
utilization of water-powers, once the solution of the problems of water-powers, once the solution of the problems of transmission and regulation is demonstrated. High cost of fuel, and often scant supply of power is pooded, on the one hand, and so abupdant gupply of whter under high head for power purposen, one to fifteco milles distant, on the otber band, sre conditions whle frequently prevall in this region, and should not look upon, with indiferpgee
It is perbaps not too mach to say to submit that there
be governed. and a rise or fall in the speed canses a corresponding ise or fall in the lever B. The lever B is a gurt of the battery circuit and in riaing maked or completes the circuit at \because, ebergizing magnet 4 (F)g. 1) Which cansers an fogagement of its pawl, anit througt front in Fig. 4) directly eonmecteil with the water-wheol gates, and canses such gates to
open. An opposite varintion in the

Fis. 2.
speed does uet vars hesond this umpit speed, if the sot of contacta xill bot come into use, and the goverfor will act as a simple regulator, by opentog or closing the gates slowly as may be required. A vartation in spead greater than the one per obt., assamed as the Ilmit permalsaible by the simple regulator, will cause the nexitale end of the tougue to beod, making a secoud conthus doublive the mite aptlon. Thla aecond set of mal nets masy loe frourcht into action at ane deaton rarlation greater than the flest, aod mes be lused as a safoty against great changed of losed. The buiders of this of kosen

Ire to-day minlog sad milling properties to the Rocky Mountains, baroly payligg expenses if not dolng worse, which by a thorough revarapling of power plant along bocome divideod-paylug propositsons.
The matter of transmisaion of power, elther electrically Tr by comptranal air has now resch a very satis netory stage. The loas or "drop" can be calculated almosi to a alcety and the plant deslgred acoordingly,
The adcasoe withlu the last few years has boen rapel but no lese certain and sucoessfal, until to-day, prolltable examples of jower travomisolou up to Ifteen miles are not unknown. Some installations of much greater magultude
have been made, with more or lesa success, and been attenilel with a great amount of hurrah, but theee for the moat part do not greatly concers the mining e0giveer. The cases will be few and far betweet where if water power can be utillized at sti at a proflit it cannot be renched within Iffeen miles, and it is not unlikely that a den mille rallus will be found to ebcompass the large majority of planta of this spe. Put another may, it may be safely gand that if sll the miniog properties which have water power withio beo miles proftabty avaliable wete now utilizigg it, there for byidrailis, bo an upprecedented demani for bydraulic, electric, and compreseed atr eryipment
Vithla the
Withls the past two years as great ad vances in the matter of governiug water power have bees made as in the transculs. slow of power thus genernted, thougt the suceess of such efforts has not been sa Widely heralded, A water power regu bator which has met a mefy favorable re atalled in more plants thaty has tocher in shasled in more plants than any ocher, th It is known from its inventor as the If logle governoe, and is made by the leep Iogrle Goveroor Works, Akron, Otio
The Replogle water-wheel governor con dicals (Fig 3) (The 4), and a gravity battery with its for water wbed ruauufacturers to give information is that need is what is lnown as the "Compound" gor. for nony given wheed to attain beat regults. vaor for service uniser severe and saddea changes of The speed governor (kig ?) is bulteit to the shatt to
 sisto eabentially of a regulator. (Fig. 1) a blgh speed better for its exoess of apeed. Thls however is in matter pipipenent.
of water power whioh mill apply equally well to soy regulator. The gate rigging should be in good onder, but it should not he exactly balanoed; It shotad hare a The poit tedechy to close at all poisis of gate opeeling. resirine if this is to prevent back laso of thate ess bo no loat it the pressure is always coe may thance is to have the proper Another matter of of water. It is impossible to govern a wheel that is ruaulog too slow, and beakles it is wasteful of water. A wheed that rums too fabl wII waste gowe water, but it will govern all the abont, auljesch such will detertulue the joojer sprod for inny given wheel to attain beat results.
Thariog 1894 the United States produced \$6, 829,260 wore
gold thatu silver, taking silver at its commercial valuation.

Holsting.

Editor Cowliery Engimer and Metal Miner.
Str:-Plesse lasert the following questions in your valuable paper for some of the readers to answer

1. There is an eugive located at the Merrian Colliery Whict has double cobical drume which are 12 feet on the big end and loy feet oe the small. The two kirst motion engines bave a five feet stroke and 24 ineb cylinders two inch rope. Why is it that the tar doed not stay on
 teat of the drums It Ays of about a foot wide on the Beor and does Dot come off the rest of the drum.
2. I mm rabulag an evgive which has a drum. 12 teet in diameter and has a ? inch rope. The rope bis two gunboasts on and obe dumps 5 feet higber than the other. How will I take the slack up.

Mt. Carmel, Pa.
roars etc.

Pumping.

Editar Collierg Eugineer and Metal Niner
Sis:-Will some corregpoblent plesse give a simple rule for doternining the sise of steam pomp necessary oo pump 30,000 galloes of water Por day from a mibe at the ballers on the surtace aseracos 90 lhe. pers an in. and the pise which is poverned with acheatos covering rung on the zatt fer 56 gis. then down the shatt 16 E sub on the surmer 8 . yda, and then 8 gds to the pump? What sias steam
 permit of the use of a cheaper plant than if there is permit of the use of a cheaper plant than if there is no
Yoparse ete.

Oct. 11, 1895.
*-r. Surf.

How to Mine.

Editor Cultery Engineer and Metal Miser
Sne:-Will you plesse publisth the following question in the next number of the Colligiy Esainien axit Mktal Misek: for ansmer: 1 am mialeg a 6 foot seam of splint coal which is located 38 foot under another and slate in theckness, the parting being 2 foet of coal and slate as root of lower seam, and 36 foot of hard babastone (Lower Freeport). Ifon will the upper seana and pillar syblem nod the roem pllars drawn?
oct. 6, 1895.

Yours etc.

SyUistrive,
Mammot

Surveying.

Editor Cwlicry Engineer asd Metal Miner
Sin:-I am working a seam of coal that outcrope on a piece of lapd which I cnonot eoter. The horizontal distasce of the land lise from the blyt side of the gangfor 53 ft . from the high side of the gangway and at this potnt the pitcl changed to f?? I have drisen on this post pited a diatanom of fif ft . How mueb farther can I so on the same pitch befote I reach the land live.

Yours ete.
Oct. 22, 1895. Tox, Mbersville, Pas.

Ventilation.

Editor Colliery Engiverer asd Netal Mener:
Sut:-Will some of your contributors please answed the following question. What is the best method of remoxigg the smoke from a tunned 7 ft . mide 6 ft . high or car used in taking out the roek reyulres a sasce 4) ft. wide and 4 ft. bigh.
ours etc.,

Oct. 12, 1895

Dorsers, Dursupo, Col.

Ventilation.

Editer Colliery Engineer aod Metal Niner.
Ste-I nothos in your July issue that Josept Virgin, of Holsopple, Pa, gives the foilowing rule to thid the total quantity of air in a mentilallon question wbich wan anked at a recent Nova Scotla examination.
while foet
Now the questlise arked was suppose that by a gires
power 50,000 cuble feet of alr per misuts pass through an airway, 6×5 feet in eection, and 10,000 teet long. and that a change. is made by dividibs the carreat into three aplits of the following dimensions:

> First 6×6 feet, 4,000 feet long. Second 5×6 feet, 3,000 feet long. Thind 5×5 feot, 4,000 feet long.

What quantity of air will pass through each of the splits that are now sabetituted for the ocigional alrway the power remafolog the same \%
ANs. Now, to clearly amalyze the question and prove the saswer correct we will tirst tind the actual units of work done, which will be found from the following formulae. The coefticient used is the one recommended by Tik Colakiy Exoiseri ano Metal Miseie gome time ago.
$P=\frac{k s t^{2}}{a}=0.00000001 \times 10,000 \times 32 \times\binom{ 50,000}{30}^{2}$
$-305.7087+$ Ibe. preasure.
30
$W=P Q \therefore 60,000 \times 208 \cdot 7037-10,185,187$ units of work.
For a constant quantity of air with equal lengths of airway, with any change that Is made in epetioesl ares and sarface, then the pressure per square foot would be In ratio to surface, and to the square of the velocity, and
in inverse ratio to gectlional ares. Now the presure por equase foot $-\frac{54^{2}}{a}$ and from the following relative
igures we get the following relative pressure abd power becallas power increases at the same rate as precsure with constant quantity.

$$
\left(\frac{3 \times 30}{91}\right)^{2}+\left(\frac{1 \times 91}{80}\right)^{x}=9.9 \times 64568
$$

The lengths are as 10 and 11 , and they menet act in an inverse ratio : $\frac{9.90384568}{11} \times 10-9.457587$ and for the three alrways the relative pressure and power is as ollows
$8.457587 \times 3=25.872761$, and relative quantity $=$ $50,000 \times, 25.372561-146984$ cubic feet.
From $P=\frac{\mathrm{kr} \mathrm{c}^{3}}{a}$ we flod pressure to he as follows
$.00000001 \times 242,000 \times\left(\frac{146,921}{21}\right)^{\prime}$
$=69.32289 \mathrm{lbs}$.

pressure.

Units of work $-146524 \times 69 . z 238 y=10,185,196$
Now from the terms of the question, the preseure in the three airrays must be the same instead of the power, but the total power coust be constant, and having got
one relative pressurs we mast fud the other from the following rule $\sqrt{a}_{a}^{a} \times a$.

Then,

$$
\begin{aligned}
& \sqrt{\sqrt{36 \times 3}} \times 36=38.18376 \text { for first airmay. } \\
& \sqrt{24 \times 4}
\end{aligned} \times 20=35.06245{ }^{20} \text { second } \quad " .
$$

The pressare being constant for the three airmays, it is only beceessary to get the quantity and pressate in woe airway, and we mill use the socors oble
92.42285 : 35,63245 :5: 146924 : 52833 bearly.
$00000001 \times 80000 \times\left(\frac{52025}{90}\right)^{\prime}$
$=68.2 n 24$.
Having obtnined the two relative pressares we get the total quantity as follows

$$
\sqrt{\frac{69.37289}{68.2824}} \times 146.924=147202.6 \text { cuble feet. }
$$

Abd from $\sqrt{\frac{a}{a}} \times a$, we get the quantity in ewth airway.

> 97. $22235=38.18376: 147702,6: 97890.6$
> $\begin{array}{l:l:l}97.49235 & 35.06945 & 1+77 c 2.6\end{array} 53113.00$

Taking second alrway for preesare we hat euble feet.
$P=k A v^{2}=\frac{00000001 \times 66,000 \times\left(\frac{53,113}{30}\right)^{\prime}}{20}$ -68.937

Units of work $=147702.6 \times 18.9575=10,185,300$ Josept Virgin will see from this that his answer is entirely wrong.
Yours ette., Troman Siaw
Jemny Lind, Ark, Oct, 1880.

Evitor Colliery Engisecr and Netal Miner:
Sin--I sball be greatly ohliged if some of your correspondents aill liferm me why most fans ave run by belts lisatead of direet counected engtoes?

One 3,1805
Youra ete.
Ed
Edratdsville, Pa

PRIZE CONTEST.

PRIZES GIVEN FOR THE BKCN ANSWERS TO

 questions relatise to mixisg.For the best answer to each of the folloming questions, the value of $\$ 1.00$ in any of the books in our book catalogae, or six months' subseription to The Colliguy Enbinekh asd Meral Mineil
For the seooud beat answer to each question, the value of 50 cents in noy of the books in our book catalogue, or three moathe' subeoription to Tae Collarre Exgeniek and Metal. Miskif.
Buth prices for anmerry to the same question foill not do amarded to any ane person.

Conditions.

Firnt-Competitors must bes sulectibers to Tur CoLLEEY ENGISEEK AsD MEYAL MINEE
Seoond-The name and addreses in full of the contestant must be sigmed to ench instref, atul emel angwer must be on a sepatate pajer
Thind-Answers must be written in ink on one alde of the paper only.
Fourth-"Competition Contest" must be written on the envelope in which the ansWers are seat to us.
Fiffl-One person may compete in all the queetions. Rerk-Our decision as to the merits of the answery yhall be tinal.
Setenth-Answers must be mailled us not later than one month after publicatios.
Ejghed-The pablication of the ansmers and names of persons to whom the prizes are awanded ahall be considered sufficient notification. Succescful competitors are requested to notify us as soon as possible as to what dieposal they miab to make of their petbes.

Competition Questions for November.

Quas. 182. I am still busy with the lavention of our proposed new safety lamp, and I still crave for a little of your assistance, which I have no doubt you will cheerfully give by answering the following three questions:
1st. What sbould be the diameter and length of the gauze cyllider If I wse one; or if I use two, ss is dove in the case of the Marasut, what would be the beet dlmensions for each of them, and give reanons why you prefer the sibed you natue?

2d. What should be the sloes of the wires and meshes of the gaases, and how many lines should there be to the Linear luch:
3I. Whet
3d. What is the use of the bonsent or eloae shield, sad should we sdopt ove in our new lamp?
Ques. 188. We are goiog to try some experiments by exploding fire-damp is a close, strong vessel, made of steel, and atrong ebough to reelat the greatest pressutes to which it masy be subjected. The fire-damp ia a diffusion in whlch 10 volumess of air are saturated with ocee
volume of matah-pras \quad To the ateel versel we are goigg to attach a prokanfe gaugs, and 1 will feel obliged going to attach a presanfe gauge, ami I will feel obliged if you
will tell tue what the pressare will be at the moment of the explowion and atter the ateel shell and st eantent or remsining enger have cooled down to the present of sctual temperatare of the outside sis? actual temperature of the outside sir

Qusc. 189 . We have on band a ventilatiog tan that uerfal effect of $30-\mathrm{F}$, We. Weare poing to sink two mith taugular shafts, whese lemethis hare to be twiee their
 mill he an upcest and the other a downcant for the nentilatlou, suif to present a beedless moste of tounty wiah the shafts to be of sach an neen that ouls conethird of the ventilation power, or 10 II P shall be peovesiry to armerome the friction of the shafts. Will sou thed, esleulate for tas the area sud the leogth and breadth required for ench shaft?
Qeks. 190. We have two airways which we mill call A and B, and they are both 2,000 yarls is leogth, und the nir is blown through each of them with a differebce of potentish equal to 2 inches of water gauge. A, however, is 10 feet wide aut 6 feet bigh, land B is 15 feet Wide and 10 feet high, snd as we do not require more ali to puss through B than through A, will you flod What quastity is possing along A, and what should be the that of a reguintor in B to pass the same quantity as at , 00000001

QUE-, 191. As imgrortant veln of iron-stone ts outefoppling on a hillaide, sud I will be obliged it you will calculate for me tts height sbove a poist we will call A. To reach the outcrop, the beureat course is to descend from I to B and then ascend to C, and from O asceod the hillside to D Now D nt the polnt A makes an angle of eleration of $99^{\circ} 3^{\prime}$. The distance from A to 2 is 91 feet, and B makes an asgle of depression at A of $26^{\circ} 20 /$. The alatsice of C from B is 125 foet, and C st The distaver of D from C Pmenanked up the sidn of the hill, is 210 foet. What thee bs the vertical belght of I above the level of A, when the points A, B, C, and D all lie in the the sause vertical plane?
(VUSd-192. What would oceur if the force pumps for feeding a boilve were set at as elevation of 5 feet above the level of the feed watoe in the heater whes the fera perature of this water was $212^{\prime \prime}$ F

Answers to Questions which Appeared in Sepember and Previous lssues, and for which Prizes Have Been Awarded.

Qums. 1 六活. There is at preeent a ready market and a good price for fire-bricks; flooring tiles for Ilie-proof
 glazel mol unglazed factog belcks ; iewer ptpes a0d Itraln trage.
Gur Coal Mining Company wish to share la this mana facture nod trade, and hore desiced the to make sample brlcks out of the underlays of live differ-bt cosl senros results. Clas of sean hev done for with the folloning
coarse in the graib；clay of geam B costales iron ball， coarse in the grais；clay of geam B contalns irou balls，
but the dressed clay makes a soft white brick that is very porous；clay of seam O makes a sott white brick that porvery porous nod speekled rith blackish brown spots；clay of seam D makes a hard coarse graibed brick，and of a black and blulat color；clay ot gremen E makes a white brick that la very strong and fine in the grain．Now I desire to know two thivgs to enable me to make a satistsectory report to the compauy．
First．What clatares of goods are esch of the clays best adapted for making？
Seond．What are the constituents in the ela
give to the bricks their different characteristics ？
Werlare borty to say this question bse not been catis． m^{\prime} se competitors and let us give a hint to those of our their professlon or intended profesalon of mining．That such knouledge as is required to anawer this question is of the right charncter to promote its posbessor．Num． erical questions and answers are of great value but without is substantinl knowledge of chemistry，min－ eralogy，geology and practical miaing，were figure knomiedge is of no account．－ED．］
Qers．176．Here are two samples of bituminous conla and in chemical composition they are both sllike，and even make cokes that are nilke，after they have been groand small sod steoped in bot water．Hot water disaolves out of gsmple A，nitre，and out of sample B， common sat，and what t want to know is this，what what effect will common salt have on the cokling of ${ }^{\text {sample }} B$ ．
［Thls question has not beed noswered with even ap． proximate mocuracy，therefore，it must be repeated．
The man that can anawer thene questions is morthy of The man that can answor these questions is morthy of
honor and preterment，for this is the class of lenorlied ge honor asd preterment，fo
that makes med．－Es．］

Quks．177．We bave a bituminous seam of coal at a depth of 400 feet and lyivg nearly level，and we are goling to mork it by the system of longmall retreatiog．The floor is a sott shale and the roof is a slate．We will be obliged if you will give us a map of the best plan of
workigg，together with all the neceseary explanation．－ Workibg，together with all the neceseary explanation．
Ass． 1 mould work the coal on the pribcipla of the Ass． 1 mould work the coal on the pribciple of the
accompanylng plan and make the beading paliars from
or＂Bench Mark＂is located between the two first sta－
tions of our Hive apd its edevatlon is 1410 051 fr ater－ tile lovel．The lise is divided into atations of of yanls each whieh for conretiepce are called $1,2,3,4,5$ and 6 The staff or rod used is a 12 f ．sllding rod rending to the thousandth part of a foot．
Feimet，place the tinstrument in any cobvenlent location beiog carefat not to have it more than 12 ft ．above the surface st station 1．It need not be necessarily on the 6．449 and write it in the column marked＂Rack \＆laht This reading aidded to the eleration of the B．M．gives the first＂Helght of Instrument．＂Move the rod to atation 1 and read 11.300 which is the flist＂Front Sight＂
Subtracting front sight readings from helght of tinstru－
ment gives the elevations of the polnta corresponding to to the realings．With the rod at station 2 ，the reading on surface $\mathrm{t}=2+00$ ，a front elight．
It is plafa to be goen that the fostrument must be placed higher in order to sen station 3，but betore mov－ log it，take a rearling on some solsh，well－dethoed point， ting Point．＂Now mopen the inatrumant up the bill，tak－ ing care to be lesa than 12 ft ．aloves the turaling point． and sect it near the small summit noted at station 8
 whic gh，sum take the rendugos he Btations 3 nod Wew T P Power than the instrument，Eatnblisting noce more and set it in a position to take the T．P．and Sta．${ }^{\text {b．}}$
To cb
he froat slght turning point readings．The differenee thus oblained represents the elevation loat or gatned in the operation．

E．H．Bange， Rock，W，Wa．M．Pourgn， Eokley，Pa

Quss．180．The action of one of our tatne pumps is very pecular，and it will startle you when I tell you that aby tocrease above a certala egeed of tbe plos ton redoces the lifting power of the pamp，and at abother iberesse of speed the pump loses the wated altogether．Now as 1 would like you to explain the tricks of this pecular pamp，I will pive some
partleulats．When the pump piaton lo at the particulats．When the pump piaton is st the
bottom of its stroke，it is 12 feet atoone the level of the supply water，and as the force to lift the water moving through the tall of the pamp is equal to a two－feet column of water，we way tell me two things： Eirse What o
First．What is the highent speed at whilet thea pump ean be ran to obtain a maximume effert？
Second．At π that piston speed does the pamp
150 to 200 feet and woald adrance the face with brattice eloth pa
After ite east an the line hor Atter the east and west headiags have reached the
 arrange tbe ventlistion
and the working faces．
Joaspis Vmais，

Forbash，Appanoosen（\％，Homa：
Quse．178．We flud the root of a coal geam wee see morking is an argillaceous lime stobe，and what our nelightory call the samse seam in the surrounding sandatope roof and in others an areobiceous ltarstone roof．Do you think it is the same seam of coal in sll the cases，and if it is，under which kind of root will the coas be thilekest？
Ass．It is more than likely that the same seam has the diferent covers mentioned in the question，for such differences of the roof strata occur in this state．that is， Penneylvania．and by observation I have found the thicknesses of th
Thickest under calcareons shale．
Thlek under argtlaweous shale．
Moch reduced under calcareous sandstone．
Thin uoder sandstone roofe．

Ques．179．I am now a flre－boss，but I am prombed promotion if I cas learn to level，will you thesefore， upgrute for 25 cands．Stake the surface very unesen， and after setting up the instrument read the sfaff every five yards．

sta	B． 8.	F． 8	II．of luat．	Eleration	Hemarks
$\begin{gathered} \text { E } \mathrm{M} \\ \mathrm{x}_{2}^{2} \end{gathered}$	5．4e bo sas 11.24	$\begin{gathered} 480 \\ 2.100 \\ 0.500 \end{gathered}$	106593	141065 1642200 1114 S 1514	Naill io pine stump．
．		$\begin{aligned} & 3.21 \\ & 3.140 \\ & 0 . \pi i n \end{aligned}$	12sn		Ster
6		$\begin{aligned} & \text { s.se } \\ & 0.000 \end{aligned}$		313212	

In taking levels the elevations may be＂isdepebsent，＂ they may be referred to nome hixed point，the elevation of which，above tide water has been previously deter－ mined．
In the preseat case we will suppose that a fixed poist
loge the water altogether．
［Thls question has not been correctly mawered and
rsust，therefore，remain open．）－ED．
QcKa． 170. wwalthy land owne
QUKK．150．A wealthy land owner has just granted
 tug no angle 70° Tith the piane of the botiwn．The
lease coefers on me the right of way abd the power to hease coelerk the surf the right of way abrathe power to tace is on a bol of sand 20 feet thick and at firat aight that would appear to be an unfarorable condition．but the lignite conl le good，and can secure an open markef at a bigh price：we have bowever ortain dithouities that
must be overcome in the mode of working for exsmple， this conal is exceedingly subject to spontatieous Ignitioe， and any smail in the gob，or pillars left to，takes fire as soon as subjected to lecressed pressure．Theretore wo most extract the what of the coal，abd I wish yoa to lostruct me bow to do it with the u9e of very little timber，at a small coat per ton，and with satety to the mlaers．To secure a good plan，thlak over all the modes of rein and bed mining to genemal use
sud I mould lignite bed win require special trastmeat anad for the fllling material，and thla conld be sent ieto the mine by a plpe line，a six－lich pipe would num suf． fleteot Allitig mith n good nupply of water，it the bottom gnagway along the strike，is situated above the drainage evel．The sand could be supglied to the pipe live with flled as the conl mas removed，abd as none of the coni face would be long exposed，the spontaneous ignitson of the lignite would thus be prevented．
Josery JayEs， 1014 North Street，Tacomn，Waab．

Immense New Turbine Plant．

Four new turbloes for Ningara：The Niagara Falls Hydravalle Power and Mfg．Co．，bave recobtly contracted With James Leffel A Co，of Sprigiteld，Ohlo，for four of
their improved doable diacharge borlmotal ahaft water thetr improved doable diacharge boriwnutal shaft water
wheels，to be of eight thouand（8．000）horse－power whescity，ubder a maximum head presaure of 218 feet． capsoity，ubdet a maximume head presaure of
which fo far the bigbeat bend，under whleh turbines of which is far the higbet head，under wheh turbines of elsewbere．These wheels will drive elght electrical geo．
 tarbise shitts without gears or betting；the whecls and gevcral lat we order for turbloes bailt by James Lefel Co for Nagam Falls，there belog alnaily eversiof the tonke of wheel，each of 1,200 bonse－power，in daily oper－ ation in the Culf Paper Co．Mills，located at the clifs， bear the tunenel This water－wheol compary is also bulding four of thetr Cascade wheels for poe cospany， bo be operated under seren hundred asd thirty fleos hand， part of the power to bo electrically transmitted，by con－ necting the wheol shath directly to the geoerstors．The
Cascade wheel is，bowever，pesentially and petimaly dif． ferent in coostruction and operation from the turtine， being in pribeiple as impulse and reaction wheel．This Cascsde wheel plant will have an aggregate capacity of

LEGAL DECISIONS ON MINING QUESTIONS．
Deportas for Tee Coulieny Enuinsma and Metal Menek．
An Agreement Creating Landlord and Tenant． －An agreement whereby a party had the exclasive right to mine coal uoder certain land for 20 years，unleas the mine five acres of the sarface land to erect building upon，and to build and operate rallroads sud flow water over buch land，for a certafn royalty per too of coal mined，bot to fall below a flxed moount per jear，pay－
able as rent for all the privilenas granted． able se reat for all the privileges granted．Sach agreee－ ments confor preaent rights；they ane nesiguable they are for a flsed petiod：they provide for an sumual rental badepesdent of the miniog of coal；the right to mine the sosl is exclusive is the lessees for the period fleed to the lease；the reat or coysity 15 by express terms payable for afl lise of the surface of the land，so well as for other privileges specified，and for coal emined．In prineiple， he rights grnated are not ditcrent from those where ose lenena a stone quarty or ssod bed or the like．The fact That is the one case the article taken is on or near the reason why the one feason why the one easo privilges gramterl to take nd in thin ather the right to minu bol enrry aw y the and in the other the right to wiue nod carry awny the held to constitate a sale of the gial grosted shound bo easo the sum stipulated to be pald，whether it be called ense the sum suphinted granted，even more so than it would be to use the lasd for agrieultural pargoses．In the latter cass no peceptl－ be quantity of the eoll is taken，though the product is poll．In the formers ense of utilixing the gercucton of the grantel prop erty is iteenf takee．This is in accoed with the character of the grant，the use of the thing granted．The sum agreed to be paid is for the nan of the land，upon and under the surfoce，and suet uso ievolsens the tating awar of the conl．This construction of such contracts is in harmany with their procisions，and is accond with is⿱⿱一口䒑日十 touchtes sum－h property，wor is if in contravention of the provision of the statute，bat cmates the relation of land lord and tenant within the statute，giviog a landlord＇s liea for＂rent
Lacory v．New comb（Supreme Court of lowa．） 63 N.

Placer Patents．－The fact that a placer claim for Fbleh a patent bas been issued tacladed at the time of its locution part of a lode claim，whlch had not then been fofeited，is a matter which cannot be cousblered is a collatecal attack upos the placer patent，by one who has made a subaequent veis locstion upon part of the same lant after the lssunace of the placer patent．
The presumptions are all in fivor of a placer patent upon part of the same gronusd and where the patentee files an sdverses claim against the application for patent to the lode，and bringe an action is support of such clatm，the burdee is upon the lode claimante to over－ come these presumptions and to show by clear sud con－ acstag proots tost the vein on which the lode clainu wan or the placer patent．
In order that a vein or lode，incluited within the Braits of a placer patent shall be excluded from the operstion of the placer patent，under the U．S．Statutes， so as to be subjeot to subeequent location，susch veln monst have beed known，at the date of the applicntion for the placer pstent to exist and to contain minerals fustify quantity，ind of such vaine anul quasity，ss to under the eireumstan Montana Cent．Fy．Co．v．Mogeon（U，S．Cir．Ct．） 68 Cy．Co，v．Slagen
Fed．Rep． 811.
Notice of Location of Mining Claim，－Vuder the statute，requiring one who discovers a mining claim to file a declaratory statement of swol diseqvery or location， on onth，deecribing sald cinim in the manner provided
by the laws of the United Statess，the Btatemeot muat be of the digcovery or location，ne well as of the deacription of the clalm，and an saltiavit which merely states that ＂the deseription of sald lode＂is trae la fatally defective The statement，in anderifeation trae ie fatally defective that the locators have＂fully complied with the require ments＂of law，and local cuastoms regulating minlng locations，is metely a coocluelon of law and does not verify any fact
Mchoman

Lay（Supreme Cou Pac．Rep． 602.

Mining Claim，－The Supreme Court of Califoruin says fomperdetit of the acts of Cougresa providing a
 always been applied to a portion of such lande to which the right of exclusive possesslon nod enjoyment，by pifsate persoon or per8ous，has been asserted by actusl occupation，or by corpplianoe with local mintug laws，of in the law thawe The worila＂mintog charm as used in the law have no reference to the different stages in it inclules all mines．Whelther the title is laehotep as in the ctan of a ploing elaim in lis atriet uense or perfer the cuses of a baising claim in its nt

Morse v．DeAdro，to Pacific
Competency of Servants．－The employment as trapper la a coal mine of a b y iff years old，shown to experrience in varioas kisids of work in eacal mines，if not negligence，so as to render hla emploger liable to a fel－ low recrvust fur bis carelessness．
Kansas $\&$ T．Coal Co，v，Brornalee（Suprem
of Arlisnsas．） 318 W．Ren 453

The Colliery Engineer

METAL MINER.

PUBLISEED MONTHLY AT SCHANTOS, PA

 TEE COLLIERY ENGDEEIL COMPANY, POULSMBR TERMS.
Subscription, (\quad Nuc.

P. O. Oralers--Youcas lay a Meaey Order at your PoetExprens Money Orders can bo obtaind at any colfoe

Registered Letters--I a Mesey-0.der Fon-omec ot
 We Cansot He Responstble for moser anat tn abore.

KXPILATION OV SEBSCRIPTION,
Toe date atter your aname on the wrapper of Tus coussat Enaushus bees pall

RENEWALE, ETG.
If you do sot Tant Tux Coumer Exover asp Matai, Misss

 Heot paperd dowatioued sit the explrotice of the that for thich ecriptsios of to the date witen they order the paper aliscontinued

NOTICE OV DISGONTINEANCE.

 Iv. Papws vorne

CHANGE OF ADDRESS.
 Tlae we chanot did lits tame ou our halling lise
All communlcatlons abould te atreeset. THE COLLIEHY ENGDEEE COS Cable Addreso-" Metsonf, Scrnnton." Coat Exchange, Scrastos, Pa

LONDON AGENTS.
EEGAN PAUL, TRENCB, THUBNEH \& CO, LTD.

VOL XVI. NOVEMBER, 1895.

NO. 4
For Table of Contents see page ix.
THIS JOURNAL HAS A
LARGEER CIRCULATION COAL AND METAL MINE OWNERS AND MINE OFFICIALS

Alabama,	town,	ta
${ }_{\text {Artan }}^{\text {Altas, }}$		
knama,	Marylas,	
	Masachasetts,	1
,	Micht	South Dokita
tornd		
ar		
ortax,	Neveda,	Vermont.
Gorkta,	New H	
	Now	
monots,	Ne	Wertirgisia,
	North caroll	
THAN	OTH	

above States, Territories, Provinces, etc.
WHAT ARE OTHER MINE OFFICIALS DOING?

"WHAT are otber mibe oftbelals doing?" is a question that should trequently arise in the minds of mine managers and their subordinate ofthecals. It sbould bee of guch foree as to lead them to rist other mines and find out. No one mise official in the world will be an unqualified suocubs If he deperds on his own knowledge and tegenuity oaly. Literature descriptive of geberal methods is all right in Ita way and is of great values in leading a mbee official tato lisees of thought that will reant in grater economales at his mine and sater plans of working, but such Iiterature ts, as a rale, too geneml. Whot makes a great improvement a succeas is the degree of perfection with which its detalls are worked out. Tbese details can beet be atudled and cotoprebended by a personal inepection of the method of work in queation. The writer during the past moath risited a large colliery where, in the courge of a few gears, a broad minded manager tucreased the prodoctioe bearly fifty per ceut., nod redaced the coat of mialeg and prepating coal iu about the rame propertion. When asked bow he dili it, be mepiled " by taklug advantage of every ecoeomical device and method

1 had ever sees and in some lustances lepproving on them." This manager was a masn who had in his long experience visited many different collterles and gauged the methods emploged at each with a practical ege. He is a reader of Arstollass techuleal literature. abd thes, with is faculty of diecernmeat coaptel with his praitical knowledge, bas made him a valuable oficial, and the great corporstion for which the works recogntaes bis value in a substantlal manver. No one offectal or set of offelals can expect to produce the beat reaults it they depend solely oa their ome latelligence. An occaslonal visit to neighboring districts or ewes nelghtoring mioes will result in every instance, it galn, if the visitor is brosd mioded and enterprising ebough to recognize the fact that other omicials sometimes know points that he is unfamiliar with.
The expertebce of a promisent mising company in Weatern Penbsylvania bus proved that a polley of sending an toteligent oflicisl oe a two weeks' tour of tuspection of the mines of otber operators bas proven of great value. A casual visitor to the mines of this company will instantly notice the many coonomkal devkes and methols in use. These are not the development of idens of the oficials of the compnoy. As a rule they are adoptions of methode and devioes in use at many different mines.
The writer obce met the geoeral superintendent of the company in question at a mine over a hundred milles from his own locality. The object of his visit was to look at a syatems of baulage in a use. After an inspectlon be stated that the only inlea that he woald we was the design of the detactiag book. His own aystem of haulage was equally as good, and in some respecto better than that at the mine he visited, but the detschiog book, desigoed at the mive was just what be beeded to Increase the effilenency of his own plants. The time and money sjent in this risit mas repsid to hils company many times over in the next few montha. Thls simple incident is merely given as as illustration. Every intelligent mine official sent on an ocestanal simillar tour will gathor several such "Ulastrations" which when sidopted will fremuently embellish the balance sheet of his employer with good elzed figures on the profit side.

EDUCATION A NECESSARY QUALIFICATION IN A MINE OFFICIAL.

I
N a receat address, a very promivent English mining authority, whoce name is famillar in every part of the world wbere mintug is a prominest industry - Edacatioe coejoined with natural ablility will now and hereafter be the galding atar of mining enterprise. As a proot that technicsl eflucstion is the key that unlocks the miberal treasures of the earth we have bave ooly to notice the skill required in the designlog aod application of mechanisms that make the manual labor easler and produce better results. The application of natural forces in hydraulie mintug, and the comblostons of natural and meehankal forces for dreaslug the ores and for the separation of the metals from the bseer elements all ehow the results of technteal edacethon coupled with practical experiebce. Agaln, ores that serem utterly worthless to the uslearned become of great value in the hands of the edvated miner. The latest developments is the prepsration and cokling of coal, as well as the most improyed methods of mining and brloglig the coal to the surface, are not the outcome of practical experience only. They are the outeome of the application of techateal knowledige applied by practical mes.

There is is no reason why s thorougbly practical knoriedge of mining sbould not be accompanted by conslderable scleatibe attalaments, nod the mining engheer will find it atyautagrous to bave some acquaintance mith nearly all the exact and physical sciebces beoretical knowledge will st a man to manage eren a small mise in the absence of prnctical experience, but the capability of the practical man is greatly locreased by sclentific knowledge, nod the developmeoto in mboing which may occur in the the future, are llikely to be in a difection whete such knowledgo will be more necessary than ever.
"Techaical elucation consista of not only a knowl. efles of the naturnal and meebanical forcee, but it consiats of a knowledge of bow to apply them. Thls knowledge brevmes a broad knowledge only when the student keega posted on the manner of methods employed in applying these forver by other successful men. It be depende on his owe apitude only he will work the a comparstively nartom groove.
" I would therefore arge all young men studying mining to eodeavor to obtain selentith knowledge as well as practleal training. Apart from the material advant age to be derivel from"gefentific knowledge, it trains the age to be derivel oftom, develops a taste for some spectal
broneb, the stady of which, tustead of being a task, becowes a source of absorting interest and unalloged pleasure:

ACCIDENTS FROM FALLS OF ROOF AND SIDES.

MR. W. N. ATEINBON, is his prestdential address to the members of the North of Englasd Institate of Minlug Eogineers, shored that in Great Britais, as well as in this country, the moat frequent cause of aceldents in mines was "falle of roof asd sides " While it is true that masy aceldents of this character arise from neglect, and a total disregard of the promptlugs of the iestinct of self preservation, yet it must be admitted that many of our best and moet tedustrions miners are liable to injury or denth from this canse. Their anxiety to secure a "good day" inclines them to run riaks that place them is jeoparity.
The following table, covering a period of forty-two years in British mines, is of great value in supplying a contrast for gauging the progresa belag made in redacfing the number of acoldents doe to this cause.

C3em of Acchteat			
Explosions of Bre-damp nad cosi dwat. \qquad	3, 3×8	3 ncx	${ }_{3}^{21}$
	\%	\%	189
		${ }_{8}^{81,46}$	韩
Total	3, 318	40,406	109

Mr. Atkinson say"s, "Falls of roof and stdes in minee bave always been, and probably always will bes, accountable for more accilents abd denths than any other cause. It is a danger common to all mines, abd one to which every parson engnged underground is to some extent continually exposed."
Any proposal, therefore, that etmbodien a good scheme for reducing the percentage of this class of accidents cannot but bo hailed with unqualifed pleasure, and ns the president of the lustltute notked a probable plan of accompilablag this very desirable end. Tegive it herg: "On the other band, there appears to be a growing feeling that by the adoption of what is called systematic timberlug, grester safety would be secared, and my own experience leads me to cooclude, that, conjointly mith effleient sapervision, this is the most likely directhoo in whick to look for farther improvement.'

BORE-HOLE EXPERIENCES.

Imay almost be cald, that We kbow more about the surface of the sun than we know of the interlor of the earth, but with lucreased knowledge of the physical and exact sciences, and especially with the ald of the ben revelatlons, that the core system of boring is coatiouously brioging to our botice, we will 8000 be able to soued the depths of the nether regioss. These remarks are prompted by the facts given in Kußlor's German Trade Revien, concerning a boribg in Germuny. It appears a deep boring is in the course of belog made at Soodra in Germany with a 7 inch bore tube and after reaching a depth of 354 feet, by some strong, sad unusually active loterferebor, the tubes were disjoluted aud jammed, and therefore operations had to be for some time suspebded until they were reoovered. It is further abown that the tuber alone cost $\$ 2500$ so that the cost of 354 feet of hole, and the cost of the tulies, were jointly an investment that was worthy of recovery, and theretore great efforts were made with strovg grapples, to disengnge the upper leagths, and so reach the bore end containing the core, and in thin they were succesatul in the face of anparalled difl. cultes, even greater than those experienced its ofl-holes. Thie brings an to the point that is of interest in this artiele. At a depth of 354 feet the bore cat into a cleft or open gash in the strata, that was so small, thdeed, that it made a gash in the slx-finch core, but did not cut it th tro, sud out of this smalt cleft a mighty blower of carbonic acid gas rushed into tbe bore-hole, with a pressure of from 39 to 42 atmospheres, or 508 pounds pressurs on the equase inch, aud the terribly lotense cold the to the expansion of this gas and the delage of water thrown with it, along with a stower of small stones like pebbles, all consptred as allies to defeat the task of the drillers, who were doiog their beat to extrnct the broken tubes. This task required berolates to comitat with the Intens ety
cold "mineral" water, (or perbaps, as the depth of cold would suggest, the sait urater), the cannousde of pebbles and the suffooatiog gas. It appears that the verticat eolums of water, gas and stones reached an elevathot of 46 feet. The query controating us, however, is this: What was the soarce of this gas? and as wo have no particulara givea in the actount before us of the topography of the region, we must remais to apeculatice uncertainty, bat let us notice that in all occurences of this chsraster wo shoald know the canse; or canses, or be eareful to turnish such idotalts or desoriptions as might lead us by inferebee to forecnst such a large outburst of gns in fature cones, and in knowing the cauze to work out a remedy.

ELECTRIC MINE LOCOMOTIVES.

TIIIE Genernl Electric Co, reontly supplied the Eoterprise Coal Co. With one of their excelleat electric mine locomotives for uss in the Eaterprise colliery near Shamokin, Pa. While this tocomotive ts the flrst of its kind in the nelightortiood of Shamokis, it is not the linst electric mise locomotive used for noderground hanlage in an anthmette mine with the coal seams on considerable teclination, as is stated to the dally bewspapers.
The first electric mine loconotive in prastical ure in America was pat to mork in the Lykens colliery of the Lykens Valley Coal Co., bear Lykens, Pa., in the summer of 1897. This locomotive was, and is still in use is
a water level opentig, and the senme of cont cut by thes a water level opeotng, sulf the sesee of cont cut by thts opening has as heavy, if not a beavier pitect than that at Enterprise. This locomotive was Illustrated in Tug Colligay Esoingex axi Mrtal. Misers for September,
1897. It was desigoed and bulle from plans by Mr. Schleginger, of the Union Electric Co- of Phllaselphia, a compaby that has been out of existence for several years. Bestiles this original locoonotive, a secoed one bailt ou the lines of the flrst, and constructed at the colliery bas been in operation for several years past, and in a gangway driven in an inclibed seam. The credit of being the flrst mtne mannger in A meelos to adopt electric mive haulage belongs to Mr. T. M. Wullams of Lykens-
There is bo reason why the introduction of an electric locomotive in a mine working tnclined seams should be remarkable, as such mines, as a rule preseot even simpler haulage propositions than mines workiog fat seams. The questios of electric baulage in that seams has long ago been settled in a manarer bighly tavorable to the electrile locomotive.

AN IMPORTANT OPINION.

AN opinion that is of great importance to the conl mining induastry, ts that recently formulated by Deputy Attotocy Genernl Eikin of Pennaylvania for State Mine Inspector William Steln of Sbebnadoah, Pa. This optaion is to the effect that the word miner as used in the phrase "practical experience as a mlnec," is the snthracte mise net of 1881 , includes laborers, loader8 roadmeo, repsilrmee and others who work to the mines, but who do not actually mine coal. This optaton will doubtless increase the number of applicants for examinntion for mine and assistant mine foremen.

EXPLOSION OF GAS.

An Explosion of Gas at Dorrance Colliery, WilkesBarre. Pa., Results in the Death of Seven Men
Including an Entire Cores of Survoyors.
An explosioe of gas at the Lehigh Valley Coal Com. pasy's Dorrance ollliery at Whilke-Barre Pa, on the
fith ult., resalted is the lastast death of three noung the ult., respited to the lastast death of three young
mining eogineers and a fire-boss, and injarles to two others of the engineer corps and a miner, which subber. queatly caused death.
Tbe malalag eagineer corps, upder the dirvetion of WIIliam Jones and coaskating of William Cahili, Llemellyo Omen, Robert Blanchard and Robert Miller, entered the
mine early in the day to mako the regular perlodical mine early io the day to make the regulse perlodical
survey. They were accompanied by Dabiel 3 . Davis. survey. They were accompanied by Dabiel J. Davis,
one of the fire-basses of the colliery, whose daty it was to enter the various openiogs shoud of the corps sad examine them for gas, so as to aroid unvecessary daagee.
The corpe had about completed its work for the day The corre had about completed its work for the day, were on thelr way to the foot of the shaft. Mr. Jobes, on exsmining bls blue priat of the worklings, which be ton a slittle work. Leaving Miller and Blanchard where they were to take care of the Lustrumenta, Jones took Cahili, Owens and tre-boss Davis with hime to finlsh the work, About ten misutes after lesving Blanchand and Miller, the party went fnto same obd working, earoust
ered a large body of gas, whleb was Igoited, with the ered a large body of gas, "
fatal results already poted.
How the socumulation of gas occurred ts not deflititely knowa. The mine has alwnys been known as a gaseons gerous accuryulatlony of gas. The ofinion of Qeperal gerous accumalations of gas . The opinion of Qeueral
Superintendent Molster, as expressed at the curonec's

Ieviuest, was that the gas accumulated in the old chamber wbile the fau was stopped tor about three houre. ©
pwivions day, to enable some repaits to he made on it pwewlons day, to enable some regaits to be masie on it
Dlatrict Superintendent Jones, to his testimony, di not bold to this view, but thought the accumulation in gas might hare been doe to a local falt of roof blowiog out gotbe air stopplugs aud thus causing the ventilating
current to take and current to take a short route pust the workinge in which the gns accumulated. Foreman Thos. Namuels testifiod
as to the methosl of elreulating the air through the as to the wethod of ercculating the air through the
mive. He had no theory to express as to what cuased the accumulation of gas. He dba not know of any stop-
pinge havieg been blown out by a fall, and was umatie pangs havigg been blown out by a fall, and was anable
to state whither the stoppage of the fan the day preto state whether the st
vious caused it or pot.
Fire-bose John Blet
Fire-boss John Bloomberg testified to having examined the chamber lo which the exploslon occurred, the moro ing provlous, before the fan was stopped, and sald be
found no pas. ound no gas.
The testimony of sovernl mivers working in that district of the wive was to the effect that the ventlation whe all right, abs the cusasl quastity of air was passiog the The pildenat which they wene wotkling.
The cvidence nlso dedaced the fact that Inside Fore
 they entered When Daty was found hes sofoty lamp was hanging as his belt, and na ordinary minets lamp was oe bls bat. Thbs was presumptive evidence that be tired the gas by using a naked lamp, nul the Cotuer's jary brought in a verdist that the acchdent was canoed by his carclessoss. This aceident is, therofore, another lustsoce of cs elessness causing the death of not ouly the man r
lives.
Mor
Morrs, the miner among the filled, was 40 seare of ske Daris, the flice.boss was 35 years of age and was weil of a fine baritnoen mustral circles, as he was poasesexcellent charscter and reputation as as official. He undoubtedly thought the workings free of kas, anit be peld the peralty for the assumptlou with his life.
The men comprislug the eugisecr corps were nill promleing joung men of superior Iotelligeoce, and excellent character. Jones, the head of the corps, was the ooly Omee aged pareuts, of whom he was the oaly support dent of the soa of W. D. Owen, Division superimed smittavile collieries. Cahill was the son of Wultam J. Cahill, chlot mason for the Lebigh Valleg Co. Blanlkys after the acctdent wert both promistug young men

MINE INSPECTION IN ILLINOIS

The Recently Appointed Inspectors, Their Districts and Governor Altgeld's Instruction to Them.
Through the courtesy of Hoe. Geo A Schilling, secretary of the Bureas of Latior Statistics of the State of Ilisiois, we are enabied to publish the following information regarding the future State mine laspection
in Illisols. in Illisools.
Keating, of Peoria. John K Altgeld reappoiuted James Keatiog, of Peoria; Johs Keay, of Springteld and Thos.
 of Spring Yalley; Heary Malloy, of Docutar, and Jamee Beonett, of Hallidaysburgh, as new luspectors. Previlous to this time the state wha divided lato five inspection districts. The last legislature increased the namber of districts to seven, the two vew districts belag formel Them porttons of old ones.
The bew districts, with the ingpector anslgoed to each Firset Distriet.
of the following countion Keathg, Inspector; consisting Kalb, Kame, DaPage, Cook, Lasialle, Keediall, Grundy, Will, Livingstoo and Kankakea.
Secoud District-Charles Duncan, Imapector: JoOgle, Leo, Rock Talnois, Heory, Buresu. Mercer, \$tark, Ogle, Lex, Rock Ilinda, Heary, Bureau, M
Putuam, Marshall, Peotis and Woedford.
Third District-Robert Plckett, Inapector; Henderpon. Warreb, Knox, Hanoock, McDobough, Sebuyler, Fulton, Adams and Browa.
Fourth Datrict.-Heary Malloy, Inspector ; Tazewell, Molean, Ford, Iroquols, Yermillios. Champaign, Piatt, De Whtt, Msoon, Logan, Measrd, Mason, and Caso.
Fifth Dlatrict,-Johs Keay, Inspector; Pike, Scott, Morgan, Kangamon, Christisa, Shelby, Moultree, Douglass, Coles, Cumberlabd, Clark, Edgar, Montgomery, Mscoupis. Greene, Jersey, and Calboun.
Moxth District,-Thomas 8. Cummiogs, Inspector: Marion, Emingham, Clay, Jasper, Richland, Crawford, and Lawrebor
seventh District-James Bennett, Inspector; Wash-
logton, Jefferoub. Wayne, Edmards. Walash, WLite ogtoo, Jefferous, Wayne, Edwards, Walash, White,
Hamilton. Praaklin. Perry, Randolph, itamsoo, Kaline Gallatin, Hardin. Pope, Johnson, Mas. The Cion, Alexandet and Pulaski.
Tbe old lospectors failing of respopolntwent were aalva. The inspectors sre appoiated for tro yeare at a salary of $\$ 1,800$ per anoum.
T_{0} Wolneden
Oa Wednesday, October 23, 1895, the seren inspectors Goveruor Atgeld took oecasion to glve them a general alk reapecting their duties, and the policy of his adminThe gongarnor said mine inepection servios

The mionog said.
The mining laws of this State were enacted for the protestion of the weak abd poor. The operator, who is slrone, can take care of himeelf. Thesse coal mieers are
aometimes ignorant of their rights, always poor and deaometraes ignorant of their rights, always poor and dependect, abde cunot manifest their disathatsotion with
objectionable conditions previling asound the mives
without riskiog their jobs. You are therefore appoiuted by the State to do for them what they cannot do for
themselves. I therefore lasist that in inspecting mines themselves. I therefore lasiet that in tnspecting mitnes,
you do so without permitting the operators or their rep$y 04$ do 80 without permitting the
resentalives to acompany yon

Make your inemection thotrough abd independent, withoat their ald. After you have dones 80, flied out from the men if there is any ground for complaint anooes thew. Tbe relation of the inspectors nod coal mizers of thie State should be of the most confldential nod condtal character. No mluer ahould best tate to
spenk to sou atout the coodition of the mine. for fear speas to sou atout the cooditioe of the mine, for fear
that be might be reported. While I insist upon a rigid and thoronght enforcement of the law, for the health sud antery of the miloers, I expect at the same that you will be reppect tul and oourteous to the operators.
"I fecther ant courteoms to the operators.
"ish to say that thece have bees entirely too many avejitests; not that these have been more that there wire g cars than formery, butt mesan to say avolded. I koon that acclideato will oerar, in spite of all that you can to, bat 1 desles that, to the progecation of your work the comatog year, yoa will be so vigilant in the digecharge of your duty, that no necident will occur which can by proper attention beavoided. Sbould there be any mosh accident the lispector in whose distriet it occurs will be lis perit of loalig his job."
The governor here eutered into a lengthy explanation of the csuses of the accident at Petersburg where several bave had no knomied and said that while the inepector may their cage with greater spoed than the law allows, ftill hail be sounded the men during the inapection, he might have secured from them the information that the company was tranegresslug the law. Furthermore, when an accident ocyurs, be fortisde them from going to the neistiog that the mibers would not, and pould not apeali In their presenee with the same freedon, respecting the cuase of the accillent, that they would with the inspector alove.
He also cautloued them from becoming agents of mining tool comproles, becruse it would leal to more or mould destroy to that extent their efficiency in the service of the State.
The conversation then turoed upos the practicability of enforcing toe enactanent of the Thirty-ninth general assembly, waking the mine inspectora ex-omleto inat cond oelief is aharei by is belleved by the inspectors, and the meot of the liw is pecretary schinces, it will entail it carrylug the weights from place to place. The inspectors thought that no less than 1,000 pound meights would be sidequate. The law issisto upon one iuspection every six moeths. The exprese compankes mould charge 84 for shipping 1,000 poubd welghts afty milles or less. Additional cost for bauling from station to mines ibeludiog helper, and again from mibe to
station. would vost an aulditional it. This mould station, would cost an alditional \$1. This mould
make for the make for the so0 shlppoge mines througbout the State Thirty-nith pesernl The laspectors nad governos homever. will constder Ways and suesue lo which the law may be eaforved at is
nominal expanare, meannshile the subjingt is in In takiog tilo departares then covernos again reminded
 dotion fith mone rigllanion and energy than bad erar beve done before, nod that he woald be satistied with nothling lese.

Mine Equioment Makers.

With this Jsase of Tum Columer Esouser: ano Mgisl. Misks, the Miberal Filige Mtg. Co. of Mineral
Kidge, O., bugin a geried of adrertisoments calling attention to the line of mine equipmeat they are now prepared to build. Mine ears are a specialty, bat they are prepared to ubdertake anything from a car wheel to a steal tipple screens snd coke larries also occupy a prombent place in their catalogue.
A minerss pock is as important in its way ns a hoisting engioe, and with thls bsue the Fulton Tool Works tof Canal Falton, O, begin an wilvertisement of the mileling tools and supplies made by them. They are prepared to
furnish anythilag in miaing tools geeded either in the furulsh anything in mising tool
anthracite of bituminous mines.
UBers of wire rope will hereatter find among our sdvertigers of such, the card of the Williamsport Wire
Rope Co., Willianasport, Pa, sud will, we truat, not overlook the new patrons of Tus Concikey Escivern Ano Matel Miski, when in beed of rope for bolating or
haulage ue. haulase use

A Handsome Publication

The Repauso Chemieal Co. of Wilmingtov, Del., the is Tgest masufacturers of high explosives in America, have just lssued a beautifal painphlet of eighty pages jroon heavy plate pafer. The book is an axceodingly interesting obe, and will be apprecisted by erery mind manager who receives a copg of it. It will pay to send Ror a copy, which will be sent free on ro
Repauno C'hemikal Co. Wilmington, Del.
P1
Mr. Chass. S. Heraig. E. M., whase Interestiog degeriptlous of the Tamarack and Coceola copper mines cepted a poaitlon with the Anaconda Mining Co, at Aneoonda, Mont.

THE PROGRESS IN MINING. ABSTRACTS FROM THE PROCEEDINGS OF THE MINING SOCIETIES

And Journals of Europe and America, llilustrating the More Modern Developments in al Eranches of the Mining Industry.

Steel Girders for Mines - In September, this year girders in mulped," bofore a menting of the Federnted Institute of Mining Engibeers, and here is the Impertant portion of the paper

An tastance of the advantagecous substitution of steel strdera were formetly employed. Although the conditions of the use of ginders is mines differ very conalderably from their use in building coustruction, yet the various propgirder to shoo, ita strevgth actory comparative reeultwhee used there for supporting the root, as when used for any other parpose. As an listabce of the differeace
in the working conditions to be met mith to a zolne, it in the working conditions to be met mith to a malne, it
may be mentioned that the welight to be supported in some places is not only noknown, but practically irresiastihle, and the strais is further complicated by presaures hoth frow the top and the aldes. Instead of being regular and uniform, the losd is variod, absio cases incersus
with suiddeen and tremendous force. In addition to these straive, earth movementa comer, which teod to displace the supports of the beam, and tend to allow the frame-
work to collapse. Heavy falls of roof also occur on the work to collapse. Heavy falls of roof also vecur on the
breaking of the benm, involving heavy costs in elearing away, and by the locoovenience of the delay chused by
the obetruetion. In buch cases the streogth, durability and ductility of a steel gleder, as compared vith a timber, are seen to great adrantage. They carry heavier losid,
the safo dead load of an iron girder beting oae-fourth of the ssfo dead load of an fron girder betang ooe-fourth of
its breaking load, to ope-Afth of the breaking load in the case of timber. Steel girders ohdom break under sud. den welgats, and by bendlog give ibdications of pressure
and an opportualty of relieving it. As a proof of thelr ductility a Bessemer steel girder, 5 in. In depth by 4 ib . In breacith of tlange, weighing 22 ib . per foot, with the
weight applled at the center, took a permanent net of weight appled at the veeter, took a perrampat aet of
$1 / \mathrm{th}$, uoder a load of $1+$ toes, and showed a deflection of 7 in . undof a load of 17 tons without breakiog, and
tnstances of greater deffections have occurred to practice. It may be mentioned that in the mine wbere girders were placed bere and there amongst timber bars, the stter have beed broken whtle the girders rembined a
ljjured. It not too much bent, girdera can be reset crown upwards, of can bo straightebud for resetting, at
a moderate coast, and are but sulghtly lmpuired by the a moderate cost, nbd are but slightly impuived by the
process. Thesse severe conditions do not exist everywbere; there are many roads in mines where the weight formed as to the strength of the beam required, and a formed as to the strength of tbe beam required, and a
nultable girder can be selocted, so as to olitalio the beat results. The sections of girders in general use in main roside are as follows

'Tbe sste loads are calcalsted at one-thied of the breaking weight of the girders, On account of the varying conditions of mines it is impossible to give a
tatio of fixed minimum nad maximuman length at whilh the various sections may be sately used. In some in-
stances a 9 ff . girder (for an 8 ft . span), of the higheat stances a 9 ft . girder (for an 8 ft . span), of the highest
section, Io used in the place of larch timber 9 in. in section, is used in the place of larch timber 9 in . in
diameter. Is others (takiog the ssme span) a section welghing 22 fb . per foot la required in the place of larch 10 in . is diameter. The hearlest section th other cases Was to be used as a substitute for heavier timber girders masy bee used as followA:

Lobeth ef bats

Whene weights come ou saddenily nad with great force It is anfer to ufe the beaviest section, and in exception-
ally heavy parts of a road the girders may be spaced ally heavy parts of a road the girders way be spaced
more elosely together. In wider agacee, where a central suppott can be used, the streogth of a girder lo doubled
by aslopting their wes. The relative casta nee easily socortained at any time, beeng dependent upon the thuctuations of the steel and timber markets. At the
present time, eatimativg the gitiders at 55 per ton, these bections cost reapectively su. 18, ned 1s. Id. per foot Comparing these prices with hest larch thmber, the cost
of girders is very hittle in exceas of timber, and if the of girdens in very inten in excecas of timber, anid if the with no ntlomaber for waster, steel girdera will protably be found to coat lean per foot, and th addition prove
mach stronger. Stoed giriers are niso more visily

 weighs $24 \frac{1}{16 a}$ per foot. At is. Sh. per cubic fuot thes

 placed at itt owntre, of 17 tons. Giribien vompare tavor the hetght of the roul; thery poeserea preater daralility
 equally suited for pit hottoms, main roads mud return
aitways. Girders intended tor use in very wet places may
be tarred st a alight cont. They can bedrawn and reeret be tarred at a slight cost. They can be drawn and reevet cuasy times, where pethage timber would not be worth
the coat of recovery. In the event of fire, timber is not onty destroyed, but helps to spread ite effects, whil glocders remintin totact, and the road in good order. The
blocking of the roads cnused by floating timber is nlso avolded should the mine be Booded mith water. The metbods adopted to the setting of steel girders are
aimilar to those emploged fo fetting tlimber bars. The fimilar to thal modes ane to leseet the enils of the girder iuto boles cut to the sides of rond, or to support them on walls or wood props. When stde pressure has to be tmet, piriers resting on wood prope must be wedged at the joint, to prevent the prope froms belog displaced Another method is to foria a slicutaer ons the gitder to
form a support for the bead of the prop. It is very rorm a support for the bead of the prop. It is very
moportaut to keep the girders upitght; where allowed to ant over their utility is considerably lessened. A ready method for waintaiuing them upright is to place light
thmher horiznotally from ginter to ginder , the enis of the thaber telag hedd between the thanget of the glalers. Whon cantlig over they teed to spllt the wood props apon which they rest, owing to the edpe of the flenge of the girder belig forved into the thaber. To meet these cases a sboe, masde of fron or steel, may be placed upon he uader flange of the girder. Its under sha forms cap, and tits on the top of the wood prop. Tbis shoe
ansirens the triple parpose of proventing the cantlig of rinders, the oplition of the wood props, and their being Alisplaced by lateral pressure, or by collision with tubs. Ginters are siloo used as props to supports the girder bars, the light section belog equal in streogth to the timber geperally uted for that purpose. To eecur the girder props, and so form steot settings, varions appllanoes have been introduced, so that in constructiog the settiozs there is no peed for cutting or pubching of the girders, which would tend to weaken them. The first of these appliances is an iron or steel clip, male in two pieces, one-halt of which tits on either side of the bas and prop when set in the required position, asd a bolt oussed through the ellp secarely holds the framemorli girder beling flrmly beld, it is able to carry nearly double tbe waight carried by a gitder whoes eods are loose Another appliance is a wrought tron boldfast or band, made in one piece, and placed obiliquely over both the Eltulet and prop, when set. An iron bolt is pasaed on the prop, and forma s aboulder to pravent its displace ment. As the boldfast pasess over the top of the girder It bas a greater levernge and extra proportionste power In preveuting the canting of the girder. A thind appllfinder aut the top of the prop are placel, ant are beld aesurely amalst any movement steel settinma are belso sonatructed, in the formof arehes, circles, rectangles it squares, and nre capable of resisting cnormous prese.
and prove an effuient substitute for briek-arching." Recovery of the Karwin Colliery.-Tbe following mportant particulars of the rexovery of the Karwiocolan exploston on Jupe 14, 1894, are taken from the Colliery Guscdian. "The commaselon sppotated to orgabise the works neouesary for the recowery of thls
collery after the explosion of June 14,1894 , had sovaral collery after the explosion of June 14, 1894, had several more or less confiketing circulustances Io coassier wi deciding on the means to be miopted. In tbe trat place it polst of view, to reppen the pits as soon as poseible. Or the otber hand lay the risk of the fire not having beed stinguizhed, and the consequent danger of tts extension On the readmisson of air-a danger militating against dlation. Agalibet the propceal to pat out the lire by bodleg the mine whe the serloas objectlon that with the natural supplles of water arallable this would take nbout twenty mooths to secomplish, beetng that some
870, 00 cublic metres of water would he needed to fll the pit, not to mention that the pomptog out sgalo of this ptt, not to mention that the pamptog out sgatio of this
amount of water, congled with that of the arorage dails lathux, would occupy a further space of asorage dava mith the pumps at hand kept constantly at mork, liesides, the reglon of the fire would naturaliy be the last portion of the mine to be resched by the wster, and the first unavered by its removas, 8o that mundation woud bot consttute any positive gusrantee againet rebewnt out break. After reviewtig nilt these polats it wha decaied
to proceed by first veatlintiog the Tiefbau (pumptag) anatt as belog fartheat away from and least affected by be exploelon.

Sil the shafts had been closed after the sceldent, and in . sis. It belne fousd that up to the end of June the per-
centage of CO was barely pottceahle, it was assumed that the fine at any rate was makiog no healway, and that caroful wentluation of the Tlefthas ahaft might asfely be attempted. Accordingty, on July 2 , the pumpe hav tog thenp set moing a week farlier io onler to clear the hooted V. horlsminal, this shatt was opeoed and the tan aet to work. Shortly before mid-day a party deacevdeal
and visited the II., III., IV and V. horizoetals as far as the sisterenth seam. The erection of stoppliges to shat off this pertion of the pit from the sest of the fire wan ommenced, but the explorers bal to retire at about 3 Ou the following day the erection of stopplegs was conCibued, but a rise in the percentare of CO (up to 0.5) nt about 10 p . In. Owiog to a breakage to the pumps e work in thisstiate enud not be resamel until the 1tth shate was rumorad to allor the cover of the Fransiska ure flec-dstap, although vothtog further in the way of Thedifurenom of precticater for fear of feeding the lire flaft and the outalde air caused a carrent to ent in tomaris the fice, and it was with dificulty that this conid be artested by stopploges, since the laterruption of the
the east, filliog up the seventeenth seam. However, the erection of these stoppings isolated the Tiefban ghaft, and rebdered its thurough ventinstion posabilie.
and the next proceediog was the lisolation of the WIheltu seam at the 1 V, bortionatal, a necessary prellminiary to the recorery of the Framziska shaft. The air being free frow CO, the men where able without dauger to bx a brattice against the crossway in the nineteenth, aesm, sud cut this off from the Franzlakia.
By september 25 the reutilating apparstus in the Framikika shaft was completed. The shaft mas then explored down to the water level, and the stoppings ex-
amined and made good. As bebibed the sluicea a depression of about 30 mm . prevalled, it was found necessanty to ereet partitions a few gards from the troughs, shuttered morder thet the varging amount of deprebleon ine coumbractin come the compression of the sfterdamp from the geat of come the

A good deal of water from the direction of the Tiefbau shaft was dammed up by the deliris, and the stmultanprevent als phutters wore flixed at the base of the dam doors, by hich means the chanvels could be completely cloeed.
thres-hour shlfts in the respipators, an wor wathers at the

Aquantity of Water fonsd dammed up at the 1V. horizontal Was run off os October 1, its removal beligg followel by armarkable change to the composition of the soddenly from 3.6 to 85 , the oxjgen decreasing from 12.2 to 0.8. with sti alteration of proasare from - st to 10. Tbls gave rise to conslderable uneasibess, as being poasibly caused by a sudden extension of the tire, but it wards ascertained to be due to the siokitng of

The reanlte obtaioed from the
The reak oldencestion of the variations in the compasition of the gas in the mine may
be summariasd in the atatement that dimimution of stmorpherlc prossure indaces an increase of CO and is decrense in the amonnt of oxpreo. the interval depres. slone tending to disappear sud the compresalons to rise; is other words, the proportion of oxygen increases with depreasion and that of CO_{2} with compresston.
Daring the mouths of September and Oetober work Was continued by the erection of atone stopplage in III. sud IV. horizontals sod the removal of didris. The buiklog of an explosion-proof stopptng of cemented manbonty, 43 les. thick, and with in rounded faco on the danger side completed the isolation of the III. horl nection with the tire reglon via the II. hortzontal atopplogs weve hegun at that level, the recovered part betag ventllated by menas of horizontal troughs, 80 cm . In dinmeter, branching from the vertical masin.

After erectiog as exploston-proof tam in the II. horl wotal, rather thicker than the obe on the next level, the exhanstef and troughs were removed from the Frauziska shart, the large cage teplaced, stoppinge made good, sud with. Cosl potrlng was resumed in both shafis about Chriatrass, and the spbere of action in recovery work transferred to the Carl shaft, where the ganae procedure was adopted as in the weetern kection. As moon as the atopptags were erected the compression of gas from the burning portion of the pit rose ter such so exfent that it was dovened adrisabie to bore through the safety dams and convey the gas through lroo pipes up to the bank.

The percestage of methane in the hortzontal work ioges suroupted to becween 40 and 60 per ceut., hDd was losg for the lirst tow sards beyond the rartitiones, oaine to ther the inst tew jands beyoud the jartithoes, odige the mee to pass throagh the propoctiong of alr and gas were such as mieht peailly explode stould a spark be produced or one of the electric lamps be broken: in fact, in the Carl shaft such an explosion did reault from the breakling of a lamp by a stroke of the pick, and eleven men were injured. The lamis were theretote strengtheded by exirs glasd, boda cowering of wite ganze. As regands eflivetey the Eagtish Bustol hampe were nuthe more satisfactory than those obtained frow Vieusa,
burning six houns, whilst the latter ouly lasted for two burning aix hours, whilst the latter

So far the burniug field has been isolated from both slder, and sukeequent operations will be directed towards efill furthev encroachments ou its ares, but this difficult and dangerous work will be of becessity slow, and the damage wrought io as woosent by the explosbon
The Rock-Phosphate Deposits of Florida.-Two
 E. T. Cox, of Albion Florids at the Marrh menting, 1895 of the American Iostitute of Stining Englneers. The time is near at hand when antlons and feople will jeal ounly safe-guand their phosphate depostis as treasares carbon hydrogen, oxpgen, uitromen and Hee ame isalis pensable in the building un, of ongenio cotmpounds, thut the selective princigle of 11 es that gives mutitis to the organs of an orkanism in the discharge of tbeir fuwetions is phobphorus.

Thls elemest is possessed of great vitalising poxer and when used to recuperate the soil, it replaces sterility With fertility, and os human poverty mud despair and
wealth nod eatisfactlon, are coeval with, is the first case an exbanated soil, and to the sscoed with a profluctive solf, we con see thit the phosphater are of iteratimable value to man.
The most abuedsent suppilies of phosphate of lime or pbosphorie acid are declved from antmal remasibs, in ove Pound sloug the tirst, as recent surface deposits that nee coum aloug the consts of continents, or are found to
cover surfaces of lonely islands in the sea. As the const of Peru on the shores of the Pactio conne, suis the
coast of somo of the main lands in the Antaretic sess
where live and die tucountlegamill the wingless peuguis. Tbe other source of the phosphate is a mingless peugris. The other source of the phosphate lizsardo, that swarmed in the sess of the Tertiary period lizsards that swarmed is the seas of the Tertiary period names such ns coprolites, sud bard rock phoephate as Mr. Cos calla it.
Now we arrive at the consideration of that phase of
Now the subject trented on by the papers under notice. First
then the Peninsula State of Fiorida lasa aurfsee aren on the Pliocene rocks, of great extest. The outcropplag rocks at the soathera edi of the State, betwoen the 2sth and ern to the western shores of the State, are sll of the the north-western shores of the State are all of the sifocene pertod, nod it is in the latter, that the phosphates are found and mined, and this is made very elear Iliustrsting Mr. Wells' paper.
The phosphates are found in pockety clusters, within of pockets from the Apalschicols river on the western alde and worthern end of the State to the Caloceabistebee rfver os the weatern slde aud the the sontbern end of
the State. The belt of pockets is therefore sbout 250 miles loog and 15 milles brosd and runs nearly parallel to the major axis of the State.
A good ides of the couree of this zone of phoephate
can be ohtalned from Mr . Wello' japer In whlch be Raye can be obtained from Mr. Wells' japer in whleh be saye:
"Each of the groups is made up of a series of sanall deposits, many of which have in surface aren of only
ope-elebth of an acre, while some have as aren of three q uarters sud others an area of four acres.
but when this tis the case, the productive rock boticed, reach so great a depth as in the case of the smaller pockets; sud fartber, in these deposits of large surface stea the stobe is of a lower graile asd 80 loterstratibled
with the limestope strata that enay and pontithle min with the limestobe strata that easy and profitable minIng eannot be parsued." At the southern end of the
State, overlying the Pliocene rocks, drift deposits of pebbles broken from the phoephate rocks are found
Mr . Cox asys: To thla diatritt Mr. Cox bsys: "Io thls district, Albion, the phos
phate is designated as 'band rock' or 'boulder jhosphate, ${ }^{\prime}$ or gravel phosphate. The boulders range froes

Wheo cleaned it ylelde on analyais from 75 to 85 p per cont, of tricalcium phosphate of
per cent. of phosphate of iron."
per cent. of phosphate of iron."
The phosphate miners of Floridn have furniahed another proof of the fact, that mining to be soleatifically and commerclally encceasful, requires courage, nod the true genias of mechanical regource for the ridk of
capital can only be reduced to a mialmum by the capitan ean only be reduced to a misimum by the
adroitaess of the miving engloeer that can originate new adroitsess of the wiolug eogibeor that cam originate new of procrates ming
mineral ts foubd.
Mining by water as a solvent has beve very saccesaful in obtainlog sait aud sulphate of copper, but mining by
dredging ls certainly something new. It appears that a great inflow of water takes place below deppears of trom 10 to 90 feet in the phosphate, and pumping was at flrot tried to drain the mines but the volumee of fiffow whs so great, that the cobt of drainage cast the balabce ob the
wrong side of the accounts, abd then ilredging of seooping was tried with the resualt, tt at we will let Mr. Cos varrate
"Mr.

Mr. W. N. Camp of the Camp Pbosphate Company Acoordingly, he had a drodge boat malen and lavichon Isto the poot of mater. Coutrary to all predictionas of
fallure, it proved to be a crand soccess, and aolved the probjem of hydraulie miniog with a dredge. The the portance of mining with a steara scoop-dredge con be eral lies below the wnter level, and that the goooges can do the miniug cheager than the hand-plek and shovel, for mining by hand cokts from $\$ 9.00$ to 83.00 a ton, whereas, mining with Mr. Campis steam scoop drelge,
rarely costs more than $\$ 1.00$ a ton. Surdy thls is a grand reward for the new departare in whlch the water that submergea the miberal, is coade to asalst the steam
Weat Virginia Mine Inspectors Reporta.-Th Reports of the Mine Inspectors of West Virginla are to
hand for the year 1893 and ending in June 1894 . The hand for the year 1898 and ending in June 1894 . The
reports for the Erat digtrict shows that the output of coal for the year was $2,714,818$ tons of 2240 pounds to
the ton, and the output of coke was 209,146 tons of 2000 the ton, and the output of coke was 205,146 tona of 2000
pounds to the ton. These flgares show \& falling off in the productlon, as the result of a strilke. The total nomber of employes engaged in the coal and cole productlon
was 4,716 . The total number of bon-fatal sectdenta wat was 4,716. The total number of bon-fatal sceldents was and slate. There rere 13 fatal accidents from different cmases, but chlefly frow the same prevalting cause as in the mon-fatal accidents, There are 14 mines in the first
district, 22 have natural ventilation, 1 steam jet ventila. thon, 6 furnace ventilation, and 15 are veutilated with fand, 80 that the fan maker has a nearly virgin district
for lis productions. The tables of the analyees of coal for his productions. The tables of the analyees of coal
and coke show that the Weat Virginia topall fuels, or "Black diamonds" are of gravil merchantable quality
for the average of the coal ash is 5 per cent, and that of for the average of the co
the coke is 9.5 per cent.
The coke is 9.5 per ceot.
The report of the seco
Tout of coport for the second district shoms that the output of coal for the year ubder notice, was $10,928,830$
tons, st 2840 pounds to the ton, of a slight decrease from 804 tons at 9000 pognear. The the oufjut of coke was 1,0010 , on that of the previous year.
The number of employear. engaged in coal and coke production is not given. The nawber of non-fatal acci.
dents is given as 6, abd the tro causes, were falls of dents is given as 6, abol the two causes, were falls of
conal and slate, and falligg between the car. There
were seven fatal aocldents, and all but one. were caused
by "falla of slate." There are 32 collleries in this divisloo, and ooly 6 of them are veotilated with fans, Thave furmace. By the tables of amalysls the percentage of ash in the coke, is 9.7 , and the aversge ash in the coal is under 3 per cent, now thls cannot be right, for suppoeing the coke produced be 65 per cent. of the coal poared into the ovens, then the percentago ot ash should
Report of the mine inspector for the third district shows that the output of coal for the gear under uotice decrent on the pervinu youbls to the ton, a mish coke was 855, ,506 toos of 2,000 pounds ench, a slight inanmaged the provious your Total number of emjoyes. There are 96 colleteries in this dlatriet asd 9 of them are veotilated by natural mesans, 36 ste ventilated with fans, and 49 are ventilated with the furmace, one is ventilated with the fire-basket of fire-cage. There were 39 fatal neciJeots and the prevaillog cause wus falle of coas abs slate There mere 90 non-fatal socidents abd the chlet cange inta reporta are capable of much tmprovement.
Modern Coal-Tipplers.-In the Trausactions of the
 1895, is a paper ou the nbove subject by Mr. J. J. Prest, and he introduces the subject as follows. The many great advances made during the past ten years in the effleleocy and tuprovement of colliery-plant, and particu-
larly io the sppliaces adopted for - F Tening and cleanlarly in the appliances adopted for sereesing and cleanligg coal. Formerly a long array of fised bar sareecs each fitted with its own uppler, was seen at ani coal
drawing shafts, buit now the entire output of a large col liery is cobcentrated at one poist, asd passed through a
kingle power-driveo tippler at conaiderably laea cool, and with greater efliciebcy then was the chase under the old order of things." He next botices the peinctples of conatruction and mode of action of 9 varieties of the power Triven tipplers.
These decunting or emptying devices are a nerocoarg sijumect to the "jigger screons" and "sorting belts" uged
for sizang sud dressing the bituminons coals at the miloes in England, for here the jightog or oscllatiog screeve are worked by steam power, nod therefore rapidily carry forward the conls obto the " cleaning belts," and to Keep, the screcus and heits golng, it is necossary that a
coptous supply of coals shoald be constantly pouring outo the jtgifing sarceess, and tor this to be done with sufAclent despatch the tippler must bes so constracted as to quickly overturn and empty the cars of coal as they is smpllet by the the po that oellotos tha liselne Is supplied by the eeglae that oadllates the jliging
sereens and turns the belta. There are three diatinct types of the powerdifives tipplers, flime the rotary tipplers, or those in which the plaves in whleh the tippler turns is parallel to the plane of the car wheels, and gets. the carg gravitate from the mouth of the bolsting shaft down a gentle pitch luto a trame, that revolves the motwent a clatah is made to seize by being actuated emptiea the car abd then dienhargea it when is moved over a bormed belt, one of the borns of which catch the hbder axie, and carry the car up an ascent, where it is
 tippler Mr. Prest gives Wood and Burnett two varietles, silvester, Shelton, and the Bleevan and Fronde.
The second type is the end tipplers as the Heath and Woodwortb, and the thirl type or side tipplers, are the The Cornwall Ore Hils Tate.
Iron Abo sags. "The Cormanall or Brkinh in in the county. Peonsylvanis, have a hiatory streteblag back over Obe hubled aod fifty years, The earllest mining of local demand of neighborting Iron works, to which the ore was carried by wagon haulage The ore wha owned by several indivifuale, each of mhich had coutravied for thenfore, the numes of the old mibes or excavathons are really the speeifle names of the furnaces thea in uae in hills wase. Thene cariy mintag, of open digglig in tivet ore ready for loading into wagoes, and in this way advantage mas taken of large accumalations of "nigerer bresty, for this class of ore was of superior grade, becanse it had been for a rast period expoaed to the leaching influmence exposerl in wor. Amoug othet ratiectes in tron oretoun or magnetic ore. These carly miners and smelters fally anderstood the purifying iofluence of the weather, for
they used to leave extensive faces of the ore to theis they used to leave extensive faces of the ore in their The march of progress in iron masufacture, as in other branches of art, has male what was once a doubtTherere of ore, one now of lirst-rate quality.
The ore contains very little phospborus, but some copper sud a rather high percolage of sulphur, the
cegult was in the early days the copper rendered the ron med short, and it was therefore unaited for foandry castings. Now, bowerer, the same ove is of great value in the manufacture of Bessemer steel on account of the danl percentage of phoepborus it contains, abd the oxi-
dation of the copper and its consequent ellmination as dation of the copper and its coosequent elimimation as
the resalt of the high temperature at which this clase of teel is made. During the lant ten yoars the outpat of ore from the Cornmall hills has beon $6,192,852$ tous nid mined bat for the aid of railway trausport. The deposit is so rast that it will be long, very long, before the
period of exhaustion arriven. Sampling.-A japer by T. Clarkson, C. E., on
sapllug, was read before the metubers of the Federated Institution of Slining Eagieers. Eaglapd, early this car, and as its contents are of some importance, let us then he shons that the ptomlecuous or fortial sampling
of a heap of ore, a beap of coal, or lot of cement cannot here are some of his claims.
"Ooo of the detalis which concerns minling englocers. and whilo has oot bitherto recerived the attention it morts is fromenently done in a moat perfuwctory and alis shod manner, although so much that is of value depeods upon the result. Surely sampling ts co-equal is importavoe with cbernical analysis, being in fact, the first practical atep in that analytical operation
Mr. Clarkane after showing why sampling should be accurately tone stogly adrocates the mixiog and satuphog of tise mita by machibery, hat bete are the
views be thus sustains. Geuenuly the only way to correctly kample a large bulk of matertal is to deal with the whole beap, and not as at present with only a small pereentage of it." To deal with the bulk is not practicable by band
machloery

The ecoplogmeot of machioery for sampling has the great aitvantage of the work beigg done itspartially, the
results are obtalined mone quickly, and mist impoittant resuits are obtalned more qulckly, abi, most important ferriog to an English machine he says:
"Several kiods of sampling machives are In use in the writer belleves, the obly one to une in Eaglaud.'
An Outburst of Gas.- The tollowing paper appears of the Trunsactions, 1895, of the Federnted Inatitation Ington on an outlurst of gas at the Mitchell Main Col. Hery of which he bas chance. It appents the mode of working ss longwall, sud the line of the face or work-
leg line, is given na haif "end on" and "balf boant," or nearly dort.Aurn. The "pack-malls" or gate roadpacks are 9 feet wide on tsch side of each gatewny, sud the gateways ate o6 feet, or 22 yards spart, and at
the time of the outherat of the gas from 18.000 to 20,000 cubic feet of alr per minate were passling through the diatrict so that the ghs could not be a gradual collection It appeats the gas barat out from the digaged It nppeasts the gas barat out from the Bloor of the seam, and thls indicates sither a workable Beate of caal
heavily charged with gas under the preent workiogs or elan the existence of "conl-plpes"" or thin layess of of gaseous coal to the uoderlyigg shales. The gas must also have been pent up at a very high pressure, for
says Mr. Washington. "The greater portion of the gas appeared to come from the floor, and for a ciatabce ably lifted, the roof aleo subsided and the height of it reduced from 5 feet 6 isches to 3 feet. The deputy orerman sald that the concueston appeared to shake
the 'meparatlon doors' at a distnoce of 840 feet from the 'separatlol doors' at
the point of the outbarst."
Iron Ore in California-Mr. J. I. Crawford in the reprort of the state Miverslogitst, of Caiforpia, teserlbes of the countlea of California fuel was at hand, they would bo doabt be utilized. Sowe yrars ago an extensive plant was ertected in tho bulliloms and plans were di-trogel hy fire and but not restores, the result is loon masufacture bas almost censed in the rezton. A few handred toes of fros ore, however. from Shasta county were used by loval rolliog production. For a number of years Caltornis has been the oely eat of the production of chrome iron ore ta the United States, sod its occurrence has beeto observed In several counties, but the chlet centers of its yleli are Shasts med Tehams. The ore fudustry in so far ng milning is concorved is bot very extenslve, oning to the Macility with which the ore can toe lupronted from Sota one-fourth of the total consumption at Baltimore and Philadelphis and coat of transit to theer cities is the main reasoo that the exclules the Califorman product.
Iron Ore Mining -Mr I Joln Review says: Hematite irno ore occurs th the carthoniferous limestono in the Wbtechaven distriet in Enghabd. The deposit is peculiar is its oocurebce as it ts other times in pockets, and frogueaty it is found io what appear to bo horizontal bedas
The vetalike wasses occur in the partings of faults, and shafts ste tberefore often sank on the uphtrow foet of the (nuile and levels are driveo 120 to 180 conmenoed right and left and nises are put up on the foot wall, leaving pillars 60 to 20 feet long. Levels are driven borizosally every 15 to 30 feet from the ralses, snd when the grovod has thus been opened up the pulars are
worked first
Debris is used for packing, na far as possible, asslated by timbering. Tbe bed-like degrosits occur most freand sely to what are hoows as the first, secood, third rdllar and stall the point of the greatest depremion in the lcwest hed The plllars rarce from 430 to 1630 equare feet in ares the sloe varying aocordiug to the local charncter of When the
When the ground has been opeoed up, the pillare are vot in two layers or benchica.
Nickel Ore Deposits.-Tbe following facts are colAmerican Insitute of Mining Engiboess. Nickel ore is interesting becuuse it bas not hitherto been found is great abundance in the Cnited states. and yet it is ex-
tensively used io tbe coiuage of the Fepublic. The prinelpal deposits of this ore fousis anywhere in the whole of the States, are in the region of Gap Mine, Lancaster County, Peunsylvanis, und at Anthong's Nose on the Hodsoe.
The Gap Miue ore is found in in lenticular mass, the The Gas, Mioe ore is found in a lenticular mass, the
greatest leogth of it being 1,500 feet from east to west,
and the width from north to sooth, 500 feet; it is true there are other regious in the slatea wbere the ore of
nickel yields a relatively small percentage of the metal
 the reduced prife. The metal sold in $18 i 4$, for 2260
per pound, amit the selling price now is 75 sc . The metal te of great value in the manufacture of Germat silver when it is alloyed with zioe and copper. It is now ex-
tenstvely used for electro plating other metal, and it is tensively used for electro plating other inotal, and it is
therefore iotereating to know that 400.000 pounds were sercfore iol-reating in thet I nited states nlone, in 1884, and is 1883 , be leas than 703,425 troy ousces were used in the colasge
of the Republic. The ore callel coppet-blehel, derives of the Republic. The ore calkel copper-bickel, derived its name from the copper cotor of the ore, abal it cont-
tains frow 39 to 48 por cent. of nickel and froms 46 to 54 per cent. of arsenke. Some of the poorer varteties of
 V. Winchell in The Iron Trale Review gives the output of iron ore from the Slesabi Range as 684, 194 toes in I893 and $1,781,574$ tons in 1894 , when prohably not more than 40 per cest. was strictly Bessemer ore although
the itoe contents probisbly exvected $6 ?$ per cent. Three quarters of the deposit was obtained by stripplog and the miniog coet was ubdoabtedy leot than the maximum figare of 42 c . given in 1892 . After stripping, the ore
is either loaded by steam shovels direct into the rallway cats, or it is sent down winees futo trams, that are run to the shatt and holsted to the purface. The
coet of working by atripging and filligg with the gtesm cost of workiog by atripping and filling eith the att
sbovel is given for the prosent time at ise. per ton. Gbovel is given for the present time at 150 per ton.
Great rariations are found in the character and quality of the ore and some of the mines producing true
Heasemer are restrictiog their ouf put. The bob-Bestemer Beasemer are restrictiog their oufyut. The boo-Beosemer is geberally foand in the upler bench of the bed of the
Mesabi and Iron Mountains, bat the eatire body of the ore is subject to continual change of character. There aru at least two hundred million tons of this ore in the
Mesabi district but probably not more than 40 per cent. Mesabi district but probably not more than +0 per oent.
of this ore is Beesemar and the disposal of the reemainder of this ore is Bessemar asd the diep
may bee a matter of future dimiculty.
may be a matter of future dimicuity.
One of the largest steana shovel mines shipped it about six months 305,000 tons of the ore xith a normal force of 85 men on an average of 40 toos of ore per man.
The tendebsy, however, of this lat, eoutput per raan is to The teviebsy, however, of this lat, eoutput per man is to
produce lower grade ore owing to the misibg of all gorts. producs lower grade ore owlig to the misither of all ports. probably be found best to work the ore in benches to Scure a becter belectlon:
$\mathbf{S p a t h}$ ite in Tennese
Spathite in Tensessee-Mr. C. Whison in the prooeedings of the Alaboma Indastrial and scientisic
Society, degcribes a six-foot bed of - pathite. of spathi Society, degcribes a six-foot bed of spathite, or spathic Iroe-ore which is found at Iron City, Tennessee, between
bods of Jtmestone. It looks tike hematite or red ote, bods of Itmestone It looks like hematite or red ote,
and the Iron is present in it as ferric oxide, but the perand the iron is prescut in it as fetric oxhle, the the per21 to 22, stid takiog this along with its specifie gernvity wblch is 2.78 and its peronstage of phosphoove 5 and
sulphur a mere trace, it ts stugular that the thleknese suiphur a mere trace, it ts stugular that the thlikness
of the seam, the specifie gravity of the ore, and its perof the seam, the specific gravity of the ore, and its per-
centage of metallic froo are strogely charactertstic teatures of spasthite in other reglons, and is other landeFor example, the apathle ore of Cleveland, England cielde from 21 to 39 per sent, of metalite fron, has a spectic gravity of 2 s to 3.1 aud the bed foand foter-
stratified in Misdie Liss has an average thicknees of if feel, and to produce a first clase vartets of Becanmer steel it is mixed with red bematite from Billioa, Spraln. parts of brown hematite, makes an iron that commands parta of brown hei
the lalghest price
Iron Ore in New Jersey, - From the regort of the State Geologiat. Treoton, New Jereny, we learn that the depoeite of iton ore in the terine, and it appears that the ferruginous mud, of origin, and it appears that the ferruginous raud, or suspeded particles were cartiod by water into basid.inke
depressfons and deposited, and after the cavity was filled it was in time covered with other sedimentary nastter, and thus the whole gerive of these rocks are of sedimentary origio, although maptamorphosed anid of Algonkian arge. It appears that "pitch and follation replace each
other," atid this fact sastains the eonclusions that dif ferent sections of the region were subject to greater asd leaser lateral pressures, hence the grester rock waved thaser produce great pitching, and the leaser ripples of folistion.
We need not wooder then that pitch and foliation replace each other, or that where the one oocurg, the other docs bot. The metamorphinm nod crgstailization of
these rocks as we now find them, to forme extent obscures their real sedimentary origin.

Durability of Chalk Marks

About five yenrs ago an article appeared in obe of the dity papers statiog that whee the old city bell was taked found, plalinly written 13 years betore by a young engineer. In the Jear 1822 the bridge over the Big Ganpooder falls, it Ridgely's Iron works, about 14 inilee
from Raltimore, wss constroctel by Robert Burr, cosssidered at that thes a farnown architect and engineer of New Jeveny, When the bridge was erected, several per-
ano wrote their names thetmon with ehaik, and they can enaily be read at this day, abol the date, July 4, 1522 -Plaidediplias Norts Ameriven.

Hob. W. 1. Coanell, mayor of Scranton and presldent of the Eaterpeise Coal Co., whose operatione are near
*hamokk. Fi., was on the 16th slt. [reenotel with a handsone gold headed case by the eaplogea of the com paby. Mayor Conbell, ne prosident of the compary, pervonally looks after the genernl management of the
colliery, and the occision chose for the preseotation
 which replacel the ome thetroyed by fire on May liph
last. The eaploged testiand thelr apprectation of the peoblal, fsir mifoded and husdsome mayor to a mannee that sbows hts efforts in runniug the colliefy barmoni-
ously and profitably las made thea manog his atrongously and profitably las made thean anong his atrong-
eat friends.

THE COPPER DEPOSITS OF MICHIGAN.

By M. E. Wadsworth, Ph. D., Director of the

Michigan Mining School.

(Bendst the Anoust Courention of the Michigan Bonkere Associstion. Septemher 12, 1206.

In lookiog at the map of the Great Lake regton, you ave all notioed the backward beading thumb of Michgan projecting Into the icy waters of Lake Supertor ing along that thumb tbere ruos a bned or ring of native opper.
If does not, like most gold or silver bands, extens arousd the finger, but along it-from the base of the Imbedded in the fiesh bluding all forgether
Shall we now dissect it, lsying bare its flesh, muecle and bone, and try to explain lts marvelous onganization? To do this it will be necessary to drop much of our slmille and to make as clear as possible the geological structare of the district in question. Roughly, Its central portion extending from the bouth-west to the porth-east, pasy be baid to be maile up of an elevated slateas, bearigg apon its wrinkled surfsoe protuberamoen luger
Flanking both sides of this higher land lie lower lands ixtendiug down the to the level of the lake
This lower level is formed of hardened beach muds, anad and shingle lisid doma on the shores of a tifle. rasbed sen.
We find in it the ripple marks made by the waves, the mod cracks formed when expoeed to the drying sum, and the priots of the eoft rain

pon the gently sloplog beach.

This formation is known to you all through its affont. ing the beautiful Portage Eatry or red saudstone, so anch used now in building
It is, bowever, with the cestral bigher or Plateas eglon that we have the moest to do with at preseet
You are all familiar with the descriptions or with the Ight of the lava beds of Vescrilus, of of Etnas, of on Iceland or on the Saodwich Islands. You know how
the lava flows onward tomards the geas, bow rolligg with the lava flows onward tomards the bes, bow rolligg with a rough, ropy, clinkery surfses and now qlidibg with a compstutively smooth one. This Lake superioe Pla. Keau is composed of a series of lava Hows itke tbose from
Kilauea, generally smooth but sometimes clinkery Kilauea, generally smooth but sometimes clinkecg. Let us imagine a large sbeet of ice extebliug over a on ope whe, and the rates wells up through the sheet and overftows the tey expanse. This overflow congeals; the fee is again rent in twsim a bew overflow takes
place, and 80 on until the lee continually siuking, is place, and 80 on untll the ke continually sluking, is
pilled up in sumpalve thicknesses, hundreds of thon pilled up in
sands of feet.
Let us now more exactly explain what has taken place In Nortbern Michigal. The present promontory of Kewrenaw Point once formed the gently sloping tidevast floods of lavis, the same kind as now flows out from Etua, Kilauea, and the majority of netive volcanoes of the preseut day. These flowr, like those of Kilaues, were agparently quiet, and not explosive like thoee of vesuvius and Etna.
At the time of th
ava, the shore mas outpouring of those vast floods of ava. the shore was gradually sinkiugs, s0 that the cou geated rock was axpcesd know of the effect of the storm-dashed waven upon a rock-ribbed const, bow the rock is torn down and worn away and then piled up along the shores as a resulting mod, sand, gravel and shingte.
In like manner our lava flow, along the showeg of hat grest northern ses, where now Superior rolls were subject to the alteruate tide and storm-waves, and to the sction of sun, rain, wind and frost. The reault of this flows werst have been, thas the exposed portions of these that of nesectated rocks. Besldes the lava flows before mentioned, we thad other flows and masses, stmilar in chealcal composition to our granites, whtch being much harder and more eoduring than the basaltic lavas, mokn up by far the larger portion of the debris now visible.
This regioe, theo is composed of a serles of interbedded basaltic lava fows, with thelr assoclated shingle, sand and m
shales.
In order to show more clearly what bus bappened stree, let us takes aew motaptor sod look upon all thet this calse bo forming a port of marbied calke. Now thamb-like mass, the eut extending porth-east and south-west, urarer to the gouth-enstern side. Consider that the sorth-western part bas beeo liffed up at a vismongs runging north-west to south-cast : and vous have fair idea of what has happened
It is mell knoms that io sll regions mbere voleanle Cocces have hepl active, when these forcos die out, hot water action is obe of the lase resulte, the watern ceduany growing cooler until they are at the Lotrmal former hot state excepit that showe by its results on the rocks.
bot, sometimes cald, wes strongly maked daring the assuring and movecomot, or as it is technically termed,
 the roelss, without exception, were penetratent by the pervolating waters, moch of their materisle dissolved out, or ebembanlly re-scranged, or removed and replaced It was then flint
It was thea that the native copper now found is the from whish it is now being rilled by means of the drill. sledige, and igsamite. Threo different systems of local
deposit have been employed by Dame Natare ou depoat have been employed by Dame Natare on
Kemeenaw Potut. The profoumi sod repented flssuring
previonsly spoken of caased huge vaults to be masde Where the peroolating watery left, secravely locked up, their treasures of copper; and here the largeot single
 and south-east direction, cutting scross the country, These depoalts are techaicsily known as fisaure velns and as examples there may be cited the Central, Clia Phovalx and other mines, mininly on the northern end of Koweenaw Point.
flows one would naturally suppose, the various lave amonsts of differ in thickuess, owitg to the vatyiog iterquallties of surface Like variation woald also exist in the extent abd amount of depasited conglomernte, shale and sandstone, on account of similar inequalities of the surface, the time it was in forming, and the ares expoeed to the tidal or wave sction.
feturolug to the lava nlow, it has been found that the thlober ones are wone glasay sud beuce more whity acted upot by the percolsting waters; thus large amousts of the ofiginal rock tuaterials have been dis. solved out, removed and their places, as well as those of all other cavitics, have been filled with deposita of copper and other minetal matter.

These depeeits are mined and form the melapye (localIy called andygdaloid) mines, such as the Quibey, Osce-
ola, Franklin. Atlantic, and Huron. These mines are worked on old lama flows that have been impregnated with copper, the same as a flow from Mount Etos might be worked, if it wre likewise filled with valusble mineral.
Altogether it is popuine to upeak of these mines as worked upoe veins, that is an etror, as they have beitber the structure of a veis kot any gign of a vein ot or about them. They are simply flow deposits.
At the came time our bssure or vein and overflow d pposite were formed, similar deposits were male in the Interbedded detrital or bes-besch masterials, or conglometates. Here the percolating waters removed much of the cementing mod and the more casily soluble pebbles, Glling in the places thus left with copper and other mineral matter. This form of deposit gives rise to our conglomerate mibes, such as the Calumet nod Hecla,
Tamanck, Peninguls, and Allouec. Tamanck, Peninauls, and Allouec.

As before, these naibes are not worked upon reius but upou old sea-beach shingle, the same as if any one of your beaches bere, after having bees covered up, eboula and they have no alge of a veln upon them: but they are simply bed deposits.
ou may ask, whesce came In these three different kinds of safety vaults - vaulte that were found by prebistoric man to be thorougbly lacked by the modern earth robber with power drill and dynamite

No one can tell whence casue this copper: be can ooly imfer
Tbe

Thin largest amounts of copper are gebernlly well underlying the thicher asil beavier beds. Furthes, it has been seen that the general consse of the copper was downwards, as it extebids frequeutly like seleles, from the overlanging bed into the one that is worked, while sheets of it are wrapped around the angles of the brokem blocks, Hike paper around a grocer's package. These and numerous other facts show that the copper was ded faulting of the rocker ; and that it was prohably originally disseminated throuzh the lava flows and has sitoce been concentrated in the various banks of deposit by the percolating waters, which pesetrate all rocks:
Dial time permit, the evilience to behalt of all the statements maile here, could be lain betore you-thege evidenoes are pleked up oere by one by the earth's detecstudy the asber, the mud, and every relle left by that thief, Time, in the depositories of old Mother Esarth. As you resil the story of ewch coin anf bill, each cheek and draft, 80 we read the atory of each pebble and rock;
and learn to formes out the sweret deposits of Dame Nature

Electrical Mining Machinery

The Lank-Belt Machinery Co., Cbleago are umusually busy in all departments of their Works at the pregeot time, and especially so in the Eloctrical Mising Machlnery Dep't. Contracts tor this lise of machibery bnve recently beep closed with the following companies,
Bessemer Land $\&$ I'mp't. Co., Bessemer, Alar, Electric $^{\text {I'mer }}$ Mine Haulage, consisting of $9^{\prime} 15 \times 16^{\prime \prime}$ McEwen Eoglnes, 2100 KW "Ibdepebdent" Mine Type Geberators, 280 H. P. "Independent" 4 wheel Locomotivea, taarble Pittsbary Blook Cosl Co., Pittsburg, Pa. 26 ft . "Ibsepreubest Chais Breast Machines, $133 \mathrm{H} . \mathrm{P} .4$ Wheel Locomotive, 100
Erazil Block Coal Co., Brazail, Ibd 1100 KW H Iodependent" Mine Type Dynamo, 66 ft . Chala Breant Machines.

Jubeph F. Thropp, Evervtt, Pa. 1 15x16 MeEwen Engine, 1100 KW Dynamo, 36 ft . Chaio Breast Mschluss, 1 dt II . P. 4 . Whin
switchboarde, cirenits, ete
In placing his onder with the L. B. M. Co. Mr. Thropp Aalue plo of the minh goy bin maty hevebtigation of the mining macbibery masufactured by decided to accept your mopy muperintendent, I have decided to accept your proposition tor the complete tive and coal cutters. I am folly satisfled your machinery lo equal to, if not supetior, for mine use to any me have examined.

New facts in wedting by presoure at teonpevature be Low the meiting points of thes mefals have been reported
by the Foral Rociety of Helpinm. Preseal togecther by by the Royal society of Belgines. Pressed together by untied in in heat of 200 to 400 dengrees for thres to twelve hours, blsmuth and autimonay lese perfectly oo. The
move crgatalline the mutal the les mas the goftesing.

Easy Lessons on Mining.

This Department co stains articles to assist ambitious Miners to educate themselves, and obtain Certificates of Competency as Mine Foremen, or to become Mine Superintendents.

The articles are written to be understood by the unlearned and the learned alike. Plain language is used, no obscure terms are employed, and each subject treated, is made as clear and easy to understand as possible.

Further : The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors, are printed and answered.
er The Sertes of Artictea "Geology of Coal," "Cbemiatry of Mining," "Mining Metboda" and "Mining Machinery" was commenced tn the fesue of March 1894. Back numbera can be obtained at twenty-flve cents per angile copy, $\$ 1.00$ for air copies, and 32.00 for twelve coples.

MINING MACHINERY.

The Central Orifice of a Fan-The Three Orifices of a Fan.-The Correot Orifice for Measuring Blades. - The Radial Length of Fan Blades. The Loss by Wave Movements in Fans. The Loss by Wave Movements in Fans.--The Best Dimensions for Ventilating Fans. The Laws of the Areas of the Fan Ports.-To The Laws of the Areas of the Fan Ports.-To tion of the Former Article.
76. The Central Orifice of a Fan_-Again we re sume our investigation of the principles of action of the ventilating fan, and at the outset it is wise to refer to our last, by noticing that our copelustons were only arrived at by using an assumed value which we then called "the constant C," and gave it the numerical value of .6. We were careful, however to point out that . 6 was used in tien of . 65 the constant for the eena cowtracta of the constrictlon of asrrowleg of a port or oriblee through
whleh a fluid ts made to pase. The canse of the coll which a fluid ls made to pasa. The cause of the con-
traction is found in the foertia of the converging pse traction is found in the foertia of the converging pserticlee that choke the entrance of the port, and reduce
its arallable area from 1 to 65 . its arallable area from 1 to . 65 ,
Now, we did not take. 65 but . 6, abd 8ald that for reasons that we did not give then, the "coestant wai forther progrese in our Tureetigstion it is can make furtber progress in our fuveatigation it is important that we cast of the sesumption and put in its place a requite no qualificstion it the cornet ares of the pert of require no qualincation ir the courcet area of the port of to determine for two remsons, flrst, it will be seen by Fig. 117 that the ares of thls oriflee is partly covered by

Fig. 117.
the spokes of the fan wheel, the carriage or bearing, suel the uhaft as at 6,6 nod 6 and still further by the mais beat.", $8 B_{i}$ bccood, the djokes in their motion produce a whirl that atlll furtber reduces the area for the free entry of air, and the resalt is, with a port of eatry that is relatively small, and largely obstructed, the constant, 65 is "eoruetimes reduced to . $3, "$ nod this belag so, We discover that the efficiency of a fan must be favorably or unfavorably affected by the leasor or greater obstruction that occurs at the port of eatry, and ss this is the case, it becomes all the more important that we sbould be able to estimate this available ares, to enable us to calculate the ventilailing power of the fan. If we defer the consideration of the estimate of the avallable ares of the port of entry, until we have found what that ares ought th be in a the of good construction, thee, we will be better abde to make a correct determination.
77. The Three Orifices of a Fan.-There are three orifices in a fan that require attention and estimation, and these are the central orifioe of eotry, the estry at the thront of the fan, and the orisice of discharge at the dircumference of the fan.
The central oriboe of the fan ought to be as large as posaible without being made to shorten the radial leugth of the fan blades; for if the bladee are shortebed the velocity of the fan naust be increased, and then such an incrense in the diameter of the central orince becotmes a detect, or one defeet bas been substiluted for anotber, aod it is theretore clear that there are beat poralts value that we will afterward prove to be the oussame a vamely, that one square toot of apoa is the one orifice, sbould be provided for every 1300 cuble fent of
air that are to pass through the fan per minute, or if Q Is the quastity per mibute, then $\frac{Q}{1300}=A=$ the ares of the port of entry. Not masy fass ave found in which the ports nre so large, but by constructing the fan to Intake air at both sldes, the reguired ares can be proThe thront of the fan la with the length of the fasted length is equal to the breadth of the blades, and whose

rullius is equas to the radius of the central oritice of entry, see Fig. 118 , and thene C is a aection of the throat eylinder, and A and B are supposed to be the dual oes-

tral oriffices of entryof a fan that takes in air at both sides. Now if the diameters of A, B and C are equal then the ares of entry at the throat of the fan, will be equal to the areas of A and B conjotnt-
y. and then the y. nad then the
length of the throat leagth of the throat
area is equal to the areat is equal to the
radtas of the centra! ports of entry, and ports of eatry, and the fso st one side only, then the length of the throat area oan be found by di. villigg the area of the pectimal orlflee by Its perimeter, and the the leegth of the throat and the The dotted lines in Fig. 119 are bete inrodaced to Illustrate what we mean by the herm "throat aren," and it will be seen to be the analogree of the gartace of a cyinder wblch if too short, causes a conatriction, abd then the volunae of ale notering a fan can only be determined by this area, it being swaller than that of the central oriftce, of orifices, or the orifice of discharne
78 The Correct Orince for Measur-
 While this fact is bet Wbile this fact is before us let us repeat in a defosive manuse that in every case, the quastity of atr of the three orifices, that is, the central, the throst, of
the discharpe oritice and to make no mistake about it let ue call the smallest orifice d, and therefore, if the stwa of the cemtral orifioe is the least, then it is d_{4}
 mple to the case of Guibal ton where the ares of dies charge, or that unoovered by the shutter is generally sinnler in ares thas the oriffoe of enter
79. The Required Breadth of Fan Blades.-So far then we are in a position to calculate the beadth of the fan blsiles by taking for our unit of the intake arvas the assumed uamber 1,300, and relyiog on it until it is proved to be correct, let us proceed to flod the oentral and throst areas, as follows: When the required volume of the ventilation is 150,000 cuble feet of air per minute, then $\frac{150,000}{1,300}=115+8 q u a r e$ feet the areas required. It the alr entera at one side only, then the dlameter of the central oribice is $\sqrt{\frac{115}{.851}-12.1 \text { feet,oa if it has two }}$ central orifices their dlameters will be $\sqrt{\frac{115}{7854 \times 2}}=$ 856 feet.
Now in the finst case for a single orifice the breadth of the blates should be as follow: $\frac{115}{12.1 \times 3.1416}=8.085$ feet, and in the second case the breadth of the blades for two contral ortices shonld be $\frac{115}{8.56) \times 8.1416}=4.226$ feet.

No doubt can be entertalned concerning these calculations, but our great sim just bow is to forewarn and forearm our readers about the poaslbility of the asea in the throat of a far being the smallest, and, therefore, the gauge by which quantities passing through the fan are to be messured.
No advantage is gained by making the srea of the throat greater than that of the costral intake, bot a great ailvantage is gained by producing a large central aren of jutake with a minimum radius, because this provision does bot reduce the radial lengrt of the blades as blades lo B. B and $C B$. of the blades ts seen to bee equal to $A B$ and $O D$. The diameters of the orifices of entry are seen to be equal to A Cand $B D$.
80. The Radial Length of Fan Blades.-The thing, however, of the greatest importanoe is this figure is the radial length of the blades, nod the scale that determines this proportion is derived from the mine realstance, anc, therefore, to secure the beat results with the

Fia. 121.
lowest peripheral velocity, we flod that for every one pound on the aquare foot of mine rrasistance, at least eis inches should be given to the radial leogth of the fan blades, and this fact, couptrid uith that of the area of
the orfices of entry, establishess the negative and poaltive conclusions, that if the oriflees of entry are too
small to obtain a glewn volunse of air, the fan minst rue faster to gonerate within itself a greater depression, and It the blades are too short, theu the fan must run faster to make the required depressive. Here, then, we can no louger doubt the proptrety of large orifices of entry. no louger douk the that sbort blates in a fan give a
and we forther cot
short pootive column, larger we make the area of intake and the longer we make the blades, the lower nill be tbe reriphetal velocity at which the fan will do its work. Fig. 121 Is an illuatratioe, partly in plan abd jartly tu perspective, of a ventilating fan cotstructed to intake nir at both aldes, as at P and E. Tro of the blates are marked
B asd B. The fan is covered with a case C, built fo the an drift D and $\|$. A glance at the figare showat obch he advantage of the double entry and the large blades, but bere the word large suggests the possibility of something betug overlarge, and as nssumptions are of little ralue unless they can be afterward sustained, let us try to discover wben the bladeof a fan are over large, and when they are too small, and thus rewove the amblgulty from the assumed numbee 1300, out of which we determined the area of the central and throat ports of entry, abd the breadtb of tbe hlades. First thee to make the blsdes too large, let us uso two large fans to do the work of oee, the mine resistance beigg the same for two ns for one. This belig the case, two fans mould not, and could not in any may
increase the volume or quasntity of air circulating in the increase the volume or quantity of air circulating in the
mine, heranse to increake the quantity, the velo-ity, the mine, becanse to increase the quastity, the velocity, the resistance, and the pressure must all be tnereased, and you cannot incrense the one without incrensing the other. Again as the blade surface is locreased the veloAty of the tans will bee refuced, and the question arises, is 80 revelution per mppose that the velocity of one fan ise revolutions per nikute, nad that with that speed the total difference of potential between the ejected air and the depreasion io the squate foot, the mibe rekistance betng 10 pounds per quark foot Now if the two hans to do the same quastity at the same velacity in the milue urill stilt be 10 poubda per square foot, abl all the two fans can do, ie, poureds per square foot, abd all the two fans cand do, ie,
the reduction by the two fans will be as ${ }_{2} \times{ }^{10} \times \frac{1}{4} \times 3$
. .5, therefore, with the two tans \mathcal{T} would ajpur to ther and serious resistances atias is the rubning of the two fans.

Now on the face of there appeses to bea real advantage galned br practicaily doubilng the area of the blated and that of the ports of entry, because obly half of the air ls entering each of the two fans, that prevtously pasged through the port of entry abd along the blades of one fank and further, if no new resistance interfered. fan mas 80 revolutions per minute, $\quad 10.35 \times 80 \ldots$ revolutions per minute, and we now gee that by stlil further tincreasing the number of fans, or the sizes of the ports and blades of ove tan, the difference betweed T abd N might toe reduced almost to nothing. But another enemy of theee subtle relinements steps is and calls halt II, and that is the "state of linatable equilibrlum.
81. The Loss by Wave Movements in Fans.With large ports of entry und diselange, the differeoce between T and M becomes very small because the ali enters and lesves the fan or faus at a very low velocity and let us suppose by way of Illabtration that we have six fans doling the work of one. Now the mine resistance would be the same for stx as for one fan, therpfore if ode fan made 80 revolutions per minute, each of the six would have to make at lesst 70 revolutlons per minute to sustain the regulred depretelon. It is true that only one slxth of the alr would pass through one of the six fans, that would pass through the fan that did the what the six faos would coojolutly to no more work tha that the six fats woual coojoluty do bo wore woik than
the single fan: but this is not to, because the differedes between T sid M has become less than one poued on the square foot, inatead of three pounds as before an the result is the semallest variation in the velocitles of the engives produces wave motions that conslderably tncrease the mork to be done
82. The Loss of Encrgy Due to Intermittent Action.- Whes resistance has to be overeome by inteimittent efforts, the loes of effective enerigy is considit iable, and to explsis fully mbat me mean Fig. 12z is

Fic. 122.

introduced. A and B are two rowers who apply their energy interailteatly with their oars: now the resistence that a boat moents with it pregreselug through water varies as tbe culfo of the volocities and therefore the velocithea vary as the cube roots of the powera, asd It is now our business to show that a force continually applied. propels a boat at a greater mean velocity than the same force would do applised internittently, for the followitog reasons that will be given in proportionate,
lusteas of actual valuex. Suppose then arower applies
for the propulsion of his bast a power of 125 units of mork every alternate second of time. We see that during one second 125 units are applied, while during the pext secoud the coumentum of the boat abd its loal is cosod But if ${ }^{125}-625$ units of work are applied continuously iosteat of 125 istermittently, the mean velocity will be $\mathrm{f} 62.0=4$ beatly. Or while a continuous power will mittently will mily porpel it 2.5 milles. Now mhat is true of the boat is also true of the fan, for the power prodocing mine ventilation vaties as the cuber of the whocities, abd as a jetking pulse, of wave motion takes place in the air stream flowing through a fan in which Abe oribee of discharge is too large, and therefore the difference betwees T aud M is too ewall, we bsve a cause of istermittent action as in the boat. All milne currests nove pulsatively, and very matkedly 80 , when the rebstance is considerable, and when therefore the difference of potential already reterred to ts swall, the jerky pulsatioss of the mine current enter the fan and react on tbe emgines, and the result it, buch a fan, as an opee one with a indy darge area of the latarel, givers out a small percentage of emiectery. The loas of energy in the fan often arises from another cause, as mbere the blades are too short, and thetefore the tan has to bee rut at a ingh velocity to obtais the required difeerence of potenfial, abd the resalt is the velocity of the fan is contantly varying as the engine passes through full crank. and the dead points
It whe to moudy
It was to remedy this very pronoubced wave motion he the Gubbal fas, that the Walker shutter wha introduced. The wave movements in a tan sometimes synbeard the loud moaning, or roarigg sound of a tan at the Leteh Colliery near Moorthey, County Durham, Euglasa, a mille away
83. The Best Dimensions for Ventilating Fans -To secure good results in a fau then, the blades must oe of sulfisent length and breadth to prevent the loss due to wave motion: and to wase the differebce between
T and M sumiciectly large, the aresk of the orifices of I and M sumiciectly large, the aress of the orinces of
evitry and discharge munt bo made soch a size that they evily abd discharge wuat bo tande soch a size that they Will on the obe band reduce reststabce, and yet on the differ boed not posk nat bol lo differecos of potentisi will bot bo sumbeat to prevent the instanimy of equibe fum the central port of entry
the best results then are for the $1900-A$. Here Q is the required veotilation in cubis feet per misute, 1300 a constaut, and $A=$ the area hit equare feet, For the throat of the fan $1800-A$, and for the port of discharge $\underset{\text { ation }}{Q}=a$.
To find the breadith of the blades of a tan, divide $\frac{1}{200}$ by the circumferesce or perimeter of the centra port of entry and the quotient will be the required maith of the blades correetly
Fig. 129 is given to clearly establish in the mind of

Fis. 123.
the reader the characteristie depressions and the pressur of discharge as exemplified in the netion of the fan Dirst. The depreanion in the fan drift measuged tos th gaage D.
second. The depression to the fan as shown by the Gauge The preseure of discharge so indicated by the gange $A P$
Now to undenstand the valaes of the three measuremests, call the depression for tajection ' and the compressions for ejection e. then $M-i+e-T$, or pmesure. Whipn the port of eotry is equal in ama to the port of llecharge, then the depreqsion below M to equal to the compression nbove the atmospherec, and then the sir pasaing through then fan moses pulatityels atd when the ares of diacharmo is prenter thas that of the futake as in the open rumbing fan, then the air flowloge through the fan thances tumultuously and maatea the energy that should do useful work. Forther, when e is at a blecher premenue atove the atmoephem than 6 is at in pressure below M, then the fan does its work with ecosomy.

84 The Laws of the Areas of the Pan Ports. hat that the air pasaling up the upeast sbatt s mill never ven thatle of the mas to fans, were made to eshanat out of the same drift, unleas their velocity was such sa to first balance the mine re aistance, which might bee say 10 pousis per Bquare foot the veloclty of the mise current woald reluce, and altbough i and e, would both be reluced, because the united areas of the ports of eutry mould conjointly make

Fres. 194.
Farge one, and the united areas of the ports of ejection nould do the same, yet the lase of enengy would be conldiernale, as the result of the uaited port of diseharge cing oeer harge, node being too small to cbeek the inter mittent How through the taus- It dores soeng to be a paradox that two fans ghouk mike nearly the same number of rerolutions as a slingle one, and yet exhaust no more air from the mive, and yet it is so, aud we bave we bave found:
Before leavine this tgure iet us notice another interosting festure in it, bamely, the maler gange conventhons as $D G$, that io made to measure directy tsedepreastion io be fas drim, ani so that measures the deplensson due o the mibe only. A pipe from $S G$ is carried 30 or 30 eet down the sbaft, abd alwayg gived a littielesb readios than $D G$.
85. To Calculate the Dinmeter of a Fan.-The diameters of fans for exhausting certain volumes of air dimenslons furriehed by the rule are rellable deductiona. Let $Q=$ the ventilation in eubie feet per minute, then $\sqrt{\frac{Q}{200}}-D . \quad D$ being the diameter. Suppose thee we require a fan for a quantlty of 200,000 cuble feet of sir per misute, then $\int \frac{200,000}{200}-31.16$ teet the diameter of the fan required.
Or the rale is, divide the required quantity in cabic feet per minute by 200 , and the square root of the motient is the diameter of the fan required.
86. Recapitulation of Facts - 1. Obstructions in front of the orifice of entry reduce the coustant . 65 .
2. There are three ports in a fas, bawely, the central, the thront aud the port of diecharge, and the scaallest of theso must be taken for calculations.
3. To lind the volume of air passiag throngh a fan, multiply the smailest of the three ports in square feot, by the calculated velocity of the air in feet per malsute, and the result will be the volume of the reatilation in cubie feet of air per minate. Note carefully, the orifio thisen renint lae than luast of the three.
4. To thad the misimam muinal lepgth of the bisies of pound an 6 inches in the radial leogth, for every ance. It possible. 7 ivebee per pound of resistance is best, because it gives a lower peripheral velocity. suppoee the resistance to be 10 pounds per square foot,
then $10 \times 6=60$ ibches, or Bive feet, the required radial length of the blades.
Dies of ates in syuse feet of the central otifice or ors of air is cuble fect per misutes, $\underset{1,300}{Q}-A=$ area of port
6. The ares in syuare feet of the cyliodrieal eatry in
the throat of the fan should be ${ }_{1,300}-A=$ area of the throst.

Tbe maximum area of the port or perts of discharge should tos $\frac{8}{2 \theta 0}=A$.
8. The dinmeter requited for a fin should be $\sqrt{\frac{Q}{Q 0}}=b$.
3. The lose that arises when a ventllathing force la applled intermittently ts the result of wave motion. 10. The small sdrantage obtaloed by setting two or mainitug the came for an uealtered velocity.
87. Recapitulation of the Former Article.First, to obtain T, find the dismeter of gyration by the following metbod: Add to the dlameter of the central port of entry the radial length of the blades, and the
sum ta the requifed diameter of gyration. Supposs the siameter of the central port of entry is 10 feet and the radial length of the blades is 5 feet, then $10+5=15$. To find the velocity of the center of gyration in feet per second, and also T, when the velocity, dismeter, arens of the porta and lengths of the fan bladea are given. $W=0.066 \times B, B$ belng the length of the fan bindes.

$e=$ the velocity to feet per secoo

$g=$ the gravitation nuit 82.16 .
$r=$ the total pressure in pounds per square foot of the tangential force produced by the tan. Then $\frac{5}{81416}=T$. Ao as example, let the diameter of the fan be 20 feet, the length of the blades 5 feet and the namber of revolutions per minute io. Now, to generate s constant that will ever after snve time and trouble, let fore every mowrring factor, and then we can proceed at once with the reduction, us
$15 \times c 3.1416 \times 70 \times 15 \times c 3.1416 \times 20 \times 5 \times c .0566$ $=r$.
Now the constants in the order of thelr places in the dividend and divieor are

$3.1416 \times 3.1416 \times .0566$

$=00000208$
The true result is .0000000745588 , therefore, . 00000 en is a little too much, bat in this form it is ensy to re vember. Now to flod T, let
$B=$ the leogth of the blades in feet,
$A=$ the revolutions per miloute:
$\underset{C}{D}=$ the diamoter of gyration in feet:
T $=$ the 00000206.
Then $B A^{\prime} D^{\prime} C=T$, ur $B A^{2} D^{F} \times .90000008=T$ and is the case suggested $5 \times 15^{2} \times 70^{\circ} \times .00000008=$ pressure per square foot above the depression ta the fan drift.
second. To flind the relocity in feet per seoond of the air colaciog of leaving a fas, the number $1,810,000$ was iotroduced to expedite the eskculations, and it why shown fost per second of air rusbing into a vourume and it mas farther sbown that the equares of all other veloetties are in the same proportions to $1,800,000$, as the pressures that generate them. For exarople, soppose the pressure setting air in motion is equal to 4 pousds per square foot, and if in this case there are no qualifyivg factors that interfere, like the depresalon in the tan drift, or the still greater depression in the fan itself, then the squaree of the veloelties wil be directly in proportion, ss 4, the prounds per equare foot of the atmosphere,
then 2120

- Sisct.2264. This mesus
that a pressure of 4 pourds per square foot sets aif in wothon with a velocity, whome 8 quare is 32902804 , of with a velocity that is equal to ${ }_{\mathrm{v}} 3390.2264=52.977$ feet it would
of woald be noticed in our last lesson that the equiva. Instead of 2120 . The reases of this is the 10 pounds added to balaice a slight varlation with rugued to the eenter of gyration, and thus prevent ia very intricate cal. vulation that
Third, it was shows that the ruash of alr into the ori Boo of entry of an exhaust fan, could be caleulated by the expression $\frac{(T-M) \times 1,800,000}{(\Omega 130+M)}$
expression for a blowing fan was $(T-M) \times 1,800,000$
$=r^{2}$. Fartber it was shown, that the velocity in feet per second multiplied by 60 for feet per minate, and that product multiplied by the srea of the orifice of entry in
aquare feet, gave the cutide feet per minute passing aquare feet, gave
through the tan.
Foorth, it was explained that the density of alr varied isversely as the temperature, ased direetly as the pressequal to the weight of air discharged by it, but the velocily of the nir mitering a fan sas the velocity of that discharged and in the case of an exhaust, the squares of the velocities were io the proportion of $2130+M^{\text {and }}$ for a blowing fan $2130+M$
[to be cosmineen.]

CHEMISTRY OF MINING.

68. Electric Modes of Action.- Electrte enengy is characterized by four phases that are known as posi-
tive, negative, slatio, and dynamic electricity, and all the manifestations of this foree are the resultants of the cobjotned action of all the phases. Por example, positive electricity is attracted by the negative planee, and therefore when the statio poeitive particle is attracted by the negative atatio particle, tbeir approach becomes a dynamie mantfestation. Static electricity is the mode or phase of the force that takes the form of potentisl or atatic energy, and may becomo dyuamio of hisetic, of that control it, for example. Fig. 111 is an applied illus cration of what-is meant, and here the monkey or dron weight of the pile driver is raised by a chain subject to a statio strain equal to the gravity of the monkeyweight In the weight itself coergy is in the courso of being otored up potentinally during the period of lifung. and when the weight reaches its bighest elevation it is detached from the chain by being ubfastened automatic-
ally,when it descends as a dynamic force or the medlum of kivetio evergy. If a weight falls it is capable
exertiog great foree through a acmall distance, but the foo pounds of energy developed never exceed what is doe to traction.
Euergy in ert, and for that reason foot poathes becorae the force isconsumed by its exetion tbrough one iseh of ample, it 100 pounds fall from an elers. thoe of 100 Reet then the eneagy the tooving mase is equal pounds, that is oo say this falllog booly can cixert on mean
force of 10.000 poundsthrough the space of
poe foot, or a force of 10000 $\times 12=120,000$
poandsthrough he space of force of 1 , or a torce of 120000
$\times 8=260,000$ poundsthwough the rpace of as poch, or a foren of 120,000 $100=12,000$, through the one hundreth of an loch. Wesme then that the potice stored up in a twoving mane could be futinitely maltiticity of mather within the range of molecular attraction Static electrictly is ooly abother mode of inert force and in every rapect is the reault of the operation of the same mechmuteal laws, and its mode of action should therefore be known, if we wish to acquire a usefal knowledge of electrical appliances; tor example, io the transenlasion of electrical energy for the purpose of dolng work in mines, we are doing very well, if 50 pet cent. of the horse power of the ateans euggine driving the may thencfore inquire what has become of the other bon per oent, that is lose, and the answer is, it hos beon disalpated as hest developed by the realstance produced by statie induction, for you cannot ernd a current of fywnmie and yet intermittent or pulsating electricity through a wire without starting and gtopplag the yochronk motioes of the constituent molecales, the result is, the manifeatation of an opposing imert force. If you do not understand the laws of statie charge, you will try to do what is limpossible, that is to recover the lost 50 pur oeat, of work, and If you under-tand the reslatance due to static charge you will sevk to improve electric geberators by reduclog the intermisatons in the bofucing impulses, so as to minimize the loas dae to molecular inertia. A linsh or electrie clisebarge of static electricity from a cloud will split a tree, ansl rend and shatter the nobleat artificial structures, but it is after all, only an example of a relatively simall fiert force, exerted through a samall distance such as the
expanaion of the sap in the vesicles of the wool of the expansion of the sap in the vesicles of the woot of the
tree, snd the expansion of the metal bibaling, or thes tree, snd the expansion of the metal hibding, of thes
molsture in the coortar in the joints of the stoneg of a Wolsture in the tuorlar in the joints of the stones of a
balldiug, of even in the etones tbemselves. Fig. 112

Is given to explain some of the peculiaritics of energy mining engloears in the future whern plectrion appli ances will be ased on every hand. For example, bere are some balls mounted st the ends of radlal arma attached to a revolving shaft, to illustrate different electric voltagea or pressures and the corelated conlombs or mosser.
The particle A, may then be taken as obe ampore, and its velocity may be such as to develop one joule of afoot, an lach or leas, or more, and what is said of A may be said of B, C, D, ete., with the correction in view that ebergy stored in six masses would be six times greater than that stored in one, and, therefore, the energy stored in the wheel R, would be as many times
beavier than A. Here, however, is the puzzle. When these maseve altale a statlobsry velocity they cense to nccumulate energy, and they cannot give out ever 80 small a fruction of this energy without losing a portion of their velocity, so that for the balls and the wheel to Lake in and give out energe, their velocity must beaterintely accelesated and retarced, or thent: and this pecaliarity chamacterizee all electrical actions.
For example yon cannot beod an electric current through a cabje, and the molecules of the wire remain at rest; and that if the moleccales have a uniform rotary motion. ranom [it energy; therelore, the molecules to con-
inn in tha trunsmiaston must have an alternatevibration, sad such is actually the case. Indeed the curreat is cenerated by The alteruate the poles of the armature of the 113 is to Fig. 18 is to lllustrate the cari-
ous man
mal. embtatious of sintiouty mod such as take blace in an eleotric
ductor.
llere a chaio prosaing over a polley is used polutatiefors us. Firat we us. Firat we
have in thus-
tration tration of unlform velocity,
the debending weight V does
 if falling, because the energy stored in every link of the chasis is disaipated when its taotion is arrested on the slab O, and the energy of Y la balinced by gettiog in motlon the lisks in suceession on lenving the slab, and tbe loss of energy dow to the stopping and starting of the links is the anslogue of that waste of electrical energey, that is measured by obms, abd is shown in a graphe tasumer by the piles of links at rest on the sisb out drawing attentios to the gerent fact in relation to electric condactors, namely, they always consiat of metals or their alloys, or simple bodies such a carbon, in which the vibrating or alternate movements of the molecules, catl synchrouize as electric waves.

To He costisueib.

MINING METHODS.

The Inertia of Moving Air.-The Pressure and Velocities of Air Currents.- Inertia of Air in the Shafts of Mines.-Measuring the Force of the Wind,-The Pr

66. The Inertia of Moving Air.-Nothing is move important in the atudy of mintig subjects than the acquisition of appited or practical koowledere in relation to the lawn of air in motion, and we theretore now propote to 80 treat the subject as to make the numerical values we onght to know, clear and istelligible.
The force required to make aif move or to arreet ita Trotion, varies as the aquares of the current welocities. That hs, if you double the aguare of the velocity you woquite dombes the pressure to produce that resalt, and perhapis the bost explanation will be found in applicate examples. First then, the square of the velocity of air rosbueg tuto s vacuuis, is equal to $1,800,000$, or it may
be said that air nusbes into a vacuam with a velocity of 1341.6411 feet per secoud.

Now as the pressures vary as the squares of the velooIties of moving sir currents, it is clear that if we knew the presaure per equare foot at erhich air at ntmospberit presaure ruahea lato a vacuum, we could with differenc pressures find the squares of the velocities colacident to to these plessures.
For example, the pressure of the atmosphere in pounds per square foot is 2120 , and with the aid of a $1,800,000$ andige of the laws of ebergy and the valuee lometia of and 2120 , we ean find the pressure due to the are gion moving at any velocity, or having the
67. The Presaures and Velocities of Air Cur rents-Suppose the prossure per kliare fuot of an sir curreut is eyoal to s pounds, what is the equare of the velocity that geoerster thid pressare? The following simple statement will bes suflicient to establish the concluston by convctior, tor he clear, the 8 pounds are obly a cmasit froction of the 2120 poondts and tast 2120 will be in the ssme proportion to 8 , that $1,800,000$ is to the square of the required velocity, then $\frac{8}{2120}$
$=6702.4516$ the required square, and the velocity in
feet per seocond will therefore be, $6792.4516=82.4166$. We might ask the question, what presaure per equare toot will set air in motion at the rate of 52.41 bif foet pel ecobd Now we kiow that the prossures vary, not as ibe velocituex, but as the squares of the relocities in feet
 $6792.4516 \times 2130=8$ nearly, or as the dectmal portion $1.800,000$
of the bumber $65: 8,4316$ in not finite, the result appesrs
wery senall fraction under its ralue
68. Inertis of Air in the Sharts of Mines.-In the upenst shaft of a mine vestisted with a fas many experi
menta can be tried to demonstrate the lams of coercr in meots can be tried to demonstrate the laws of energy in of the fact Fig. 115 is introduced. Now, let the roubd

Fio. 115

diac of wood Ω be two feet in diameter, and let it and the cords c, c, c, c, and the weight if welgh all together 10 lts.
From the standpolnt of onlibary obeervation, say the fying of a kite, 10 pounds seoms a grent weight but in the opee alr the carrents we most oommonly observe are sumblel to the plane of the hortwo and therefore the ilrection of their motion is not tavorable for lifting velghts, hut in the case before us, the current has is vertical vpmard motion, and therefore, advantage can be taken of the etovgy of this current for liftiog the weight in question. First then, let us find the area of the disc in square feet and theo from this number of aquare feet we will be sble to find the weight per syuare foot to be lifted. The disk is 2 foet in diameter, then, $92 \times .7854=$ 3.1416 square feet and the weight to be lifted per square toot is $\frac{10}{3.1416}=3.183$ pounds.
The velocity of the alr in feet per second to lift thla welght then is $\sqrt{\frac{8 \cdot 183}{2120} \times 1,800,000}=52$ nestly.
69. Mesauring the force of the wind.-Fig. 1116 a to illustrate the deflectlon of a board whose length CA is 24 imches, and breadth 18 lucbets, Bod
amd total $\mathrm{Fe}+\mathrm{g} \mathrm{g} \mathrm{t}$ pounds. This figure furzishes a good exsmple for the traising with questhen rolating to the inertio of flatios to the inertia of fluldis, auprooes that the conditiosis of the problem are is addlitlon to those already given. that the board is by the force of the wind blown 30 out of plumb, and that we o
require the velocity of the air that produoed this deflestion.
First find the welght per square foot of the board, thus ${ }^{2 \times 15}=$

49857 of a pround. Sceond as the bosnil edge C, the wisd will only lift half lis weight,

Fig. 116

because the centre of eravity G is situated midmay be tween C and A, tberefore the weight lifted by the wlud will only be $42407=-214285$ of a pousd.

Third the frection of the welght lifeed by the wind, will be directly proportionate to the sion of the angle
$A C B$, then the force of the wind per equare foot vee fical will be, Sive $30^{\circ} \times 212285$.
Fourth, the length of the surface on which the wind implegee will be proportionate, not to $C A$ but to the cosine of the angle A C B, the the pressure deflectiog the bond per squase foot vertical, will be
$\operatorname{Sin} 30^{\circ} \times 214285$ Cos. 30°
$=$ the pressure required, but $\frac{\text { Sle }}{\text { Cos }}=$ Tan, thee the $\mathrm{Tan}^{30} 30$ is, 5773503 and the pressure per square foot is $21+235 \times .5773808=19372$ of a pound, and the velocity of the air carrent that wilt
defect a board 2 feet long and 1.5 feet broad and welgh$\operatorname{lig} 7$ poands, from the plumb line, through an angle of 30^{\prime}, must be $\sqrt{\frac{12373 \times 1,800,000}{2120}}$
ood.
It is not vecessary that the nagle through whteh the board is deflected from the plumb line should bo known. because if the horisontal distance through which the board is moved is found to be 12 inches as from A to B, and the leugth of the rertical or conine line $C B$ is found to messure 30.7846 inches, then the tangent can be found at once, as $\frac{12}{20.7816}=.5773503$. All we have to do is to multiply half of the weigbt of the boatd by this tangent and then proceed to flom the square of the velocity as already explained.
Suppose the leugth of the vertical lise $C B$ is 12 inches and the length of the horizontal line $A B$ is 90.7546 inches. and the medgbt and dimeusions of the deflected boned nre as before, then the tangent of the vertical angle $A C B$ is $\frac{\mathrm{Sim} .}{\text { Cosin }}-\frac{90.7846}{12}-1.29200$, and we fibd the preasare per equare foot of the wiod that mould thus deffect the boand is $, 214285 \times 1,53305=$
3 Ninkes pound, nnd the required velocity is therefore $13711523 \times 1.800,000=$

2120

70. The Presaure of the Wind-Fig, 117 is ans itlustration that is co-related to prifociple with the other
examples almeady given, and the nim of the figure is to

Fia. 117.
show how the votume of bir passing thtough a regulator masy be found with the help of the water gauge. Suppose then that the regulator shintter is open to the excut, that if ubcovers an area of 2 square leet, and that the difference in preasute between one she and the other of the regulator stopping is equal to oue ioct of minnte will phes through this regulator?
To solve this problem, first flad the velocity in feot per second that would geberste a pressure of 5.2 pounds
on the square foot, as $\sqrt{\frac{5.2 \times 1,800,000}{2120}}=66.446$, the
velocity in feet per second; second, the volume of air passing through the regulator can be found by mults. plying the velocity per mhute by the sarea ubcovered
 coblic fort of alr per minute passing through the openubie in thls regulator shutter
71. Regulator Experimenta. To undecstabd the principle of action of the regulator let us try an experiprinciple of action of the rwgulator let us try an expoributter umeorens different ames for the paseage of differ hutter uncovers ditterent atcess for the passage of difers scoleu values for the aliway is which the regulator stopplag is fiseal.

1. The leagth of ot the airway is 500 sands.
2. The section of the siruay is 6 by 10 fect.

क. The volume of air posstigg tatore the regulator -topptag was interposel wus 36,000 cuble feet pers minute.
4. The difference of pressure or the difference of potestial between the opposite eods of the airmay is equal 01 inch of water gaste or 6.2 pounde prepare on the quare foot.
5. The volume of air passing through the ubcover ares of the regralator is 3,000 culife feet per minste
b. The vertical depth of the shutter is 16 inches Exjeritnent one. Find how far opos the regulat shutter must ber for the pasange of this quantity.
Pirst notice that if 3,600 eablic feet phes through the shatter they also pass through the siewsy, and will will bee proportionste to ther squares of the quantities, and it follows that the difference of potential for the
opposite sides of the regulator stopping will pow be as $5.2-\binom{5.2 \times 3,600}{36,000}=3.2-\left(\frac{5.2 \times 1}{100}\right)=5.148$ poubds
Secoed, potiee that the veloclty throagh the regulator must he $\int 0.148 \times 1,800,000$ \qquad 66.113 feet per second, 2129
or per minate 3966.78 feet, and allowing , 65 for the reva contracta, the square feet in the oriflee of the regu. Intor will be $\frac{3,600}{65}$
$.65 \times 3000.78$ will be $\frac{1.3962 \times 144}{16}-12.566$ inches.

Experiment second. Find how far the regulator sbutter should be opes for the passage of 30,000 cuble feet of air per minute, all the dimensions belog the same as betore. Then.
$5.2-\left(5.2 \times \frac{30,000}{36,000}\right)-5.2-\left(5.2 \times \frac{25}{81}\right)-3.6$
thee, $\sqrt{\frac{3.6}{2120}} \times 1.900,000=55.2565$, the velocity in feet -120 opening of the regulator then, is equal to
(6) $\times 5217.19 \times 16-83.481$ inches.

Experiment three. Let the dimensions be the ssow as befores escept thase of the sbutter, because the result late for a quantity of io,000 eabic foet of air pseaing through the regulator per minute, then,
$5.2-\left(5.2 \times \frac{30,000^{7}}{36,000^{2}}\right)-5.2-\left(5.2 \times \begin{array}{l}25 \\ 36\end{array}\right)-$
1.580 pounds, then, the velocity it feet per second must be as $\left.\sqrt{\frac{1.309}{2120}} \times 1,400,000\right)=36.781$, and the velocity per
 Experiment four. Contisue the same dimensions, and let the volume passing through the regulator be 35,000 cuble fect of air per minate, then,

$$
5.2-\left(5.2 \times \begin{array}{l}
35,000 \\
36,000^{2}
\end{array}\right)-5.2-\left(5.2 \times \frac{1295}{1296}\right)=
$$ 285 pounds, abd the velocity in feet per secood will be $\sqrt{305} \times 1,800,000=15.556$, and the velocily per minate \rangle_{2130}

is 985.35 , them, the opening required in this regralator is 35,000
$.65 \times 1053.35=57.602$ eyuare feet
By these four experiments with the regulator, we learn the troe principles of its mode of action, namely, the difuruuce of potential on the opposite sides of the P is the difference of potential for the entire sirway, sod Q is the quantity through the unobotructed airway, sul q is the quantlity passing through the regulator, then $P-\left(\begin{array}{ll}P & Q^{7} \\ g^{1}\end{array}\right)=p$, for in this case \bar{F} is the differeoce of potentisl at the regulator. It is clear then, that as the velocity in tbe alrway increseed, the difference of potestion of the repriator valshes, as in esaispie constric we soe, just as 35,000 is nearly 35,000 so 57 fors agune we sce, just as 25,000 is nearly 85,000 so 07 .firs $8 q u a r e$ The moet important leseane learned by these
meats are first, 8 we have fust geen, that the reguler measishes into the equivalent oriflot eroed, thet the volume of air possaing through in regalator cens co he the rectly calculated unlews we can finat determine the dit ferebce of potential, or the difference of current preeatire of the opposite aldes of the regulator stopping.
[TO HE cosfisinen.]

Pitch Glaciers.

Protessor W. J. Sollas recently gave an addrees on "Pitch Gisciets or Poissiers," with illustrationa of glacier movements, by the aid of lantern slides. He satd that pitch and glacier fee strikingly rebernble ench other in behaving as nolids or liquiles accondigg to their manner of treatment. On the sudden application of foree they are very brittle, but behave as ftulds when subjected to gradual pull and pressure. Hence It la posslble to exuploy pitch to the construction of working buodels of glaciets, in order to get an lasigbt into those Internal movecrents of actual glaciers which are beyond the ruach of direct observation. The study of glacial deposits has shown that many erratic boudders were transported during the glaclal period from lowet to bigher levels hundreds of feet, and lefe stranited on the thanks of mosantains. This standing diffealty is the Wny of physical theories of glacier movement has been explained by the stody of pitch models, by meand of
which it is found that the lowner layers of material, in which it is fonod that the lower layers of material, in
 current. The infeccice, which la conkimeed by satural facts, is that similar movements would cortainly take place in actual glaclers. Further, a glacier sometimes over-rides its terminal witbout disturbing it; and in owe experiment this was exemplined, for pitch flowed for several monthe ower a nidge of loose material, mithout
enrryligg a particle of it away. - The Collorry Givardian.

The New York, New Haven \& Hartfond Itallioad Comjang, New Haveu, Coun, have recently added two more automatie rallwass of the Hont type (C, If. Hunt Compang, Now lons City, manufacturers) to their aleady complete sysitem.

Mr. F, C. VanDuzen, late superintendent of the Stewart Iron Co's, plast at Unfontowe, Pa, has been appointed general masnager of the Croger Coal and Coliu Co., at Eakhorn, Weat Va.

Miscellaneous

THE SUN'S HEAT

 source of light nai warmith, lat even of life sisult anid the
alvances of moders science ever tebil to tring before tha
 wilb which it poure forth its radiant trenures.
An intelliged gardener once ronsoned that the kan could not be a bot alowisg body. He sabl
"It the sus were a souree of hest, then the eloser 500 ap-
 you nre approaching nearer to the sun all she thme, but, as evergbody knows iastobl of teeligg hoter and hoter as you ascend, you are tecoming stendity colder asd colder. In
fact, when you reach in vertain beight, you wil dau gourself surrousided by perpetasi boe nud soci
improbably the fropen to death when

 tender plasth into his grienh osen in Novemorer How does
that peeserse them thromet the wistor? How is it that even
 protect plants from frost? I explatined to thtm that the glass
awta an a veritable trap for the sulpoms it leta them fass in. bot it will got let them ferape. Tbe temperntare withis the
 warmith is maintained. The dwelers on this earth live in
what is equivalent, in thas respect, to a groentionsee Tbere
 phere extends to we the shme protection which the glase
does to the plants in the greenhouer The as lets the sum
tesms throngh to the earit. hent down here to make us comfortables. Whyn jou climbt to the top of shigh mountis you posis through a large purt of
the air. This is the reason of you yoel warmer on the sur-
tara of the farth thas you do oo the top of a bigh moustain. face of the farth thas you do oo the top of a high moustain.
If, however,

 mensuring as it does k,060 miles is blameter; 3 et if the esarth
 the grast ort. of dny may be obtainoll in this why. Think
the moon. the queen of the might, whleh eifcles moothi arount tour heurvas, pursaing, as she does, is majestic track
at a distance of 240,00 miles from the varith. Yet the sus is
so so wast that if it were a bollow loll, anit if the esarth Frefe
placed at the ceatre of that ball, the moon could revolve in be orbie which it now follows, and still be entirely terloen For every acre on the thas 10, co0 wares on the sarlace of the great luminary. Erery
 rents of hent. It his indeed been estimated that if sthe frot
which is inceosantly flowing through any single aquane foct

 Would seem very presumptuous for us to scume that the
grent sum has come into existence solely for the luenelt of poor humanity. The beat and light daily livished by that orb
of ibcomparafile aplendor would sumice to warm abd illomi-
 earth.
What shemil wiethin of the prulene of aman whe, bav.
 $\$ 20,000,000$, vent one ovst of that rast sum usefally and di-
sipated every other cont and every other dolisr of his gigantic uesith in mere aimiesa extravaprace? This would, however,
appear to te the way is which the san manage its affairs, if appear to tee the why is which the san mangeite affairs, if
we are to suppoen that sll the solar hest is wated save that misute framifon which is received by the carth. Out of every
twenty million tollarn worth of hest issuing from the elo twenty million dollars worth of hest issuing from the glo-
rious orb of day, we on this earth larely secure the valse of one siagle cent, and all but that insignificast trifte seems to be utteriy sousudered. We may say is certainly is squand-
ered so far so humaity is concerned. No doube there are esed so far su humavity is concerned. No douke there are
certain other plasets beoides the earth and they will revelve
quantitics of heat co the estent of s few oents more. It mu-t, quantitis of hat to the estent of s few oents more. It must, tion groves off substastally untaxed fito space, and what may there become of it science is analide to tell.
And bou for the great question as to
And sow for the great question as to how the supply of
beat is rustained so as to permit the orb of day ts opplibue
 iniest the pecensary supplies of wood or coal cas be duly provided. The workman knows that the devouring blast turnace requires to the stoked incessantly Fith frosh fuel How, then, comes it that is furnace, so mort more stupedd ous than any terrestrial furaste, cast continue to pour forth
in perenadal abundsice its amsing stores of brat Fithout in pereowid abundance its amazing stores of beat withoui Langher, who his done so mach to extend our knowiedge of the greas orb of heaven, bss saggested a meehod of illustrnt
ing the quantity of fuel whinb woold te required, if indend ing the quantity of fuel whisb woold te required, if indend it
were by soccessive additions of funl that the sun's Deat hail to were by succe
Suppose that we extracted from the earth every ton of con it possesses in every ishand abd in every continent, asd that of this earth for vesturies, wece to be accamulapply in obe stupesdous pile nad that an army of stokers were enployed to
throw this eoal into the great folar furnace. How long hrow this eoal into the great solar furnace. How long,
think yous, would so gigantic a mase of fuel maintain the
 eubernte ecientitfe fact when I say that acontikernation uraice hotruyel uvery partiche of coal contained is this earith would ungrateful space in the tenth jart of every single seconil. During the lew minutes that the reaber has been occupted
over theee lines a quantity of heat which it many thowands
 fispersed asd totally lost to the enn
As the sua shines to day on the earth, so it shone yesterday; to it shone in the earliest dnwn of history, so it shome during thoen still remoter periods When great nuimals tlour-
ished whblh bave now vanisbed forever, asd duriag that ished whbch bave now vanisbed forever, asd dariag that
remarkable period in earth's history when the great coal remarkable period in enrthe history when the great caal
forests flourished; so it shone is thoee remote ages many milifoss of sears ago when life began to dawn of an earth

strives in vain to realise, the sun has disponsed ite rallian
treasures of light and warmoth 干ith just the same prodigality

 dimality beet hinberto averted? How is it that the suon is

 rages it the Desert of Rahara? This it isdeat a peowarm.
It whs Helmbolts who discovered thet the oontinul maintewaber of the sun's temperintare is due to the fact that the His theory of the subject has gained univermal occeptabed. Nature has not one law bor the ribla ias noother for the poor The sun is shodilizg forth beat, and thorefore, netirms this
Inw, the sum must te shriskisgi sim. We have learnel the rate at which this evestraction protects, for smong the mind trimmphe which mathenationos buve acoomplishied must ha revobed that of having putiog a phir of callspers on the sum
so he to mensure its diameter. We thus iled that the wilth of the great luniang is ten inches sevilor to-lay thas it why
 reid incossaut shrisikisg has goue of at atous the same rate as it goes on at proseat. For humbireds of years, nye
for tuadrods of thonsabels of yeans, the shrinking stil Will go on. As a spouge exuiles moisture ly cob-

PHE WORLD'S TALLEAT NTHUCTCRES

 that of the Cologse Catbedral (510 fact) anil that of the
Atrasburg Cutbesral , 46 feet). The grast Prramit of Tizeli

 Public Buidines, which is 637 feet bigh.
The Eiffel Tower, at Fors Frusif errestrial metal etruiaturna with its aliturgsaes all other housabd feet. The "Great Tomer," for Inndon, Easland
 The highost and towit remarkatio metal ehimbery in the wopld is erected at the imperial foundry at Halstrurke,
nesr Frelberg in swowy. The belight of this structure b 452.6 feet, and 15.74 feet io interanal diameter, and is situated on the right tank of the Malde, at as eleration of 213 feet the sea is wo lose than 711. Th foet The works are situatod on the left task of the river, nuil the furnave grases are ops-
veyed neross the rivee to the chisueg on a berage through a veyed across the rivee to
pi ge 3,225 ly feet in leogth.
The highest artilioal structure in America is the water
 The lase is tot feet above the struam. If the beight of the elevator shaft be adided to the olemrratiou tloor the grasd
intal height is 5 N ? fret. total brizbt is 588 fee
Life Insuran ofree building in the world in the Manhattan
 feet below the asme belog 90 fort lelow thlewner so making a total of 100 foet. The foundations consbt of nifteen mawory piers, nod are earried by the same namber of steel caistons. The latter were suole to bedrook by the puramatic
peoces. The cuntilever system was used for the foundation.

WHAT ALL BOYS SHOULD KNOW

Doe't tot eatisfed with goar boy's education or allow bim

$\stackrel{\text { Whan }}{\text { Wr }}$

Write a good legitle hand.
spell all the words bo knowt how to use
Kpeak and write good Euglish.
Write a good somal letter.
tida a columan of figarea rapidily
Make out an ordinary aropunt.
Dedaet 161, per ceat. from the fane of it,
Weceipt it wben pold.
Write au ondisary receipt
Write as adrurtisement for the local paper
Write an ordiaury peomiatory note
Write an ordinary promistory note.
Draw an ordinary bank check.
Take it to the proper place in a bank to get the cosh.
Makn nest and correct eotries in day-book and lodger,
Make nest asd correct estries in day-book naif ledger.
Tell the dumber of jards of carpet revinimel for
parlor.
Hensare a pilie of lumber in yoar shed
Tell the number of bushels of whest in your largest tin. and the value at curcent rates.
Tell momething shout the great authora nul -tate-man of If fresont day
Inen
If be cen to all this, and more, it to theely he has sumpinat frore time and money to spend ajon him all well and zoodHathematica cirn him sime give bitm literature, give him about it, give him Listin and Greek, of whaterer the course
he iotentis pursuing in life demands. -School Kopplemeat

BENEATH THE FINGEE NAH.

There la something more than beauty aud aftractivesues to is cousidered in earing for the floger nails. Beneath them is a space which forms a aidus or resting-plase for bacteria.
Bacteriologists bave found is score or mome of diferent kiod of ongapisme under the nasls, many of them harmiess it is
trun, bat some of them exceningly danzeross to lenith and
life Bince they are mieroosopte in size, po one ean tell
Whether they are innoerst or harmful, or, imitoed, whether fory are present or atven: since a pio primk suftiens to eoovey into the humas system Soath, it is esey to untrutatil otht ovil reaits may foilow

 wil-inilieted cerateb may be st bot so noy cther.
 otrodacing the germis which caluse that jainlul troutbie He who bites the fiomer is month and sumblowing the germe of some isfigtions (ivaso; for burturis may low naywhere and the bails have a which may le swurming vith germs. The wargusa who girt to the performance of any cutting opemtions, realising the
danger whith lurks lenesth the nalls, clestises them in the manker Thath harks tect
mot thorough manner.
Disense carmas, wack introducel isto the hyman organisw fon, but once in the circulation, may at the poist of infec eved for yrars, waitise their opportanity for arowth wheo
the mormal tose of the systrea is lowered by chill, by fatigue,
 4 Good brush suit plonty of sump and water, soil without the bails Not slobe will the result obtained he plaking to the

SENSATIOXS EXPEREIENCED IV FALLIXG
Dr, H-iss, the eelebented geologist ani prolesoor of the
Zurith University, deelares that suddes ifesth by is fall, by teing rua over, or by belog swallowed op ley msehinery,
Water oe by seow avalaveler is the most feacitiful way of hablow of departure for the wakwoua regiobs

 mund ournekm opposite a noobe febl lyibg bexween two
mishty rooks that bat to be traversed. It was a perilows
 oth feet, standing up Lodily, I went down with unequalied
velocity, but thefe was so danper nutil I mode a oo save roy bat, whill the currat of air was carrying saloge "Quick as the wist 1 teer scminst the rock to my lott, re wublealy I folt wyolf carried thros th the air for at lenst 100
 the rock, and 1 d. 4 my utmost to Avort that colasity by dising with my llagers is the suow and tearise the tlys of them Doise poolucol where my head and back struck sesinst tho
diferest eormees of the now I alan beari she Then my botly bomaled agsinat the snow wall, but in all this felt no pinin ; poln only manifested it=if at the ouit of an
 the thoughts and feoliugs I ubdercent during this short space of time. And all my thoughts, notions and filesa were thofoughly consbteat nad coberent, Lot mixed up snt jumbled ip as in dreams. First, as already intimated, I saw the pot
tildity of my fate I cal ulated to mywolf: Ten to one I will tain. If, Lowever, I find myruilf alive both fully conseloos I will have to take some of the visegur-cthor, which, on Jeaving the Santis, I placel is my reat pocket. A good thing, I
museil to myrelf, that it is where it is. I would searvely be alde to rewh for is if it was still in my knupsack, where I used to carry it. I will take two of three deype of the ether
on my todgue, I continued in my thonghts. That will revive toe aod keep, Ine from taking cold. Dat ubst about my stick? Ab, that may be usefal if I Iive, asd tecider. it is a berntifol
 throw awny my npectacles, that they might break hud tojurs
my eyes, I rebiched for them, but was unalide to do as is-
tended. "Thu

Thus I spent several of maybe only one precious sevond uppon the oosevpromes which my death would have for my
family. I meat try to kster mymit for the suke of my wife nad childrea, I argued. The frieads that were with my mifo probably lamed by terror, abd I muse double their esergited
by calling for help, it I can. A good why to spor them. I Arinkt, woult is to ery out, 1 am ail hate, but mast have a news of my death renched homed I beard my witeavel chit drem cry and lament, and I tried to condole with them. I
even cracked jokes in this endeavor. Again I saw with my even cracked jokes in this endeavor. Again I saw with my
mind on nccount of my failure to begin lecturing. That tecoght Socsil triumpers My iffe, from childthood to manghood, pllind fout my mental otservation like os living pleture, vivid, impoosive, joyful and sorrowful, as it hat been. Thivean, followed tatdeas in quick saccession, each flgore being diotioct,
and incident- being perfertly and completely picturel When I bud arrived st my prowat ctate and condifice I saw a mise miscent bloe beaven opening to receive me. A13 who seren perfect eqnipodse withe borizot, ful sot beareon 1 lloatcd unut perkeces fylag throurh the se ir, and saw the sher perceld below. I heand a doll thud; I hal struck the grousd.
tensation of gelng to beaven ia not a sery above deseritieal for the tea-hmgs of the Christias religron. The mind of man comes the ar and pare on the threshold of esernity it becomes the moot wonderful machisery for thoaght and olser-
vation. Its retromperfive faclities aze marvelous. Can it pruzuoerts be onved aficter
 around is beaty and happliess-a morid stecped is bilue and
 heen piven to sperulating moch on the traibings of the tions which ane aserlied to devply devout pertons during their last moments cos carth.
To return to actualitivs,

 froe my rest pocket, reached for my spectacles that rested
at my side, abd leit of my boek nad limbs to flous oat if amy

 thes apon regaintug tife. Forly minutes 1 biat tiven deal to the world and to myself, abd at the tepmination of this which 1 hal been. 1 thought my triend- at leath a mile or two whay, as they were at the time i i reasched the foce of the
and
montain. monotain.:
Ant did the beavenly thoughts re-ocur to you, abso
the prolessor Wis asked. mest of eltud Divi Heim. II experieaced them only at the mo ing rimovel, my maturial isphacts und apirits triumphed.

HOW MaCCARONT IS MADE

Maccarobi is divibel into thirtera clases, thopeb en th is the
 Italias goarmets they ane known as mramai, fornti, fres-
 thangement nith acc linder the sizo of at ondibary sate
drum at the busibess edd. Tbrough the cester of this latbe Alowly revolkes a powerful acew

 Alt toing in reatinest, the jaist is swang to one end of the

 puat it in a arcte a lew inctice. This is kepe up unti the to tose of a mintute the herreperged and lare cheste
 preaing of a trottos staris the cin trie dyuam

SOME CEHEONS FACTS CONCERNING HEARING.

 tward. This oncurrist in the Grabd cunon of the Cotorato.
Whery one man shouting the sume 'Hob' at one ead his vobe
Whe

 thace of ten miles.
\times rund thas romar
periment-made is the Lake of Geunvar. Colladodob, by ex
 sixty males Frasklin says that be henad the striking to-
gectber of two stooes to the water balf a mile awny. Over
 part of the Thames near Cheloea he could har a pervon read
 bouller than the pop of a champagee tottle. Fecsoes in

NOVEL PROTECTION AGAINST FIRE

A merchat of Gowabila bai invonted a most remarkable appuratas for savise stocks of goods from fire, Inetead of of puting out the fire the asparntes opens be front of the
stores and the conatem, cusces, asd shelvigg roil out into the The shelvigig suid wountura in the store are sil portable, shit mounted on rollors. Athelind to the mar eod of the
shelvigg is A cable which rusa formand and over is wheel below the floor is the front of the store. To this ent of the

Attached to the lever of the brake is a combustible corid
whimh ravos.
 beur on the cuble and the shotow whart helter nkelter for the
frobt of the hoibliug. At the sume sime the wimbous sad doors opea automatically outward, sul the entire conteats of the store are dumget oft the sblewalk in a jifly. Tv They roart the ztreet, perwetiog only blank wood sod glass Thowe who have row the spparatus tested say that it rorke atmirubly. One uight a moum foum nomming jopos, mueb to its consternation, the furniture, boxes, nail belves with one acond began a swift motement forward rouse sil the the inhabitants of Gowabin. the bour beiug 2 vonek is the morsing. The ingentous inventor was one of
the drst on thescene, and bis dingust at twing routed ou
 thing, nod joasbes itself alomg with no help.-Fnowe is

HאDHOQM "WIND-CUBTAIN.

To get plenty of air soto n sleeping room at uight without
be cold or damp wind blowing direety ufon the teel is The familise dor comfort and braith.
The familiar device of a board tifted to set tightly fato the

 blowing ugon the opebel window, although the temperstare
mar not hie very low, the atrong carrent is too trying foe
To those who wish to enjor the ope windou at night, nut ef to let delebded ngniant a dirvec curreat of air, the wind artsin will be valuable
About a fool atoren th
a-imgs, insert diagobsily a patr Fhemg on the putaden edners of the chetogs they do not mar the uool, asd any unanticed darise the duy. Irepare a light curtsin-pete, my su inch in dismoter, and insert screw-eytes
to coffespond sitb the hooks. The pobe may be a regular curtsin-pole With besss koles, of a bamboo p
benomastiols-jsinted, bourver, wo will hope
Habs ujon thas jole, eather by rinics, of
tirouzh which the pole in thrust, a short eartain . of burlap
 Whine luenking the force of the wibd, it mimits moch of it in
a geutle way. This may le triminel thatily unt a half-inch a poutle way. This may be trimine
hewpen rope, of witb cat stitohing.
To privet the cartain frithtimg
 atuother gair of small hook scromsh oes the uader side of the The chief admission of nir will not be thromph the interstices of the coarse burlap, hot above abil afound it, froes the or in afichan may lie thrown over ther pole fratend of shaw larly hung curtas, and will suswer the purpoanegoally well Is the mornimg the poie is lifted from of imponjuevoun If it is und storod awny in the eloset out of sitht
If it is preferred to bave the uindow opeaed as the top, the
same eostrivance tony be usell-the window-shade being rue ap out of the way, unil thus pecervent from lapping or from damage by rail.

NGBETHING AHOLT EDRE ENGANF

What is perhape, the otdest known fireesine for promping This edgine bul two single hrtibg pumpo, the plumpers
 two. The streams united is a siugle discharge pojpe, possing up a trunk is whow was an sir ctomber, and out at a hozie
which could be turnent is any dipection. The discription mizht stavd for a grout many formo of hand ilrevogino used poid yuite mone atteatsob to fire exthagushithg apparatas, and hal an opsavised tire bnesple
Bomethisg like the more modern fire engine nppenes to hare bees lifought out is the early part of the sextecoth ceth-
turg: and is drovilad as a "wnatur syrimge," This mas
 Euglatd, daring the latter part of the sixteonth cestary, arge lirks syringes were emphoged, bobiling severnl quarts of Whiter, and oqerated by three men, two hobling the syringe
it wath side with onn hanal sud dinctimg the borzle with the ther, and the thiri "peratiag the plupare Ater having
 Ia the lister part of tho socenteresth sentury a partable

 operated vagise, The pumiges werv of yorioda skess nath de-
 it ase as late an iASi, flomet Norles in Cossiets Nogozion.

THE EVBLS GV GVIR-EATING.

1 wenert that it ie the duty of the good bousewife to keeg
down the appentite of huer huitond. Particalarly is this neces
 In the families of mesthabies curning bow uapos nubt a warbmen is good circumbtancerssary, but it masy beessuit of they est too froely of riot
 good healeh wasid to the roante. Hegned the nge of fortyat a period when so many are phy-ifally lasy-the soperioe
value of exefeise is upgarent: but ordinarily, thin is jund the
 rewou why a puoching-tanc, rowing-machier, pulbey-weights
 clerks. Bat hasing done a uood deal of work io bis time it is turnieg forty, to give asy sort of attention to phyminal eultart it sueh trainigg bsa beea peeriously beshoted. Henee I say pompounds that will sltimately ruin his disestion. Histh Towding ia ocrovionally noutralinot by harl exescisen; but is the absetios of the latfer it is mischerou- is the extreme if off from the beayy brakitant of steak, hot modis, potatoers, ete

The attention of the United States Fish Commivation has samely, the uerifleial prophgation of rulignators. For sapplying the trade in Morida curiozities there is a large which is the centre of the traffic, from 8,000 to 10,000 allige, tors are onld to fouri-t- ansualls-berarly all of them tairs obes. Tbe latter ure callected in considerable sumbers by profesionsi bunters, who recelve for them from s 20 to $\$ 25$ a Lundred. Some of them nee disposed of alive at retail, but mauy are stuffed. An isfast alligator stuffed is worth tweaty-llve loests moee than a
twelve feet long fetept $\$ 12$ to $\$ 25$,
The diffealty of secoriag Joung alligators in sufficient

 co Jacksoasille. In that elty there are twelve dealera in alligators, the best knounh of them being a wan who has
carned the soterigue of "Alligator Davis. It what he who
 Tbe egrs, nhout the sixe of gocse enser, ure places in boxes of and and cotwred up. The boxea are exposed of lif Mool to the torrid ray- of a komi-tropionl san, sad in a few days the lizund are hatched. They sre six inches of so in feugth When they make their tirst appearnace is the world Some of A spebesof true crocolile is fonnd is Aumethern Flaril.
Aspectes of true crocodie is toond is ounthers forila on soveloy the -hape of it - heat, themethitrow s highor, atthising a leugrh of vighteves feot. Dr. Hugh IS. Smith of the Fish Commission shys that yousg crocoliles are hatebed for mariec in the sawe fashion. The mother crocodile lags her eggs In sand like a turtle, and simply covers them over, Sotmewhat
 foall mouml. The foumintion of the mosat io of mad and
 With banother stratum of grase and tmul, upoe which sbe depoesits sotio mare ecies. Thus she proceeds until she hes laid rom 1001 to 200 eggs
 materin geberate λt enon at they have "elapped the
sbell" the baby allientors are led to the water liy the mether, who provides them with food waith she disporges, showing minech buxiety for their safety. At this early pertod of their aretebue tbey are exposed to mhay daugers, being a fatorite prey of hebes and turtles, ABlgators eggs, ty the way, ure
monetimut raten by the Florida Craekers. The robisag of the nest for market is helping to hastes the juevitable deotruction of the allieator fishery, whict hus bees an important asd profitable industry is Florilis. Facts receutiy gathered by the Fish Commission show that the reptiles cannot
lonis nompe practical estermination. Already they are besomisg srance, and the price of hides bas gone up
It is estimated 4 Nissimmee for the parposes of toyiug skins taked in the rebou betwen Lake Eissimmee and Lake Okeerboleen, habiliat 30,000 bides. Durimg the sime year twelve husters
 buater could enstly secure bie alligatoss in throe weeks, abd anc jain for in provilions foil ammunition msinls. Jualers
 In $18: 0$ about 350 proubls of alligntor teeth wece sold, tuanters recelvige froms si to 22 a pound for them. They are removed by burging the hand asd rottugs out ther forth, of the fators and the polishing of the teeth give employment to forty persobs. Vatortumately, alligators grow very sloxly. At 15 gears of age they are only two leet long, A twelvefollecesed thery grow as long as ther lixe, and probably they Sve kougwr tina

EDUCATINE POWEE OF DANEEK

A writer ou high mountaibeering thus penies the good oThere dubger in this parsuit a is to be found in no other sohool, and it is worth monet for a
 somally paih thinge a tritte too far. Bint grime sud bopeless放 ond huat aloug the ridges, theri is erer the feelieg that braverominabions and a constant spirit will ent the suthering weli of peri.

 aspect irinkly and enluarely in the fon A Amoneal grimomest
 the numenstary carviesobess is easy places, the lapsed attentios or the wambering look that is the usinal parent of disThese words are woeth renbeutering. There keems to be
 dingers to which, us a boy, be has volentarily espoend bimeoll, ham, olter all, parents may comfort than is leime thut intirely awny from them. Danger educates logs to lo carefouran this is very important to their lives in later yeass-
Jouran.

HIBLE MEASURES.

A day's poarney was about turenty-threeand oneffth miles. A Kaidutb day a joaruny was about au Eaglish mile.
A cobit whe neary twenteturn invises,
A fager's breblth ts equal to one inch.
A shekel of silver wns alooat tily cents.
A shekle of zold was 8500
A talent of silicer was sidas 30
A talent of gotel was sis,ans
A piom of siver, or a jeoby, was thirtern ceut
A mite uns lese than a quarter of a cest,
A gersh what owe cest.
Anephah, of lath, oxatained seven galloes ant five piutA likis uas about eight shd seren-eighths palions Ab omec Whs six pubts.

TONXKLING APPARATES.

No 345,675. Habxy Bravg, Cupenoo, Ill. Patinted \&pi
 whem it work in a hewlingi Fie. 2 is a cear view of the beat Crame. The asethod of driving a tunnel with this apparstasof the beatiog, nod blasting out the oone that left stabding The bead frame a, is chaped to suil the outline of the tunEef metion, nud it is fted togotber with a series of conss bare 4 It is supported upoes a stout track A, sut is benout by lanB. The rim of the bend frupe bes wide flonices, whimh are machtoes $8,10,11$ nad 12 . Thusen manhinote are cousectein to

getber by meane of a wire rope is, which russ over aninable guide pullegs to a windlass 19. The whole set sro thus fel Cbines work at a sallietent angle to permit the drill cylibden to elear the stavding edgres of the proceling cat, 80 that machines of ordinary maket may to uwad, shot hodee sre dribeel in any aumber requirel, by arilis 20 , wheh are mounted on to a maaifold 24, from which a amall hoes leads to ench machise. By elosing the valre is is the entire machive is otoppel. The manhise is atesdied when at work by side sorew jecken 21 .

MINE DIELLL AND MOTOR

 machime, andFig 2 is a emss section on the line y γ of Fig.

$$
\text { manbine, and Fig } 2 \text { is a cruss section on the line } y \text { y, of Fig. }
$$

The motor is designed for steam or compressed air. The drill spisdle 2, is rotated ly feathers is the tuab 3, of the largy Tue drill is fed up to its work by air or stemm presware acting
upon the pistom P, in the tabe or eylifiter a. The motor consiets mainly of a tarrel $D_{\text {, which resolyes withis the }}$ cylibiler C. The chanter between them is divided by a partition Y. The forrel is turnet by mwatos of tuo pistons s,

 cher ba +vertisg full power. Tbe stesm or nir is taken in through an ansular groove in the egtinder hend, anal entere
 piston J, is is good working patition, a bollow f f^{\prime}, is it: (scer, bakes a communication from the interior of the barrel through the port , fito the cylinder. Tho exhsust esclyses is 5 Pourer ta transmittel froen this piopon to the wheol A^{\prime} by menns of the idle whed π.

yon bicity

 is supplied through the tabe 2 , to the elamber 1 , which is manistabivel at a bent sumbient to vaporise it. The vagor Coscopes from the jet is and passes up the tabo 33 necompabial by eatfleleot ar to bars it. It is ghatted alove the but little light, that whirh develogen kreat hent. The turuer

is enclowd by a chaze or "mantie to, composed of a nefwurk of isfosible thresis. Tais is made by soaking a piece of
eoarse cloth of proper shase, in a solutive of inlusable eartlyy sulte, and then destroying the eloth by inciacration. The asits remaining form infasilide threads. The bent of the
toraing ese eavers the "mantle" to lecome hizhly inennites evnt, and to emit a strong white light. The light is frme from all ithekering, and the shadows cact by it ane much solter thas those from electrio lighta.

valve wor hor mithis

Na. b45, 78s, Hexir C, Kebokant, Wratrimel, N. J. Pat

 a conesse sont. The valve comprises a litulo moro than a hat ircele, and its ends are staped to smit the shoubless f, of the tray or air is admite it to the asnular chamber s, pod poen

through the poweares g, 9^{\prime}, to the poris 6, 6^{\prime}, acconding to the position of the valve. The eshaset putere out through the port n, and jessapye i, ho the outhe s, steum is reseevend with its erencer at the outside of the tome of the eylieler, the working surlaven are brought bearly syuare to the direction of the preasure upos them, snd the wear is greatly redaced, that making the parts wory duralile.

MRE CAKS.

 far purtly in seatioll The olject of this inwation is in pruvide is feripht ene for cerrimí une ar coasl, havine a suit alde bopper hottom therefor abl whith may ber remilily comserted into a flat hoftomid moedola, suitahio for lumber or ordinary lmagt. Thas oar iramon han the usual side aba minble -ins, sut wo voil sills. The mialle cross sill F, is of the thonger which blelow the frame is of optiman part struction. The sbles $\mathrm{V}^{\text {are permanent. The trup dows if }}$ are beld ap by chains, which are wound npos thee slatt 2,

remesth the sill E. The end sections 3 , of the cha foor iare fermane
 loy turning the rockshatts A abll the sotions C amm raisat to the poritions shoms biy dected lisers at the keft end of the car this forming an extension of the hogmer. The lower edge of C thrs rests in porkets 0, nist the upjer part is sustained hy the scetions s, which are tarned up ob edge for that purpose.

KLECTHIC MINK DHILI.

 butn pribitie R is eotated be meats of feathers n° in the bub of the mand gear C. The feed motion is oldaibed by meana of W. binif suts N. which slide is a T groore in the teracket N^{\prime}, Weel Olusel or opened by menas of a cam plate N . The outee cod of the armature stuft iy a steel pition E. of the up of eight cope seotintis whith ury the armblare is buit central hulb, and the ierminals of the oaila are conuected to

the commutator segments s, thus forming a "Grnmme ring. The chalt is jonraaled in a brias blook F^{3}, wbich is suak in the core of of the fleld magaet. The pole pieces I^{\prime} and Q^{\prime} and perlected from dirt or injury comutator to closed in
 for adjasting the pressare of the bruabes from the outaide and while ruming. The plate is turned to awy destred ax-
tent by meank of the bandle $H t^{t}$, 1ly placing the armatury
out of center wint utilized to support the drill soand the lower core f can be marhive, or the foom revairod totmem the sidea of the drilling post ins, is reducel to as misitum.

SCREEN SFGMENT

 30hb, 1 sos, Fig. 1 is a perspective view of as square mested

 provile the working surfant of a perforated-metal sereesplate with an effective arrungement of rounded protaberasces, distrileated at suitable interculy and locuted at interseo.
tionas of the jortions of metal left between the bolec By this tivas of tbe portions of metal left between the bolec. By this
construction there is proctided an theren arreening-eurface K_{1}^{2}

which will prevent the material betng screebed from jasaing over it in mase, and that will eanse a slight undulatory mone ment in the said material, thursty rosoting the emaller articher to icacous to the nariave of the kriva, so that such as aresmall etough may readily gose through. The profrom comigg in contact with the sharp edges of the holes in the soreen-plate, thecety avolding considernble wiste, as frail materiala are liatile to be broken by striking agniast swebs edere.

STEAM TCRBLNE

 enfod July $30 \mathrm{l}, 18 / 6$. Fig. 1 is a side view, baving parts Groken away to sbow various parts of the iotenor: Fig. 2 is a vertical crows uection throagh the cebter; and Fie; 3 is a see-
tion on the live F. The tuo ubtets If nut saresimilar in construction, nad are keyod to the shaft J. Any numiver of wheels may be used. Netwen earh falf of whevis theret ta a guide plate 12, having vases which deflect the stesm in a direction contrary to that in which it leaves the procoding

Wheel. Each wheol wal gaide, ts mule up of riage to, havIng emalil buckets of vanes between them. The casiag plates recrive the steam from omen rimele of sabes aad ectara it into the bext iosidecircles. Thes stwim ebters at 16 abd passes

 pister 12, abd it then puace thronuth the outer in in of visure Here the atesm is transferred to the next foner circle of
vanes, nod is then forced througb the wheels to the opposite rising 2. It is thus formel through froms side to sole of the thambers, and into flee exhanot 19. If is claimed that this Cinsuraction stilios as large sut sati-factory peroentage of the poover of the steam.

Hock dillis.

 muld Amg. 2inh, 1 Nis. Fig. 1 is a section lengthwaya of the twovement of the drill is rotary, and it in propelled tiy electricity. The feld magnet is composel of the corms 2 nal 3 , coils 4 and 5 , and casing A. The armature B is sreared to A

Tong slecre E, which in journalled in the benin C and C^{\prime}, Tbe commatator 6, abd brashes 7 are cobtained in the lower
bead. The drill spibdle I Is driven by menas of a fenther in the eleerne E, When it is ilrawn up to the limit of its stroke, the drill hit 8 comes isside of the foot piece 9 . asd is thus rotected from avejlental injury. Water is drives through bailt with the crosshend II. Theo drill spindle is conabeted to the eroesbesul by a stuming box 12 nam a ball leariag f. To use the maschine, it is stood up on the foot 9 , the water Cose is connected to the poczle of the pump, sad the electric Wires are connected and the esurrent turned on. The drill io
pressed downwards be mesas of the handies is whinh ary attached to the crossbead. A full sised itrill weljhs about 100 lbs , and may be operated by one man.

HAND ROCK DRILE.

No. 545,335 , Ronert Massin, Bolivan, Persya. Patented Aug. 27ed, 18i5. Fig. is is front view: Fig. Z is a slide view F slides through the top and bottom tars 2 and 3 of the frame D, and it is moved up nod down by means of two collars 4 and S, which have srme $I /$ united by a tark. Thene arme Curry rolleri,, , which are tituoduy cumas 5 , on the shant K. There is worm on the widule part of K which turns the

spindle, so that it is tarned continuously and uniformily. The
 teeth whieb engeren with the pawl a. This pawl is moved隹 of the drill spisdle, which alternstely strikes the ingeres top toving the drill positively loth wave, by it can len umd in asy position.

No. 546.060. Cmistiax SEvbolip, Zevzandocks, GezEaxy, Pokenfed Siph, 10th, 1036. Fig. 1 is a rear elevation; along the shaft B. The power is transmitted by friction from the wheet E to D, or the reverse, by means of a belt F, which is pimeleal leetween them. The face of the whoed \bar{S}, if made concave, and that of D is made conver to wait. If these finces were made struight, the beit F could not be kept in place by any practicalde means. By shiftimg
the felt F, the contact between the tuo whewls is made

os differing ratii, consequently the relative speeds are marsed aweordiagly. The belt runs over flamped cuide pul-
licys M, sud it is shifted by moving the frame owhinh spopports them by menas of the hand ubeel and seres Z. To throw the wheels in of out of gess, the chaft B is moved endways by means of a thrat loox C, rack T, pinion S, shaft Q abd wheel R. The weight 6 tarns the whoed h and causes is to jraet spon the belt with sumflent forse to drive properly; and by pulling oa the rope P the wheels are disengaged.

RAISING WATER

No. S46, 125 . Silas W. Tirros, Brooklys, N. Y. Pmented cye 100, 1via. Mben well tutes are suak to water hisaring tbat the presaure is isamflicient to raise the water to the top of the well, or within reach of a suction pump. Tbeobject of this itwestion is to convert these wells into "nowing" wells, or to incresse the depth of standing water in them to such su extent that the "air lift," process of pamplig may be sucentfully applied to tham. A represmits the well tube, baving ats
lourer end provided with is strainer A^{\prime}, and being sunk to a Whater bearlig stratum E. To srive the water foto the well tube and thus raise its level therein, or to caute it to over-

fow, one or more air pipeac C, having similar perfornted euds, are driven into the samestratum is the vicinity of the weil
 awny from the well tube. The bresware of air repsimed te ottais the desired effect is a little more thas equal to the hesd of water in the well. The compresod sir increases the local prossure in the vicibity of then pipe, nind the swa tuta afforils the reatiest eavap for the extra pressure, cutse air Jubtios. Thus the water will llow as lene as the suity of siris costinued.

The Colliery Engineer

 MIFIAAI IMINEER,a'riteden for Tas Collimy Emuiserx and Hital Minek
PROSPECTING FOR PLACER GOLD. ALMA PLACER, SOUTH PARK, COLO. A TYPI CAL GOLD PLACER.
Showing how Large Quantities of Gold Bearing
Soll is Handled to obtain Gold Eeonomically. (By ProC. Arthur Lakes, Goldew, Colo.)

Placer mining will become more and more popular the more the present decosad and search for gold is kept up.
At present prospectors with thedr habltual gearch for vein mines sre bunting mainly for them; placers bowever are beginalog to recelve gome ahare of atten-
tlon: old long-forsaken placers are beling looked up agals; new onea are belog opened, and large enterprises and in some chnes povel ooed are betig started.
Whilat a gold-bearing veln in place may or masy oot lesed to a rapled fortune, a plscer when found, if faitrly good, offers in chance for slow, but stesdy returns.
We have thousands of scres of placer ground in Colotado, more or less rleh. sosttered smoogat the mountalng, of by the banks of river and canyon. The orfigln of these deposits is mainly dues to the glaclers that obce held sway in these mountains. They mised the gold velns and the goldbesring rocks ou s gigantlo
ecsle, and csrrieddown the debris of thelr work tnto the canyons and dumped it In thedr mornines along the sides. Floods and atreams afterwards winnowed, sorted and resrranged these piles of rubbish, and the gold was

Fio. 2.-Sgetion of Placke at Alma

A, sOHE: B, OLAY AKD BOCLDEHS; O, VIKE 8AND; D, GOLD beamaso conolowbsate R, coasor 6RAVEL; F, web nook.
distribut d through the mass of material, of by its gravity found its way dows to "bed roek.
Such moralnal placer banks we oftern see especially among the rivec couraes and ravises in the bighed portion of the monntains. They are geoerally rolling banks of pebbles, often covered with grase and trees.

Bealdes these well known and noore moders placery, experiments may be tried bereafer upos beds of coarse Sates which we have been is the hablt of lookigg apon as primenal solid rocks, but in reality they are ancient consolldatel placers, and masy or may not carry gold In Colorado It might be well to look finto such contiomerates, feapocially much as are made up of andesitic lave pebbles, also into Joosely compacted andeaitio brecelas and tuffs, such for instance as form a Isrge portlon of the Coneloe range. Cripple Creek bas sbown as that sudeslte is an emloeotly gold bwarleg rock.
The largest deposits of gold at the Homestake Mine Ie the Black Hilla is derived from an ancleat eonsolldated placer of Cambrian age. The hard gold placers

Fig. 1.-My. Liscols and Montoonery, Suptosed Sonseg of Placen Gond.
 \mathcal{L}, LaKE; V, goLD veise
of Californa are old placers hardened by time sad pres. are and covered by a protecting cap of lava.
The difficulty in the hard materlal of these anclent placers would be the process of crashing them on a large
In modern placers the difficulty often lies to briogioga that strenm

BODTH PABK FLACEH BEDS.
In South Park, Colonado, at an altiterde of 10,000 feet above the seb and 5,000 above the plaing lis so extroatve srea of plaver ground, sloug the banks of the South tre, stretching from Mt. Libcolo to Fairplay, a distance pobblesty milks. This ares coesista of rolling besks of covered with fowsrl the mountain sided for bin avernge width of hait a mille.
Portions of theae placer-banks have been worked both at Almas and Fairplay, but are far frome exhausted. The pelbelpal workings are at Alma, where slas the thickest basks are, due perhaps to the confluence of ributary canyons at that polnt.
Thefe is a powerfal body of water on hand, asd the beds are being worked both miktt and day by the Green Mountain Company, under the superintendebee of Mr. . Fortune Happeniog to be staying with s friend in Bouth Park, we ran up to Alma abd apent a week at the placer mulne, for the purpose of mastering the suboet in all its details as as of the most typleal, extentive, sad successfally тーシ

To begin at the bepineing of thinge, our firet care was os takes atrip with Mr. Forwine to the source wherice we many suppose the gold came from origtnally.
This was doubtlere mainIf from the head of the Gulch, from the numemon large gold-beaing veins which bave been discovered and partially worked above Montgomery, at the head of the ravine above the valley of the South Platte, at the headwaters abd male bourcea of

Besides the gold-bearlog velus, the quartzites and

Fro. 3.-Panokame Steface View of Alva Placres, Soutil Pallk

aufficient besd of water for a suffictent length of ttme / porphyries of the ndjacent region may have contributed during the summer months to bear upon aud work the a rertain amount of gold to the placer,from gold dissemmaterial. Many a bank to some dry region has shown inated thanage their mass,
good colors," but absetnee of water recuitect it valuexpended in bringing water by tia we and ditch for many miles upos a placer bank lenown to be rich.

The head of the carron, helow Mt Lincole, is the head also of the South Platte River, abd was the sitarting polut of the glacler that enrvel oogt the valley upoe which the Alma Placers Ile. The charseter of the pres
dominant pebbles is the placre, viz. quartaltee, grantited and porphyries indicates that the rocks at the bead of the canyon wete thest peficipal source
Mt. Liscoln is 10,400 teet nbove the sen. The peak is sbout 4,000 feet above the valley of the Platte, (Seo Fig. 1), The wall of the east fsce of the peak deacends to the valley at Montgomery in a magnificent-cliff of massiven granite capped by quartalte and limestoce beds with istercalated beds of popphyry.
The tace of the granite clift ts traversed by an extrsordiuary number of lagee whate parallel fiteure veing composed of quartz and feldspar, having a geberal northrest and south-east direction.
The valley below is of a U shape, cut out of granite by
the slacier. The meky wer whleb the glacier passed are roubded, pollthed and grooved, formolog what the

 French call " pockes moutonnees" or sherp-bascks. Tbese are exposed as the prvement of the upper part of the valley. Aud bere over steps cut by the desceoding glacier, a violest stream tumbles to waterfalle-the source of the Platte.
Belor, where the fall plunges tuto the valley, is a small shailow lake on a bench above the stream, "hich continues its course through a nartow matioes, and thence more slowly, down the valley to Atma.
This shailow inke halt filled with gravel and pebbles 18 ejed bungrily and prophetically by the prospector, as a probable sourcy of ustold mealth, if it were only draised and worked, becanee here they think the gohl necumulated by the glacier, by scooptag out the uppor part of the canyon and veins above the falls, must have Mrat beeo deposited. A scheme has been projected by Mr. Fortune to drain this lake by "coffer claw' and an underground slusoe tument, the water of the lake with its debris pnssing through the coffer dam and tumnel, the
gisnt nozzles blowing the snod and gold throagh the gisnt nozzies blowing the snind and gold through the
coffer dsm and out through the sluiced in the tumbel. coffer dam and out through the sluiced in the tumbel.
Miners aver there is enougb gold here to pay the bational debt.
The velns in place in the eliff above have been tunoelled upon and worked with some proft. Ope in North
trom 30 to 50 feet, is composed of subangular pebbles and boulders of all slzes, from that of a marble to masess a yard or more in diameter. These are cemeeted together of lime and lros.ovilct time, pressure and folutions domerate, which can only be attacked by the plek or by be all-destroving glast nozzle Such are the placer beds for miblo we ste iodebted to elscier abd stream.

These banks are continuous down both sldes of the stream tor 14 miles, but sppesar thickeet on the bast the and expecially pear the vilage of Aman and opposite This is the site of the oldest and largest placer workingy is Colorado. The banks have leen cut back for a long distance, presenting a line of vertical cliffs 70 feet io belght for about half a mile is leagth, channelled by arrow tavines and gasbes, as shown to our tllustration Fig. 3), by the inrosis of the giants and the cutting hhort gashies nat penetratiog far into the hill, others dhort ghshes bot penetratug far toto the hill, others thentres, nurroueded by channelled cliffs, whilst the enter ls occupied hy tall ailes of late boulders throme out snd piled up to the course of the work.
Wending through theses plles of dobris may be eerel he patbways of the old ahandoved gravel aluices, telling of the great work done apil long sibce nbandoned.
It is isto one of these amphitheatres where work is atill actively golag on that we enter through a cut and carine on the southwest end of the bill. Froas thin tog ooto the open river bottom by many radiating mouths and shorter branch slaices (Fig- 4).
The water rushes rapldily along the bottom of these sluices and we can hear the blg bouldera rolling, and bumping along over the rilles which line the bottom.
we follow these sumcen up the ratine for a thonsand feet to where the ravine wideng isto a bruad amphl. theatre 200 teet wide by 70 feet deep. Here we gee operations in full blast (Fig. 32
The firat objecty that arrike our attention are four waterfalle twaceoding the ateep bask at the head of the amphitheatre, each one eatting lasck rapldily a sharp. narrow mavine for itself from gras roots down to bed on the Thus, these materfalis, each ted by tis owi de mphitbestro Into a ground. Against the sldes of these blocks two glast nozzies direct their powerful columan of water with crumbling effect upon the loosely cemented matertal, which rapidy tader before hew, and mass atter mass, ubdermined, rolls down into the refuee streatm and the tors iato the gapdne moutha of the gravet alulces. The glants, too, speed the boukders and sand on their way by
with thefr knives and pick out any stray nuggets that miny be concesled there. (Fig. 6.)
Again, is the bed of the stream that descenils from the flume, men are at work with loug handled shovele "ground stuktagg," i. c, helping along bowe of the as pors, so ns to Such is what the vistor learns in a general way at his first vieit, leavibg detalls for abother time
He is struck, bowever, with the magroltude of the Work accomplished in so comparatively sbort a time, as
well as with the enormous pomer of the glants and the cutting flumes, when be learas that, the whole ravine

Fo, 6.-"Grousd Sluelise" and Cleaxiso Bed Rous.
and nmphithentre, the former 1,000 feet long and the stter 300 teet wide by 70 feet deep, has been worlied out within the past sis months
After a day speat in an examination of the works we phas the evening with Mr. Fortane io bis little cottage bullt on the tank above the plaver asi interview him over a pipe as to bis mode of working the plaoer and the
detaila of hla work. He sald. details of his wotk. He sald

tode or workive a places

"Io undertaking a bew placer enterpilse the gronnd ghould flrst be well prospected and the eritainty of the presence of gold assured. Shaits and prospecting deles must be dug down to bed rock to ascertalu the bould alan be doue upoe the alifes of the griches and other exposures.
"Then the water nupply should be conaldered and water diteh and flume planned with a view to lts power over the underlylog led rock. The grade of this ditch is a matter of consideration. If the grade is too great the water eats and breaks banks, 1 have found a good averagogkrade to be three-eights of an inch plow attached. Pipes used here are 14 loches diameter.
"The giant noczles, beivgattached and firmly braced to a platform on the ground, begin to play on gotae expobed part of the bank, slao the ditch flume euts a little eabyon and blocks off ground, as you have seen, to be later broken down by the giants.
"The gravel sluloes are then coestructed for carrying the pebbles, gravel and gold with a geberal tall and inclination towards the dumpligg grousd. In some eases the statee is sunk down into the underlying bed rock. The slaices have curves and brach st the exds. The botfom of a sluice is lined with round Eimed made out of sections of ples trees wedged tightly together with small stones in the interstices.
"After a diteb flume is let out over a bouk it begins raplitly to eat a small ravine. The material, large and small, rolls down into the stream. To prevent the Water of this stream from spreading too much and scatterlag the gold, men ground slukes it as you saw.
"The giant after a while is brought to bear and wears down the debris dislodged by the flume and drives pebbles, gravel aod kavd dowu isto the gtavel cluice. "Water is elhat off from ooe of the cutting thumes and
made to play on another sectlon, leaving the old chaund made to play on another sectlon, leaving the old channel
dry. The 'ground slaleers' bow remove all the big fones they can by help of the derrick and by blasting. till led rook ia reached, which is carefully washed and opened up with plek and sborel sud sesscubed witb hnives for a depth of two or three feet to a clay layer, betow whtch no gold has been found to pass. Sach of the decomposed bed rock is shovelled into wheet barrows and bent through the slaice
"A stnooth bed rock io not usually so uleh as a rough
ne full of crevices. Bed roek is better, too, when on a

Fig. 7.-Giant Nozele
lse than fa a hollow the gold being caught by ite natural rittles.

Tbe rlebness of the bank depends un varions condl. tions. The the eddy top sabd in the section is seldom rich. The beat gold ts generally to the cosreer material or on bed rock. Sand is eomented by Iron robl nod
oocurs bere and there, aud when it to rusty it is richest. Theres are often pecollar courses in the sand curreut and turnings and wlodiges, 88 in river courees. Ithish I have observed as maby se three different periods of exposition in the mation of the varfous changes, etc., in the deposits ef panation of the vartous changes, etc., in the deposite
of a placer are to be found in studylog those of a modof a placer
ern stream.
"The reservolr up the river suppilylng the ditches covers aborat five acres and is 10 feet deop. The dam is made The ditch is two milles long leading to the highest gravel The ditch is two miles loog lesibigg to the highest gravel
banks and carries ahout 2000 miloer's Inches of water lowing through it. It is 19 feet wide and 3 feet deep it is fumed at one place on raised trestles for 240 feet. The flume ts of boards 12 feet is leogth formiog what are ealled boxes built with frames of 4 " 54 " sawed

兩

\rightarrow ․․․․․
to look down on to the dark abyss of the plain with elfin the givet glang to and fro from the meen at work, and Ine great gisuts shootheg columus of flame ss it owved of a bonfins buit on the linat The mats davger th vight is the fear of flumes bursting or breaking thelr basks.

TREATING AMALGAM AXD EETOBTING

The following epitomized from Loek's gold mining is the process for extracting the gold trom the mefcury amalgam
The amalgam ss collected, whether from slalees when Trorking alluvial deposits or from plates and ritles wheth Sealing with veinstaff, is large establishmests abd is cat-
ried Into an acartmant containing a tahle allghtly inclibed ried lato so apartment eoutainiog a table sigghtly ficilied
with a grooved surface pear the lower end, nisd a hole at the lowest polnt opentig futo a receptacle for cated. ing noy mercuary that may escape.
On this table is an iron hettle large epough to hold all the amalgana collented it a slugle "clean up." Into the collected smalgam abd metcary some sodtam duced, and the whole is stirred. After gome time, watere is poared tota the kettlo alvove the meroury, and tifred. Sand and mud rise to the surface and ame ne pooved with a large acomige. Washing and ntiritiog contimued until the surface is comparstively clean. The mercury is then made as dry aa posible with the spoege and the whole stirred again with the havds. Some dirt g-netally urises whbeth is scraped of with a dry card or pirve of leatber drams geutly edgewied over the surfsce. This is repeated till the mercury seems clesn.
It is then poured into conical bags of canvas or chamois leather, through the pores of which the mercury buas, or is squeered leaving the gold anasigam it the mereary whlch can oaly bee revowered by retorting but It is not desirable to do this if the mercury is to be used for farther amalgamation, as the presence of gold vesgel shaped like a bowli on top is a jointed fron from which an irou tabe rises and bends downward. A molxture of wood asbes and clny fowl nod the ashes put thickly afousd the odge. Cover is titted. Clamp adjuated. The retort is placed In a furnace over a moderate fire. The ebd of the pipe Whens the petort has altained a dill red heat and no Whets the retort has attained a dull red heat and The cover is taken off and the bullion removed. The aconignom after retorting bas a gold metallie color. It is ready for the melting pot as soon as taken out
Gold from a placer is usually deposited in the loos Gold from a placer is usually deposited in
bank sad thence goes to the mint for reflalng.
The sodium amalgam mast be freshly made to be offective. It lept long it oxidizes. Metallie sodlum masy be kept in wide mounted bottie cover-d with cosl
ofI. Enough for a single "eless up" cas be made in a ofl. Doough for
rmall frying jun.
A small quastity of meveary from a fresh flask is poured intr the pan and dried with a sponge and theo bested beyond boiling point but not enough to volatilise thes mercury
A plece of sodium is est into one-half Loch cubes and the mercury taken out into the open air. A cube of
sodium is placed with tongs in the center of the warm

Fio. 9.-Disthisuyise Flemiand Ditcura.
 DOSED WOEKISGA; D, TEESTLE FLUSE,
mereury, A flash follows, a small portion of emercury is volatilized, snother eube of sodium is placed wlith less flash. This is repented three or four times when the sodium siaks down gently. At the proper moment s solid usas of amalgam will appene in the center. The contents of the pan sre then stirred and a ferr more
sdded cubeg change the whole to a mass of crystallized sdded cubes chang
sodiom amalgam.

Meritorious Machinery Appreciated.

The Robinson Machlas Co., of Mooongshela, Pa., inform us that their foundry and machise shop are runoing fall time and with a fall compleosent of men, in the construciton of boletlog, bsulage and rebtilating machinery and tipple arrangements. Among the recent orders rroelved by the Robinson Co, are the to lowing : A thrue dram hoisting engine for the Clipper Fand Co ; a two drum haulage euglan for the Caltfornis Cubl Co,
of Callforna. Pa , eodleas hanlaga machinea for the of Californin, Pa ; ebdleas hanlage machinea for the
Ollver Coke nod Furnace Co. Pittaburgh, Pa, nnd the Oltver Coke nod Furnace Co., Pittaburgh, Pa., nbd the
Roysi Coas and Coke Co of Kooxville. Trun. A single Royst Cosi and Coke Co of Kooxville. Trin. A singh frictlon dram hanlage englue for the Hopkine Cond on,
of Prrezopolla, Pa, and a larne venuliting fan for the P. J. Forsyth Coas Co., of Coal Centre. Pa.

Amoug the orders roolved tor complete tipple riggiog are thoge $\mathrm{fr} m$ the followlog oumpasirs: The Equitathe Coal Co., Webater, Pa, Hopkins Cosl Ch., Perryopolla,
Pa., and the Belle Bridge Coal Co., Pittsburgh, Pa

Writien foe The Colligev Fmonges and Metal, Mingh

A FLUME CONVEYOR.

By L 8, Roperib

Your space permitting, I will add a fer words on the subject of Mr. Llogd's futeceatigg article in the October Collarey Esgiserit and Mayal Misez.
Hill, Masen Co C , C eorundum mines at Corandum for a number of yeare sud the experien has been in use for a number of yeard aud tbe experiebce here bas sug-
geated meana of overcoming gomer of the dimkalties mett with is the above caset

A flume is just about completed from the Foater Mine on Ellijay Creek from the top of the mountsin to the mill on the creek (bow ander coostruction). Tble flume is about a mille long aud its fall sbout 800 of 900 feet. Briefly the troughs are 10 and 12 ft . long, the bottom boarde are sawnd $10^{\prime \prime}$ for the upper end and elght for the
 oith 10d. nails and a cleat $1^{\prime \prime} \times 4^{\prime \prime}$ nalled acroes the top of the outside trough to prevent spreading, and with The plank uaed ts ane sbout the midele of the tromgh. The plank used ts one loch oak and the sides are elght and tea luches high. In turning a curve or angle the oide boards are beveled, oue side of the loner trough inevery folnt ls ane liel fsll whle every joint is sone luch fall whleh shouh be changed wesar falee obes ary ins thle polst. As the bultome Wear false obes are put itu.
except where soticonale che attention is paid to grade axcept where a noticxable change eccurs, then, to prevent more is made by fixing to the lower eed trough of an even grade, a tight box opening at the bottom into the upper trough of the next regular grade Sbould the followting grade be the llatter one a small bead masy gather in the vertical column and give velocity to the gather in
material.

Where possible, a high "jump off" Is given, this assisting in breahing up the loosely comphet savd, clay and nermicuites which make up the gangue of the cornodum nelo and further in separating by allowing the Ifght In this way there is no dawaing and overflowing. The elimate being mild, no cov-ring is uaed over the trough. As a pose script allow me to note that the Fostermilling from stockpiles whilch have bed wil commence for a number of months past. Thle with the old Corundum HIII mine are the only two in operation: many jroepects in this and adjolning countles are belng brought before mining men aud with the advent of the rallroad it is thought that soome of the grand water powers and forests of these mountaing will be tarved to the use of mall.
A wealth of power and timber with raw material llea
dormant awsiting the ker, a rai mad, where capital will guinant awsitheg the key, a raifocad, where capital will quockly allacover the advantages. As abundanee of good But most hoattafur climate will bring the inkorer. treety miles away and have tho ehlef factors to the ecobomical production of aluminam add calcium-carblde, viz. the raw materinal and the water goiver, the latter with high heads and abundant tlow.

Pressure Recording Instruments.

Brintol's Recording Presnure Gange is rapidly conoing Into great favor awong mine managers, ns a medium can be accurately and constantly cbecked. Exery wioe fan shoald be supplied with somes applianice hy bueana of which the work of the fan can be accurately and oonstantly gauged. In somes States the mine law reguires that efther a speed or presaure recorder be applied to ench fun. Speod recorders are far better than nothlog, and as they were placed on the maraet before pressure recorders, they were adopited by mise mausgers
who deaired the theat poasible methoit of gsuging the who desired the beat proselble method of gsuging the
wark of a fan. The proature recorder in far more oftwork of a fan. The proselure recorder is far more a fitcleot than a spaed recorder, because it farmishes constant and direct evidence of the efliclency of the rentilsting eorrent. A speed recorder does not do this afith the
same degres of accuracy. It merely rowords the revolusame degres of accuracy. It marrely rocorda the revolutions of the fan. If an open door, or a fail of roof occurs In a mive, the fan may ooutinue ronoleg at sormal speed, and the volume of alr tasy be r-duced to a re-
tasikable, and la some gaseous mibr s, to a dangerous taskable, sud
digrre. The pevesure recorder sets differently. If there
 La soy detangetwent of the air recosds a change in the preasure of the wir enirent, and the degree of change as compared with the sormal presaure gives an ldma the ext form its monmal wamber of revolutions, the preselare recorder recorde it by soting the chatise of te the phange of the per iplery speed of the fon. When thase features of the pecorting preasane gauge are eonsidered it butomes exident to presy proetcal mine managet, that it is a far more effictent asd valusble appllance than a epeed muore eftic

The same primiples that are embodied in the conatruction of the recording pressure gavger for use in conDection with ventila ing macblbery, are applied by the Eristol
ghy, ete.
Tbesame company also menufacture recording vacuum gnugns, reconding thermometers, recording volt teeters, recording amper- meters for both direct aud alternating currebts, and recosding watt meters.
The value of each of these appliances in the various flelds for which tuey were designed is obvious to every reader.

In laying ont the holes in a belt for the lseing, do not get them too near together, for while thi-practice makes the finished laring strougrr, it mskes the bert Wraker,
on acount of the large amount of material cut away in on sovount of the large amo
making the holes.- Poieer.

Writieu for The Collikey Emaisexh asp hietal Misken.

GOLD AND SILVER MINING.

TIMBERING FOR PRECIOUS METAL MINES
IN COLORADO.
The Methods of Working and Conditions Which Influence the Methods of Timbering.
 Appen; Lasbells tiold Mg. Co, Eripple Creei. Cole ets, mir Co

The atyles of timbering for precious metal mines differ materially from those used is coal sad base metal mining and aloo show variations in different sections of the country. The Nevads practice is descrihed br Hague and Curtis, and that of California by Storms. Ficketts refers briefly to some dealgna used at the Morning Star mine, Lesdriller, Colo.*
Thave shown in the accompanylag plates s number of patteras largely sud successfully used in Axpen and Leadville. The drawloge are to scale and dimenaloned so that they may be used for working drawings if bo deelred. No attempt has been made to illustrate forepolling or spillog, breast-boards, stulls and cribs, as thes

8's allis. The poats are $6^{\prime} 4^{\prime \prime}$ over all and the tenon at the top is $6^{\prime \prime}$ by $6^{\prime \prime}$ by $9^{\prime \prime}$, flush on the outside of the set, with a plain foot. The boxes on the sill are $8^{\prime \prime}$ by $9^{\prime \prime}$. The boxes for the collar brsoes are $1^{\prime \prime}$ deep. I aleo bsve uaed thls set largely in the Durant mines in medium ground. In heavier ground, $10^{\prime \prime}$ by $10^{\prime \prime}$ tienbers are used With the same shze of jogs but with a $5^{\prime \prime}$ by $10^{\prime \prime}$ sill. Plate I, Fig. 16 , shows the standard drift sot used by the Mineral Farm Cons. Mg. Co., Aspen, designed by the writer. This mine is worked through the Cowethoven tumnel, and the drift could not be granller and yet take the tunnel cars, (See description of Coweshoven tumbel below,
Plate I, Fig. in shows the stabdard drift set used in the Souggler mine, Aspeo, 8. I. Hallett, Supt, a more roonay dealgn and sultable for maln levels. The Aspen mine uses a cage-car, $2^{\prime} 6^{\prime \prime}$ by $2^{\prime} 6^{\prime \prime}$ by 4^{\prime}, but they are rather large tor a high grade mine. The Aspen Contact staudard drift aet lo $3^{\prime} 10^{\prime \prime}$ by $6^{\prime} 4^{\prime \prime}$. The El Paso $10^{\prime \prime}$ by 10^{\prime} and sill $4^{\prime \prime}$ by $10^{\prime \prime}$ or $8^{\prime \prime}$ by $10^{\prime \prime}$, squared and rectangular.

TUNNELS.
Plate 1, Fig. 28 was designed by the writer for a siggle
froge interrupt the contlnuity of the rall. One mule With a driver palls 10 cara.
The Revenue tunnel, Ouray, H. W. Reed, Supt. about 8,000 feet long is 8 by 8 feet with 14 ineh capss sud 12 tuch legs. The track is double, 2 feet gange abd the cars are $4^{\prime} 11 y^{\prime \prime}$ by $8^{\prime} 3 y^{\prime \prime}$ wlde by 2^{\prime} dewp of $12^{\prime \prime}$ wheels. The alr plipe bs $4^{\prime \prime}$ and the ventilating exhanat plpe 15". Fisck-arock powder was used as giving lesa kmoke.
The Newhouse tunnel, Idaho Springs, designed by W. H. Wiley, Mgr., is similar and 7^{\prime} by 8', timbent $10^{\prime \prime}$ by $10^{\prime \prime}$ and sill $6^{\prime \prime}$ by $10^{\prime \prime}$. The water drsio le auder the sllls and 12 ' by $24^{\prime \prime}$. The naud braces are rough sud the collar braces $6^{\prime \prime}$ by $6^{\prime \prime}$. The track is touble of 18^{\prime} gange and 30 lb . ralls. Grade is $5^{\prime \prime}$ to 100 . The cars bave a capaclty of $27 \mathrm{cu} . \mathrm{ft}$.
The arch form is stronger only where the pressure is unlform. Space must be allowed tor the various plpee and wirea the tuonel is to contain. For a single track by laying a foorwsy may be formed over the canin singers oet on edge, having made proper allowance in the height. A tumnel can be driven faster if it is wide eoough for two nir drills to be set on columns nbrenst. $\Lambda 7^{\prime}$ by 9^{\prime} or 10^{\prime} section can

CHAMPION DRIFT

DURANT TUNNEL SET. Fig. 3

Plate I.

scale it
have been often given, nor to deperibe methods necesasry In unusual or difticult cases. In tresting of timbering it of mining, as is sometimea dope, for suoces to methoda entirely upon knowing how to get a stull, erset debds not set, or plumb a ahaft. It la juat as lmportant to kisery what atyle and dimenalops of traming to uae aith the various kiods of ground, shapees of one badke methode of mining, plans of developaent and the holsting appll ances sdopted.
betrts.
The usual mining cage-car is equare bodled, tarne and dumpes at the end. The bor 183^{\prime} by $2^{\prime} 2^{\prime \prime}$ by $3^{\prime} b^{\prime}$ and costains 15 euble feet. The car stand $8^{\prime} 9^{\prime,}$ from the track and rans on $10^{\prime \prime}$ looee wheels upoes 8 lb . track of 18 gaage. Piste I, Flg. a sbows the smallest size drift In which such a car can be worked conveniently. Thls Aaper Wtandard drift ost in the Mollie Gibson milne at Aapest, W. J. Cox, Nupt. The helght will allow for a sheet-iron ventilating plpe overhead. Is that mine in the wet drifte the track is laid oe $4^{\prime \prime}$ stringeri to form a wsterway nill over the floor. Otherwiee 6 belght would et the minimum.
The drift set of the Rohn toloe, Lealville, is rectangular, $3^{\prime} 6^{\prime \prime}$ by 6^{\prime} of $8^{\prime \prime}$ by $8^{\prime \prime}$ equsred tlmber with $4^{\prime \prime}$ by
*The Oree of Leadrille, by L. D. Blikette.
rack tunnel in the Biontailic mine nt Lenado near Aspen, if mille long. It contalns a water way over the The standard single track aection of the Comproenle tuanel, Aspen, I malle logg is a' of the Compromise oxes 3^{\prime} by 3^{\prime} by 5^{\prime} and og is 5 x The cars have Plate II, Fle, 3 shows the stanil puil 4 in a train. Darant tambel, Aapeb, 1 mlle loog. A beased waterway $12^{\prime \prime}$ by $16^{\prime \prime}$ of "3' plank runs under the sills. The grade $\log -20 \mathrm{cu}$ fs iog 30 co. One horse will 10 dfinw-bans are on the trucks. One horse will puil 10 cars. It will be seee that the mille long rusembles arch. The Cristle Creek tunnel, $\frac{1}{2}$ wide. The drain is $16^{\prime \prime}$ hy $18^{\prime \prime}$ and the $7^{\prime} 6^{\prime \prime}$ high by 8 The Comenhoven tumel 16 and the grade 6 to 100% dealgned by D. W. Bruntoon Men, about 2 miles long, by 7^{\prime} and by D. W. Bruutoo, Mgr., Is shout $6^{\prime} 6^{\prime}$ sote. Tha gange ta $18{ }^{\circ}$ domble track, ag it trapreobdai waterway $12^{\prime \prime}$ by $14^{\prime \prime}$ is under the 22 lb . rall. The tracks and covered by a plank walk. The sils between the $6^{\prime \prime}$ In 100^{\prime}. The cara turn and dump from the eod and have the bumpens on the tox. Thay nrem the ebd and by $4^{\prime} 1^{\prime \prime}$ bolding 20 cn . fl . They ptand 4' 4'" byore the track abd run on $12^{\prime \prime}$ loon. They etand $4^{\prime} 4^{\prime \prime}$ above the were fousd so sdvantage on the maln line for then no

soale is
be driven tsoter than 8^{\prime} by 8^{\prime} as the ceater cut breaks better.
liad groubd ofteo oocurs in depth as crevices or chambars filled with loose materisi carrying water under pressure. They can usually be peoetrated by splling and lireast boards; or by setting the cas firet, supported on tecuporary loogitudinal stringers. With a large and thus consolidate the grousd. In contloually swell log ground a second light set may be erected outalde of the inaln set, the ground to be eased when the lagging bend a and the light set to be replaced whea broken. This wIII Bave the maln set and prevent Ioterraption of trams It is better to use light open lagging in beavy ground so thst it may break betore the get.

In thla sort of mining no heading machines sre used, and bo application of the shleld, or pneumatic procesaes have been made in drivigg. The drilling is done by
percussion drills driven by alr. reunsjon drills driven by alr.
Loog tuanels may be ventilated by an exhaust fan or atesm jet, to keep the bedf nir out of the tunnel. But In most ceses and especisily for raises foreed ventilation by fan or jet driven by compreased air is best as the tresh air goes to the place whect most beeded and at ober. The air drills themselves will aupply o certain smount of freeh air, bat the practice of opening the
sompresaed air pipes for veatilation sfter shooting leads to waste.
Tunnels sud drifts are saligned by alghting over two plamb-lines to a light at the face. The hubs are set a convenient distance from the face by a transit or special tunnel tustrument. The sills are bet by a grade stick aud carpenter' 8 level cheoked by a aurvegot A level
from time to tima. The grade of an ordinary drift is usaally from 6 to 9 taches in 100 feet.

Raises.

Plate VI, Flg. 13 shows a prospecting ralse, about the smalleat that cas be driven and timbered, containing a manrosd and chute. The ends are made to overap the sides to reduce the welght of the heaviest plece. These rataes may follow the contact and change grade with it by alterlag the leegth of the posta. A common way of tinabering ralses is to place two lines or stulls about 4' apart with a loose plank on ench palr, but it is peither safe nor convenient for a considerable height.
In Aspen a number of Important ralses bave gone up from the Cowenhoven tunnel, some of them 500 , at an elevation of 50 to 00 degrees. Piste VII, Fig. 15 sbowe one on the Mineral Farm property, cootalaing chutes for ore aod waste and a manway. In the manway runs a timbar truck straddiling the ladder road and hoisted

2 by 4 idech stripa or sngele pleoes of disgousily samed 4 by 4 inch. The critss are bailt up is etretches of 8 to 12 eent on bitched special eed pleces, of In smalier stretches lung up by iros dogs, when in firm ground. Cribs are and are stronger in basier to frame, require less space oply be relleved by cutting them ont and cannot bo ably bee relleved by cutting them out and canbot be convedient for hanging pumps, plpes, or settiog platconvedi
forms.
[T0 kg cosmisusd.]
Written for Tike Colazky Emankek and Matal Minen
IRON ORE MINING.
The Mining and Washing of Iron Ores af Scotia, Pennsylvania.

The recent developrawnt of the Mesabl range in Minnesota, in the United States, quite largely by the use of the stesm shovel or excavator, has attracted unasasl attention to this tpye of mining. While it has been used

Was determined by the distsnce to which It was ecooomical to earry the needed charcoal, for the Itmeatobee and ore were abundant and ensily obtainable, white the an iron depervedly oxlebrated for its morhing, produced The old Centre furnace, sltuated about obs mille to the east of State College, but abandoned thirty years sgo east of State College, but abandoned thirty years ago, leges. At firat ores, Ilemestone and charconl could bo gottes within almost is stosele throw of the stack, whlle the power for turalog the water wheel came from s buge epring near by, still used for asare mill and a four mill, the former situated nearly on the elte of the old furwace. The pig Iron was hauled down the mountain to Bellefonte and there efther coaverted tinto mack bar or shlpped away over the canal. The area from which came the cbsccool supply gradually widened untll the long hanl of two dnys for tesch losil of charcoal becsme prohlbitive. The foundations of the old farbaces still stand, suggesting and recalling the characteristic scenes of old forge life and activity whteh are now so rapldly diasppesring. In these good days it mattered little in these monstale vallegs whether a slogle or double money standard ruled the country, as the only currency seen in the community whs that brought in by an ocensional traveller, whlle wages and alf local wants were

Fig. 13 RAISE

LADDER

A.Y. SHAFT-CRIB

Plati III
 Skale at

by a wibdlass of eoplne. These raises follow the contact nearly and are run at a uniform grade. Levels is dumped down the chutes whlch are lined on the bottom snd sldes, direct to the tunnel cars from bins.
smavts.
A small bucket ahaft or ahaft winze may be 35 by 7 or 4 by 8 feet with a square bucket way sud solld partition. The buck ets will uaually hold $\frac{1}{2}$ tos of rock. The pincipal shafts are provided with cages, and the grest majority of bolst ways are 4 by $4 \frac{1}{2}$ or $4 \frac{1}{2}$ by 5 teet. Two compartment sbafte vary from $4 y$ by 9 to 5 by 10 teet, and three coms. partment shafts from $4!$ by 18 to 5 by 16 feet. The largest shaft in the atate is the Bobtail, above Central City. It is 8 by 16 feet, with four compartments, boisting cars contalning $32 \mathrm{cs} . \mathrm{ft}$.
Shafts are ususily edther crthbed or aetted. Plate III., Fig. 6, shows a crib used at the A. Y. mine, and Plate
VII. Fig. 16 , the Jsmle obst. Lesiville. The sion of VII., Fig. 16 , the Jamis obstt. Lesdville. The size of the timbers varles with the character of the ground from
4 by 8 to 8 by 10 Inches, often 6 by 8 theheg. The Bew 4 by 8 to 8 by 10 inches, often 6 by 8 tnchea. The bew
Star shaft on the Penrose mine, Lendville. is $4^{\prime} 5^{\prime \prime}$ by Star shaft on the Penrose mine, Lendville, is $4^{\prime} 6^{\prime \prime}$ by 9 , cribbed mith $8^{\prime \prime}$ by $8^{\prime \prime}$ timbers. Each side asd end
piece ls boxed four times at the cornur $11^{\prime \prime}$ by $8^{\prime \prime}$. The prece is boxed four times at the cornver ila by ${ }^{8}$ ". The
somewhat in other locallises in the enstern and southern portions of the United Stated, for the stripptigg of cosil beds abd the mining of the sodt, bown ore deposits, the ase of the etcam shovel in connection with iron ore mining ta generally considered a nowel departure. It may therefore be of finterest to recall that for the past afteen years it hass been in almost comatant vaee in the very center of the great Commonwealth of Peensylvanla, and that before a single ton of ore had been taken from the Mesabifield, over half a million tons had been thus mined st Noolis in that State and shipped to Pittsburgb, for amelting.
The mining and smelting of Iron ores in Central Pennsylvania is by no means is receat industry, and the hisfory of the tame is intimstely and almoet inseparably coonected with the general locsl history from a periol antedating the opening of the present century. On all aldes, and often in the most unexpected places are forand the evidences sud relics of a former busy Inlustry, In the torm of an overgrown clnder losnk, an old gtack or open bearth, a mossy water wheel or whatnot. The mountain aldes, denuded of their trees, tell a stmilar story of former activity, for logg ene the much blamed lambur charcoal barmer hat begun. apl oftimes, completed the work of destruction. The life of many an early furmace
gatiatied by barter through the medium of the company store.
The replaceous charcoal furnaces of the region have ace replaced and supplanted by two modern blast furnentine Iron Comped in Belletonte and owned by
The Scotia mine was formerly owned by the Centre Furnace Company, but was purchased is 1881, by Carnegle Bros. and Cor, now the Carbegle Steel Co., and has since been operated by them
The geological relatlons of the Cenfre county deposits are very like the many similar surface formations found in eastern Peonsylvania and extendiog parallel to the Atlantic scaboard untll finally lost in the extenalve depoeits of brown ores in Alabsus. These deposits lave been described in detail is the reports of the Second Geological Survey of Pennsylvana, bat in brief they may be sald to be pocket deposlts occurring in the lower Silurisa limestones and Irregular both in form and distributlon.
Two va
Two varletles of ore occur, the wash and the lump hematite ores, which coostitute the bulk of the sootia ore, sad the ptpe ore found in other sections intimately connected with the first varlety. The deslguation "wash ore supgesta the theory of formation allvanced by the
geola of the State Survey, who sappoes thebe
beda to be wash depraits of rolled ore, stiff clay, sand et., whict have beed transferred from otber localities, and ninily imprisobed
the native limestoves.
the native ltmestoves.
The ore bsuks of Ceatre county have been divided into "Barreng Groun" of whest toportant probably belug the "Barrens Group" of which the scotis deposit forms a phrt. This property comprises 430 acres and before the pected by the present ombers by means of pita and drill holes. These teats showel only a portion of the propenty to be underlaid by the ore bask, bat in s number of instances pils sunk eighty feet in depth were still in the ore bidy. Acoord ug to the calculations of the owners. bed, of which six hundred and fifty thousand tons have been alrowdr miloec, while at the preeent rate of working the bank mill be exhausted in about sis yeara from the present time
The ores escy both in color and value, the darker coloed pitch llke ore being richer than the lighter liver colored and more compact ofe
A mine classiffcation to size is aleo made in the luap ore, which is shipped in the form in which it in

In the earlier reports of the State Survey the heaviee ores are stated to lie at the bottom of the deposit but the later development of the Scotis bed has sbown the character of
throughout
The foregolng analyses of the Scotla ore were made in 1881 by the chemist of the Second Geologteal Surrey, Mr. A. S. MoCreath
Sample No. 1 represents 490 pleces selected from differebt parts of the ore pits and thorougbly dried
Sample No. 2 was of thoroughly washed abd dried ore taken from different parts of the ore plle.
The early estimates of the State Sarvey gave the fron $0.08-0.20 \%$, bat accordlag to the developmenta up to the present tlme, whille the tron has avernged only 40° the phosphorus conteot has likemise been loavr, 0.0.5\% thus compensating somewhat for the smailer amount of iron. The lump and fibe ores are kept and sbirped separately, at the former contain 40 -50\% of metalise irob. and the latter only $35-40^{\circ}$, while the amount of phos. phorus is constant, and neither contatn sulphur.
Mtning is carried on mith the steam sbovel, three exavators of the Otis type, made by Joho soutber \& Co. of Boaton, beling in sctive sud coen thuous operation at the present time, two working in the older, of hird tremity of the depoelt, near the old "Red Bank" mina, belongleg to the Collins Bros. of Bellefonte, formerly aiso opernted with the steam shovel. These excavators are of the ordinary scoop or drop bottom bucket type, with a lateval reach of 17-18 feet, thus giving a cut 35 foet In width. A veritical eat of 16 feet Is talian, but an allowabece of from topplng which falls when undermined thus making the sectual vertical exesvation $20-25$ feet in belght. The track upon whth the excsvator rubs is laid it sections two feet in length, and tbe excavator ts moved forward over one or two sections at a time, depetillog upoe the chsracThe ore and accompanying clay abd eabd arm removed in mine cars with a capsclty of 32 cuble foot esch, and ss the excavator sovop sbovel bolds filled at eneh swing of the loun to A siagle traek muo parallel to the A siogle track russ parallet to the pre remored and put in plate with are rewoved drixen by a smal! boy sldetable tlme is loot in the loading of the cars, ss a siogle track only in laid near the excavator, and the losded to suit ched to the side trsek where it forma part of the train of 94 cars, which la drawe to the washes, haif is mille distant by a small "diakey" Jocomotive. The meflmated canscity of the excrators working sinder the conaltions at Sortia is $350-400$ cars per das ($415-1 i 4$ cuble yards) and they are sosumed to remplares $25-90$ ishorers shoveling abd losdling by hand. though theee fieures are very numb smaller than those given by Mr. steam shonel in the January number of Cassiec's Magazibe, aud sleo by the nannfacturves of the ghovela. The crew of the excavator conslats of the englocer, the eranesaman and the irroman, while morkiog about shovelers, track layers, ete, sad two mule drivers Asauming as labnger's wages to he $\$ 1.00$ per day. per day to fire the exicavator botler. (the makera estinaste only 700 ltes per day), with the above force of workmen and with the usual dif-

Plate VII.
sesle d.
mined mithout further breskige or wasbigg, and the 'fiue ore" whleh is that preslug through bsre placed gis ANALTSEA of Sentia GeEs.

	Estmple No. 3	Somple No 2
Bl-Sutphese of imon		
Protesble id trae		
Srapuloxide of ites.	\%3.641	4838
Srepububite of mangturno	esis	㫛
Alumian...........	\% 85	\%年
Lime	0 64	0.650
Hogermis.	0.236	16. 360
Suppturie s-lit	0.255	9 15
1'brathoric sit	0.136	0.126
Weter avd carteancesuis mattor	9 tas	5851
silictous matter	11450	9) 580
	100.548	90.65
Metalic irus.	50. 580	45.51
Metalie manesnese	048	6. 58
Sulphur	0081	0. 160
Thosphores in me pris of Imen	0. (80	0.68
Thosptonen is 100 paris of Irots	0156	0,11\%

inches apart is broken, washed, and pleked before ship
mont.
and posathly a third will work st a still lower level. This regularity of rorking has not been generally observed, and the greater portion of the ore-bearigg srea has been now gone over by the flrst cattiog, wblle a cocea third cut. It is eatimated thst abont three cars of run of mine material will produce one of washed ores.
A partial hand separstion takes place at the mine where the largest abd parest Iumpa are picked out, lald askde until safticient have accumulated and theo sbipped without further treatment. Durigg the esrly days only the large lumps were ased for smelting in the nwightortog furnaces, the floer ore belog separated by screening at the mine and left where it fell from the revolving acreen or trommet. As a result many of the first cuts now made by the shovel include thess old sereenlogs and consquently yleld an unusually rich ofe prodact.
The systematie and estrusive washing of the ore dates from s compsratively reoent period, for in former times it was only where stresma were avallable that the wasbLng could tee earried on. These mountain valless are not well-watered, and not until about tweuty-live years ago Wha it discovered that an shomblant supply of water could be secured by alnking so called artesian wells. This diecovery gave a baw impetas to the minlug of these surface otes, and now the country is dotted here, thece and everywhere with the old derricks used in driviog snd operating these mells, the derricks beiog in many Instanoed the only remaining evidences of the former sove of sotivity, of of as ansucceasfal mitulag ventare
At the washer the cars are holsted and lowered by an menised plabe, on which aro three tracks, two tor the loadrd and a third between them for the emptles, which hy anered by a tail roge, while the full cars are holated by angisesible endleas ropw, both ropes belag worked the enina located is the whaliw baibding. At the top two, one for cars one for each track. These dumps, which turn the chara uplde down are necessaty of account of the bticky from the end of the car. From the perolving dump the empty ead of the car. Fowil the cevolvor rum upon ia transter plate dumped of by the losed ito ewpty track located mideay telmenulthe loaded fracks abd at a slightly lower level. This transfed truck is meerely a platform car runnlag upon a depresaed track and moved by hand, betigg so countertalaneed that it will return to its position io live with the losded track as soon as the empty car has bees run of aud the truck thas relewsed. Directly below the two dumge are ibelleed boppers from whtch the ore passes over a grizaly composed of iron bars slightiy inclined to the borizontal and placed $0-6$ ipetes sjart At the foot of this arizzly is a platform upos which workmee stabd and with latgeiroe hooks prevent clogging of the bars, at the same tlane drawing the large lamps wbich will not phss between them onto the platform, where the elay balls are separated from the istpor lump of ote, the former betog the lumps of ore ame thrown toto a small car and frome that loaded directly into the if if car for shipment forether with cly hoto the R. N. car Ror sbippent. mine as previonsly mentlined
The swall ore raseaing throum
The small ore pasolog through the grizaly bars goes and 4 Inches in magth rols thitty inches in diameter, 40 revolutions per minute
A rewolving serew washer 23 feet 9 ibches in length made with iroe arms boited to an icom axis, receives the cruched materisl coming from the rolls togerlier with a stream of water. At the ead of this Enst wasber or "miser" as it is sometimes cailed, are placed three jarallel troughs coutaloing sorews similar to the first and with thelr axes parallel to the asis of the mixer, but only 19 feet 2 inches in lenigth. The material frow the mixer passes through the fitat of theses parnilel troughos, tou throogh a latern opening is the end into the gecoud Trough of the series whieb it traverses is a direction opateral opealeg located diagronally from the other into the thlad whaher of the series, which is traveraed in the the same direction as the first, the washe d material from his last secew emptying fato a ciroular trough provided with a perforated boltom through which the muads water dralns, and from this trough the particles of ofe and fint rock are ralard by an antloue revolving bucket elevator and delivered into a double-revolving trommel This is made op of two concentrie puncbod screens, the Touer baving circular holes one-hnif inch in diameter and tbe outer oblong alots out-balf inch loug by one aistnenth broad. Through the tromenel axis rans a plpe and from it jets of water play upou the ore as it passes over the screen, while the well-wasbed ote and rook are delivered by the trommel upon a traveling plelkling belt 39 feet loog and fuctined at an angle of 10 degrees slong which stand meen and boge who pick the flint and the clay balls from the ore, which thets drops oner the head of the pleking belt into a chute sand thebce passes directly isto the cars for shipment. The refuse tifit and clay frow the picking belt are thrown aside upoo the Hoor sod sulisequently shoveled into a small car for transfer to the ditt bank. This car runs upon the same track with the one previously mentioerd as carrying away the large clay balls from the first cobblug plat-
form. The foregoing deacription appilles to bot one half form. The foregoting deseription applles to but one half of the washer, but the otber balf is sn exict dupllcate, The moddy water from the washer runs into a well located outsude of the building and acrosed the railroad tracks from the loading chutes. From this mell it is raised a beight of 20 feet by a bucket elevator, and discharged info a wooded laumder which curties it to the settliog pond sewval bundred fret away. These ponde cover an ares of 25 acros, which has however been pros. pected and found to contato no ore, but to be ubderiaid by a deposit of somi.
Formerly the material was jlgged before shlpenent, bat the preseet owners have not found this to bee economical nor necesaary, 80 that tbe jlgging of the ore has
The present output of the whsher is 300 tons per day,
out it is designed to wasb 3 sil tons, while as much as 425 tons have been washed ma a silagle day. From Scotia the shipment is made over the Lewisburg of Tyrone R. R. to Tyrone, whence it goes over the main line of the Pemusylvanin R. R. to the furnaces of the company at Braildock.

Wratee for Tus Coclueny Ewanesh and Metal Mieki

ELECTRIC PLANT AT ESSEN MINES.

THE LARGEST ELECTRIC MINING PLANT IN

 AMERICA.
A Description of the Mining and Haulage Plant
 at the Essen Mines, at Federal, Pa.

The largest electrical conl mining plant to the world has been in operation durlog the phat summer and fall magnitude of thls plant reusiecs it of espectal isterest to
each mane there is about 1,200 feet of track at this point and this litberal nillowance reoders unilkely
from the nocumulation of efther emptied or loulde
The pat cars weigh about $1,300 \mathrm{lbs}$, each and carry $2,500 \mathrm{lbs}$ of cosi. The locomotives pull trains of trom 40 to 50 of theso cars, and with this load they run elght miles as bour. Their normal draw-bar pull is 3,500 the. at this apeed, but is starting a trais, or la polling up a grade of strund a curve, they exert a mach greater pull, altbough at a reduoed speed. A test was made on
one of them at the mines, to determine juat what was one of them at the mines, to determine just what was
their maximum pull : A train of 50 loaded cars was startTheir maximum pull: a train of 50 loadel cars was start:
ed po a reversed carre and a dymamometer registertog ed oe a reversed earre and a dynamometer registertag
up to 0,000 lhs. Whs pat between the locomotive and the flrst car. When the machine was started up the isdil. cator meet beyoed the extreme end of the scale, indicat. Ing a draw bar pull of over 9,000 pounds. The track wis, of course, well sabided, but the trae secret of this enormous poll will inmedately become apparent to any one who ts fortusate ebough to have the opportunity of peary drive wheels, the goft steel tires, and the single

bring his train to a standatili before reaching it, even though runoing at full speed
The locomotives cotae out of the mines every sight through the manways, which are practically leved, and ruin into the the motor reom whtch is at oee end of the power bouse. Here they are given a sapply of sand for the next day asd whatever olling and geveral cleaniog up they may require. Tbe manways aro aleo used by the locomotives when bringing, out slate or taking in prope and otber sapplies. Flg. 5 shows a locomotive coming out of No, 3 Mine at the close of a day'd work.
The cosl at the Esern mines is the "Pittebarg" velu abl contains conslderable sulphur, espectally in the
lower parts where the machiors cut. This made the lower parts where the machises cut. This made the mindig of the coal by sachines a serlous problem.
The "Independent" Chale maschlines, illustrated by Fig. 3, which were pat in, have, however, proved entirely capable of the work, notwithatanding the sulphur, and they have made ns high as 34 cuts cacb 3)
feet wide, per shift of 10 bours, from 39 to 40 culshbint feet wide, per shift of 10 bours, from 30 to 40 cuts being an ondinsry occurreoce. Sixteon of these machines are
now in daily use, and, running double shift, are capable of double ahift, are capable of producing 2,400 tons of
con! a day from this 54 ft seam.
The reason of thls maschlue's suoccess under these most exacting couditions, is Found in its general strengtb. Both in tho electric motor and in the mechanicnil parts
there is an ample margin of there is an nople margin of atety, nud the thet reduces the repaits and their attend. ant delays to a very small tem.
The natare of the "feed" on the machioes also rebders them especlally applicabile to work is coal containing sulphur or other impartiles. The machise is fed is by a sprocket wheel reoelvigg power from the motor, and arorktug on a sprocket chain whlch is on the stationary frame. This chals has a very atifif apring at either esd, sud, herefore, when the cattors athe something uausually t, thome the mehin o, top fooding for anchine osetop of iob for a sam permiteting several cutteres to twa over the obatacile aefore the machine again drances. wherens if the feed were atsolutely poaitive, each catter would bo compel. ed to out as mach of the hacrler gubatances as of the coal. If the impurity is sulphar, and, therefore, quite mposible to cut, the maकhtne will stop foedting uetil the syring is centirely compressed, and then with the energy of the spring added to that of the "feed," the cutcoal operatore. Electrical coal miniog plants havtng a 85 H . P. motor geared to both axles, explain the whole f tere ar- frequently forcod behlnd the olsta-le, jerking capscity of a fem hundred tons of coal a day and em- matter. The locomotive welghs len tons in all and it out bodily. The practical morking of thits teature of ploging obe or posaibly two hundred horse-power have foum in almoat nny coal field of this country may be found in almost nny coal tield of this country. But the Eases mines are equlpped to produce by electrlcal machisery over two thousand tons a day, nad the plant in-
stalled is capable of furnishtag six hubdred horsi-power. atalled is capable of furnishlag six hubdred horse-power. This power plant is in reality a central statlon, from
which two minea are operated. The mipet are both which two mives are operated. The mines are both

ect apart, abd known as rasen mines No. 2 and
The power house ttself is located close to the mouth of No. 3 mine, as the accompanying map showt. Thle loca, ion whs chosen for everal enasons; it concen trates the entire plant at No. tipple, which is a quarter of a mille bearer the lwa of Federsl than Mly the bollers mith slack coal, slice a car toad from the tipple has to be pushed but 209 foet to the bollet roam And furthermone, the location puta it equall: distant from the point of utillization of the power in the two mines, the workinges io No. 3 boing mach farther from, the drift opening than is No ?
From the power house a line of three No. 0000
bare copper wires extends to each mitne and then bare copper mires extends to cach mine and tbeb 2,000 feet in No, 2 and 4,000 fees in No. 3 . In eact mine this constitutes the maln feeder, and from it current is supplied to the trolley wires and the machine wires, which ramity throughont the workings.
The map, Fig. 1, shows the plan of the wiring for the entipo plant. The moln foeders in each case extend from the switch board to the pointa marked by a cross.
Throughoat the undergroand workibgs the ralls are used for the reture conductor; they are booded at the jolats and cross-bonded at tntervals of 100 feet. All of the main entry track is of 40 lb . steel rall, mell lshd, and makea as exceptionally good road bed for the locomotives. Turaouts are provided as shown and the trips are made up at theser pointa in either minesad pulied by the sre taken ly a rese up the inclines to the respective tipples. Mr. Balduin, the mine superinteodent, bas stown excellent judgment io making the main parting st the foot of the incline of very ample espacity. In

20 g of the entire weight is in the wheels. The two pairs of drivers, moreover, are not built loto one rigid rrook but each pair las at liberty to follow the track iregularities, regardless of the other pair, this results in keyping all of the four wheels on the track all of the time atil is one of the features makiug poakible the $9,000 \mathrm{lb}$. Iraw bar puil sbove referred to. Each locomotive will ensily haul out 1,200 tons of cosl in 9 hours, pailling it a hamee of 4,000 feet
A striking feature of the locomotives is the bead-light.
the maschine is evidenced by the large flakes and layers of sulphur basd that are frequently pulled out by the chain.
The macbibes make a cut 4 inches in belght and work In rooms approximately 30 feet wide, about nine cuta being necesasary to fiotab op a room. The ent is 5 foet deep, and this maicea a total undercut of $1 \mathrm{com} \mathrm{m} / \mathrm{f}$. It. per roots. The machine, In aflvancing under the coal, travels 6 ft . In three and ope-hnif mitutes and backs out In a minute abd a half. Aboot 250 rooess are wired in
\qquad

 \qquad $\therefore \times \frac{6}{\Delta} \mathrm{~A}$
-4
lain

Fie. 2.-Plan of Powbe Plast, Baers Minet, Fegeral Pa
It is in reality a miniature electrie search light and con- \mid esch milne. It is, bowever, impobalble to cut every sists of a 1,000 candle power are lamp fltted out with a parabolic rellector. It cas be seen down the entry as Aar as the entry is straight and as a gource of light, there is do comparison between it and an ofl or incandescent lamp; it is in a class by itself. This strong hight is of the utmost importanoe, sinoe it ebsbles the botorman to see any track okatraction In anaple time to
room, every shift, as tha room, after belog cut, must be blasted, bave the coal loaded out and the gob thrown back before the raschlae comes in for the next cut. While this work is going on the room wire is evtirely diaconnected from the entry wire and ls, therefore, "desd." At the foot of each entry there is a awitch whereby the current may be entirely cat off from the
entry, and in combination with thls switch there is a indicate at all times just the amount of power beligg used safety fuse whlch any aboormsi curreut will melt, there- on the libe, by opentug the clrcuit aud cutting of the curreat. This aranugement of swith and fisan remdura overy entry indepeudent of every other entry, and an accident, sach as

Fig. 3.-"Inderasdent" Eucctuo Cuals Breaby Minise Macmisk.
a fall of roof, on one will bot loterfere with mork on aby \mid from 240 to 250 . This comblbes a perfectly safe currebi other. At the main parting is each mine there is a large rom the from the eatre mine
wilh ope that does not necessitate the use of a probili cxtenale ant of copper, even where the working are a

The engline room is prowided with a good brick noor all of the steam ptpes are eovered with asbestos, and the whole alr of the place is that of a thoroughly firs clese plant.
The east end of the power houne is divided Into three Noms, one of these coatalns a lathe sud beoch roona; obe is uned for a motor room; and the third is fitted out sith forges and emery wheels for dressing up and sharpentig entters.
The plant was flrst started up In May and soon after Jarting, a very comprehenalve system of keeping trach moediatels upon coming out of the mine at night filled immediately upon coming out of the mine at night filled out a blank in duplicate, showiog the sumber of cats
 ho worked and toe asture and cause of delays, if aoy he number it hiachinem and pit boes. One of the geed by haself, his hecper and pil boser Oont to the Chicago sflee of the Llok-Dilt Matheery Co a thoterraphle reprolach. Fle 7) of of these blanks botograpule repro ater theae roports weremerged into a genemal monthls laport (see form Fig \&) from which the average report (see form, Fig. 8.) from which the averagu butainable To thlo thomough ayatem for keepligg tnack of the work 98 mell as to the laberent escellence of the machlaery, the splendid resulte of the plant are attribu. tahle.

Pri 4.-Mise Anc Lamp-

The maln partings are extremely well lighted. th? The oables connecting the dyosmos with the awlteh The cootract for this, the largeat electrie maluigg "Independent" mine are lamp, shoms in Fig. 4, bring boand have acrosa gectioe of 400,000 circular mila sad plant, was let to the Link-Belt Machinery Co. of pasa
This
Clecago after a thorough investigation of all the Jeading
electing planta of the country by Dir. Dysart amp and burns off the game wireg that faraish curvet from the dynamos overhead to the saiteh board. This electrie mining plants of the country by Dir. Dysart to the machitues. It is only $12^{\prime \prime}$ high, and may. therefore, be hung from the root without inter foring with work on the entry. The light in the the ahaiow is throwe on the roof, glving an us. obetructed lieht on the floor The fruilding, illustrated by
How the power, for all of thls Fig. 2, which supplied the prower for all of thls maschiuery is an iroe structure 36 ft. wide by 180 fewtlong. Fortyaix feet of one exd are occupled by the botlers.
There are four of these grouped in two hanke of There are four of thesa grouped in two banks of
two boilerg each. They are tubular boilene
 of theth is a space for conl, and behtud them the feed.water pump, henter and the trjecetore are locsted. There is also beuch space, used for pape fltting. The water for the bollere is tsken from two welle drilled for the purposes, is thls part of the boller room.
The middle portion of the power bouse is 00cupled by the engine dynamos and 8 witeh basrd Thit part of the plant conaiate of throe madlum speed 17×24 Corliss type Rusaell automatic cut off engloes. The engines ran 1 lit revolutions ber minute, amd each ose is belted directly to a 150 K. W, " lofegeodent " mine types generator. The belts are $24^{\prime \prime}$ mide and the centers of engloe abd dybamo pullega are 28 fL . apart.
The three dyusmos are slow speed, bl-polar machlnes, and eapectally fioperes obe wha their extreme solldity and slmpliciry. They are sheokntely free from opurkisg, evin whet operat. Ing under henvy over loads, and tbeir armature temperatare uund full load there exceots 40 degrees Centigrade above the alr, while the flelds heat up loss thso 20. Centigrade above the aurrounding atmosphete
The switches, Instrumpots, ete, are mounted on three pasuels of white flaliav nastble, shown in Fig. 6, and present a very handsome appearance. The arrangenapt of the switches is 8uch that any or sll of the dynamos may be thrown outo both emines, or ettier of the mines nay be trollad by an matorsatic clronit lorenker, whember an rocklent in mine will automatioally open the dreuit mochdent in on- mine will sutomatioally open the circuit Three Weston ammeters and one Weston voltmeter

Febertal, PA
method has the very great advantage of Heepletg the the General Manager and his Superintebdent, Mr. wires where they ane lo sight and casily nocosible and Baidwin. That they ald bot err in their judgement If greatly to be preferred to the nltungether too common is atteated by the fact that the plabi was in oper-
 censible.

or Easen Coal Co., Fedesal, Pa
but sarpased. And the tact that the plasi was form- to $^{\text {s }} 1,000$ revolutions per misute according to the slze of ally accepted and paid for in fall in accordance with the Fio. 7.-Fons of Datiy Rerokt.
L.B. Machr Co.Nine no. \& Iomn Sideralstatel?

No.terthereeut.	166	DELAYS AND AEPAIRS
Teat numbereata,	54	
Na cout "Niste, -	51	
No.tob-nounc-	3	
No. mones	6	
No. haorn wated	10	
Tounsp		
Na, otron.	1579318	3s-Puenfichiengh
No oterites.	23	
Nachieresoner,	cenl	11/ C Cume
Machins telper.	18Vill	con fevest

the machine.
They are especially sdapted to the requiremeets of small motor servilo. Thelr small slze, low speed. high effictency and stmplletty of construction render them pecullarly valuable in printlog, wood turnlug and estabilshments of a simillar charracter, and for the operation of small pumps, ventlistigg fans, waching tools, ete. A large number of these I. B. motore are alreaily is use.
The generators are succesafully used in isolated plants
and in cases where a small amount of current economieally generated is desired.

To Mine Managers

Amoeg the new advertisments in thls lsaue of Tux Colleey Exaineref and Metal Miseri, are the follow${ }^{\mathrm{lag}} \mathrm{T}$
The Bloomsburg Car Mfg. Co. of Bloomsburg, Pa . manufacturers of frelght, mine and dump cars of every -Bom, and alao manufavturers of the well known howden" aelt-alling minn oar wheel. This comproy enviable reputation for excellency of mork, promptape In shipmeot asd reasonable prices. Thetr circulars and ostalogues are of taterest to every mine manager.
The well known pump manufactarers, The Geo. F Bake Mfg. Co., and The Kuowles steam Co, make their debut as advertisera in Tis Colussiy Esoisges

Fio. 8,-Fons of Blasx for Mostaly Revonz.

L-B. MACH'Y CO.
Town
State
Mine

NAME OF nuNxEl

\square

Avaraze
0. K

 at. Yuruith Cosi Compauy with cepr of this report mhen requented.
ternas of the contract, is evtidence that Pickands Mathor \& Co, who control the Essen Mines, were satisfled that the plant was all it was represented to be.

Ironclad Generators and Stationary Motors. The list of slow and moderate speed tour pole dynamos and motors of the General Electric Company, has been supplemented by a serles of meshines adapted to smaller output thas is precticable with the four pole type. They are classed under the head I. B. from the fact of haring an tronclad blpolar frume, and are ballt for various out-puts-from it to if kilowatts as geaerators and from 1 to horee-power as motors.
The framed are eylindrical asd are supported on short legs. This beinge the cester of gravily very lom and conduces to stability and ateadiness whee ruming. The spsoe occupled by the machise is small tor Its outpat, sud its shape and construetion allow of its use tn
and Meral Misen in this tasue. The use of Kiowles abd Blake pumps for many years in every mining field on the continent sttesta their reliability nod eflesency. The pump user who doee not poasess their catalogued shouid geed for them at once. Their ts no telliag when a new pump of some description from a small boiler feed to a large mine pump for beavy duty is required. When it becomes necesssry to order a pump the wlae mine mauager mill at least consult the catslogues of such well known manafactarets evee if be has "slmost made up his milod to purchaso some other make." The imeneesse number of Kuowles aud Blake pumps in use for many years is the strongeat teatimoalal of thelr excelleaco.
Meas
Messrs. Wyekoff, Seamana and Beoedict, also make thelr dobut in this lasue as advertisers. Their epecialty is the Remington type-writer. The otheo of the preaent
that is not equlpped with a type-writer of some kind, is that is not equipped with a type-writer of some kind, ts the one in which elther the amoust of busloess dooe is exceedingly ilmited or the cost for clethal wurk is exleasively high. There
are more Remlagtoa rype writerat to are more Remlastoa rype writers in
use in lange railroad and other corporstion oflees, as well as to the porstion oftkes, as well astion the Washlogton, than any other. They Washington, than any other. Tbey are well made, convecieat and caty aperate, sod they are tho best mant-
foldileg machibeg we cso get for uase is our own ofices. This latter frature slone is A valuable one in a mioleg of ilice. Their catalogues are sent free in spplication, and me advise every milne masager in waot of a machine to look fato the merita and alvantares of the Remlagton before purchasing any other.
Auother new sdvertiser this month is the Allisou Coupon Co. of Iodlanapolls, Iodiana, whose coupon books are deacribed in mbother column. These books are a decided ad vantago at mines where stores ard run in consolutely prevent mistahee in accounts h the operntor and miver.

Wanted.

A mine foreman to go to Colorado to take charge of a shaft workiog 7 toet of bltuminous coal. Muat uaderstand mine machioery and have bad experience in hasulltog mee. Addrees, statlog experleoce, age asd compensatlon expected,

413,
Care Tuif Collisuy Esoisein and Matal Misen,

PRIZE CONTEST.

PRIZES GIVEN FOR THE HEST ANSWRES TO

 questions relative to mining.For the beat answer to cach of the following questions, the value of 81.00 to asy of the books tu oar book gatalogue, of sty months' aubecription to Tra Collisht Engineme and Metal Minei.
For the second best answer to ench question, the value of 50 cents is asy of the books in our book catalogues, or three months subeoription to Tisg Cobsisitit Evgineke and Metal. Minele.

Both prizes for ansiners to the same çuevtion will not bo anuried to any one person.

Conditions.

Firat-Competitors must be subscribers to Tur Cot Ekiry Enainger and Migtal Mfinke,
Srognd-The name sud address in full of the contestant must be algred to each answer, snd each anawer must be ou a mparato pajer.

Third-Answers

the paper only.
Foterts-"
Fourth-" Competition Contest" mast be written on the envelope in whlch the answers are sent to us.
FifA-One person many compete is all the questiona Sizth-Our decision as to the merits of the answers shall be flanal.
Seeenfl-Answers must be msilled us not later than one moeth sfter publlication.
Eigith-The pubilication of the answers and names of persons to whom the prizes are awarded sball be considered sufficient notification. Saccessfat competitors are requented to notify us as soon as posaible as to what disposal they wish to make of thelr prizes.

Competition Questions for December.

Quss. 193. As we are trying to make our new patent ssitety lamp the beat in use, we canuot be over careful In avolaligg the ecrocs that may spring from our own Ignorance. Now there were two of the primilive Incapa that were furnished with glass chimnega, and one had it sot within the gauze eglinder, as in the Stephenson lamp, and the otber had the chimney set over and outside of the gauze, as in the Jack latup, and to make the use or fetention of theae glasa chimnere so clesar that we may discover any esaentlal principle in them thast should be incorpornted in the structure of the new lamp, will you plense explain to me four thinge ?
Firat. What was the uses of these glass cylfudera to promoting esfety ?
Second. Did these glass chlmnegs locrease or dimlulsh the light from the lamp
Third. Did these glass cylinders increase the motive colums sid make the lamp barn where other lamps moula go out?
Fourth. Wha the eafety of the lamp Increased or decreased when by accldent the glase eylinder was broken? Quns. 194. Before commenclag to sink we ate boring O hind the thlekness of the sesmas, and those of the foterveulog and overlsigg strata, sod the general direction and amount of the dip. We lasve two guod seanus, and the top one A, according to the prevaliting thlekDessen enst of as, should be 4.5 feet, and that of A the lower beam 3.75 foet, and in nddition we know that the thickness of the rocks between A and B should be 104 feet; but if the exelted story of our master border is to be belleved, theas thlcknessea will be found to be quite diflerent for the following reasons.
At $2 o^{\prime}$ elock thls mornlog our house door-bell rang
nost violently, suld ruming to the stais I most violently, sud rumutug to the stairs I inbouted, "Whase there," when a rolce replled, "It is mee, the master borer from Hardrock," and he cuotivued, "I bring good news, we have cut gmam B with the bore Tubes at 57 feet fustesal of 104 feet," and I nald "Good, that will save the expense of borlng the other 47 fuet," but he replled, "Tast is a triaing cousideration, and this
is what sou thould know. The thle intarveping roek Is what gou thould know. The this intarveoing roek Indicates a thlek seam, and lustead of 9.75 feet, the B if it is oot pood news, 6 toot. I will be obliged if good bops If it is not good newr, and 1 will be obilged if you will borer foupded tia oplalon. I may priuciples the waster corer founded his oplalon. I many say that all the
enst of us are deeper to the A seam than we ses anst of us are deeper to the A seam than we are
Ques. 195. Will you calculate for us the quantity of ar in cuble feet per minute we will obtain with a 2 inch
water gauge. The fan is 39 feet in dismeter and rus with an angular vetocily of 90 revolutlotas per minute, with an angular velocily of 90 revolutiots per minute, the dinmeter of the central oritice of latake ls 12 feet the of the orifice of dle-harge is 60 gquare feet the area radlal lengith of the blarder is 0 feet.
Ques. 196. We are passing 86,400 cuble feet of air per minute through an alrway 10 feet high, 12 feet mides and 8,000 yarde long with a water gavge of 3.99 loches, 10 d ts We do not now requiresuch slangequantity forthlastistret we nre going to reduce the supply with is regulator and poss instend ouly 35,000 cuble foet per mioule and me will be obliged to you if you will calculate for us the area re quired in square feet to pass the stated quantily through the regulator. Mske the co-efliclent for the enena contrada. 65, and the co-efliclent of friotion .000000001
Quss. 197. We have sold a coelesl beap of cosla to three persons A, B and C, and to prevent lojuatice of any kind we will be obliged for your askistance in fursishling 48 with the belghts at which each purchaser will have obtaibed hia corizet melght. For example, the cone Is 42 feet high, and the dlameter of the bases is 90 feet, and ss a cuble foot of these brokon coals welghs 59 pounds, will you flret tell us what is the total welgbt of the heap, in tons of 2,240 pounds, and as each of theae persons bave pald for one third of the relght of heap, we bsve arrasged to murround the heap at the belght rou give us with a platform, so that A cas obly cut of the top of the cone to ges bis share, and then we will erect the platform to allow B to obtalu his share, and the remainder will be C's share. Now plewes tell us how high
the platform should be set for A's share to cut off a cones, and for B 's to cut off a frustum, and lesve C his just share ss the remasinlog frustun.
Qeas. 198. Why is asthrscite coal broken to plecea efore it is sent to the market for sale and for use as tuel?

Answers to Questions which Appeared in Oetober
 and Previous lssues, and for which Prizes Have Been Awarded.

Qees. 174. My Vible George is a mine superintendent sad be asked me to-day if I had glven due attention to the study of mine machinery, sod stesm englines sud bollers ? and I said oh: yes, 1 know all aboat thens, and nobody can teach me any more than I know; and he said, "bem," and continued, "Solve we this question sod let me have the answer in a fer days."
We have a semi-portable hauligg eugioe la the Burdock mine, and it it rather light for the work, and therefore, always ruse witb full steam. It is 80 borse power and the ligheet pressure of the gteam at blow-off is 90 pounds on the equare tnch.
The trais bas a speed of 10 miles an hour on the level road when the steam pressure falls to 50 pounds on the $9 q u a r e ~ i n c h, ~ a n d ~ o n ~ c o m i n g ~ w i t h i n ~$
850 yards of the absft
the train of cars has to asoend an incline, when the speesi the train of cars has to asoend at incline, when the speed rlses to 90 pounde on the equare lach. Now the boller rises to 90 pouble 06 the equare isch. Now the boiker power of the boller uniform throughout the journey.
The questlon makes three demands
19t. Why does the boiler pressure vary
2 od. What is the gradient of the inclloe ?
Ind. What is the sperd of the trais on the incline
I frankly confeds, I bave made a matake in bouncing to my uncle deorge, and I hope you will help me
the dllemma by snswering the queations for me.
the dllemma by snswering the queations for we
Ans. First. The pressure varies becsuse the boller ba making ts maximum outpot of stesum when the train of 50 pounds on the squsre libch above the pressure of the atmosphere
Beoond. Tbe grade of the incline can be found as fol. loms: Let there be 2,210 pounds in a fon, and let the oo-etticient of iractou or cars, ropes, rothers, eagine to.39 pornds per too for risction due to level osis and for lerel and lacline it will to $70: 90: 40.32$ is to 72.576 , that is $\frac{40.52 \times 9}{5}=32.326$ pounds for traction, snd forve reguired to overcome that of gravitathon. Therefore the foroe required to pull every ton up the locline wIII tat $72.576-40.39=89.255$ poubds. The grade of the inclise theu is $\frac{2.240}{32256}=69.4$, that is an apgrade of 1 In 62.4 feet.
Thitd. The velocity up the incline will be loversely as the pressure of the steam, because as the volume of the stoam reduces, the presaure lucteasta, and as the speed of the engine is directly proportionate to the volume of the stesum conaumed, $\frac{10 \times 50}{90}-53$ the velocity of the cars up the inclive in miles per hour-

Tracy City, Tennessee.
Second, Hear Catrse.
Eloo, Washlagton County, Pa.
Qrice 181. I ama about to invent a new miuet's safety amp, and I inteod to make the capacity of the taak of oil vessel large ebough to supply sufficient vegetable oit for a consvmption of 8 cubic taches per day of 10 hours,
asd as I require your valuable asslatance, will you ansed as I require gour valuabje ansistan
swer tae three questions, as follown if
swer tae three questions, as followe :

1. What volume of air will be reguired to supply the 1. What volume of sir Till be re
necessary oxygem to burn the oll?
2. It ouly 20 per oeat. of the oxygen of the air enter log the laup is consumed, what volume of air is neoesary to feed this flame?
3. If, after allowing for the zena cantrincta abd the ioterference of the wires, the avaliable aperturage is in the ratio of .3, nod if the velocity of the air on entering in equal to 3 feet per sucond, bow many square inchea of
gause covered entrance must I provide for the adraission cause co
(1.) Taking S_{p}, G of the oll at 0.92 , the weight of $8 \mathrm{~cm} . \mathrm{ln}$. would be $\frac{8 \times 0.92 \times 62.4}{1725}-0.265 \mathrm{lbs}$.
Assuming the oll to produce all gas, and if it were rape seed oll, with the formola $\left(C_{11} I_{1} O_{3}\right) 0265$ Ibs. of oil would requires 3.03 lbe of air to coopgletely burn it. From the formuls, Wt. Air = 12 Wh. Wyd. Cartoon +

$$
O \text { belog } \frac{120 \times 0.265}{170} ; H_{+} \frac{\frac{18 \times 0.265}{170} \text { and }}{}
$$

$0, \frac{32 \times 0.265}{170}$

3.03 Jbs. of sir +0002 . Wt. $1 \mathrm{cu} . \mathrm{ft} . \mathrm{air},=37.53$
cu. ft. Aus
(2.) It mould take ${ }_{20}^{100} \times 37.65=187.75 \mathrm{cu} . \mathrm{ft}$. Ans
(3.) With assumption in second question, $\frac{187.25 \times 1728}{19} 60869$ $10 \times 80 \times 60 \times 0.8-3 \times 12 \times A$, whenee $A=0.8389 . \mathrm{in} . A \mathrm{na}$

Cras. E, Bownow.
Tracy CIty, Teen.
Qusc. 189. We have found a lange fault in one of our coal sesus, and the cheress or sides are 6 thehes apart,
galess. Our mine foremsn says that galena almays contains gold asd allver, sud bls statement has so exeited me with surperles that I hare beeu tryigg to extract the nutal by ralalog the ore to a bigh heat on an opeo flire, but it all whited away in whtte gmoke. I will, there-
fore, be obliged to you if you will tell me what I must fore, beobilged to you if you will tell me what I must
do to obtain about serea pounds of the metal, and while do to obfain about serea pounds of the metal, and while
you are busy plesse say what I must do to sephrate the silver from the lead.
Ase Cot out a ropresentative sample of the vein stuff and break it up into pleces abont the alize of hickory nats and after sprending it out evenly, divide the layer Into t equal parts nod with the part taken, continue breaklog it smaller, and dividing it still farther nod further notil it is reduced to about 1 pound or less. Next pulverise It gmall enough to pass through a sleve of 100 meshes to the square loch. Now, take a cruclble sud roast and reduce with na oxidiatng flame, when the metal will be obtained as a button. We now know the weight of metal per pound of vein stuff tested, and the percentages of lead abd gold and silver can be found by montigg of the lead with su oxidizing fistae whea s we can tell raxactly how mach veln staff would be re. quired to obtain 7 pounds of the metal.
P. H. Vambly ${ }_{\text {Vivian, }}$ W. Virginia.

Snoond, H. K. Mobskly,
Weat Newton, Ps.

QuEs 183. We have 1,000 acreg of a genm of good and cless coking coal, 2 feet, 10 ibches thick, and at an srerage depth from the surface of 000 feet; the root
 How do you thisk I should work this genu to obtain sll the conl, as I can only slink the shafta on the weatern side of the estate, the enstern sldo belag all undeg water? Ass. First drive the main havlage roads stralght to the eastern boundry and then take oat the coal by longwall retreating. The bad top cossl would just stow the gob after it had beos brashed to bonke heright. The the gob could be kept full of water and altogether this mode of worklog would, I think, best meet the requiremests of the cases
P. H. Carbiol.

Second, Gro. Bionws,
Clesrtield $\mathrm{Co} ., \mathrm{Pa}$

QuEs. 184. I am ebgaged by a powerful sybdicate to be the chief of a large staff of prospectors to search for iseful minerals in Asintie Turkey, and my instructions great tivers, the Euphrateg and the Tigris, and the creal ifegs of thelr tributaries, the reagon for the reatric. tion being, that the coantry is not opened up with railways, and therefore the water-ways are the only routes open for transport. In the North of Asia. Minor whete the great rivers take their rise the etratilied rocks belong to the Cebocole period, and nearly all the expooed rocks fousd in the valley of the Levant belong to the ast of the Tigris and the west of the Byaphrates; nod between the grent rivets, ns west of the Tigris and east of the Eoplrates, the rock. sare moetly of the Fozoje age, although rocks of later ages are found In patehes.
Now the grent atobe reconis of Babylon and Nineveh are cut on slaba of records of Babylon and Nor baud quarties, and I will be obliged if you will give me such information as I require
Pirat. - We know that asit, conl, ligsten, copper, lesd. Allver, gobd, and tron aboumd within the rocks of the valley of the Levant, then please tell me where to gend my men to senreh for them.
Second.-Tell me brtiefly what class of tools I ought fogive escheet of prospectoty to find tbe particular minerals tbuy will be gent is quest of?
Axs. First.-To find coal and irob ore, sebd obe get of prospectors to search the rocks in the reglon east of the Tigris, and another set to senrch west of the Eaphrates. ecions of the send a set of prospertors ho examels the cities of Babyon and Nipeceh, be the enlt rock may be expected to overlie the gypeum bede at the dip of the horizous of the quarries.
Between the great rivers locate the prospectocs for gold, silver, eopper, tio, lead, ete.
Scoond,-Eseh oet of jrospectors would require guides and a bodggastd of well armeal men, tents, blankets, and cooking utensals. The tools for the metal prospectors should be pleks, shovels, hammerg, ditils, blastlog tools, Iron ladle, pan, blow-ptpe outtit, bellowe,
harmuers, tonge, anvi, earpenters' saws, nails, hamabanonsers, tonge, anvi, carpenters saws, nails, hana-
mers, et palcricoopes, chain, travoit instrument, and mers, fits, molctceoope, chain, fraveit instrument, and mapping tools and paper. The prospectors on the Perhas stde of the Tgris, and those on the Arablas side of the Euphrates, and the sel rent into the nelghbortroods
of Babivlon and Nipeveh, should have in addition to the of Babylou and Nibeveh, should have is addition to the
twals gives to the preapectors sent to operate between tools gives to the jucespectors sent to operate betriend
the rivens, a complete set of deep bore tods to be worked the rivend, a complete set of
by hand whith a binke stalt.
P. II. Cshamole

Vivian, W. Virgluis.
Ques. 185. As I am auxlous to obtain a good examsple of a magbotio-survey. Will you give tae your noter plot, ami the results of the traverse to prove its ne. curnoy?
Ase, In an antual magnetic survey, where the readIngs of fractions of degcees cannot be made as accurately as on a transit, to obtsin better results in the cal. done by distribating the diffrepors of the sums eo obs.
tained in the la'Itudes sud departures among the coarses in proportion to their lengths.

Statiom	Hearinga	Distabe in feet.	Latituseo.		Dejastures.	
			North.	South.	Enal.	Wess.
1 to 0 to 3 to 4 4 to 5 to 5 3 6 to 7 to		$\begin{gathered} 110.00 \\ 50.60 \\ 190.60 \\ 130.00 \\ 30.60 \\ 139.60 \\ -00.60 \end{gathered}$	120. 60		${ }^{0}$	0
			${ }^{45} 513$		俭条	
				1.6	320	
				2440	10162	
			176 \%3	\%s. 6		69.48 80.50
			358.36	20.00	487.98	487

L. A. O. Gabast

Second, Willay Wrise, Brookwood, Ala.

Sna_n Clvil Engiverer, Wangtos, Ps.

Ques. 186. We lave a pump that forces with two six inch plungerg the drainage water of the mine to as elevation of 600 feet. From the commencement, thla pamp had a beavy "knoek" and it was found to occur at the moments when the plungers begsin thetr adrance on the forclog stroke and it seemed to result from the chambere not bedig flled close with water duribg the guction or Intake stroke, and the consequebce wha the knock by the plunger advancing on the force, and the heavy strain that debtroyed the packing of the ginuals aod ultimately the "gktin" of the plungers that becswe ecored snd thited. Some mechanical evglueers declared that the cause of the knock mas the softoess of the tron plungers that became fluted and leaky, and that the ociy cure would be foum is getting shekel stee or bifonse plungers; out eogineer, however, thought cing the glabds said the obly cure would be found in slacking the glabds
and dromaing them with water. He then foed cases and dromaing them mith water. He then ased claes over the outsides of the glands ably cured. Will you Water when the kwook was couplety then explain to we the cause of the knock and hon
by what means it was cured by drowning the glands? Ass. During the fatake stroke the vacuam mas bentralized by the entry of air between the sided of the planger and the leaky gisud, consequently the pump chamber was never elose illed with water, and, there-
fore, at the begluning of the forcligg strole, the plunger fore, at the begriusing of the forcing stroke, the plunger attained a high speed before it strock the
to be sudlenly ket is motion with i jerk.

The drowning of the gland eatively prevented the entry of air, because a little water entered tostead, and thus the pamp chamber was always elosely filed with water, abd, theretore, at the beginning and all through
the stroke, the engive bad forve agninst a bolld column. Tuen Camse.

Eleo, Washington Co, Pa.
Secund, Cuas. Ev. Bownos,
Tracy City, Tesuessee.

Persp

Mr. T. B. Corey, of Seattle, Washington, resigned his position as mibe superintendebt of the Gregon Improvement Co. on the first alt, after an ibcombebey of nearly seven years. Mr. Corey's relations with the company wreve most cordial, and in his reslgnation it loaps the servloes of an odicial who was faithfal to ita interegts ander all circumatances.
Mr. A. D. W. Naith, late Aspistant Geologist Penssylvnala Geologienal Karveg, has opened an oflice tor the individual practios of his profession as a geologist and engineer at No. 14 Coal Exchange, Willeshasre, Pn.

Waste Packed Ming Car Wheels.

The Hockenanaith Wheel aud Mive Car Co. of Irwin fiform ws that their works are running full time, abd that they are in continaal recelpt of large orders for thelr ber patent waste packed mine care whecls. In fact thls wheel has noet with such favor that the Hockas to ecable them is arranging to lockease his piast so from docens of useed of this wheel show that it ls giving untversal sathafaction.

 corchily semedes.

Surveying

Editer Collery Engineer and Melal Miner
Sar :-1 submit the following bolution to problem propounded by "Tom," Minesaville, Ps, In November iespe of this journal.
1 am working n senm of cont that outcrops on a plece of land which I cannot enter. The horizoetal distancer of the land line from the high ride of the gangway is 110 ft . I have drives a bole upou a pitech of 94 for 58 ft . from the liggh 'side of the gangway, and at thls polat the pltch changed to $5 \hat{2}^{\circ}$. I have driven on this last pitch a distance of 56 ft . How much farther can go on the same pitch before I resch the land line?
Ass. If the horizoutal distance is 110 to lines, the horizontal distabes of thetrist 58^{\prime} at $84^{\circ}=53^{\prime} \times$ cosine $43.938+$ Then the second $50^{\prime} \times$ coalse of $57^{\circ}=$ $80.499^{\prime}+$ thes $30.450^{\prime}+43.429^{\prime}=74.434^{\prime}$, then $110^{\prime}=$

74.438 $=3 \hbar .562^{\prime}$ from line on a horizontal dietance Then $35.568^{\prime}+.5446 \mathrm{i}=6 \mathrm{~S}^{\prime}$ nearly. He cas drive at work up 68 feet on the dip of 57^{*} to strike land line.
Minersville, Pa . Yours, ete.,
J. G. Lewis.
Thls question can be solved by forming three separate right angled triangles. And taking a jistt of the total horizontal distance for the lases of each triangle.
Then borizontal dlatance for finat triangle = coa. 34° $\times 53=.82904 \times 58-43.20912 \mathrm{ft}$; second trangle, horizontal distance $-c o a .57^{\circ} \times 56=.54464 \times 56=$ 30.49584 ft. Then the horimoutal distabce for the third triangle $=110-(43.93912+30.49884)=35.66104 \mathrm{ft}$. And as the pitch la the eame as the gecond triangle of
57^{\prime}, then the distance that the bole can be driven will $-\frac{35.56104}{\cos .57^{\circ}}-\frac{35.56104}{.5464}-6529+$ feet farther. Yours, ete.

Abcims Laffgety, Wampum, Pa.
[We have also recelved answers simillar to one of the other of the above from David P. Thomas, Minet's Mills, Pa.; Alfred Powell, Scranton, Pa.; E. W. Bailey, Rock, W. Vs. Adolps Cook, Houtolsle, Pa, W, . G. Good speed, Nelsonville, O. Geo. H. Whoter, JoLet, Pa, and

Pumping.

Ebitor Calfiery Eugineer and Melal Miner
Sut:-Plense Insert the following question in yout aluable paper for some of the readers to solve-
In patting in a new line of plpe 640 ft . from steam plant I oould not hold pressure tor more than twenty minuted at a time for four or flve hours. And after that times it was quite easy to hold pressure.
Please state canse of increase and decrease in pressate.

Yours, ete.,
Krebs, I. T

How to Mine.

Editur Cwhiery Engineer asd Metat Miner:
Sin:-1 write the following in answer to question sasked by "Inquisitive," Mamanoth, Knnawha, Co., W. Va. In the November issue.
By miniog the lower seam frat and takling out the pillara, the upper beam would be affected very moch. It would be the best to work the upper and lower seam at the same time with the upper ocan a lithe head of the lower, theu by takiog the pillars out of the lower seaw it would not siffect the upper seam. I speak from expert-
ence, bsving tried thls plan. I morked a 4 foot senm on
the stall and pillar system and drew the pillars sod thee mined a sesm which was 5 foet thick, 60 feet higher up the mountain, and I found it to be affocted very much where 1 had drawn the pillars out in the lower seam. Theo I tried workling the upper seam a little bead of the lower peam and I found then by taking the pillars out behind we I was all right.
truly,
Gro, Blewitr,
Vintondale, Cambria Co., Pa.

Ventilation

Editor Colliery Engiseer and Melai Miser
Sis i-1 wiah to aubuat the following drawing of double extry syatem and request that some of your

In toke
Oret let
reaciers give plans for ventilsting the same with the least number of doors and without doors

Yours, ete.,
Reopening a Caved Shaft
Evitor Colliery Engiser asif Metarl Miner
 surroundings, it is requilred to know the beet why of
reopealag the shaft, securing snnee, dealing with the

anve, cleanlog up and putting In the permanent shaft and minin entries rumbing north
Referring to the section, $A B$ is the bottom 200 ft , of no of the maln shaft. This is a rectnogular timbered shaf, about 18 xsy timbered throughout with $f^{\prime \prime} x 8^{\prime \prime}$ staff. It is divided into throw compartments, a cage ways and 1 alrway. The shafta longest dismeter is in a west and east direction. δ and N atand for south and oorth, B is the aump about 15^{\prime} deep, N is a s' senm of cobl, is mhtch gomé rooma were worked severnl rears ano and then the seam was sbevdoned. $C B$ and $D B$ are where the maln lyea or romds were before the shaft caved n. The polats U and D can be reacbed to-day by decending the escapement ahnft whtch in Intact. There is a small fat on it and from it the worlitogs are leppt In repsir.
Some 64 years sgo the timbering of the Iges on both gldes of foot of shaft broke down and with it the root caved to ahout the helght O and for 00 or 60 inbye from bothom of shate. These falls were cleaned up and yeit you falling dows the ahaft, aet fire to the timbering about H. This tire went clear up the shaft to the surface abx consumed the timbering around top of shaft untll the surface for 85^{\prime} around it, and to 40° deep ran in with in rush and smothered the fire below
In Blay last the shaft was reopened nod made sute dowe to about F, wbich is 120° from the bottom B. The cavity $E F G$ (about 150 loug x 20 whe) was tirubered up, the shaft built of extended downwards through the cave hole ms the work procseded. Slice after sltee of debtio was removed (hoisted) aed by Oct. last tmbered securely down to about 35 from rail level B. $L E$ shows the quantity of debrts not yet takee out, \AA represcats timbering in cave on botth side, and south side J was stmillarly timbered.
On about Oot. 1st, actual fire (red hot rail guidea etc.). Wha met with at O and P. The hoae was vigorously applied to it. Dolng thls seecos to have created large quantities of steam, whlch got up into the timbering and loosebed some, ss well as the exposed strata (shales chiefly) on that side, the result mas this slde of the cavity fell lo (eee JEF) and with it fell the lower 9' or 80 of the vewly put in ahaft. (See F to A). The setting
down of the shaft also damaged the timbering K ou
porth slde, but which, when last seen whs most of it standligg in good shape.
The width of the cave as explored and when timbered mas reported at from 25 ' to 40 ' (it got wider as followed downwards). Thls shaft stande or stood to the ruiddle of a ptlar of coal measuring about $350^{\prime} N$ and 8×800 E and W. The sonem Is 3 ${ }^{\prime}$ ' thlek and worked entlrely on the longwall system (Scotch method). The holsting apacily was 1500 tons of lump coal per day of 10 hours, and when the fle of Nov, '94 occurred this mine was ust about at Its beet laviog been growlog larget and larger slace sunk sbout 12 jears ago.
After the flre of (Mct 1st, all was reported cool and quiet in the cave until Oct. 6th, when the fire again and rery suddenly broke ont about 1 A.M. Water was again turued into top of abaft, but the fire gained on them, until, at fi A y. the top of shaft had to be sealed up.
 were used and over these 2 of puddle and then a layer of esad. The tire in the cavity is so far contined thereto, becanse there is to slgo of is is the mloe at O or D. but hot water trickles out on floor at D. Thermometer 500^{\prime} doep registeos $110^{\circ} Y$. This shaft is practically dry and the workings are quite dry. Wbether the top of cave F has ruu up any higher towards f or M is not knows, nor whetber timberleg is intact or pot.
Hestdes the rosde $C B$, and $D B$, the shaft ptllar bas been driven through in at tast three othet places E and W of $C B D$. Total depth of shaft is 341 ft . from surface to conl.
Nov. 8, 1895.
Yours, ete., w

Chemistry.

Editor Cothery Engineer ant Mital Miner
Stu:-Will you kindly pabilsh the following queations for answer la your early issues, as it will be a kinduesa to me.
(1.) If one vonce of blearbonate of soda and one ousces of sulphuric acld be mixed with 12 ounces of mater, the soda and water masy be mixed first, then the aulphurle aeld allowed to enter in a small strenm this
xill ereate cousiderable pressure if coefloed. What will be the pressure and tomperature sud how many cubte feet of gas will be generated from these ebemicals and what kind of gas will It be. If it will not be convebient to give preasure and temperatures, please glve the
number of cu. ft . and number of cu. ft . and hled of gas.
(2) My question in lnst March lasue has never been asswered. With your klad permlablos will repent it here, so follows: If ose poubd of carbos from bituminous coal produces 14,500 units of heat, bow tosny atome of oxyges would be required to form complete combuastion under a boller of mod-
erate draft snd at what erate draft snd st what degreas of temperature
would the above car-
Yours. ete., i, Monsis.
Wm. M, M
Pueblo, Culo., Xov. 22, 1890.

Safety-Lamp Experiment

Editor Colliery Enginaer and Metal Miner:

Sth:-WII some tire-bosa who la a reuder of your valaable phrer give we a correct answer to the following experiment? To tebt gas with as afety-lmmp without a gave. Kemoviog the gauze from a eafety-lamp uslog same todlestion ail hosea is ghield escept one, I recedve placed in the lamp thelest to work with.
Now esplato why the gas did not explode outside the shield, rememberling that the mixture was blghly explosive.

Yours, ete.,
D. L, Ais-ley.

Mining Tools.

Good tools are essential both trside and outabde at milues. Quality la a prime requisite. Tools made of seoond-class materisl sed io a second-class manoer are dear at any prloe, especially when used at mines. First. class tools can be made to compete in price with secondelasa goods if the purchaser knows where to buy. The Fulton Tool Works, which were establisbed in 1882. make a specialty of minigg tools. Their tools are not pressed bat are strictly kand made. They are is use it almost every nining reglon, and thele recordis firatacises. Tuace parctasers wil pront by woules to Fuito Tvol Works of Canal Pulton, Ohio, for catalogues, and on their local deslers givigg them Fulto Tool Works tools-

Teretofore the deepest sounding of the ocean has been forty-slx huandred and torty-five fathoms, near Japae Bot the surreylog shlp Penguin sent out by the Belitioh government, has found a deeper spot. The gounding wire broke at forty-bibe busdred fathoms, When bottom had not been reanlod. Thla was exactly south of the
Tonga, or Friendly Isles, and almost on the Tropto of Tonga, or Friend
Capricors.- Er .

The Colliery Engineer METAT MINER.

PUBLASHED MONTHLY AT ECRANTON, PA.
Wirm wich is conemso The Minimo tixand

 TEB COLLIEKY ENGINEER COMPANY, PUBUBMEMA

terms.

Subscription, (poman in us.

F. O. Ordera,-You can buj, Mooev Order at sour Pont.
anco, paynble at the Scrnaton Prot-OBCe
Exprest Money Orders cau bo obtalnd nt any omos

Registered Letters.-1t a Moneg-Ofder Fost-omeo of

We Cannot ne keuponstble fior mones not We Cannot Me Reaponsible, for money mont in

EXPIRATION OF SCBSCRIPTION.
 Evon has been pald

RENEWALL, ETEC

NOTICE OF DISCONTINUANCE.

A Suberrler CRANGE OF ADDRESS.

 tise mo counot had his name obe ent mallug ist

THE COLLIERY ENGINEEE COMTANY,
Cable Sdaress-"Relsot, Scradter"
LONDON AGENTS.
 Pathasoatia Hoere, Clantmo Coses hoad,
LONDON, W, C ENGLAND

Lundos, W. C. ENGland

VOL XVI. DECEMBER, 1895. NO. 5.
For Tabie of Contents see page ix.

THIS JOURNAL HAS A
LARGER CIRCULATION COAL AND METAL MINE OWNERS AND MINE OFFICIALS
 THAN ANY OTHER PUBLICATION. It goes to 1507 POST-OFFICES in the aboye Ststes, Territorles, Provinces, etc.

THE PENNSYLVANIA MINE INSPECTORS REPORT.

A5 uanal, the report of the Inspectora of Mlioes of Penasyivanis for 1894 ts nearly a jear beblad time. It has just beeo lesved. We have bad the reports of almost every other State for some months and even the report of dlatast Victorin (Australla) has bees in our oflce for at least two montha. Other forelgu reports were recetved atill earller.
Why the report of the Inspectors of Mines of Penssyivania, which ts one the most fmporisnt of the State pablications should be 80 far behind time is a question that has never been satiafactorily suswered by the State Prlater.
The report has been recelved too late for us to analyze the statlatics and prepare a sumbary of them for tbls isabe. Such a summary will appear th our Jsnuary umber.
As usual the work of editing the reports, and the proot reatling has beea dobe in a manner that, to say the leaat, Io disheartenlog to the Iuspectors, who bave worked bard to make them models of completeness. snd is discreditable to the departanent from which they are lesued.
Mr. Edward Roderick, Inspector of the Flret Anthra-
ctte District toclades in his report some useful information and hints on plliar robblog, which show that bis attention to this subject in 1803 , produced good ressalts In 1804, sud at the same tlme polnts ont dangers thst can ooly be avoided by the per8onal watchfulsess and care of the mee engaged tn the work.
Mr. Patrick Blewitt, of the Second Anthracte Distriet limits bis reports to the statisticat tables and a brief summary of their contents in his lettee of trassmiltal.
Mr. Hugh MeDonald of the Third Antbracite District explalss why the number of tatalities per thousand emplogees is greater in the anthracite regions than in the bitamisous mines of Great Britain. His reasons are based on the greater use of explosivee in mining the coal, together with the greater diaturtance of the overlyiog trata by blasting in mines, the greater thickness of the coal acams making Inspection of the roof less positive, and the difference in the average intelligence of the men emploged, due to the intlux of workiegmen from Southern aud Eastern Europe In the past few yeses. Mr. MeDobsldy debcription of the electric machlnery at Mt. Lookout colliery is spolled by having a number of the lllustrations mixed up with others to the centre of the Eighth Bitaminous District Report.
Mr. G. M. Willams of the Fourth Anthracite Distriet, as usual, presento a report that is bot ooly complete from a statistical polst of view, bat which contains a vast amount of good practical data and Lnformation for the guldance of miners and mine oflctals. He gives a very complete summary of his investigntions at the collieries in bis district duilgg the gesr, and on the subject of ventilation givea the Lehigh \& Wilkees.Barre Coal Co. the tollowing commendatory notice
"This company is the largest coal producer to this distriet. It operated ten collierles, consisting of seven sbafts and five slopes in 1894. All are large collicries having morktoge of mide extent in sevpral seams. With the exception of one, all are working in deep parts of the coal bastn, where explosive gaseo are evolved in large quastitles, requiring immesse volumen of air cutrents and grest care in mnnagement. They are excellently ventllated and carefully conducted, and liberal provielung are maside to logure safety in the event of an aceident occurriog which would diaable the ventilating fana. No standing gas is permitted to remaln to any part of the worklugs, and where such a large wolwow of alr circulates, no sstiafactory excuse can be preseoted by any foreman for the presebce of standiog gate."
In commentigg on the mbers of the other large companles, and on those of smaller companies, he statesthat, In geberal, they are well ventliated abd In ssfe condition, though he points out one or two mibor inatabces in which changes cas be made that will enhance the satety of the men.
The mives in Mr. Williams' distriet taken as a whole are probsbly the most esscous mines on this continent, and wheo be commends thetr management for efficient ventllallon, it mecessarily follows that grest attention has been girea the sabject. A pecullar feature noted in Mr. Williams' report was the diseovery that the electric current used on tiolley car lines in the nelghborhood of collieries can be and la carried loto the minee by water pfpe or other contleuoas libes of tron and is a new element of danger that must be guarded agalust in gaseous mines, owing to the fact that the electite spark will igatte fire. damp.
Mr. Joha M. Lewis of the Fifth Anthracite District furnlabes a very complete statiatical report, and loeludes to his text a report on colllery improvements in hils distriet durlag the year 1894, and a revlew of the fatal aceldents.
Mr. Wm. Stein of the Sixth Anthracite District, to addition to complete statistice, putilisbes a large nemount of aseful ioformation. In epeskiog of mive aceldents be anys :-" I herewith nasert, wilthout fear of contradiction, that if our workmen would otserne the law in the game masneer as melve oflctals do, we would have very few aceldeats to record. I speak thus from practical expertesoes, and not becanse I wnald uphold the assertions of either operators or mine officials at the expense of the charmeter ot our emploges." He describes is detall Hempel'\& Apparatus for Quick Determination of Gases, but the descripthon is rendered wortbless by the Illustrations being Inserted to the report of ibe Eybith Bitumidous District. Almalso describes in detall the fire at Packer No. 5 Colllery and the methods emploged in extlinguishiog it. This is accompanied by a map that is imerted in a pocket to the back cover.
Mr. Edmard Brenasa of the Seventh Anthracito Diatisct preents a very complete slatistical report, and describes tbe flre at Lake Fibler mine and the methods used in extingulshing it. He was more fortuaste thas his colleague Mr. Steln, as the map aud section Ulustrating his article la In tts proper place.
Mr. John Magulre of the Eighth Anthracite District
furolshes, besides hla completestatistics, an account of the mine fire at the Lehigh Coal and Narigaton $\mathrm{Co}^{\prime} 8$. No. 11 Shaft, and detailed descriptions of the estensive fmprovements made at old and sew collierles is his district.
The Juspectors for the Ten Bituminous Districts each present reports that are statistically as near counterparts of those of the anthracte distriets as possible. They are also very complete and comprehensive.
In addition to his statiatleal report, Mr. Henry Louttit of the Finst Bituminous District note8 six prosecutlons brought during the gear againat vilolatora of the mlae law In his district. Heslao reports specifically as to the contition of each mine in hils district at the time of his last visit le the year under conaideration. His reporta on each aceldest are full and complete.
Mr. Wm. Jenkins, of the Second Bituminous Distriet bas a full and complete report, in wbich be gives a briet description of each mines, with the average quantity of air clreulatiog per minute in each. In commenting on the aceldents in his dlatrict Mr. Jenklus says:
"The stricter the officlals are, the fewer accldents they will have to report. This nuch I have discovered In my official capacity, that no matter how often the oficials visit the morking places, they will alwaye find some obe wortitig in danger who veeds to be marned and severely reprimnuded for bis carelessbese. One of the most fruitfol cauges of acoldents is from falls of slate, and care should be taken In setting posts. The peats abould always be set at a right angle with the roof and floor. The cap pieces should nlways be set across the slips in the slate.
Mr. Thomas K. Adams, of the Third Bitumpous District reports all the atatistics and the condition of of each mine in a clear and conclse manner. In commenting on the csuses of accldents Mr. Adams anys:
"We cannot emphaslze the fact too atrongly that mbers, no matter how poor they may be, or what their elrcumstances are their flirst duty is to have thelr worklog places made safe, no matter what tlme it requires to do it. They must be compelled to use all proper and neocesary precautions to protecting thetr Hves and limbs. The performance of this daty must not be left optional with the workingmea. It must be rigidly enforced by men in authority.
Mr. James N. I'atterson of the Fourth Bltumlsous District confines hls repoct elosely to statistical toformastion and to the conditiona of the malbes in hls dietriet.
Beaddes the ususl matter foubd in all the reports, Mr. Chas. Connor of the Fith Bitumloous District, gives his correapondence with Deputy Attorney General Stramhan regarding the correct futerpretation of the lam as to as applicnat for examination as a mido foreman belog able to rend and write. The opluion of Mr. Stranabas was that such a qualitication was necessary. Mr. Counor also gives some Iaterestlog and valuable information regardlag the wnrkiag of a Stanley hendling machine st the H. C. Frick Coke Co^{\prime}, Lelsearing No, 2 mioe. He also dwells on the carelessness of workmen, abd says: " Neither legislathon nor fustructlon will prevent aceldents unless the persons employed in or about the mine will exerelso common setse and take precantions to protect themselver." He also describes the draluing of the gas from about ten acres of "gob" at the Oliver mine, by a bore-bole from the surfsoe.
Mr. J. T. Erans of the Sisth Bitamisous District, in his report, emplasbises the remarks of hils cosleagues on the lack of care on the part of workmen as a frequent cause of accidents. He notea four very fapportant changes in opening and conducting molaes at the present time that give excellent resalts as to cconomy, safety and santtary conditions. They are (1) Haulage by macbivery ; (2) The method of drainage by wblch the water flows out throagt the mala slrway driven parallel asd to the dip of the hauling ronds; (3) The drivieg of wider beadings (4) The drawlog back of pillars se soon as the room reaches its llmitt of length.
Mr. James Blick of the Seventh Bitumlnous Distriet conifines bis report to the statistical tables, reports on the condition of each melne, with lmprovements made during the year and detailed accounts of all fatal aceldents. He announcer a decided tmprovement in the sasitary conditions of the mlnes, which he ascribes as doe to the beneficent tutfuences of the mine law of 1893.

The repert of the Eightb Bituminous Distrket is made jolutly by Messrs. J. T. Evans, aod R. Hampson. The diatrict was under the supervision of the late D. H. Thomas, who dled Jan. 27, 1895, and Mesers. Evana and Hampoon of the adjolaling district pregsred the report from Mr. Thomab' notes. The report is complete with the exceptios of the fact that Messra. Evans and Hampson did not have the data from whieh to report on the condition of esch mine. In connection nith this report some views of electrical machlery at Mt. Lookout colliery in the Third Anthractie District, and views of
the Hempel apparatus deseribed by the inspector of the Slxth Anthracite District are mlxed up with some views of electrical machlnery, etce, at Smoke Run mine, in the Bigith Bituminoos District. There is, however, pot a line descriptive of the litter vlews in the text, and we are caly able to locate them by our kcowledge of the plant.
Mr. Bernard Callaghan of the Nloth Bitumtnous District coefices mis report to statistical tables and desariptions of the condition of each mine, and of each tatal accideat. He also necribes a large proportion of aceldents as due to carelessuess.
Mr. Roger Hampeon of the Teoth Bituminous District also, confines hts report to statistics, descriptions of the coodition of each mitue, and a statement of how each accident occurred.
Taken as a whole the volume shows careful conststent work on the part of the Inspectors, and gross carelesanees or ignorsuce on the part of the complers, elitors and proot-readers.

USE OF EXPLOSIVES IN MINES.

Aresult of the greatatady and patied researchen into the causes of accidents in mines, spectal rules and tmprovements in the mine laws have reoently been made in many Earopesa miolog dietricto. Arnogg the more recent of these special rules are thuse promulgated tor the Breslau (Prusala) Mine Inspection District. These regulations apply to the use of expto alvee, abd they are very complete.
In the case of fiery mines the rules provide that blasting, when bot entirely forbidden, must not bee carried on at any polnts in the mine where the presence of tiredamp easy be detected by the safety lamp. This pro hiblion aleo extebds to all working places in the same divislon of the mine which are closely connected with working places in which fire-damp hne bees found, or whleh recelve their air via worklog places in which flre-
damp has been foumd. This probibitlon remains tu force damp has been found. This probibitlon remains tu force htmself that the worklog places in question, and those connected with them in the manner above described, are entirely free from flre-damp.
Even if flredamp be not present, blasting with black powder. or other explosive, is prohibited in working placen in which coal dust, known by expetience to be danget ous, may have acoumulated. Is all cases Immediately before flring a sbot, a caretul examination must be made with a eafety lamp to prove that there are mo aceumulathons of tire-damp within a distapee of 20 metres (66 ft .) from the shot.
Io regned to the general use of explostres the rules provide that mbere sufficient protection from the effecta of the blast is not afforded by the workings, special places of refage must be provided. In the case of misd-
ed ebots the men are prohibited from returning to the ed ebots the men are prohibited from returning to the then they many approach it oaly on permission of the most experiesced mas in the party. Sbot holes cbarged at the same time must be fired simultaneoasly, abd the boring out of shots that bave missed flre ta prohibited. Shots that bave mlesed flre, and the tamping on them, may, however, be drawn, if copper or sott brass tools are used. At the changes of shifts, the most experienced man must elther satisfy htmself that mlased shots have bees rebdered harmless, or polnt them out to the most axperienced hand to the shift rellieving his gang
After ahots have been tired in a working place, the men are probibited from entering it until after the most experienced man in the party'bas satifed h mself that a sulficlent quantity of air is entering the place to remove the smoke and permit work to be carried on without
danger. In
In case blastiog powder is uned, it must Lovariably be put up io cartridges wade with mell sealed paper, of ahould be aecessary to chango a cartridge fo any manner, such chango must be effected at a safe dislance from the stock of explosives and the other men. As an additional precantion, the miniog lamp must be suspended at a digtance from the cartridge so that all dauger of fire from It is prevented. The use of tron blastiog needles, nod of olled paper or straws alled with powder for equibs is trietly prohibited.
Spectal rulea regarding the care and use of high explosives provble that cartridges containing sitroglycertne must be thawed, with great care and precaution, before belng given out, and afterwards they must be esrefully protected trom a degree of cold aumslent to re-
treese them. Ueder no circamstanoss are such cartridges to be brougbt near a flre, a atoves, atesma plpe or suy place or subatance hotter than a hand can bear. All chasges In cartridges of high exploaives must be made by the most experlenced man in the party uslug them, who must also make up the cartildgee, if they have not alrendy been made up by a man apectalily appolated for this work. The charging of holes with high explosives
must be performed by the "obot-master," or toost experteceed miner, and the tamplog and firing must be dose elther by the lattor or specislly deputed miners. The insertion of the fuase, detonator or other iguiter in a cartridge must only be done tmmediately before the antridge lo used. Sbote, when high exploelves sre used, may be tamped wifh elther sand or water.

TECHNICAL EDUCATION.

TBCHNICAL elucation in its truest senee means n knowledge of proven princlples combleed with experience. Such a comblontion fitg a man to direet and lead others in the isdustry in which he has ducated bitatelf. A man a may hold an oflicial position through what is known as "practical experlence" but tu such a case hts "practical experlence" has made blem famillar wilth more or less theory. He has lenraed from observation that certain causes produce certain effects, and this knowledge is "theory."
The practical man who adids to his own experlence a knowledge of the experience of others brondens hits usefulbees and ablitity in direot proportion to the amount of knowledze of otber men's experience be acquires.
A tew years ago it wse a dimpult matter for a worktogman to acquire a knowledge of his trade or avocation. While there are text-books, many of a bigh order of merit, they present techuleal subjects in a way that makes a fair kuowledge of mathematice and phyales Decessary in the stadent wbo attempts to etody them. As a rule, the ordloary working man, whose educatioe ta limited, elther cannot understand the principles and formuler at all, or he only partially anderstands them aed misappiles them.
There have been a few men, who desplte all otstacter, have educated themselves and risen to ominence in the eugiteering professlon. Thoussads of others have been successful in a lesser degree through following their oxamplea. These men woald have been leaders in every seese had they had such opportunities to secure a tecbnteal education, in their early manhood as are now opee to American workingmen of nill classes. The systematic plan of study, which starts at the beginoing of each brauch asd jrovides persoesal asslatance and help for each student of The Internatlonal Correepondence Scbools, affords every workingman in Amertea a chance to rise above his present station. A better education than mas obtained by the eelt-educated man by years of application and hard study cas bow bo acquired in as many months by the correspondence system provided the stadent applica hlmselt.
The International Correspondence Schoola are epectally designed to educate practical workingmen in mining, mecbanica, electricity, archifecture, sanitary engineerlng, clvil englneering, ete- Every department is under the superviston of educated and experienced med to the trades or professons taught. They have sow esrolled nearly 10,000 students to all parts of the world, and many of them bave, through the education galned in these echools materially improved thele fluabeisl conditions. Pall particulars of the schools and an oatline of the courses of study are sent free to any person writting for them, and statiogetwat brasch be wisbes to be edurated tn. A postal cand contalnlig the request addressed The International Correspondence Schools, Sersaton, Pa., is all that is necessary.

Bоок Review.

Iowa Gbolobleal Sukvex, Vol. IV, Anwual Revori ros 1894.-This ts the Thind Ausual lieport or Prof. Saml Calvia, State Geologist, It containe an ex. haustive and tinely illuatrmted report on the geology of anawake counly. by Prot Calvis, and similar reporta Norto geolocy of Lina connts; by Willim Harmon Keokuk counts, by H. Foster Bain on Mahalka county, also by Mr. Baln; and oa Montgomery county, by Elston
Iocmes Loosiale. The report makes a handsome ifolmes Loosdale. The report makes a handsome oetavo volume of 450 pages, well suppiled with maps,
croas sectlons, ete. The book as a whole is too volumituous intervation and lastructive to be described in the apace at oar disposal. It should have a place in every referebce library and in the library of every man later--oted in American geology.
Misise Notes axd Fonselae.-Dy William Willismsob, Cottificated Collipry Manager abd Science Teacher. Tracher of Mintrg and Applied Mechaniea in Hamilton, Fife and Midiothian Clusses. Second Edition. Pabished at Hamilton, Scothan I by W. Nalsmilth, and sold In America by Tbe Technical supply Co., Serabton, Pa.
This la a reviston of Mr. Willisusou'd firat editioo, and Thly is a revialon of Mr. Wi hisusson'd first editioo, abd numerous additions have beva made to the original Work. Examples illustrating the pitnclpal formulae are aleo gived abd worked out to show how the formule are applied. It is an exoellmot text-book on cobl minEcosovic Mand is weil wo the 81.25 charged for it.
Hurr, the Metallurglat, and the Merchand Miuer, the SHetallurglat, and the Merchant." is the etite
of an octavo volume of 650 pages, by C. G. Warnford

Lock nod publisbed by Messres. E. and F. N. Spon, of Loedoe and spoe and Chamberlalo of 12 Cortlabdt St, New York. Boand ta clotb, price 85.00 . This work is vious repatation as a writer on mining subjects is in itself a gusrantee of quality. It d•nals with the subject as compreheusively and practieally as it is possible in a clesely pristed rolume of its kise. Matter baviog only an academie or blstotic laterest is excladed from this book. This affords space in which to deal with just those points which, while not of a strictiy selentifi value, are of prime imporlance from an ecobomio standpolnt. Io briefly describigg the features of the work we canbot do better than nopit the autbors own language. Acoepting the beda, and lodes, and velot as accomplished facts, this book ebdenvors to deseribe in plain anguage and a practical aim how these deposits may be bees worked under the various cobditions encountered,and how the valuable portion of their contents can most cheaply and effectively be separated and prepared
as marketable commoditics." it is profusely and well illustrated.
Haxd-Book for Misise Studekts asd Collegey MAXAGERS - Part I, pubilshed by the "Sclence and Art of us contains four bections. Section pamptet beelemestary grology on the questlog abd suswer prin efple; Seetion "B" treats on surveging; "C" on lighting of mives, nad "D" on the Conl Míses Regulation Act, by the same method. Pifce slx pence (13 ccnts) of by mail sereo pence (14 cents). Whils the wotk is more eapecially dealabel for British readers, and a larve porthoe of it la applicable only to Brith-h mines, is deeerree grent commendation for its clearness and completenesa when Its size is considered. Those portions applicable to mines is meneral are of so mucs intereat that the min iog student in any part of the work will flind them of interest and value.

The Pbodechos of Coal is 1824,-By E.iward Wheeler Parker. A extract from the sixtecuth amiual report of the Director of the Unitted States Geological Washington. This la a Goverument Prioting once, and contains is great dertail the statistica and trade reviews of the various States and Territortes, together with a mass of other tateresting matter descriptive of the coal lields.

Refort of tige 1 sepsotor op Misge op Kextecsy, 1804.- By Mesars. C. J. Normood, Chief Inspector, abd W. U. Grider, Assistant. This is the elevents anatal potice as the teort for Kentucky, asd is worthy of speetal that siate. Neot and most complete thus far issued by great palns to mate Norkood hed Grider bave it is a hargo octavo volume of over 200 pages, divided loto tuelve chapters, as follows
1, Prelliminary; II, General Cooditions of the Mines,
 Other Mines: VIII, Notes on the mines: IX, As exvelIent and timely article on 3ine Mape,by Mr. B. W. Robinsoa of Earilogtoo, Ky, , tining Engloer of the St. Bernard Coal Co.i X, Briet Aocount of Kentucky's Natural of Blg Stone Gap, by Mtr. J. M Hodge of Brg Stone Gap. of Blg Stone Gap, by Mtr. J. M Hodge of I
Va.; XII, Laws Relatieg to Mivelug, ete.

Geonogy of Curtis Citer, Colonano.-By Arthur Lakes, late Protessor of Geology, State School of Miose, Golded, Colo. Published by the Chain and Hardy Co.,
Denver, Colo. Thls is a parmphlet of 39 pager, dracriptive of the famoun Crippla Creek pold minirg region and its ore deposits. It is illuatrated by a geological map of the regton and 8 smaller speclal illustratioses. The obly adverge critictam we can give the work to to asy that it is too good to be lesued in paruphlet form. It should have been bound sutstantlally in eloth, go as to ensure its preservation. While interesting reading, it is more than an exaay to be once read and then discarded. Ereay man abo resids it will want to preserveit for fature referedes and use. To do this with a scmall paper covered pamphlet is not always practicable.

Cnemeal Tecnnology, Vol. 11, Liontisa, edited by Charles EAward Groves, F. R. S, editor ot The Journal of The Chesical Sotidy and William Thorp, B. So. Published by P. Blakiston, Son \& Co. Pbila. This ig a work that embraces five distinet heads as follows:- I^{2}, Fate sod Oils, by W. Y, D-at: II, Stearine Industry, by F. AleArtaur ; III, Candle Manufacture, by L. Fi-ld avd by Boverton Redion Petrolenm Indastry and Lamps, B. Redrood ani D. A. Louls. The merk is a very comprebeasive one, and is of special value to every man intercsted in the production and sale of IDuminants, of appliances for lighting, and to thoce who sre large parcassers or consumera of ill
applanced of any description.

Vitmipied Pavisa Brick. Prof. H. A. Wheeler who has made a apecialty of the stady of clays, has given
the reaults of bis luvestigationa in a pamphlet potitled "Vitribed Paviog Drick"; T. A. Randall \& Co. Indlaaapolis, publsbers.
Th brion commebces mith a briet bistory of the uee of brick as a paring in Continentsl Europe, and ita first Introduction into the United States.
The defects of the paving brick first used is this country, larkely due to a lack of kDowledge of proper materials and procesers, are clearly stated and the best up-to-date methods of its manats-mire are deecribed in fall, maklug the book of declded value to persons Thatested in the uee or manufacture of paving brick. The physical properties of paving brick are fully described and chemical analyses, deduced trom a larbo
number of relfable tests, are given in detall.

THE PROGRESS IN MINING. ABSTRACTS FROM THE PROCEEDINGS OF THE MINING SOCIETIES

 And Journals of Europe and America, lilustratingthe More Modern Developments in all
Branches of the Mining Industry.
Fire Damp at High Pressure. -The following
trandstlon from the Frunch le copted from the Cotliery uurfian
Aocording to Gruner's classiflention, the 1kth geam woer group of the Saint-Etienne- basln, its thlclaness varyiog la the Treail diatrict between 4 sud 5 metres, Thia suam is cut at the level of 125 m -below ges level by the Puits du Treall No. 2, which foras the downcast shaft in this fleld of working, while the Puits de la Pompe (-upplied with a Itstesu fan of $28 \mathrm{~m} .$, (9 ft .) diameter),
which strikes it at the level of - $95 \mathrm{im} .$, at present forms Which ottikect at the level of-95 in., at present forms down gob material. The seam is overlaia by a 8 mall
stratum of schlstose conl, called crue, 13 m . $14 \mathrm{ft}, 4 \mathrm{in}$. thick, aud, as a rule, waworkable, from which it is separated by a rock band
shout $20 \mathrm{~cm} .(8 \mathrm{in}$.$) thich$
The pregaratory twadinge were driven in this thit -itm, between the upeast and dowbcast shafts, and two inclines, connected every 20 m ., coustitated the Eist alt
mays, in forming which nothing occurred worthy of
motioc. Gwivg to the necersity of protecting the 1 wo notioc. Swivg to the necessity of protecting the two
safts against the thrust of the mensures, due to takiug out the coal, a nimnif d'incotison, aboat 100 w . Wide, was
left round them, beyoed ohich large forward stalls are inven right nod left. Levels were put out from the nelines of either stde simultaseously, following the roof
it the group, while takiug out the whole of the thin ceare, bat a portion only if the tbick. It was proposed
in this way to pass rapidly merces the protectiog mass in this way to pas rapidly nctoes ibe protecting mass acadlags, the airways necessiry for the working. In the
astern district two levels werv being ditven ventllated lyy a pure air current, of euthicient iotevsity to dilute the fing-daw, fursished luthe onditary may by this double
 occured the hirst of the thre
followed in close suceesslon.
Owfturst A. - The "Eovernot" of the pit who was
behind two tuterlocked doors, all of a sudden heard a behind two interlocked doors, all of a sudden heard a
lopi noise like the rolling of trams, and he immediately an is its directlon, but when be found bis lamp extin suished, he rushed to the face. There he found that inithont further poeliminary marning than a cracking, the thick from the thlo seam, about 20 tons of very amall coal hal beeu abot forward into a heap in the level for a longth of 3 m , in bo way destroying the timber frumes for cupportigg the roof, bot giving rise to a con-
sidernble outburst of gas which lasted sbout twentyaidernbje outhurst of gas which lasted about twenty
live miuntes. The Inmps were extioguished of the bioe auen oocupying vatious positions in the course of this fresh alr in safety. The loterisity of the current which effectually smept the faces of the workilug-place whece
che the outburat oocurred was 21 cuble metres per second ud its eas contebt, fousd by anslysissnd daily obeerva thousanalthe ou the dass precedlige the oatborst white thouranaltar oul the days preced mg the oatborst whlle on
the duy itgelf the maslimmm was 8 thonsandths, and on the the duy ifgelf the maslumm was 8 thoasandths, and on the
folloming day the content agaio fell to three thousmadths The coal shot forward came entirely froen the ormal apfer seam, the compact roof of nhled had not gledded
it any part; aod no pocket was found, only a geparation in any gart; abd no pocket was foumd, only a separation
axteudigg over a few centimeters betwera the coal and the owedyisg rook. When the headiog was pgate point where the outhurst occurred, the achistoan of the listrurbed vature of the thin seam, nhleli had evsiently yielded to a strong internal thrust. After this frelideat, woroiog-place mas stopped, the retura preparatory ways were frolated abd the intensity of the air-current was destived Iimit whisout further incldent
Ostburst D. - Two moaths later, daring the night ou burst ocourred is formard beading No. a sudet, which was beiug put oat towarde the east. The same pheboms ewa as in the last cam were repented the throwlog thla nesam overlylug the thirtecuth, the abserce of dis locstion in the walls and root, and a violeot thruet Whtel threw down 30 tous of stuall and friable coal oming directly from the shaft and only passiog the men eagaged in the ailvance. The uscful volume of air at The froe was f) oukle metres per seoond and the dua-
tion of the outhurst, ae compared with an wqua quanth. The got, was only teti minutea instend of tacutyplaco went out, whlle in the former case the latops of alf xonseygence of this fresh maalfestation, the speesd of the fan was locreasen no as to augaent the infeasity of th cuisent for ventilating the preparatory workings stall io
bo deiven, the useful volume of air, reacbiog the end of the tighs fartitlou that diviled the level lougitudiasily being thas increased from 4) to nearly 7! cuble meftraz
Ontburat C. About half-past elght in the momnlug of Ahout half-past elght is the momnling of sume moikfog place, sul the onormons volume of sir
cimulatiug fhrough the level was innuflicient to entirely parify the atmoeplaere contambated by the gek. Thros noen weve working at the face, two of them belog In the
frosh-air compartinent, and the thid, who aloee had his lamp put out, in the return compartimest. The thrust only brought dows $\frac{1}{}$ or 8 tone of coal from the thin seam Seelog that the fresbure of gas in the strats wa
the cange not only of the outburats of gas lut th
thrugts of coss sod rock, steps were taken to flad the proseures of the cootloed gas
three trpes of saings asestainlag the preseures, onry pressure-gninge were used, wccording to the nmount of pressure to be mesared. The two former were frmaly fixed in light wood cazes. provided mith a movable nhutter for protectivg them from the sbocks to which they would be exposed without this precantion. The ordinary pressure-gaugo wil measure a pressure up to 50 kiloge ere equare ecntimetre ' $\% 1 \mathrm{lb}$. per square tach), each divialon a
Gaaging of the noluturs wits effected by a gas-meter with flive disls, registerigg from litree to teng of cuble metres, enclosed in a wood case provided with buodlen for permittiog its belog carrici asally in the workloges abd also for protecting it from sbooks and dust.
Tawging. - The anuular space between the hron pipe and the sbles of the hole was tamped by a specisal tool side diameter nad half that dimension in insilien. diameter oo whlch are permanuebtly fixed three Lroa rods conenected at the other rod and welded together so ns to forma
handle. The metal dise, guided by the pipe along which It slides drives the latpotige betone it, the latter conalst Iog of clay, elligbtly damped and reodered suffleleatly
plastic to adape itseit padily to the silee of the hole Thastic to adape itseit readily to the sides of the hole
The eluborate tamplig used by Mr. Lisdany Wood was n04 ndopted-Eirst, becnuse such high pressures wete hever ebvouutered as in his case: and, second, because minute precausioos. The clay mas, howeres, tound minute precsutions. The clay was, however, found
grite satisfactors, abd it was nae that heaks oceurred Extent and Rovits of the Tests,-The diatlection be. weer aroertaining the pressate of fire-damp in the con of the large morking places, and tin that of the compsec
cal in the lerels or parts of the stalls pear them, is culis the levels or parts of the stalls mear them, is oy which the face is very large, sud that In which it is limitel. From the lot of January, whee botinge in the face dere made megularly, 195 holes Were bored from wery wetre. The obserrations as to volume, however, were ouly made from the 25th of May
In order to facilitate compatisor of the results and permit deductions to le drawn from them, the author talls and levels, representing for the mont charactet stic typus, the leading particulars, such as, (1), the in rease of pressure sud volume with the depth of bole time: and (3), the progrese of the preasure of a per of depth, to a function of the lapee of time, ete, refegred to vider their separate beads
Conclurions, - The folloaning are the conclusfona as Ired at by the autbor from his observations

The phesomenoe of high tesslon occurs whenever the coal orring to exceptional comeractopes, cleaver with almeulty when betng taken out, snd is especially to be femed to preparstory headings
2. As a rule, in the large working places of the thirteenth sesw, the tension of flre-dsmp eneloeed In a prisa of coal 3 m . deep it gllght, and geberally the mases by the sumiclently to this depth for the gas to eacape by a partial foinn newert or swelliog.

The pressure and the volume increase with the deptb, accordiog to a ra

The dlatisbution of the teosions is highly trregular, and the permeablilty of the coal very variable.
Is attuined atter a very variable duration, which is an function of the gaseous volume escaping from the ebles of the bole and of the permeability
6 The operation of borting pare and simple, regarded as nuean for taking of the gas, to but slightly eflicaous; and, other things beiog equal, a bolo left to liself Detonators for Sbot Firing-The ateg perion Detobators for Sbot Fring. - The experimeds of Abel
sions
1.

1. Nitro-glyeerlne, whiet can bear exposure tor a considerable time to a heat of 183 dega. Cent. without 2 ETamme of fulminate of experary
2 . Soft dynamite requirea the kame smount (0.3 gramme) of this detoastor for its explosion. taining 1 gramme of fulminate
2. Loere gubcottow, in tiskes or spun into yaro, which

ompressed guli-cotton.
The last-pamed san be fired by the ald of 1 gramme the cotton.
3. Webguncotton-containing 100 per cent. of wateris the least davgerous of all ordinary explosives, requir Hig a powerfai initisl impulse to cause its explosiou ad of detonators than by ordisary meane of Ignition, other circumatabees belug equal.
4. The effective porre of a esp is dependent on the Thgth of the case cootaimug the detountor
Thece expecimental data show that each explasive re quires, for the production of its maximans effeet, a Gixed attlal impulse which aust be produced in practice by
egulating the strength of the detonatling ca
The small detonatiog cbarge found by
The small detonatiog cbarge fonnd by Nobel to be relisbly sumfient for the explosion of ordinary kieselguhr dy uamite wse 03 gramoner of folminate of mereury. These caps sere made of copper sud were of such a
 acrted in the cariridge, without, however, allosing the batery fuse, by which the detonator was inced, to come ho contact nith the explosive. This whs necessary fis
ovder to prevent igrition of the dyuamite from the fuase, soler to prevent ignition of the dyuamile from the fuse
buathoo, without exploaion, of the maserias, sod in the subergueat production of irroppirable gas, a clreum-
stance to be especially avoided in grany mlaes and confined spaces.
Such caps were not sulliciently powertul for the ignlton of frozen dymatulte 0wing to the greater amount of beat reguired in this latter case, and attermpts Fere made to employ mistures of nitro glycerine, nitre, wood pulp, tesin, sods and kieselguhr as ignitiog cartrigges, but unbucosafully, situce theso could not even be exploded themselves by 0.6 grammes of fulminste in cape, and for a long thme mibers had to costent themsplves with whrming the frocen dynamite before 123 e . The military anthorities in Germany cooducted numerous experiments durigg geveral yeans with the object of obtaining detonating cartrages strong enough to explode the (army) mining ammanition of frozen dybsmite in all saasous, with the tesull that irauni's preparalioe, consisting of is per cent, nitroglycerine sud 20 per ceat. gun cotton, whs accounted the beest of its kisd. The I-gramme detonator cap givling equas tegults was adapted for the Germau stzoy, but the firms entrusted aith its maubfactuns decilned to continue the supply on account of the danger to life aud plant ineurred in the procesa of pressing the falminate into the esps. However, in the following sear the inituduction of new compound dynamites cootaining cellulose and gelatine necessitated the manufacture of 3 -gramme detonators, altbough the taterial ewployed for artidy purposen mas exphosble by detonators of lower strvigth 2 gramanes). strength of the initing impulse indueticed in the highest strength of the initim lmpuise inausticed in the higbest facture of powerfol detobators became wote gebetal, and the following eight sizes were in cur rent ube:

| 10300 | 0 | 0480 | 0 | 540 | 0.600 | 0.800 | 1. | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | grammes tulminate, stronger ones being made if re-

quired, but the effecto of the caps produced by different manufacturers were not the same, since esch used the casiog he considered beat, notwithstanding that Abel's resestclaes bad revealed the important intluebce of the casing on the poner of the cap. For lostance, be found that whereas a 13 to 2 grammes detonator encased in a thin wooden box or paper wrapper was required to ex-
plode loose cotton wool, the same effect could bo plode loose cotton wool, the shme effect could bo
obtained by a 0.32 gamme cap fin a thin metal sheath, obtained by a 0.32 gramme cap fu a thin metal sheath, and the Germas military committee ascertaiued that
the electric fuae gave with trase tube caga, charged Wee electric fuse gave with brase tabe cagc, chatged
with 07 gramme of fulnainate, an effect equal to that from 1 -gramme defonatoss is slmple copper cape
In stortng the caps tor use it is advisable to dry them In a closed room for at leant forty-eight hours at about 20 degs. Cent, takiog all due precautioes to prevent olosed by boliog then ebclose thean in caers tightly indiarubber band. Dry caps only sbould be ased, and it is well to subject them to another drying with the corer off the be
misa- Itres
Iais- flres
In case blagting holes have to be left some time be More Eitureg, the detoostors way be kept intact from mokture by surroubding the junction of the cap and cemarked that detonating caps max suffer considerable alteration of shape without explodiog, and that danger of such a mishap is ouly to be dreaded when cuttiogpliers are used to aqueeze the caps, since in that event there is danger of the cap casdag bedng cut througb, whereby the falminate may be compressed oy the piers suftictently to cause explosion. it ise
to ase only flat pliers for thls purpoes.
It is espectally important io gheay wines to eosure that the detoustors employed anv able to impart to the blastIng chafge a sufficient Lultial Impulse to produce exploslod. Otherwise, as in cases mentioned by the author, the cap und churge only flare up, and may give rise to damagesiou of the gas, dotug an juedeth amount caution. The amount of intial Impulee revuired by every net esplosime, and the most suitable detonator to give the desired result, should bee experimestally diter mined before blastiog is commenced. Only such capa as have the folminate protected from the influebce of ought alwaye to bee maintained and used in a dry cond. tion, protected by the appilication of rome waterptooflog material at the fanction with the fuse whebever noed in nap or wet sithathons.
By sdopting these preesutions as supplementary to The others practised when bla-timg in gassy mines, the dnager of explosion may be misimized, but to diaregard them is ibescurable, in view of the danger to the miners
New Regulstions se
New Regulstions as to Mine Explosives in Oermany,-The following is a summaty of new regu on the lsc May, is the Dotriand llatelet of Gamane Gecreat Procsions,-By explosives in the preeen togunalions host be tuserstood ail thes substances meo Ohetel dynamite knhs aplosp carbonite and other ultro-glycerine componbdy; gan cotton; securite, roburite, dahmenite, weatphailte, abd similar compounds; and also detoastors. The explo. sires and figeiters required for mine workiog, except fiting tabes, can only bee procutei by the naide owber or cocutioned tn the his reprecestative, avd the explosives obtaioed with the written permbsion of the congintens authority, at the works of the nasnufactures or at the places of sale authorized, and inspected by the police and is the preecribed jacklog. Besides the underground canager, only the oflicisls abd overmen appointed by
blm , whone names muat to entered in the mine fournal and posted up permanently, are suathorlaed to reoply suppties of explosives, to distrlbute them to the meonana recelve back those not used, or to rearrange them it
pose by the undergroand manager may be employed in the transport，storage，distributton and handling of ex－
plosives Inslde the magazines，where fint and steel， plosives Inside the magazines，where flint and steel，
naked lights and smokiog are expressly forbidien Only the meon appolnted to fire shots are permitted to have in their possesalon explosives other than blanting powder and salipetre．No other explosives or fgniters
than those supplied by the mine manager，except firing tubes，may be eharged into a shot－hole ；nod explosives so given out mas not be takee away．If other explosives than blasting powrler or saltpetre be used in a minet，a the names of those appointed to distribute thens and the explosives hare been given out，the date of amch dils the explosives have been given out，the late suict dis tribution and taking baek，the quantities of explosive number of the cartridges distributed

Storage．－Explosives delivered at a mine mast be Imneediately tranaferred to a saltable magazine，whict may be altunted on the surface or undenground．
supply of exploslyes must not to carrind at the sare time as other sulvatances or fools；asd the meen in charge must warn those in the neighborhood by calling out by closed lamps not carried by those directly eognged in the traneport．Explosives must not be catried in the shafte while the med sfe golog down of coming up，apit only after warning given to the mee at the landinga and also the enginemsn，who must not run has engine at the cage down opon the stoge with is shock．The men at the undergroand landing must carefally draw off from the cage the receptacles contalntig explosives，and oely allon them to be takea by those nathorized to secelve them Giving out Erploriver．－Explosives may only be given out underground，by the oflicials meotioned sbove，to the obecthatud of a working－place，or the mat appointed
to fire shots（Solacsmrister）when he scaumes the responstblilty imposed below on the oldest hand． in shot－firing，and whose names，notifiel to the inapect of mines，must be inseribed in the mine jouroal sasi they mast be provided with a written onder signed by the underground manager and approved by the lospector of mines．Firemen and old hands recelving explosives officisl giving them out．Iron tools must not be used for opening cases or cask containing explcalves．IBlastiog powder and saltpetre must only be given out In the must only be distributed is perfect condition and in the form of cartridges，while compounds with nitro－ glycerlae base must not be given out when frozen．No greater quantity than 18 lba ，of powder and exploaive
silpetre，and half that of the otber exploatves．Ineluit ing the quantity given back by the preceding shift， may be entrusted at one time to the oldest hand of a working－plsoe；but fremen placed over several morking places may recoive as mach as 22 lbs．of an explosive
whlle for mechanteal rock drilling，or in other excep－ whille for mocbanical rock iriling，of in other excep－
tioosal coses，the inspector of mines may autborlze the diatribution of larger guantities．The esplosived glven out may only be taken away by the oldeat hand，and in a closed receptacle which rust be marked with a number and supplied by the minue manager；sad blasting powder and salpetre ruast only be taken away in metal boxes and bot in the catne receptacle as the other explosives The igolters，which latter must not be takeb awsy looke The explosives and ignitera sot used，except powder， explosive saltpetre and firiog tubes，must be brought back after each shift to the magazine，or to be a apecta
storsge place appointed for the purpoen and evont storsge place appolated for the purpoen，and etupty
recoptaclen naust also be brought baik．The reception reoyptacien nust also be brought back．The reception
sud atorage of explosives so brought hask is not regarded and storage of explosives so brought buck ia not regarded days elog they rernain in their receptacle，but，if thre and agnin entered is the journal．On changing a sbiff at the working－place，the obdest hand of oase ghift ia suthorized to remit the explosives and Igolters not used to the oldest hand of the next shift；but in all other blesting powder and asitpetre to enyone elee Drewisg blesting powder and asitpetre to anyobe else．Drawiog the char ges of shots which bave milseed tire is forblddes； fortidden，while holes drilled bear shots which have mlesed must have such a direction that they canoot come

the latter．

Electric Motor Percussion Drill．－A percusalot

 arilerstum is every depariment of miniog ing been a de lora hopes abd practical failures may be found io the records of the patest offices of all the great ev glveerligg vountries，and strange to say，the subatantive bacie of sil these ansuccessful sttempts bas been a soft iron core for a piston，and two or three solebolds forcany call the shell of the electrte cylleden
The spirals of inaulatert wlre that male
were the means through which direct and fadirect ales tric currents mere made to niternately attract and repel the soft iron core that was monnted on the shank of the drill．The solenolds and core bowever，made in every eiprocating motion direct to the drill，and the rognit has been that compressed air has up till now been the most economical smi efficient dispenser of transmitted euergy for drilling in malnes．No one can overeatimate the value
of a power drill，because drilling and blastiog toake the impossible posaible in mining，and ses the transemiasion of electric ebergy is more eflictent，nad more cheaply pressed air that is conducted through pipes，we cannot do other than make a mistake if we under－eptimate the
meleome that will te given to the wilvent of a realle gne welcome that will be given to the atvent of a really sue－
cesaful percosalve dril that factuated by an efmetric motor．The fallure of all these prevlons attecopts with the solenoids and core，arose from restatabce produced by
structive derangement of the motor and stoppage of work．
The prime couse of all the induction eould，however，
traced to the futerference of the solid core，whese be traced to the toterference of the solid cote，whese
local or conaequent pelarity induced coumter currebst in the solecolds，and the core and the dilll bar，for it was cuat through the lines of farce of the solemolds withonat settiog up consequent polarity．and the refultiog comstes settieg up consequent polarity，and the revnltiog countes transmitted energy was disispated as beat，for not only Transmitted energy was dissipated as best，for bot onily
did the solenolds heat，but the core and the drill bar also，and so much was this the case that they were to peliese the other，snd erens then thes had to bee wet cloths to lay on the golenolds to krop them cood．It may be thought that somethling could have been done to cors rect these deterts to the solenobl and core motor，but infortusately the only correction poselble unet be fonsed motor，for bad the cores been ballt of lamina the local and consequeet polarity woald have beeo prevented， nd，as a matfer of course，the col in these canes hiso，but the grest inert force genetated at the startiog sad stop－ ping，of at the boginolngs and ewdings of the strokes， voald shake the laminations loose at ooce，and，thectoce，
The first solebold abd core nootors were actuated with on altematleg and difect curront，and to pregent shark． ing in the mine the direct current was commuted at the generator，but in some of the later solenold motors a the drill，set，notwithatasding these changes，no real im－ provement was made，and the solenold and core motor remalned as imperfect as before．We are happy to say now，however，that the electric drill has a chnnce of asi－ serting its clatms to that of a position of tirst rank as a minleg tool，as a mew motor，free from all the defects of the goleboid sud core class，has，we lears from an article ad put in practice be the firm of Klemens \＆Mulske of Berlis，Germasy．It appears tbst in 1891 this firm pat－ onted and put in use a rotary motor to work a percussive ril，aud，of coure，this messing that a rotary fuctiog appear stmange te finst glance when we try to discover how a relatively slow and uniform motion could ever be made toact as a hammer that would deliver abow of great Gerrt force to the cutting edge of a drill，but on cloest crank on the shaft of the rotary motor and the shank of the reciprocating drill springs are tuterposed in such it collected potentiaily in the repringe mind fa given out to fortify the mementum of the didi ahen given out to strike．It is no dsubt ensy to sce how the mass of the drill is made to accelenate doring the advanclog stroke， but there are other unseen matters that many escape our is especially to in relation to the effects of bentlog aud waste of ebergy，and the umine stralna that affect the moving parts of the deill，arising from lutermittvet mo－ hoo ；nod to remedy thls defect the company have，in Their latest patedt，put on the crask shaft of the drill a
ig－mheel that semres in the moat ancrepeful mavore thes fielformity of motion required，whlle it preveets all coon－ sequent magoetic and electile induction arlalng from a jerky motion．To revier the drill portable and casy of
belog removed from place to place in the mine，the drill blog temoved from place to place to the mine，the drill
proper ts separate sud distloct from the electric motor poper is separate and distboct from the electric tootor．
The motor is in a chest that can be csirled by men，and The motor is in a cbebt that can be csirled by men，and
the rotation of the motor is communicated fo the drill by a flexible shaft，so that no adjustments are requifed for the motor convection when fixing the drill for the performance of usefal work．Altogetber，this drill will hes anglity factor in the words futare of mising．for it

The Copper Depoaits of Chota－Nagpore，Ben－

 gal，India．－An excellent paper on the copper and tin Dates betere the membera of the Federated Inatlint of Mintng Eogiocers，and the facts the paper farniahop bave been made the basis of the following article：It is ton in mechables！appllances，and in the collectlon ant trunsmisalon of enerys．When rallways wop Ilsat mede they gave a great asd unprecedented stimulua to the Iron rade and iron manufacture，and this demand was suc－ eceded by a eecond in the transitton from wood foiron ahipe，sud agsis，a third demand arote for the eppply of war，and this great development was followed up by the whetifution of steel for lron，and the manufacture of fincy artillery and millions of small srms for fighting tornThe present perlod，homever，makes a mpust that is lilsely for a contury to come to be an freronaing one，and that Is netther for iron nor stiel，bat for cop－ per，for the manufacture of solenodds and cablea for the mansmission of electrical evergy．The excbsuge，of sative to a diminishing of increasieg demand for any com－ modity，and，therefore，the fneressing and dimbatshing pulse of the money market is a sure index of changes； and at the present time the rage for miolog in vectments Lhis the cese in the buyitg of shares in copper miniog． We ased to reckon that whes the yluld of copper ore not pay，but with Improved appliances for dressing and ameiting smaller percantages are wade to pay better now than larger glelds used to do．As the cobsamption of and developed，with the result that in evers land and every elime mines sre being opened，sod qualified and efliclent mine captalos fiod good appointments among as Cbota．Nagpors in the provisce of Erpgal and about 227 miles from Calcutta，on the eastern side of Indin．
The gchlatoge formatlon，In wbich the copper ore or－
curs，is，as far as is known，about 80 miles in leogth and belongs to the sab－neetamorphle pertod and consists of
bedded gehlats and quarizites，and these，agaln，rest on a wide extent of goeisa
As a rule the small bille that are spure off the large ones all tie in the course of the copper belt，and what like a stratified drposit，nusd is therefore remarkably Itke a atratified dr posit，hab
The belt has a lateral priteh of 40 degrees and every diskocationa that hare produced numeroos joints sud folnts have been rubbed on each other with in grluding jout polishing sction cosuted by carlh iremon a grinding facets or＂eliekensides＂bave bees rendered perffetly seoooth，abl shlbenad reflectimagevandlightlike mirrors The proof of thuse treonors is found in the nameroua intrualons of trap rock that ent throngh the grelss and the overlying schists．The wost slugular thing sbout yesry befote it sppars，the more casily fused orea weot mined for the manufacture of kulves，hatebets and pans aud other utenails for the purpoees of pesces and private use，and also for the mavufacture of swords，diggers． arrow hesde and ol her implements of warfare，for bot only are the oldexcavations there to sttest the fact，but the slag heaps the anclents have left donbly assert the conelusion ore body and left the richer material as pillars to sup－ port the roof．
Coming to the practical portion of the subject that rem fers to the class of men that can be obtalsed on the efot $^{\circ}$ as miners，for uniess we know this，all mining expet
ments are but wild adrentures，Mr．Ontes says：．The laborers cousist of Santale，that is aborigines，and Bees． gatis．They are quick to lests，and would becorve a regularly at work．Native festivals，which are of al tuost weekly occurence，sre the curse of the coustry．（\％m thede occasions the workmen leave without the slighteat notlce，regsrdless of the mell－being of their emplogers． From this canse progresa is slow，and the patience of The manngement ofted completely exhausted．It will be a forfanate disy mhen the govermment stepa in absl The fo a good gauge of the cost of labor：＂The isdurated char acter of the formation was a bar to speedy work，so that face alo per shift of elght hours would only notvance the 4 fiet，and generally The rate per week did not exceed nlsh midn setietaily did not react that，A pair of Cor－ as much，but，on the other hand，a European Wuuld get swelve times the pay
Frel，timber
 metallie copp
The Narunga Tin Deposita－These depoalls are found in the grelss underlying the schlstose rocks of the
copper belt of Cbutn－Nagpore in the province of Devgn as previoubly boticed and we base the cooclueions at Whlch we have arrived for the gabject matter of this
article on the observations of Mr．Oates as given in his article on the observatous of Biv．Oates as giv－
paper the Chots－Nagpore mining resourees．
The gneles is cut through by frequent veins of quartz aod eruptive abd lutrusive dykes and alls．The die covery of the tin stone was purely accldental and came
about in the following maver．The natives are iron about in the following manner．The natives are iron
smelters to their primilive way，and one day thes smelters in their primitive way，and one day the
charged the formsee with what they thought was an charged the furbsce with what they thought was an
iroo cre，and on fapplog it，moch to thelr atonlebment a white metal flowed out whlich they mistook for allser and they carrled it off in bot haste to Iasieegange，the Dearest town．When the true character of the metal was made known to the smelters．Thes tin bearigg rocks are of conslderable extent and bave a general dif of 20° to as ts now known，although the prospectiog has only partially been done，tin erystals have been found scat－ fered orer a surface ares of 21 equare milleb．What a field for mintog adventure
finttesimal portion of this to say：＂Mining over an prased the portstence of tin becking ares has thua in most cougenal ground，and under the most favorable conditlons met with in mising in a virgin country．No oaly in the Palgunj estate is in expectid to be found crogs of tin－beds are known to exlet．It ia moset prob able，also，that further search in an easterly direction from Naruingo may disclose a tin bearing formation along the south tank of the Barakur river，and across that river foto the eatate of Deopore，a total stes， ruaghly speaking，of upmarils of 200 equare milles Labor is plentiful and cheap．Timber is cheap coal mines are situated at a distance of only 18 miles from the edge of the tio bearivg rocke
Tbe stresw tio fleposits st bisy be espected is such a vield 215 s ry rich，for obe tou of ore was foumd to foand by Mr．Samuel Gifford，of Dristol to yield the following results

\％．is	crame	\％		：mom	moo
	皆	免		管	

Totak．
Surely sucb a region can be made to amply repay the miner for s fert years seclusion among the dark skins of Hindustan．

EXAMINATION QUESTIONS.

THE MINE FOREMEN'S EXAMINATION IN
THE BITUMINOUS FIELOS OF PENNA. THE BITUMINOUS FIELOS
JAN. 22,1895 ,

Correet Answers to the Questions, Prepared Es

 Practical Mining Points Explained.9. Sketch and locate on the plan givea to you, the positions of the openings, entries, nirways, doons, overcasta, stoppiogs, and regulators; and show by arrows the directions of the air-currents:
Two accessible railroads are

Two accessible rallroads are shown, but only one
ventilating current by a difference of prosaure in the togolog sad returnigg ends of it, or it miny be expressed an a diference in the pressures st the ports of entry and discharge or a diferebce of pressure in the ventinting columns. With the exhansting tan the pressure of the sir is reduced at the retura end, and with the blowlog fan. the pressure is incressed at the lagolng eed.
For all mines with depths not grester than 1,500 feet,
the fan ta decifedly the most eflicient, and even at the fan is declsedly the most eflicient, and even at greater depths the emiclency of the furnace does not exceed that of the fan, excepting when the furnsoe shaft
is free from water feoders and in very dry. For mines is free from water teeders and is very dry. For mines of moderate deptb the fan is very much more emiclent
than the furasoe, becsuse its power to exhaust the alr than the furasoe. because its power to exhaust the ale
is fodependent of the depth of the mive. At moderate

must be used. The elevatlons given on the plan, are Ahos above mesan tide.
Avs. According to the elevations given, the bed or geans is bearly level, the higheat point Z. 839.5 being only 4 feet above the level of a liue Z, 828.5 feet, across
the fleld.
The seam cannot lle in a perfect plane, and mast more or less uvdulate, and it is fust possitble that all the lour aldes of the pist may be above the level of the midddle; therefore I rould sluk sbatts to cut the region of the enster of the royalty, as the cosl could be most oheaply mined by this plan; the most diataot rooms
would never be more than 1,000 yards from the hotsting shatt, and the shaft would not be more than C00 yards shatt, and the shaft would b
trom elther of the railroads.
The seam might be worked with a roek slope, but
Ther that would be a subjective consideratlon, and the eerance to the slope might be at O or D, socoriling to the railroasd preferred, but it would certainly be bad mine engivering to cut the litel bed by any other menas than
a shatt, ubless a suaflace depreasion casused the seam to a seatly outcrop, then a slope might eotece the seam to auch a poiat as woald furaish the best appeasch to the rallroad. The ventilation of the plan ap arranged for the morking of the conl by the syatem of double entry. It will be meen that the foar double entry pabels io the middle of the plat, are ventllated is detail, aod to premiddle of the plat, are ventllated in detail, aod to pre-
vent the blurring effect of an overdone detail, the other pabels are only ventilated to the doora of the bottom paosis are only veotilat
10. The depth of a bolatiog shat is 200 feet ; the diamter of the drum is 5 feet, hor msoy revolutions thet would a flrst motion engiae make for each bolet, wben the rope tankes no overlags on the drum?
Ask 200 feet are equal to 2,400 inches, and as the mean diamoter of the relocity ratio is 5 feet or 60 inches, plas the diamoter of the holstigg rope; then let the the true velocity ratio will be 61 inches, nad the nomblet ot revolutions nill then be

$$
\frac{2.400}{61 \times 3.1416}=12.5936 \text { revolations. }
$$

11. An airwny ls 10 teet wide across the Boor, and 8 feet wide acrose the roof, and it is 6 feet blgh, and if the quanity passlage is 60,000 cuble feet per minute, what in Ase wecty of the als-current in feet per secoud?
Ass. The trunswerse section of the aliwsy is a trapesold and tis area is ns follows:

$$
6\left(\frac{10+8}{2}\right)-54 \text { square teet. }
$$

The velocity per secoed of the alr-current will thee be

$$
\frac{00,000}{60 \times 04}-18.518 \text { feet per second. }
$$

Quas. 12. What are the principles of the ventilatin - fas,
 ANs. The prluctple of aclloo to all meehaneal full. lators to the same, that ta they glve motlon to the
depths the farbses is not effelent, becnuse furnace ventilation is not prodoced by a difference in pressare, but by a diffrence in the welghty of the ventiative columns. The resuat is the motive columb for a kmal depth is 80 short, that the beated nir column of the
farasoe only secures an efflecency of about 5 per cent. instend of 50 per cent. as with a fab.
Quis. 13. What princtples should guide you in the cobstruction of overcmsts for the veotilatioe of a coal mine to secure satety and eoonomy?
ANA. Wherever there is a
Axs. Wberever there is a danger of flooding, underensts sbould not be used, and where regulators are required, the srea of section of the overcast sbould not be
Wheo orecrasts of the axit ares of the opeas shutter. Whed overcasts aro made too large the coat of cobtrusug the greater lase of theed bs, and tho whate of atr hrough the wicruces of the large structurs is greater over ant win te cut thensald obe. Whercrer the aot advantages nre secured; first, treedom from leakage and waste ; pecood, thls class of overcast is not demaged and reedered leoperative by a mion explosion: third Secton 3, Article IV of The Aes Jelatiog to Tho Bitum toous Coal Mibes of Pennsgleanla provides that, "In minea geoperating flre-dnmp in sumfient quantilies to be detected ly ordionry safety lamps, all male alr bridges of overcasts made after the phemage of thls act ghall bo bailt of masonry or other incombuatible material of smple strength, or be driven through the solid strata."

Electric Machinery.

The LAnk-Belt Machinery Co., Chicago, are still rupnlug their worka day and aight using the largest force ver employed by them.
Recent contracts for clectrical coal miolog machinery have been closed with the following comprales.
two $66^{\prime \prime} \times 18 \mathrm{ft}$. boilens, $00+14 \times 16 \mathrm{M}$, consigtiog of one 7 ft . ehuln brenst machise, one enclosed eleetrio grinder, elicults, eto.
Reed City Cosl \& Mining Co., Reed City, Ill., one 16×16 3lekwen engloe, one emery grinder, ove 100 . W. dyamo, switch board, circults, and four 6 tt Osage Coal \& Min
chain breast machine

A Great Concentrating Plant

The largeat conevetratiog plant to the world is at the De Beers Diamoed Mibes, fouth Africa. The pribelMeass. Fraser and Conimers of Chicaro, III by Neasa. Fraser and Chalmers of Chlcago, III. A
deacription of this plat will be of intereat to every man agaged in any class of miluligg in which the production if conoentrates is desirable. Mesars. Fraser \& Chalmers lasve reoently lasued a fline Ulustrated psamphlet
deacrlptive of the Da Beera coeceotratiog plant, whlih will be nent free on application. We adriso all our will ber oent free on application. We adriso all our
readers interested in the subject to sead for a copy.

LEGAL DECISIONS ON MINING QUESTIONS.

Reported foe Tus Collagny Emoinzzr and Mktal. Mishaz.
Breach of Contract for Purchase of Ore.-A party agreed to purchase dry ore of uaval quality at a certaln price per too, guarsuteed to contain a yleld of 50% of iron with a slldilig geale at the rate of three penos per unlt additlonal for eveay unit over 50%, and with a deduction of four pence for every unit under 50%. The ore was The burer refuand to peain sud delivered in thla coantry. The buyer refused to perform the contract because the ore only analysed 48% or 49%. The seller offered to prove the eastom at C. Was to fix a atandard of 50\%, with celvethe mineral, provided it did not go below 45% or 46%. The Supreme Court of Pennsylvanis held that evideoce The suprewe Court of Peansylvanis beld that evideace f such cubtoms was adcolsosible, sud taat the mencure of the mashet price at the ploee of lellw eover jhe allar discovered definittely that the buyer would not complete the contract by neceptance of the ore

Guillon v. Earnshaw, 82 Atlantic Reporter, 545
Mining Lesse,-A license for the poasesslon of a mining claim, whlch by the terms of the lastrument br reason of the espenditures of the licengee, in derelopmeet of the mines pnder the sgreement, hes becomesloense coupled witl an interest under which poesession may be maintained ag inst the vorld is s lesse within the arw, aeenalag a llem for mork and materlsla farbished for The morking of a maloe, shich shall attseh to the meloes
A lease grants an entate is the land whle a Jeene serees no entate, and when the lleenes is malse upon the land of soother, the ripht of property in the mimernls, when they are arvered from the soll, reat in the lioensee There ta a clear diatinetion betmeen the two, sod they are further diatiomulabed, is that the one is s carporest and the other an incorporesl hereditament. Whesen, bowever, are frequently granted with terms and condl. tons asd apon conelderations which allr them clasely to leases, go that it is frequently dificult to determine when the border Inee has buen tranaceniled, sod mbether or pot they are in reality leases rastead of licenses. A mete lioeuse while it remalos execatory is revocable st the pleasare of the licensor, is indivistble and nonasalgnsble. But a liceuse may confer either a sole or excluslve right, or slmply a right in common. It it simply couters a right to take ore or work a mine it is not exeluglve, sud the llcensor may himanif take ore from the aame land or mine, or license others to do so. So a license to dig and carry away all the ore in certain land does not coefers an exclusive right. Such a grant shows the extent of the licenpe, but not It exclusivebes8. It is a lioeose without sifist as to quautity. Anotber teet lsod in respect to which be masy maintain ejectment. Bot a license may amount to a lease if conferred in sueh cuabner so to give it validity: such is the cape where so interept in the land is given, or wbere the Hionses is for a d-finite period.
Stinsou V. Hardy (Supreme Court Oregob) 41 Pacifle Reporter, 117 .
Innocent Purchaser Protected.-A judgment in an action between the beirs of a party, and persons clshming under another, as to the title to eertalon conl, dnes oot strect the title to the coal of a prior parchaser from the deceased pariy
Moreland v. Frick Coke Co. (Sopreme Ct. Penm.) 32 Atlantle Rep, 634
What is Easential to Conveyance of Fee to Coal. -The testa which determaine a particalar Instrument to be a convegance in fee of the conl as a parcol of land (a) It must relate to all the cool. (b) The right to mine nod take the coal muat be exclubive of the grantor.
(c) The grantee must agree elther to malne all the cosi (c) The grantee must agree elther to malne all the coal or pay for it if mined. If the instrument contalue these characteriatics, it is, in legnal effect a grant in fee of the coal as lasd. For the purposes of these rulea, the Genet v. Det. \& H. Csaal Co. 85 N. Y. 8. Fep. 147.

Catalogues, Etc.

The Jeffrey Mr'g. Co., of Columbus, Ohlo, has just tssued a new abd bsedsome catalogue of elevating, conveylog and power transmisslon machloery, which is a model of convenience and completesess. It is sent free on application.
All mine owbers and mine managers will be interested In the catslogut of holstivg and haulage machinery juat Isaued by the INobinaon Machine Co. of Moonggahela,
Pa. It la a very nent and convealent exposition of thetr Pa . It ia a very nent abd courealent
efficient and economising producto.
eflelent and ecobonislig products.
A unique pablication has just been tssued by the Jos. Dison Cruelble Co. of Jersey City, N. J., entitied "The Boys have Something to Say aboat Dixoo's Pure Fiske Graphlte. The little publication contaliss the expresslons of opinion of aumerous lncomotive eugineers as to the efflelebcy of pure thake Ticobderogn graphite as a
lubricant. "The Boys" are the men who uee it and lubrlcant. "The Boys" are the men who uae it and
there are no better judges of the quallty of a lubrlcant.

Pumps.

We have recelved from the Heory R. Worthlngton Hydraulic Works a copy of thelr Geberal Catalogue, epecial edition for distribation at the Atlanta Expositinn. where Worthiggton stenm pumps are used to faraish the water supply for the grouods and for the electrif fountains. The Worthtogton exhibit, us usual, is a very
complete and peactical one. The catalogue is neatly complete aod peactical one. The catalogue is ncatly vebleot is sbspe and arrangetaent. It is a publicstion that abould bes in the hands of every pamp ueer, asd should be referred to whenever the question of purchasIng a atean pump, for any purpose, arises. The metfts of the Worthlogton type of pawps are known all over the world, and the construction of "Wortbington" pawps by the Worthington Worke, is fully of ss high s grade as the eflelency of the type.

Easy Lessons on Mining.

This Department contains articles to assist ambitious Miners to educate themselves, and obtain Certificates of Competency as Mine Foremen, or to become Mine Superintendents.

The articles are written to be understood by the unlearned and the learned alike. Plain language is used, no obscure terms are employed, and each subject treated, is made as clear and easy to understand as possible.

Further: The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors, are printed and answered.
er The Serles of Articles "Geology of Coal," "Chernistry of Mining," "Mining Motbods" and "Mining Machinery" was commenced in the isaue of Marcb 1094 . Back numbers can be obtalned at twenty-tive cents per slagie copy, 81.00 for six copies, and $\$ 2.00$ for twelve coptes.

MINING MACHINERY.

The Paths of Current Motion-Diffusion of Air Currents.-The Form of Fan Blades.-Re-entering Air--The Drag and Trail of Currents. Pressure Due to Invalute Cases.-Throbbing Produced by Ventilating Machines.-Ventilating Pumps.-Recapitulation.
88. The Paths of Current Motion.-We are sim ply atatiog a law of nature as satisfylog as as aslom when we ray, that fulds when uncontrolled always move along the paths of the least realstance, but in an proceed with tergidation becamse they are tlimectly oppo gite in charscter For exsmple, it would be correct to any that gometimes, the jasth of the least maletance is where the veloctty is lowest, and the aren of the sectlon of the channel is greatest, as when air currents are split or diffused from one into two or more airways in mines Again it would be equally oorrect to say, that sometimes the pasth of the least realatance of a carreat ts where the velocity is Aigkat abd the area of a section of the chansel is least, as when a stream is dettected by a curve, and the water striving to run in a straight lipe gathers on the outside of the curve, and ss the carrilinear deflection continues the water mowea at an increasel velocity, sud eorrespondingly decrensed area of section. Now this must be the path of the least resistance becnuase the water is nearly motionless along the inaide of the curve, while it cuts tuto the outside of the bend and carries away with it toos of earth in a fem hoang, and if the bask consists of hard rock, then the stream is vicionsly active with energy due to centrifugal force, and pelts the rock with pebbles, and thus batters 89
89. Diffasion of Air Currents.-Okenve there be not in the bed of a stresm any tebdency to diffusion but there is a marked coestriction, and this briogs us to the point that requires our strictest attention, Bamely, that the air entering a fan does bot diffuse within the blades, because it canoot do so, but runs up the advanetng faces of the bladed as a stresm, being sabject to centrifugal force, and theretore to explain this matter Fig. 125 la

Fig. 125. introduced,
and to realize that the alr can only move in a
constrieted constrieted
stream, let us stram, jarticle th motion and closely watch it Sup poes theo it journey at the bottoen of the blade A_{1}, snd following the a, until it be $\sigma_{\text {, }}$ until it becomes $a_{\text {, when }}$
the blade \boldsymbol{A}_{1} vas takeb the position of A_{3}, and at last, wated a_{1} be some a_{3}, when the blade A_{1} has taken the posittion of $A_{\text {is }}$ and we will find that the particle has been accelerat og every moment during its jonserey outward, and we ask what force is there present in the movecuento of antll ita velocity both Hinear and angular was greater than that of a particle at the periphery of the fan. L-t as see what would occur if diffarlon took place hetween the blades of the fan, that is If all the air within the blades moved outwand in mass then a portion of the ar enterlng would have to tuove at a higher velocity both lisear and angular than that of the fan blades. For example, while the blade B_{1} moved through an angle of 45° to take the position B_{3}, the particle os moold have to move through an an angle of $67^{\circ} 39^{\prime}$ to take ap the poeltion δ_{4} and while the blade B_{1} movvd througla in angle of 90° to tske up the posttion B_{3} the particle 3_{1} woald have to move through an angle an angle of 135° to take the position of b. It la elear then that the line of least resistance through a fan la subject to the direction of centrifugal force and as the particle is ever subject to detiectlon, the strvam of air must run along the sdvanctug thoes of the fan blades.
90. The Form of Fan Blades.-We cannot leave thit phase of the lesson without notislng another matter correlated to the princtples just treated on, and
that is Illustrated by Fig. 125. It was supposed that by giving the fin blades a backward or reced ing curvature, the air leaving the tipa of the blades would by some mysterions messns loss a portion of its angalar velocity, and recede to be wiped gratly out by the curved tips of the blades, but we see by the flgure that this canoot bappen, for the particle a bas a tan-
gential veloclty that will carry it outward and forward, 88y from a to s outward, and it can never, thenefore, be

Pig. 126.
rouched by a point in the blade, as c_{F} or lake the jarts. cle l sud we can see that it will retain its langential ve not, therefore, be tonched by the particle N. Fig. 127 furnosares light on sabject, and here the particle α is seetito
advance out ward sa a, b, c d, and c, and the last letter is seen to be r just leaving the shoolder of the blade It r the particle is shown as haviog arrived fangenanly at the peripbery of the blade circte, whot thav ing retreated, according to the assumption of the ase ing curvature of the tipe of the particle appeare to bave acquired greaster thas either the lins-
car or angular velocities of the shoulders of the blades, put thle to lim. therefore sustalus the conhave prevtousy arrived at. hattheatream

Fie. 127.
of alr tbrough a fan runs up the sidvanclag faows of the blsdes, because every particle in the stream is subject to an soceleratiog velocity, abd under prectacly the same conditions of ibertia se a curreat of Nater ruaning roubd the beed in a river, abd as we might foreknow, the air within a fan behanes in other respects like the water of a strenm, subject to the sotion of eestrifugal foroe. Perhaps no better mode can be given of explatolag the drag and the trall of fast running water by the side of ir, than by proceeding with the aid of Fig 128.
〇1. Re-entering Air.-Tbe strenms of air running up the alvancIng faces of the

Fig. 128.
fan bladeg are shown by different dia. srame of efflclency oo each blade, and the object of this arrsogement Is to show the volumes of air due to the dif. ferent angular relocities of the fan; for example, at f
the fan ts aupthe fan ts aupposed to be
running slowrunning slowly, and at the lade e, the velocity has bown
incrensed, and consequently the depth of the stream is sbown to be greater, but let us be careful to notioe that this supposed increase to the depth of the stream is giveb, not as a lliaof the stresme is doubled, the rolume of dischargo will be doubled mitbout any increase in the degith of the Blow At $d_{,}$cand δ the velocitles are gusek, wery qulek and quicker, aud at a the velocity is seen to he quickeat and it really appears that we might have stated all this without hazard and without a diagram, but let us proceed to notlee that the different velocities of the sir gtreams in s fas generate a serious Interference by csusIng a re-entry of atr and thereby entalling a considerable 92. The Drag and Trail of Currents.-It is im-
possible for a rapid stresm of water round a curve to bave its inside limit so shurply defloed that the moving jorticles of uater can gilde past the purticles at reet along its inside boundary plane without movicg them; and indeed they are moved, BDd sometimes large eddies
or whirls are gert in motion, heaje innmmernhle umall or whirls are aet in motion, beside tuwomerable small
oves, and what takes place in the Water atream takes pries, and what takes place in the water atream takes
place suder the excitement of the same canses in a venplace ander the excitement of the same canse in a vebThatiog fall of opea coustructhon.
There is, however, io a fan with a clear open discharge citber into an evolute cabe or into the open sir, a cause of interfercise with the incumbert air cotreen the blades, aod that is the depressiog in the rest of the reacoter, and the the outside dischasged sif th made to drag abd tial the reetutered air is next ejected by the mipe up and carry with them the particles of re-

Fi6. 129.
entered air. The pribelpal directions in which the reentry stresmlets flow into a fan are shown in the flgure, and sloo the coodifications of these movements due to Moshent vetocities of the fab, as at 9, , , , , k and attempts to improve the efficlency of the fan, firat, by givlig to the extremities of the blades receding curves, becond by covering the fans with involute casor, and third, by glving undue faportance to the advantages of Sie evasee chimney.
Strange to say the Capell fan was the firat one conatructed on a correct principle to prevent the re-entry of the outer air, abd this fact is manifest by a cursory inspection of Fig. 129 where it is seen that oblong doors the blacles, while the rest of the cylindrical spose is cos ered with a close sbell to prevent the re-entry of air, and

experiebce has proved most conclusively that thls was a step in the right direction, as we shall just now show in the flrst Capell fons cogeng or port of dlacharge way the futentlon of resovering the etherwise lobt eep with discharge by flrat deflectiog the outlozing alr in serg of way, that its tangenilal moloeity would be nentrallizel and second it mas expected that the inertia due to the
arreating of the mathon, would react on the caps, and thereby restore the otherwise "Ereat" lows of enengy but the resistance due to the exceskive friction of the air the wasted ebengy lost by the caps beating agsinst the exterasl slr, was found to be greater than the gain. The espa are seed a, b, C, d, efer, the direction of the motion of the fan ls shown by the arrows A and B, and the sopposed directions of the ejected carrents are alown also oy arrows
93. Improvement in Fan Construction. The tar as the cylindrical shell sod the ports of diacharges are coooerned it is now like Fig. 130, abd the porta of discharge are seen at S, S, S, etc., snid the closed shell to marked θ,
The closed sbell and ports did not homever altogether prevent the rotary motion of the alr betweed the rears of the blades and the surfaces of the ontflowing air came truly eycloale as shown at d sand $/$ Fig 131. We might con: clude that
these innocent eddlies could not seriously Interfere by setting op a high resistance
within the fan. but this is a mi stake be-
canae the sir cause the sir
of these whirla turning at a very high ve locity wo uld meet with cotsaiderable resistance, first from friction, but second,
abd most of all
from the serention
 from the arresting of the motion of the alr when thrown of tangeotially from the whiri, for then it is conatantly in course of belog arrested asd of being set in motion. and the energy thus wasted directly reduces the effici-
ency of the fan. To prevent thla wante, Cnjell ban oome to the rescue again as shown by Fig. 1323 .

Fio. 132.
Thls eut was actually made by the direction of the writer, before he bad sees a drawing of Capell's lateat gatent, and by the flgrane it will be seen that the writer irstrexma within a proper depth on the mivabelog face if the propeller blailea. The covering bladea are marked $B, S, \&$, etc, aud the propeller blales are lettered B, B, B, ete, aod the spaces betweet F and S are chambera treams on the progelles blaklea. Capell claims that be has by thla mesans ficrenwid his efliciency, other that have tried his fans support his conclastons, and the evi dences that has been produced from deductions out of the operations of mechanical law, appears at any rute, to be irrefatable.
94. Back Pressure Due To Involute CasesThe boek pressure due to the restatance or friction is the ath of theswiflly moving air, discharged through the nvolute case of a fan, is at any rate as great as the gain he involute easo anil the evosee chimeney to not, escopt in the case of the blowing fan, tucrease the edmeleocy when the joiot amos of the ports of discharge are sumpicently reduced to prevent current ascillation. The Waddle fan is without ne lovolute case, and, therefore, without an evance chlmaey, and we canbot concelve how the adilition of theae coatly appurtenabess would improve the efllelency of that fas. It is true that where there is so encloaure over the spaces betweed the propelles hlsides, an tovolute case and an evasee chimbey are essential, but where the blade ports of discharge ar reduend to a vorrect area, and especfally by conatricter oovering blades, the tovolute case and the evasce chtmney cannot Lucrense, but ruther reduce the effleteber of a fan. Back pressure is necessary at the discharge of a fan. but nt ruost it is only a small fraction of the trive rosistance, and yet the proportionste value of this fraetion varies with fans of the eame miske, exhnustlog from different mines that are like sa many organ pipess, of diferent wave pitch. It would appesar at firat, glasce that the involute case supplled the reguired back preab
ure without sny further reduction of the ports of flis. ure without any furtber reduction of the porta of itis-
charge from the propeller blaules, but me have lenrnt that by so dolng we introfoce other causes of wastes, ach ss the re-enitry of air between the blades, and, therefore, we see that to improve a fus, due attention
mast be given to the ports of entry, to see that they ar, farge enough to prevent needless waste of energy, and ports of diechargo we must so adjust the areas of the ports of discharge, that the back pressure is just suf coverine preveri tbe recentry of aic, of he wuet proyd revolving eycles, that consume enericy by the coustantly arrested tangeatial motion of these alr gtreama.
95. Throbbing Produced By Ventilating Machines. - The wave motion that is so detrimental to the efliviebery of mechsuical ventilators, is otrongiy proPan, or og the Erat motion, and the eterm is used at a bigh perssure with an early cut of
Here the throbbing due to the intermittent action of the fen can be felt as a strong pulse tu the furthest nook of the mine sod so strong is your perception, that you
can count the stroket of the engina. Carelese ohserva tion is these mattecs, has made bany cootly experleboes where rotary and reciprocating pumps have leven triod to secure a greater efticjency than that of the fan. The inventors of the reatilnting pumps did not foresce the lasd of ebergy that would oceur by setting air in motion
with a varsing velodity, anf couenuegtly thene machine bave all rapbily falles out of uee, and we only introduce them here to intargeret the mechanical laws that ogernte 96 . Yentilaties Pased for veatilating mines
ixon's ventilating pumpse.-First then let us notice

Fio. 133.
They made the alr move in dietinet gusts and it Was expected that they would directly force the the machines that operation of the "mystical" centrifugal force. Nobe operation of the "mystical" centrifugal force. Nobe
of these expectations, howerea, were reslized, becanse the loss of enengy due to intermittent action, sind the resistance at the floor valves was so grent, that, these machlneg were very far bebind the worst examples of the centrifagal fan in efliciency. The figure furnisbes an ex. ample of a reciprocstlag platoon pump, that is oblong in Its transverse sectlon, the platon being 20 ;eet high and

F6. $1: 14$.
12 teet wide as shown at P. This heavy moving partiLioo was mule to run with very little friction on wheels rolling oe rails tixed on the thoor of the pump chamber, as W, W, and A, R, the wooden platon rod or epear S, ans connected clirectly with the platon rod of a stesim conding to very long stroke and the piston P is now acof the valves, moving from jeft to right. It will be seen that two valves at the "top left" and other tro at the
"tog right"and marked E " R and $E E$ are delimery or "tog right" aud marked $E \cdot F^{2}$ and $E E$ are dellvery or "bottom leff." and other two at the "bottom right"open ibward, and are intake of iojecton valvss, as $/ /$ and $/ I$. The lojection valves ate conbected with us air drift, as
T and F, and these flues are in open counection with the shaft or slope at D. Whea the piston is moving top" ejection, valves are open, and conseguently right the pistou is moring frote the flght, the "right botton" injection and the "teft top" ejection matres are opeo. Fig. 184 Bllustrates in vertical anction, Cook's rotary ventilatige pamp. The wind wave palse due to thts pump was palnfully matifest, and it was difficult indeed pomp uas panany maliog of the mine resistance indeed sequence of the unstendluess of the water levels in the gange as they oscillated rapidly.
Several of these rotary pumps were set to work at the irou twines in Clevelabi, Yorkshire, abd at the coal mines in Durbam, England, and the writer recently notioed in the Colfiery Guardian, that the last of these machines in Durham whs lately replaced with is fon st Hutton Heary Colllery, Wingate, Darbsm. This pump flrst consisted of two cylindrical drums A and B, oft in syparate cases K, $К$, side by side and mounted on the same sbaft \mathcal{S}. The drums were from 10 to 16 fove in dlsmeter and from 8 to 10 feet In loogth. The main shaft passed throagh the centera of the cracs, and the druma were mounteit ecentric to the shaft, so that when the oscillating shutter D, closed the mouth of the drift the osenter of the drum B, was right of S, and when the mouth of the drift was wile open at the shutter C, the center of the other drum mas loft of S. Now as a drum revolved obe side was alwsys nestly touchlag the fealde surface of the circulse case, while the shutter was osclllated by a crank on the hinge ends of C and D. The sbutters were the same in breadth as the drums were in leugth, consequenily it in ensy to see that, as the eceen. tric drums revolved and the shutters 80 oscillated that they always uearly toucbed them with their tipe, the palr of drums conatituted a dooble acting pump hav. ing their Intake at the drifts E and F, and their discbarge into the oper air at L, L. In looking into this pump, from the standpoint of L, when it was in motion, you felt as though you were at ses and as the huge gas tank-like drum came awelligg up it seemed very like the roll of a huge wave. There wece three serious shortcominga in this machlae.
First, the re-entry of alr whs very grent, as the drums coulel sot elosely touch the case etther on the face or at their euds, and the tips of the shutters were always about as inch abd s haif from touching the drums.
Necond, the machlse could bot be ron at a epeed of more than 20 revolutions per minute, because the centrifugsl force, due to the rotation of the eocentric drums, woald otherwise break the shaft or tear it out of its bearings.
Third, the drums made such a variable Gepression io the drifts that the loas due to intermittent action made it at exceedingly wasteful motor for mine ventilation. 97. Recspitulation.-1st. There are two paths of the lesst resbatance in current wotion, and true to one of these paths the stream of alr through a fan la conaned or constricted on the biades.
?ns. We bave boticed the reasous why diffasion does not occur betwees the blades of a fan.
3rd. The retreating carrature of the outward extreinities of the fan blades is wroeg in pribelple and wasteful of enetgy.
fth. The waste resultivg from the eddy movements produced by the re-eotry of sir betweea the blades ought to be prevented.
Sth. There should be a separate port of discharge tor tvery blade in a fan, abd therefore the open space be-
twew the blades shouk be gartially covered to prevent re-eatry
6th. The waste withlo the fan blades, even whea covered, as the result of cyeloddal eddies casting off the
rotating air tangentially, when the ebergy of the moving rotating air tangentially, when the ebergy of the moy
partieleg io masted by their motion being arrested.
7th. The importave of the Capell coustricter cover ing blades.
8th. The loss due to the intermittent action of reelprocating anit rotary nir pumps.

CHEMISTRY OF MINING.

Oils Used for lilumination.-The Behavior of Burning Oils.-Smoking and Non-Smoking Oils.-The Three Stages of Combustion.- The Safety Lamps.-Photornetric Measurements.-Measurement.-Measuring Light by Equaliza-

69. Oils Used for Itlumination.-1t is now out business to become nequainted with the various Illuminants that are in use in mines, und as many of them an ants that are in use in mines, und as many of them aty
only different in kind and not in charscter, the favestigation of the wbole matter will not therefore require the expenditure of much of oar time.

In so far, however, as the playsical propertles of these luminants are concerned, they are recogbisable vuder four beads, as, electricity, coal-gns, the fixed olls sud the volatile ofis, and is will be ehtelly with the fixed and the volatile olle that mesball be engaged, ns they are the chlef IItamieants in thae in tripes.
The fixed ofls are vegetable and anlmal productions thst can be separated from their containing tissue without the application of heat, and are such as ollve-oil, palmeil and cocoanut-oil, ete. Nearly all the oils obtained by greas heat sul distilation ane volatile, that is, they evapornte at ordinary temperatures as gas, und asch are often called "spirits," ne "methylated epirit," Mgrit of turpentine, spirit of sugar or alcohol, ete alsoy of the minernl olls are very volatile whee hoated 70. The Behavior of Buraing Oils.-The burning of these oils is full of interebt to the miser, ated not ouly from the standpoint of their usen as illuminasta, but from what we learn in the burntog of these different olle.
All the oils are hydro-carboas, and, strabge to say
the greater or lesser proportion of carbon contained in each compound; and mors remarkable still, the fixed
 a serles of gaseons hirdro-cartbons, we at last pench comporand of carbon and bydrogen, in which, if the temperature of the gas is reduced, it focomes a splrit, sud after this, with a little more ibcrease of the carbon sle ment, we get a volatile oll, anc with a atill greater fo crease of cartion we get s fixed oll, and with o forther inerense of carbon me get a golill fat, or wax, and will a still greater locrease of the carbon element we get reslu, pitch or bitumen.
71. Smoking and Non-Smoking Oils.-The nethylated spirit, or spirit of wioes, all threeboing nestly the same compound, we obtain a very bot flame with very little Illumisating power and no smoke Now the illuminatiog power of a flame is the result of a vast number of unburnt solld particles baving had their
tempersture raised to a white hest asel in this atene they tempersture raised to a white hest, asd in this state they emit light; If however, tbese particles are burnt as in of olefiabt gas gives no more light than that of the flame of alcohol. This brings us to the sought-for point, namely, good light is the result of the imperfect conitus. tion of a portion of the carbon in the flame uoder notios, and there are threes stages in the combastlon of the carbon that are of first-class importanos, and especially so when we notice, that me are always trging to obtaln the
beat posathle licht mith the smallest conn beat possthle light with the smallest coossumption of oil.
72 . The Three of Stages Combuation. The 72. The Three of Stages Combuation.-The first
atage occurs whes all the catbon is completely atage occurs when all the cartbon is completely burut as
in the Bunaen flame. is the Bunsen flame.
The aecond stage cocurs when much of the carbon is burnt, and just sunicient remsins ubburnt to give a good Jight, without a senoky famee.
The third state occurs whed very little of the cartion Is bornt, and it is therefore bearly all set free as a dlense black cloud of soot and smoke, makiog the alr thick mod buffocating.
There are four csuase of the production of smoke by
the flames of lampa the flames of lampa.
73. The Causes of Smoking. - The tirat casue is, carbon will not burn to oxygen antil it reaches the temperature of incasdescebce, the result is, If cold air chills the flame it prevents the ignition of the carton
The second cause is an insufficient supply of air ta carry on the combuation of the gas evaporated by the burnige ofl.
The third cause is the high proportion of carbon
In a thek oll, burning with a thick wiok In a thlek oll, burntog with a thlek wick
The fourth cause la the too rapid role
The fourth canse la the too rapid volatilization of the of when more gas is evaporated than the limited supply of alr to the surface of the flame can bura; for example, than in repin and yet so rapid is the volatilization of thes gas from turpentine when beated, thet the flum of the gas from turpeatioe when bested, that the flame gives
off more black smoke than that of burning resin. From all this we see that different olls contain differeat proportlons of carbon, and are quicker abd slower lit their rolntilization, bence sonue are better adlapted for ones use Where we should bee able to determine the aslaptability of an oll for producing light In a miner's safety lampality of
74. How To Test Oils For Safety Lampa -

Iittle Low To Teat Oils For Safety Lampa--After analysls of the oll is not the beest mode of testing and an aasy snd correst gagge cas tee applied by floding the eary sud corroct gange cas be applied by floding the without atooke. First, then let ua refer to Fig. 114 , ind it will be anea that it will be geer that

Fha. 114. the flame La espped
with a lazy clouid of with a lazy cloud of smole as the resuit
of the too rapid yolsctilzation of the oilat the wick W, or the the wick W, or the
too rapid conresslon of the liguid oil into of the liguld oil into cause is found in the 8 mall Rapply of oxygen, as it cas only enter into active com. enter intoactive com-
bination with the combuatible gas at the surface of the flame F, as shown by the arrows $a, 0, b, d$. In these days of "kerosene lamps," the smoking of the tlame before the funbel to fixed is a trumilar exjerience, and the change produced by the addition of the Chlmney is very pro. nounced, and we can. therefore, imagine that there will be degrees in the completeness of the perfect to perfect Illumination; for example, the case before us is the worst co far as light is cobcerned, and it we ald a very short chimney we
woald slightly improve it, and a longer one moreso sund Wowderightly improve it, and a longer one mone 8o, and chlmney that would wroduce also soed that a length of sample of ofl would not be long cnough to do the sanee with another.
It Is evidest then we bave at our dlaposal one of the
most simple and decisive most simple and decisive tests of the atuess of an oil for use in a matner's lamp, Smoke is genemally pre-
vented by applyiog a draight to the fame, bat the vented by applying a draight to the fame, bat the
motive columas to produce a draught in a miner's lamp is motive column to produce a dranght in a miner's lamp in
very gnall, and when we constder how a small incrense
of carbon in the composition of the oil, or a small io. erease to the rapedity of the volatillzation of the ofl, of
fartber, whes we conslder the reaistance the sir has to fartber, whes we consbder the resistance the sir bas to
overoome in forcing its poasage lnto and out of the lamp overoome in forciog its pasagge lnto and out of the lamp
through the mashos of the gnape mee through the raeshes of the gaaze, me cease to wooder at
the mach repeated cry of "had oll " For to explain the much repented ery of "bad oll." For to explain
then, how the ofl is tegated for its fitneas to be used in miners' lampa Fig. 115 is introduced, and as me masy es poct, the propess is thepend ent on the use of standand val-
wes saph as ues such as cot-
ton mick of a Gxed size, and a axed glze, and a
glass chlmber ginss chlmbey
inches lone Tin-plnte veg Titi-pinte y es
sela for oll wells are provid ed are provided,
and thege are and these are olled to be tested
oll as shown tosted
as show in the Agure at D and E. Now to wake the ex.
planation easy to comprebend, let us make a abd first try the short chimbey the flame is found to 8 moke freely; next try B, and chimber the tlame is found

Fre. 115. to be clear and

Insting power of the lamp is $\frac{10^{2}}{20^{\prime}}=.25$, or the lamp is .25 candle power. Again, it the lanap be takeo as the unit of moasure, then the candle is $\frac{20^{2}}{10^{2}}=4$ lamp power. Latups are, howeter, always reckoned in candle power. Hght meaqurer, and in thistration of a photometer or ploged are of a stmple character. Tro boards sre joined

toguther in sach a may, that obe la perpendicular to the other, $n s A$ and W, nod they are covered with white paper aod a pencil rod is fixed to the base board as at P.
Ry this means the canille C i ahown at S, und the lame is cando to cast a shadow as the hase and the uprlyht board as at \bar{I}, and If the lan is moved altermatoly nemear as at h, and if the lame until the stadows are equal io further from the peocil of the lights, are as before directly proportiopate to the squares of their distances from the pencil. Suppose in this case the lamp is distant 11 tuches and the cuppose is distant 17 incbes, then the candle power of the lamp is
$i 1^{2}$ $\frac{11^{2}}{17^{7}}=.418+$
78. Mensuring Light by Equalization.-Flg, 118 is an Ulustration of the photometer often met with at
gna morks, and in thls cnso a disc D is moved to and fro gna works, and in thls case a disc D is moved to and fro

Fig. 116.

powers of different lights, for by it the measuremen sheet of white paper as W, W, a long lead pencil having a cork or bung for a base as P, and a stablard candle as C, and the other light or lamp with its tsame elerated to the same level as the cabdle tasme as at L.
77 . Shadow
urement. Now measurement.-Nom for the meas dle untll you flud the shadow of the and from the cansame depth or darknerss as the shaidow from ther of the the lamp at S, and when the shadows are thas equal in darkness, then the lights are proportionate in tillaminat. log power to the syuares of thels distavors from the p precil, and suppase the lamp L is distant 10 inches froen , and the coodle C, is distant 20 iseloses from P. tben if the candle be takee as the unst of measure, the illum-

MINING METHODS.

High Pressure Ventilation-Terms Used in Venti-lating-Potential, Velocity and Pressure-The
Situation of Mine Shafts-Directions of CurSituation of Mine Shafts-Directions of Cur*
rents Along the Faces of Workings-Favorable rents Along the Faces of Workings-Favorable Facts.
72. High Pressure Ventilation-Erratum : In our Last chaptar, in the November number, the last formula, $P-\left(P^{Q^{z}}\right)-p$, should have beeo $P-\left(P P^{q^{2}}\right)=P$. The difference of current potential, of the power that Tets the veotilating arr currents of a mine io motion, is greategt when the workings are situated upgrable from the shafts, of where the sbatto noes situated at the botguired to yratilate a ploasoul for the high presaure required to ventilate a mine with the ingoing air asconsling explained, bat there are other is soon foumd and as casily ance iespised in the are other matters of freat import-ton- for example, a hist possures implies grist realet ance for example, 3 hisis pressare implies grust restatture of cost 10 produce the eoergy regulired for the high lance to be overcome.
It is a mistake to act on the supposition that a laige
volume of air is all that is regulred for the complete and une of air is often found to be eireulating, whille gome of the uggrade districts is a malse are standing, not only ethageol with gas, but with a stagnant ventilation. flere, thes, we are confronted with two facts that requite explanation: first, mach gas and no memphert ventiotion aufficient quantitg of air cirealating; secoed, the upgrade workingsare not ventliated, while the downgrade workiuge contain no gas and are veatilisted with a "strong bre-
eze of wini." What, then, is the causen of this oprosite condition of the upgrale and downgrade workitoge ? The answer is, the currest precsure is too low to overbalsne the descending retura current, that has beon remberee specifically lighter by being hented and mixed with marsh-gas. We see, thes, that a high ourrent pressur is as tencessary for the complete ventilation of a mine as a large volome of air
The first proposition is a satiafactory introduction t to the sotution of the problem that a mbe alwaga rethe seam at the bottom of the pitch of the upgrad workluss.
73. Terms Used in Ventilating.-To make all this clear it is necenaary in the bret place to define our terms and the most tmportant ones are those of "potenthe dispossble power that sets the ventilatiog currents is motion asd ap-aking of the entire mibe it may mean $1,000,000$ unlts of mork. The "difference of potential' can be beat explained with an example. Sappoae an alrway to be 6,000 feet long, and that a quantity of with a pressure of to poumbls per equare foot through th poteotial of the vemtilation of that sirwsy is $60,000 \times$ $10=000,000$ dispoasble noits of work, and the differance of poteatial will be seen and understood if me from A to B, and from B to equal halves as 3,000 feet the potential or disposable pormer at A is 609,000 . of work, at B it will ooly be 300.000 unita of work dieporable, or the difference of potential between 4 and B is $600,000-300,000=300,000$, and the differood between A and C is ti00,000. The difference of potential for every toot of the airmay is $\frac{600,000}{6,000}$
74. Potential, Velocity and Presaure--Another matter requires clope sttention and it is this: Thes potential that would set up a high velocity against a low resistabce, would only set up a low velocity against a high resistance, because the preasure required to re move ghe downgrade is obtained st the expenee of the velocity of the current. For example, suppoge that by some unknown cause the sirway, we have just boticed as 6,000 feet long, has been nearly closed at the end C square foot settiog the alr in motion at A, would the found as static pregeure at C. Or this neesne, was before you canbot obtaln preagure to remove gas without doleg 30 at the expenne of the velocity of the current ; am from spilitting. greater differences are produced by the realatanced aet up by return air-currenta that are descend lag trom upgrade workligs and have been rendered light

by belog heated and charged with marsh gas. Where the aik-current is moviog at a low relocity, it is not easy to mix the air and the gas so that the latter may be removed, but ubdet these eircumatabces it to wiso th ventuste by ascetsines along the morking face, and make the rapd maln carrents deservid, as shown is Fig. 118. ahafte are below the upgrade workings, the result is the ingolog freeh air has to nsceed, while the reture light air
has to desceud. The directions of the currents may be traced by the arrows, and the movements of the local currents is the panels are seeo to be all ascensional, hisd, ibdeed, If this provision was not masle, the re. gistance would be very great. A little explabation of till mon eriitel The making the previuls femink oy the arrow. The districts most distant from the thaft se 1 aul 2 , are geen to require no regulators, but they ase provided for the diatricts $3,4,5$, and 6 . It is comanoly sad that the regulatons in the distrkets bear hosn panels, but the real use of these regulatons is to throw forwart a greater difference of potential, for the entilation of diatriets 1 and 's
Workings - Fig of Currenta Alowg the Faces of domngres Fig. 119 shows the alr currents movisg vastages of this mosle of current motion are two in

Fis. 119.
number, for it may be 8sid, the system is bal allogether. First, when the masin airwagis sud the working face ste all downgrade to the shaft, a very h required for the veciliation of the mine. secobd, when the regulators as shown st 1 atd 2 are ased, they are entirely out of place, as they introduce a resistanoe thst is already too great, and auy gas collect-
ong behind them would atratify, and the Iittle air that did pass slong the working face would blow through the

Fio. 120.
regrulatore and lenve the gas bebind. The same coniltions sould prevall in panels 3 and 4 , ouly a litsle modited, and eree in panply if smi if it would require remove gas.
190 Illustrates the Conditions for Ventilation.-Fig
ating a mine with a small potential. Here the seam ie entered at the top, or the begianiog of the pitch with slopes, and the ingoing air degcends, while the light gascharged returs air ascends, and even the currents anoig The working faces in the pabels are moving upgrade. be fisedutator are not shown, but if used they should 3, insed at the ends of the return airways of the panelo dispensed with in a mine of this kind wheo worked and wntilated as shown by the houre, becanse the fanmla low down the pitch bave thedr ventilation alded by ther ascebdlog current, that ig bested and charged with light as. Courrat thla figure with the former one, abd we will find the rensons for the bigh potential required for the preceding example, and thces for the low potentis) of the present one For example, suppoee the potential required to rebtilate the workiops of a level seam was taken at 4 , a0d the potential reguired to ventilate an inelfned soam with the ahafts at the bottom of the pitch Was 6, then if the ibelioed sam was entered at the fop of the piteh with slopes, the poteotial would be inferve. tlally 2, and therefore, we see that the potential required to rectilate with shafte at the bottom of the pilteh, Is 6,

or $\frac{6}{9}=8$ tlmes grester thas that requifed for vestilating

 the workings by slopes entering at the top of the pith h.78. Recapitulation of Facts.-Let us bow recapjtulate the facts of prime importance In the lesson; First then, with a given potentisl, this disporsble cnergy orpicomes a great resistance by reducling the square of the relocity of the air current and correspondingly increatIng the pressare secood, to remove gas in upgrade the preceure almost up to its static value, or to thast required for the ventilation of an entire mine. Third, the air current along the working face sbould move upgrade, when the line of the fince pitches. Fourth, the nlopes or shafts secure the least expensive ventilation, when they edter the senm at the top of the piteb. Fifth, regulatory ase oftes dispenced with whell sll the returnalr-currents of the mine lasve an sscendleg motion.

[TO HE COSTISTED.]

A Geod System for Your Stare.

A question that lase bothered the diffeqent mining coenpanies for a good nasny years is "What is the correct and best system to use in our store?" Stores which are run fo connection with mines are generally in an isolsted locslity, and the store must bave gome sybtem to prevent employes over-running their account at the gtore, A grest many have adopted a round metal check, but it does not give the sstisiaction the storekeeper or managers might desire. In the first plave they are transf r-
able sud are goos for merchanlae at the store to \#boever lirings them in. Amain, belng transferable emploges can sell, or otherwise dispose of them, and frequently man's family is deprived of hls earnises becauently a man's family is deprived of hls earoisgs because he is too weak to resiat the fascination of a poker game or a ganse of craps. Sometimes a rival store gets hold of a
 at tooppot
the mine.
Another syayten that has been tried with a greater Jess degree of success is the old seript or puach out theket. These while they are not geberally transferable have faults nevertheless. The enploye says: "Hold on, you have punched out too much." The cuatomer holdDg such ticket ls ubaslly looking for the worgt of it, aul after be thisks that the little punch has cut too wide a owath in his theket, there is no why of convincing him thst he has not been swindled. The punch out ticket is usually printed on a simple cand which could eastly be counturfelted, is ensilly deatroyed ordieligured, and is the cnuse of many mlaunderatabdings between the cuatomer and proptietors.
The beet syetem that has been brought to our atteothon is the Coupon Book. This system is calculated to take much trouble and worry of the mind of the man whose mine has n commlasary bnuex. They are put up In book form, each book coutsinigg differeot amounts, These books generally represent 81, 84, 83, 85, 810 or 420 and have coupoes in the books rubuling from ooe vent or live cents up to 25 cents of a dollar has the store achemee la vastly superior over any system of pubch onts or metal checks. The book itselt le sot transferable and is good for merchasulise only at the eompons etore asd only to the man to whom the book la issurd or gome remmber of hle family. Is the book the cospont are petforsted so fer to bo raily dotached, and atter these uro odece torn out by the clerle at the store, they are worthless, as they are not good if detacbed. A man caonot claim that you pusched out too much, or rather tore out too moch, as the smount detached from the book is laylog on the counter before the cletk and the custocens. As they are bot transferable, they cunnot be sold. In fact the superforty of the coupon book over any otber system can readily be seed. The paper check weats out, is diffeult to havdle, bulky sod ubwiedly after shott ver. The coupou being bot good if detacbed does not become a circulating medlum and therefore offends wo law, the Coupon Book betng in sabstance simply an order to the emploge on the store for a certsin number of dollars worth of goods to be delivered to pattial deIiveries, and upon each delleery coupons to the value of such delivery are detached until the book is exhans'ed. Te know that a large number of cobcerns have adoptisl this system within the last few years, and it seems to us that It will be used by a still greater pumber as soon as its merits are discovered, as the syotem wherever given a practical test becomes popalar both with the eroployer aud emploge. Next to cash drawn by vinployes on account, it is the beat sybtem that can be doviged for the cooventebce of employes, abd it is therefore popular with them.

\leadsto Miscellaneous.

What causes the light op the son.

The light of the great orb of day emanates solely from a olozely fiting robe of surjawing brithtaiss. The great bulk
 is conoerved. It may ladeed de likened to the coal covllar. wheoce are drawn the suppliee that prodoce the warmit and
brightuest of the domedte bearth, while the trillinat robe
 Which the enal is coasamod. With regard to the thickDes
of the robe, wo might likea this beilisant exterior to the rind
 respond to the edible portion of the truit Genernally apeak-
ing, the rind of the ornaige is rutber too ecarree for the purpose of this Illustration. It might be mearer the truth to amtm that the luminous part of the sun may be compared to
the delicate tlmy skin of the poweb. There can be so douth the delisate lllmy sidin of the poweb. There can be so doutt
that if this glorioss vell were unbapply stripped from the

 the belliant mantle, through whish we are pernitted to
obtain gilmpoes of the comparatively now-luminoes interion

 particalar layere of solar sut otuace
It is perfeity piain
It is perfoctly pisin that it is not composed of any con-
tinuous solsd material. It his a granalar character \#hich is sometimes peroeptible whea viewed throngh a powerfol
 bare an obrions romemthanee to clouds, nad clouds, indeot, we may call them. There is, howerer, a wide differedee be-
twoes the solar clouts nal thcoe clowls whish toat in our own atmosphere. The clouids wich wo know so well are, of
coarse, merely vast colifections of ghotailes of water suspeaded in the nir. No doubt the mighty solar olousts do slso coosat of incaluonatio myraids of kiobules of some particular of which these solar eloude are compoedi is, bowever, I need hardily ray, bot water, bor is it anything is the remotes
degroe resembling water.
Some years ago nay attempt to acertain tob partiedar subscabice out of whiot the solar elouds weee formed would at owee bsve leth regarded as
fotile, inasmoch as such a problem would thes have been
 on the sutject, sad has rovealed the onture of that materina to whose prosebee we are indetted for the solar bearlloewce.
The detectios of the particular eleeseat to which nill living creatures are so mueb indetted is due to that distinguisbed physicist, De, G. Johwstone Stovery
In the whole ramge of witance,
dibcoreries ever made is that whivh has mougt remarkatide dementary todiea of which the sub anil the shars are cone
 ho it is istererting. Could we werer bisee auticipated thm body sinety-three millows of miles sway, ke the sus is or
hundred million of millons of milea dishant, as star anay bundred million of millsont of milles distant, as attar may be, mateciak ts those which compose this earth of ours nat all which it coutains, whetber sulfate of LDanimate? Yet web
$i 5$, indeed, the fact. We are thus, in a measure. prepared to flid that the material which forms the great plar clouds
may turn out to to a notutasce not puite unkouss to the ter-
 pertap prove to be one whict was very abundant on the carth. Cemarkon is one of the commonest as well as one of the mot
reme subetances is bature A lump of coke only differs from a plece of carton by the anh which the roke
leaves tethind whes burbel. As charixal is Almose entirviy carboi, so wood is largely composed of this samo elememi
Carbon is ladced preseat ererywhere. In varions forma earboa is in the eartit beseath our feet and in the nir whict our veinsi it is by cartoon that the beat of tbe boly is sus-
tained, and the same elemet is imimately twoctated mith Ufe In every plave. Nor is the prosency of curtion merely
confined to this earth. We know it abounds ou other bodie im pace It has been showa to be eminently chararseristic functions of carton is the universe has yot to tes mentioeed Thit same wonderfut element bas been thown to be is ail
protability the materisl whith constituter those glowing solar elowals, to whicos kiadly nuliation oar rery life owes its
orizin. In the ordinary incandescent electrfe lamp the brillinut
 enises the temperature of the cartoe wire 20 an to mate
danalingly white bot. Indeed, the carbon 19 thus elerated t a tesperature far in excess of that which could be obtaine m suy other way.
There is no kn.
Ther, whictit demsunts on tivt a perbape bo sutetance what the elemeat carbon. A llament of cartont, ash a nlamnot of bythe Niectric, carrest to the dawning briliance becessory for efrective lllumination. This is the reason why this particula
element is so iodispensatie for our imcandescent electri lampas. Moders research bas mor tought us that just ns the peotucing the tirightest of artincial highte dowate here, oo th mediate skest in the production of its transeendeat light and
best. Owing to the extruardinary fervor which prevails in best Owing to the extraordinary ferror which prevails
the isturior ports of the son, all sobstaises there present, matter how diffoult we may, tind their fasion, would bave t
sutait to lee melted, nay, eren to be drives of into vapor
if sole
 vus, eves arrbs itself is unable to remain solid. It would semm that it mast nsume a gnsecus form under such etroum-
stasce, jut as the copeor and the fron and ail the other abstamues io which yleld
The buoyancy of earboe vapor is one of its most remarialis charmeteristices, sceordisgly timemense wolumes of the carbon
steam in the sun soar at a higher lavel than do the vapore of the other elements. Thus carbom becomes a yery large amd
 these carbou vapors by the anslogous case of the familise
clouls in our own skive. It is true, no doabt, that our ter
restial elveds are compored of a material totally differeat
 lange a proportion of our earth. The vapor thus produced
avende to the form of invistle gm through our atmoskhern until if reaches an altutude thossnds of leet sbove the surmoces up there is os chrut that the watery vapor ox ox firilipuit beads, asd it k of coure, thes liquid beads, th
sountiess mytriite, which form the clonits we know so weil. couthes mytaing, whech torm the couds we know so weynt
We enn now understnat what bappess as the boyant arbon vajor scars upwards taro

 ceptivaslly refractory carton begins to returs to the liguld
sate. At the flrst shage ia this rutura the cartom vapor conWate. At the ilrat siago ie this return the cartow vapor con-
fucts itseif just as does the asceosilig watery vapor frome the Warth when about to to transformed into a visatie elond. myruid lost of little besits of lipuid. Esth of these droge of lip ald carton in the glorious solar clouda bas a temperat-
 aup. When Wo rememter further that the eatire sarface of our himinury is coated with these elowds, every particle of
which is thos intensely lamisous, we need no louger wouder

THE HHDGE OF AN OCRAN LINER.

 ns into the wheel house. It is a room about ton feet long and is dianeter is pliseed in the ceater of the room, and surprised to see that the quartermseter keeps turning it si-
most constantly. You have alwsya thought that he baid emply to lisep bis eye on the flonting compasis in the box diA. you look nt the compacs you sec the ship yeering now
 around. It is hard to make two idedependent sorews, go at
wxetly the same speed and so this man at the wheed is boay al: the time turning the ebif straight. He has to dotht the
Faves aud the orrews and the wiels at the aame time, and ho sa busy man
Thia steeri
olumin of cilliw a littlo tute the ship by mense of a smain or that the oil in the tube is forved op or dours, asd that wondred feet away, sad the radter ia turbed na esalily su it a child bad done it. In most steamships then seam kevering
grar is controlid ty hadraulic power-that is, by waterAs you look about, you ste foteued to tho coenice directly a front of the witeel man, n little staio in thock with white
ines markel off on it. There io s dial on it, and is the ship molls you see that this is a derive to mark the degree of a
coll. You may notice that if takes about a second for every degree of a roil, On enth sidte of the roam is another losk tetwen misery nad nibety-dive Tiese disks are fitite elec rical derices, showing exactly bow many revolutions the screak are makisg. The Captain,
is going on in the engtioe rooms.
Over in the
device It is a litite tor with a cloct in currous electrical vells yous it is the machlase that controla the ulistle in time of ugs. Tbe isw requires a losg blast of the whiste at such
times every two minutes. By presing in a toatton on this ittlo cloce apparatus, and by settiog the elock in a certain manner, the whistio is blown sutomatically for seven secoods wery misuta. Thery cas be no urror of man is that work
Just an aum as every misute comed arousd that whithe will dow eren woobit. Under the old way, when a mas pullow
the whiste cord. theee whs no exacthess in the work. When tha tog is over the button is released, asd the Fhistie stoja

THE PAY OF MEMBERS OF CONGRESS.

The question of whetber or not members of Congress
thould be paid nad the amount nad manDer of paywent, bas

The clause of the Constitution relatiog to this subject funs : The Bebators asd Represeotatives shall reexive a compeas: of the Treasary of the United Scrates.". At the time of the adoption of the Cowstitation, as sow, members of Tarliament
reecred to compensation whatwer, but, AN Dr. Hisadale point out, the ofigectiots to such a frevice are, first, that
the Reate bis no miore right to demand the services of eitients thas to demand their property, witbout a jost comperesation, abd, secondly, that it teids to exelode poor men from the
linwaking fanction. Theee objections utimately caused the Federal Conveotion to agree that membere of Cosgrea
stould be puid, though it was urgod ty Dr. Franklis nud
 prastion, and a proposal to that end received the votes of should be the jaymater. Some delegate to the Covevation sontesded that the members of the new Congras, like the
pernters of the old cse (under the Articles of Coufederation) asd epecially that sosutors, shoula be paid ty the gtates. astion, argoed that it was unjost to ack the sitate to pay for services rendered to the nation; that the several stateo
would compeosate their members at differeni rate, thus togetting palousy sod heart-bursings and that some of the
 Suto paymeat would impair the vory element of coberenoe abd stability is the Yedeal Governmest which they were
eveking to nface Senatory wonld bevome the mere apents af
 and of the pablie good. Mr. Hamilton proseated the mase yiew in the tersest form. "Those ubo pay are the masters of
those wbo are pait." These argumets were decisive of the source of payment. Another question arow, bowever, namely, ubether the amonet of the comperasion onsuid
Ised in the Conetitution or le left to Congresk. On the oae hand, it was urged that the pay rould seed to be elanged
froe time to time, nad that if would be diffleate or imposTrate to amend the Coastitutios; on the otber basd, it Wh proticted that Congress Fould be likely to stause the power,
It was also proyoed that Coogreos sbould ix the compeasa,
tion ouly onee is twelve years The following amendment
 Semontors and Representatives sbail take effect before the etbetion of Regressintatives shall have intervesud." The
 pay, subject to the Presidential reto In every case it ethange bo matter when made, it has had effect from the begianing of the Congress making it. 10 cther words, every inw on the
sulject has lwed rofroactive. Tbe isw for instados, of Slareb 161816 , reached hack to Harch 4. 1815, the lave of Avg. Th, 1577, to tarch 4, 1855; the law of March 3, 1578, to March 4 4 ,
years. It will he remembered that the law of 11tis, kuown as the "Back Pay Grab," provoked severe
eriticism throughoat the country, and the law of 1816 taid a

 ans istompatilise with the character of Congres. In both legisintion.
The compensation of members of Congress from the sap-
tios of the Constitutios to the proment time tios of the Constitution to the present time is given sa follows
From 1789 to 1815 they received tib a day : from 1815 to 1817
 to 1871 it was 85,000 a year; from Marct 4 , 1871, to Mareb 3 .

 from Oregon going to Washingtoe sod returning to his home may. From 1865 to 1871 the mileage was only tweaty cenis a 1573 it has been the same as it was frome 1565 to 197 . The curious cincumatasce is noted that for the single year 17% tiras. We add that the speaker of te tous and the Frosi-

FOOLISH SUPERSTITIONS

80 serious a persun as an endertsker laughed not long ngo
whes some one told him the story of an old liwyer who hid sbed some one told him the store of an old liwger who had
counted the pumber of carringes to a funeral prowessios, and counted tor number of carringes
haid died three months afteryard.
"That superstition does not inifluenco men in my trode," he conarking the number of wetars I bave in every funeral practice of ubder my ege, and I sum live aod am renuonably happy, cont shother the livery order ha bees alled; abd when-
ever I see a line of carriages following a bearse, I rub oree crer 1 seb a liss of carriages following a bearse; 1 rus oree ting on. All undertakers do it, and you know they are provertially lowg-lived.
A similar commeat mas mese hy \& clerk in \& Western for-
nishing-toro, when he was cnutiosed ly a superatitions customer kgningt opeaing an umbrella indoors
obop," he remarked contemptoously, "abs 1 have stool this der eight thoussnd of them at lenst, und if it bas brought me
 groups of thres; aad that he knew, as a matter of experience called to see it, two other similiar cases would be certain to come up in the conrse of a fer weeks ; or that it De bai one cose of smallpos, be would be certain to bave three.
 diseoseas are repeated in no whending series, sad that your
triple effect is a figment of the imagimation. Yoa would very riple effect is a figmeat of the imagisumat. Yo would very
soon abandon your rule of three, if you were to see, as 1 do, sonatand an your rule of three, if you were o see, as 1 do,
a buodred patients beought ieto the wards is the course of a
 nuts in thoir pockets to keop off rheamatism, abl would fuist
from fright When they bad beoken a looking tho fis tese they had seen the moon over the left choulder, or had beon numbered in a company of thirteon people. The world
would be porerned by a whimaical poil of fantathe frenks and caprifes if such teifles sos these could determito bumkn Dortube or storten buman life
That uas a common-setsoc way of dealing with popular
superstition. All soch foolich motions tend to impuir faith in
st orderly sad all-triee Providence. - Yoults' Cowpanion.

photoghaphs by the milv.

 manufacturers ato give awny sweh thises to purchasers.
 to a photograpser of New order for one miltion ratimet, to to itetivered in tix movetho The man who says "Now bos plemast" simply threw op
This babds bejplesaly abd said that he could bot posestily priat so mayy photograpts in that time were fies sum to sh cone every day and for twe chty-four bours at a seretch.
He contesed tost be found his limit Troe one Degative sis negativen as he might and aproad his printing frame on every root is his neightorthood ha be might, he would
cill be stoply paralyzed wion it Whahing, pad paralyzed aha it thave ticturebungry man Went to a place near by, where they could fill his ordee in
ten days where tey prist, develop, fix, wosb, dry, nid
 rogularl
With the hand promes, Fiat the Erat lattereday inset print
 paper more than 3,000 teet in length nat three fot wite goee into ons end of the appantus untouched asd comess out at
the cther ead in the form of large, dry sheets of finatied photographas. All this is managed with the utmoot mechnoleal precislob, and every picture is perfect when it emerger

 esiosure is found to be too boag, thin stieets of waxed of
tissoue pajer are pasted over. to filter the liztit rays nuil

 becol rikioe koes into the drying box, hot air beated, up
whike it travis to the top toor, to to out ioto steets for

 to dise again, the baif derolognt thes, show dimls, podi at the bext ewening are stroug, clear, and wooderfilly uni-
farm. Doun, after a Wroting, gues the buad lato the "hyw," to come up elearnd, and whes at last the wahiot of tenuty und rerpetinal pas
The poestiatire ot thin
nomecalable It it moald the mutomatio process are almost

 Yalkyrie ravee m company coubs bare placed at lesst tu0,000
mounted photserapheof the flaish on the strenta next day

 tu furnithed eact day-
the ordinary wetbod.

RABSINS

A Haisis Xincyurd is in full bearing in three years, toat the grape bas not robshed its perfection untilibe vine from which it spriugs is sox or seven yesrs obl.
The Muscat and Thompon seellesa
raisib grape culticatel, the lattef bavigg only leeriety of doced within the last tew years, but the Zinfabicll abd gul tasa hare siso large claims apon popularity

 rith their magnificent grapes of Eahoal, twine "on a stail claim, "Is not this also the Promised Land
Ahout the 1 st of September the lobg sumay days, the dewless sights, and the percolated soil bsore perleyted their marvel-
bous work nut the first crop is ready to be gatheced. Iy this time the laterale have run riot, aind the riweyardiet can poarcely see over the top of his vinte.
 wooden trays, atount flve feet square, are distributos namonh doserty of trained pickers. The buaches are carefully cut Iromise vise and as carefulty lait upon the lase of the tray to avoil bruiaing them. Thure they remain sutouched for
tea day*and nighte. One-balt of the grape is fy thls time cured: but instowl of turning them by hand, as thpity tray is phaced over then, the lower one is inverted, sud the tarnimg farise is completed. The trays and contents are thenatacked about turnty trays high, where they remain for tive days
aweating, when they are revily to loe graded and packed in -weatiog, when they are realy to be graded and packed in
boxtor of five, ten. twory and fifty prouds for the Eastern marke.
Fines
tro, givis yese oht yiehd one sul a half tons of raviny for Thile the sapply of rabins is as nonfeiling as the growing demand, thero is as zethetic as well as an ccowomid side. A om fortable recrume, topt their faltivation a moot eleradt abi maithfal pwotime
The apperou-th to some of their homes, with the vineysril in and magnolin trees, hind if they lie, ns many do, apainet the 4 eiabt ret woods is it fiting introduction to the beandy abd

SOME: QUEERE HOATS.

Of all the unvommon forme that boats take, the neurest,
notend of teing strange nul compligiont like mocet nine

 ing to it frotu the tmandund. The other icreat abs lattle from Nev् York, all stop on the opposite shoees of our har-
 imund our faland, wo that koosly from Boeton or shat Bartor, for instaned, csi le wat arount New York to the track
of the ronds that will carry them to Xan Franciaco withou aulouling of relonding. The floats that carry them far
are mernly toven the shape of ereat stomiaves, with railinowil

 borting, fissy bittle tug-bonts mareh awny with erery doast Athasthe shomsthise at their nates-teraven they reach hugh

bratanvose small, and get so strone, they are nhte to move The "itout" that carry powinere saronel New York, en
 On the sleppies carss, are mot tlowts at all. They are very
powerfal and large stemmleats, with devs corere 1 with iron tates, with ear tavks on theso de devs, nad with

 is ofigets that hook like iltatimg Louses. Arueng them an

 and sterring itself around. That strange thing-and use mptov many surb-is a lloatiog grouls eletator. It is a tail agrent prok-cois, that it stioks dous toto canal-tonts fall
 Crom Horger s Rowad Tato

enerneering tools at pompent.

Ubser the titio of "Things of Engingering foterest Fones at Dompeli, Professor Gocitman hety gate his inaugural
 voited Fomprit, asd was not ouly charmed to the great
weauty of the" works of the nacient Homans, tot alan by thair extrume ingenuity as mecthasics-to fact, it Was a marrol bow
Some of the instrumests and tools they were in tho halit of vome of the instruments and tools they wero in tho hatit of
uting conbl possally have been mode without such machinery at we mox passise. oy chowers of astes and fund, pee lava, ss it esuality sup
 Sraphs taken by bimself in Fouperi last Envter. The siteets witer, nat protaily serrage, from the houses. The fare ping stowes wore provided at int incals for foot possenime Mone horses asp charbed whembly had to pass bef ween, and in osuy places deep ruts have bean wors by the ebariot ubrels in tor stowe pavied strot-. The water supply of Pompeif Whe distributes by menas of whd papes hath unser the streets, arge hoases were pronsded with fountsine, many of moet
 compared with many in Italy. The brouzes fonad at
 ohe and taps for rumning of the bot water. Ewer and urns theve beed discorered with internal tuber nod
furawes precisely similar to the arrangenent now used
 locks and keya were moot togenious, abd some very complex. On looking at the iron twoll found in Poopeni, ane scept for the fire that the ancient mpententatives bave sutfered serverely from rust
sicklec, bullbooks, rakes, forks, axes, spades, blackomith? comarkatly like thoos yeed to-day, but certainly the mane arveloss instrumesta found are the surgial instruments. besatifully ewecated, and of design exactly simalar to some recently patented and refinveated. Incredibie as it may
ppear, yet it is a fact, that the Foapecians had mire roger

THE EIGHT PHILOSOH'A

It is worth while for as all, evea whed suffering pain, to mpatient worls. ETery facoing thought nat fealine write
 ine day by day not only the womun she will be in charaiter ater on, lint the womso vbe will te in looks. Hablsome or plain, mgruentide or the oppositn, tho womas of forty is
dependent for her looda on the girl of fourtere. You owe an Eependent for her look on tbe girl of fourters. You owe an
amount of thought and consbleratiod to the woman you are going to be, hod the friends who will love her, and so you most oot let necedless lines and furrous come to your pretty brow that krep your forebesds smooth, and do sof draw
 in prosilas, even when bearisg moch pain, to woir n cranmind in the ebd ras comquer pain
Crossing toun the other day in haste to catco a train, the
 Some buit fivetud and nogry faces, some eould not sit otill hut tapped the boor whit their foet, and uttered excluma-
tions,
 with their lags ani unikei hutily oburand. But a dear ohil
lady is the corber of the oar was a pottere of sucetbess and nmiabality, abs I heard her ohsurve to ber sedebtbess and will probably hoe oar trais, but at this time of thsy there are

WHAT SHABL WE EAT

A pamphlet fasued under the auspioes of the United States Thepartmest of Agrimulture, prepsred by W. O. Atwater, Ph.
D., professor of ehemistry in Weslegan Uaiversity, on the untritive value of tood prolutse, says

A quart of milk, three-quarters of a pound of moderately

 Cer foos. It containe all the different kinds of nutrative ma-
erials that she losly pueds. Hosed made from the wheat Hour will support life if contuise nill of the neovenery in-

 into account, bot simple gunntities of ment nod liresad and

ans body and repenir its wavtua; to rietaf brat fo dounterial of Inarm and to provide muscular nini cther power for the works
it has to do, Dr, Atwater has jrepared two tables showiag,
flrot, the comportion of food materials, the moot important of which ane the uutritive ingredientsabd their fuel valae; setobed pue fecuniary ecobomy of food, in which the amount of
natrient is sfatel io pomeits. Is the tirst table we flod that butter has the greatest fuel value, int pork coming second. fut the talabec of the foods formbobed being valued as foel is the following order: Checse, oasmeal, sugar, rice, beans,
eornmeal, wbeat four, wheat lirkul, leg of mution and beel sirlois, round of tuel, maukerel, silmon. Codiles, oyeters, Cow's milk, and potatoos stanil very low as fuel foede
Prom the swond talike ure burn that the greated sutritive value in any kind of food of n kpecifled value (Dr, Atwater
takes 25 cent. worth of erery kin! of fool consilerat) foubl is cornmeal. In te ponmit of corameal there area ritle more than 8 pounds of actual autriment. In $81 /$ poonde of Wheat thour there ate over 61, pounds of nutriment; in
poubds of white sugar there are if pousds of tutrimist: is 5 pounds of beaus there are 4 pounds of nutriment; is 20 prousds of potatoes there are 3 , pounds of antriment; in 25 conts' Forth of fist alt pork there are 31 , poonsty of nutriwient is the same value of wheat beead there are 2^{2}, pounds, in the neck of beof, 1H, poubis, in skim milk cbeese, 1 ,
 slout the saine is milk \& tribe over 1 ponand in mackerel atoont 1 poundt: in round of teef,, of m poundt in kalt col-
 dozn, about 7 ounces; in fresh coultish, about
in oysters at 85 cents a quart, aboat 3 conices.

PEDICULOSAS

Every chilid who atteads a problet erhool, or is throws into Smilarly miecellaneous compasy, is linble to the dietricaing atfection known as hice, or it medical jarlance a
sid," which is porlaja a more enpbonious terim.
Clasoliness is the greetest snfergerd agnifst eoutagion of wery kind, abd lice will not beoed generally exoege in cos-
itabon of more of less negiet. Irs the familiarity with which chidrea meet in the schooltroom and on the pilaytround is suflicient exsuse for the transinission of pediculioPeticatosis is usuatly kow of reogagition during its carlier sazes, but it Es nu sulooked for and insodious in its totabeisafor the argiestel semptoma surber that trmient tiergub. Tbese latef slizas are log ao means an unimportant

The insect whieh ctistiograshes this disense from all otherof joiounous in its bature, and it is possible by the simple act of scratching to bring on a general irritation of the skin is any part of the loaly. This irritation many apgear to the th-
expericices peraon to hon an entimly distinct and unexplatied tention.
The treatment of pedbeulosis is simple twough at any insert- and the spores, of nits. To do this about four ounces of crube petrolenm are required. This can be parchased of awy draggis. Pour one-quartur of the liquid earefolly futo
the hair for four ancowion davk, allowiog it to remain for the hair for four showaine dags, silowigg it to reowain for
four of thy hones. The hair

be the fourth dry. It noy nits showht remain entanpled is the hair, they may lan washed out with a little viecgur. oer gradplomots, silice there is no danger nt irritation of malp In mineramatnd atages of pedionksis the sume trast ment is ume the skin mill diasppear at soon as the soaree of contapioe is removnd. A litele situple ointment, way what is known as
'borncle,
rabbed on the skin over the swellings and raw surfaces, will hasten recovery.

GOKTSHEHTEDXFSS

Myopba or shortsightelocse being ensentisliy a condition
 put these peohibitory rales in aptioristic form ;
a Dos' neal lying dou or in or colticles in medion
3. Dou't reut by lirelight, moonlight, of twlight.
4. Doa't reat by a tickering gnalight or canatlelight.
5. Doa't rent books printed on thin gayer.
6. Don't feal books which have no space between the

7 . Don't read foe more than arty minutes without stopping.世herther the eyes are tired of not.
8, Dow't holit the readivg close

Dow' I hold the reading close to the eges.
10. Don't select your owu giveses at the outses.

It would almost semin as though some of these rales were poo obvious to require meation, but practical experience
 Itabing by ilredight of ly moonlight are favorite sius. Neadtios, asd while traveling tirm the cllisry mumerle teraubeof the too froquent adjustmet of foous In short, anything which tewde to incroses the quastity of blood in the orgng Ihvors the inrouse of the defest. leating in extreme chase to

ACTHON OF THE RAIN.

The rain falling on the rocks sinks into every crack abil which has teed degrabled thy the wenther and thus materin a matrix sumpecat to start the isrouth of vegetation, abd afterward to maintain the plants The thers and roots of
 the and exphailigg, hot ns Wodges to split up the surflace of From this quality of destruction in large class of plant dorim penesratiog invifrages, or rork breskers, from their root so assistitig is the minute Ilsesures in seareb of Witer, abs water collected is the bollows and ereviees becomes frozel biutiug material in bresking up the rorks. The fideces thus arturchet become forther diaint-griated by iroet and wraibe
 are ground kradually towaller abd smailer, till from fras-
 I-bhies mid coanse ranil contibue to lo rolled along the bot

Minive machixe:
No $547,-96, ~ H g x a r ~ H . ~ B a s e, ~ W s m m x u m o x, ~ D, ~ C, ~ P a l ~$ osted act. 1beth, 1595 . Fie. 1 is a side view jartly in betiong
Fig. 2 is a top, view with the motor romoved; and Fig. 3 is an end ziew. This machine is to be driven ly an electrie motor mate the feed, so that the strain opon the motor mill be collstant. In using electrin motors it is meotssary to ran the srmature at a constant speod. It the speot falis lelow the normal, the emeiescy of the machine fallt of greatly and there is also great clauger of burning out sowe part of the machine Is andereatting eoal, the eutters are very liable to encouster band stresks, soiptur balis, etc., which impoos
heasy work on the motor asd reduce its speed. In this maschine the jreseare upone the cutters is varied to suit the handnesa of the material whirh the cutters are working in. The culter lar D is rotated by means of a clatin 2, and a sprocke Wheel on the rear shaff K, Fhich is consected by nuitablit gears to the armature shaft H. The working parts are all mounted on a frame of which slides withia the stationary
frame A. Tbe alding frame is fed formard by mess of a
piston, that is to the pressure existing at that moment in the eagive cylinder. The wheed will partily slide snd partly roll, os the *urface of the drum no it revolves back and forth, the
 provided to register the rerolutious of the wheol D. When it dram is tirns laski and forth, st each stroke. During the forWhard stroke, the wheed measures the pourer exerted bF then steam presespre, and during the return stroke tt rums towkinari and deducta the revistabice dae to the bank preseure It that the togesther, showilg at all times the set sum of the power exerted, during tbe time it was is operation.

PUMP FOR GRITTY WATEE

 throngh one haif of the pump, and Fig 3 is as sestion sciong the lise Xof Fig. 1, ant on a smallee sinle. Two pumps am smployed, one on cach sblde of the centre line X, and the piston rodas are coupled to a heam Z, which is supported pistons, not to drive the The beam The gervestona move locotidy in it benss cyllinder or liner E, which cau be oxally remored. The pistoess are artren douncura by meenus of ctenu watef, which

The dirty, sandy water is ex pelied through tbe pipe $L_{\text {, }}$ into the air ohamber 3 , aod out throukt the dievtharge pipe M),
The clavk valve N, are hung loosely of theor centena, so that ther cas vain N, are huse looenly oes lolor on their seats, ind they are huEg upos eranik arms N, by which they may e slid acreas their sents at any time, to free theos from ottructions, as showe at 3 .

COMPENGATING PEMPING ENGINE

 cylinder and pamps; Fig. 2 is a dingram showing the modbBcation of the power of the stesm plstow, by the compensating mecthanisto. The object of the itoprovemeet is to permit fo an apply the power that the sir mas be properly compres sed in the pumpe, without depesding upop th, fly wheel, The aly wheel servea ouly to suable the crank to jiwes the ovatre properly. The steam-piston is operatively connected dhe air-pistons by the coap peuating lover n and D. The and 26 .s maperada no tuy poists 28 nand $2 r$ ny the liaks 25 and $2 t i$ Lisk 25 is attactard to the frame by pin 27 , about
which it is free to remolve. Link 26 is atto bed to the frame hy the pin 22, strout whinh $3 i$ ia free to rewolve The upper what of lever p \& counected to the crove-bend pini A by the odanecting-rod 28 and pin 29. It is connected to the air-piston 13 by the connectige-rod il and por 31. Lever C it conbend pin s to the piston of air-pamp E. In operation the

 A ba attacbed to tbe rear end of tbe mashine, hy a bal joint
it a, One of the intermediate grar vhaft. W,. Fig. 3 carriee is eccontrte P, which operates a small gunuin pump Q. The ytibler L, by means of the foar-way-ock R. Whea directed to the frout ebd, the machise is fed forwart slowly, but when triven finto the back end, the machlne is drawn back rapidly, becabse a large part of the eyliniter is occupies by the giston rod, and the aren of the potod is therefore moch stalier
 spring. If the euttens strike hard stuff, so that th prosaure in the feed cylinder fises above the peoper aftrount, the water ifts the valve and escapes into the suction ptpe. Thas the pressare apon the cutters is never allowed to beromeso geeat is to reduce their speed and ebeek tor motor. If they enfouster, so that the lowf ure the forward correspondingly fater, so that the lowi upos the motor is made practically
wifform.

POWER METER

No. 546,80t. Wrasan G, and Ceaness W. Little, Heck-
 meter is dealgatit to recond the power whitch is excerted in the cylinober of a steam engine, atal to reciater the amoent continsonsly. It resembies a comtron "inilicutor" in many particulars. The drum A is fotater by a cord wlich is at ached to some reciprocating part of the engine, and the rylinder A is provided with a steam pistoo and spring.

similar to thoe commonaly uad in inilicators Thee neoorling is stoomplithed by wenas of tho whee D, which is held lork Q which sapports the wheel \bar{D}, is attached to the shaft C, which has a crank arm C^{2} at the opposite end. The pin C, engages a slot in the arm a^{2} which is sttacbed to the paston rod a; thas whes the piston rises the wheel D will be owiveled to a groater or less angle with the axis of the drum

In one cylisder, tho otber ploton rites, nad expels the clean Water back through the lower fipe W, into the sapply tank
Thus, the driving pump handles nuly clean water: and it masy be of say convepient sise, sut may ber konted is ans to the main liasm. The valve 8^{\prime}, ba operated by connection egliniters alternately. Whes the piston riess it suoks the dirty Finter, sand abi stoaes through the fipe \boldsymbol{M}, isto the

chamber 2, nad up into the cylinder. But it Sits Joceely in the cylinder, so that some of the cleas water above it Jeaks mote upon. Wheas thit cleas pressare water drlves the giatod downwari, the kame leakage is maintained : consequently the platoe moves over a 0 mm of clean water at all the piston rod, that 01 m of cleas waver con power applied to Thes, ali abrivion of the cylinder and piston is prevested.
reciprocating metion of the steam-piston 5 produces a correspouding motioe in the pistons of the aifopampe A asd $\mathrm{B}_{\text {; }}$
but, by rewoe of the compensatiog levers, the motions of the ajr-ptitoba vary is itheir ~pensatiog revers, the motions of the This may te sees more reatily by reference to Fig, 2, which is a doseram illustratiug the Notion of coe air-piston in relivof the air mevemest of the steasm-jidion, The total stroke fever is combinos wich the as the stemm-piston, but the form horizoutal motion of the opyer end of the lever to right sill give a constantly-decreasing motion to tbe lower end of the taver to the bly, In the brginoing of the stroke the as a guide. In the latter portios of then atroke the fin 24 . is
 tiober the virtusl fulerum is in point somersbere tetweve the pins 23 sod 2t. The paths deseribed by the two cada of the Cuer are isclichtid on the drawings: also, the position of the centers for eweh itsh of the stroke of the stan-ptistoe. The
 ewept ly the stenmepiston duriar ench oev-fifi of it - plame If stram were admitted to tbe stenmecylinder full stroke, the frevelare jer equare inch wouh te eniform, and the pressure Fer equare iech of the atr-pdoton would toe foressely as This would give a presmure of sir, mulh higher thas that of the steam which mas used to itrive the machine.

sCREGEN SEGMINT.

No, 547,140, Geobine W, Csces, Fitteros, Penva Pulenfed end. 1e, 1 ens. Fig, 1 shows the top nurlace of this im-
proved serese plate, and Fig. thow- a <rodtenction of the same. The plate is corrugated between the toles, is two or

more directions. The ediger of the holes are thus made wavy, or alternately high and low. It is claimed that the mod phena tirourgh a mole of and AUTOBATIC DUME CAR.
No, 547.900. Joscre P. Wemper, Hoal 8raiscs,Flonids. Pairated Oct, 1es, $1=05$, ing, its a sectional side ejevation; of the atop vinu of the track; and Fie. 5 is a eroes section ghown in Fig. 5, asd when it is clownt, at held is place by a sprigg catch x, whisth is attuched to the ade of the car. The eatch is ogened, to dump, by meuns of a rock shaft O, hasing

it upward, and thas releases the bottom door. The door then bapgs douncrand as shown by dutted lines in Fig. S. When the car starts back, the door encounters the diagonal bar $F_{\text {, }}$,
letwnen the rails, and a* it moves along the doog is partially closed. As the car procyeds, the foor glides off the bar E

onto the eccentric roller 21 , shown io Fig. 1. The roller tarns over by friction with the door, and the purt baxiug the greatnost radius crowds the door upward whtil the lntch mecured it.
As toon as the car passes, the heavy sijle of the roller drops down ugain, so that it is out of the way of the bext alvancing car. Thas the car door is automatically closed and intched.

MINING DRLLL.

No. S46,0ks, Josepu E. Hast, Rascevilus, Tkrx, Pat-
 ia praition for work. The otyject of this device is to change thespewd of the drill rewdily, Without extra gears. Ewh arm hox D. Euch gear 10 and 11 is peovided with a fenther, and has a central bole which exantly flis the drill - apindle E . The crank sbaft B ftts in either gear equally π ell. Whee it is de-

ared to chasae thespend of the drill, the erank" shaft in pulled out of it gosr, the set acrow as is slacked oe wait the atire beacket with the penas, is slipped aff otve the end of The spisile. The spisdle is thee ewterel into the bole in the box D and male tat. The proprortious of the gearing are tbus revereel. The crank is then inserted and the machine ar ready to go ahend. The fees net it mave in halves in the wanal mannef, abd is coupled to the bax i by a set-screw 27. The lower halt of the nut has two ntms 21 provided with support the mashise in working position, ns shown in Fig. 5 ,

STEAM HOLLERT.

No. 546.7ick Jsura J, Bowan, Br. Lucis, Mo, Patented No., 2th, line x of Fig. 1 . The body of the boiler consists mainly of tho eglintrical shells 6 and 7 , Thich compirios a little more thas halt a circle. The foner stell 7 ba coceet by end plates The water qumore that nucloneal hetwern the then heads on are connactod, Bot only by the rpanes 5, trat by the contral drum 15. Water tuber 16 eonnoct thits itram with the iman
 the pipes 27. A series of Water tubes 23 . counect the drums 2^{5} and $15 . \operatorname{sod}$ conetitute a "Water grate. The fire which E tnsiotaibed ob thi- grate burzer anoward, hor bot gases Thasige throught the grate in the direction of the arrous
which rest on the last row of tubes 16. The whole surface of Che inser sheil, and the end bewds 10 , are good beatiog sur-
faces, and the water tubee are very effective, becanow they

extend at right angles with the current of hot gases. The smoke and speat ghe excaye through short fire tubes 37 into on the mud drum 19, is provided, when it is deeired to flre in the ordinary manner.

FEED FOR MINING MACGINES,

No. 567,987. Hevey B. Dezss, Wasurwaros, D. C. Pate isted 0.4 1sith, 1855 . Fis, 1 to a side elevation; and Fig. 3 adapted to say variety of mackine which earriee in motating entter bar at the front end of the sliding frame. The motor and all of the morking parts are sttnched to the slidisg frame which is moved forward upos the stationary frame, by means

of racks V^{\prime}, pinions r, and ebaft U. The forward movement is obtaines by mienas of the ehaft if (ublich is geared to the backuand the voran and whends i, m, and A, x. The the worm and ubeel x^{\prime}, y^{\prime}, Soth whivele f^{\prime} rus los and the shaft C, nod edtber mny be coupled to the shaft by mensa of the cluteh?:

$\cos \mathrm{L} .316$,

No, 54t,127. Daym E. Pumbar, Manssor City, Peysa. onlenfed for, 1st, 1835. Fig. 1 ba a vertical rection on the $\boldsymbol{F}=1$ Then onal which isto be chanm is fol trom the $₹$ of C, obto the perlorited phate Al The mater is pampeal in le Jeris by the pamp P, and pasoes epward through the plate Find the mass of coal sud slate at ench stroke. The eonf with the ris to the top and joumes of throush the aotch of Futer drnins lind into thery chate at, is perforated and the slste and rullifh acrumaletes is the luattom of the cine Then pocket A^{2}, and is removed therefrom liy thementuger Ior This Coavegor is driven infermitteatly by mesns of a fluger nt-
 the ed witb a fuise bothom or, of toronze, which is hisged at at π^{\prime}. So long shate there late net, and is supported by sperings x_{1},
on the plate a^{6}, to deptess the gprimes, the upper rua of the it is out of rench of the wheel p, and remains stationary. As

So00 ns α^{6} sinks downwned, the upfer run straightead out and engnges the driving wheel, and the coaveyor is than driveb uptal the slate is removed from the poskets. The coll-
reyor is thus made a veyor is thus made antomatio is operation.

CONCENTRATOR.

 rided $A M g .2001,160 s$ Fig. 2 is a vertions scestion taken tongthway of the machime, and Fig. 3 is acrose metion on the Line y y of Fig. 2. The crusbed ore is fed into the bopper 35 . and and fails out the coarso screen 22 . The coursuat lismpWhich fail to pest through, work off the ead of the horever beolseo up and divitited twe meaters of a seriea of apright pils 21, whioh project from the bottom of the itg box 5 . An adju-table gate in estende scroes the lox, and to rassed

slightiy to permit the flee stuff to pass uniler, onto the sevonit screed 40 The stuff which pusest through this screen, falla incotre bupper 31 , anslis fed slowly onto the floe sireen is This

 pitmen which conneat to crnoks on the shaft 14. The Ineal separation fa forlormat by an atr blast, whech is pobernest by the fan whesl 67. The fine conceatrates pass dowa the livelibe for into the pan fs.

The Colliery Engineer

 AND
IMETAI IVIINFR.

PROSPECTING FOR PLACER GOLD.
A NOVEL AND GIGANTIC SCHEME IN CLEAR CREEK CANYON, COLORADO.
Showing how Gold is Obtained on a Large Scale from Gold Bearing Gravels under Favorable Conditions.
(By Prot Artaur Lakes. Golden, Colo.)
[CoNeluned ymor Norgyner, 1895.]
In the Nowember isaue we gave a full deacription of the plant of the Roscoe placer up to date. Fig. 1, which geat undercurrent whjeh was onitted from that arttcle
forming a riflle. In mashing with a rocker, the ma dipper beld in one hopper, water poured on with cradta ts kept rocklug. The witer washes the sand and dirt through the bottom of the bopper, and gold or amslgam is elther caught in as apron of picked up in the bottom of the rocker, while the anad and lighter material are dischanged at the end, and the coarso mnterial to the hopper is thrown aside. In California, rockers were used before ditches came into une; now bey sre used in cleaslog up placer clatms and quartz milis, for collecting fisely-sabdivided particles of amalgam and quicksilver
tom," was imported from fergi. It was firat used in Neviuls County io 1849. twenty toches wide at top, thirty lichea at the lowes

Abstract

80 as to have the piate on a level. Materisl, when fed In from sluloes, on striking the riddle or perforated plate, La st once sorted, fine dirt, with water, Pasglng prough it, while coarser stuff is showeled off. Uoder कhich tleated plate is a tlat box, set on so inciine, into water through the plate, and ocoscional ald the of abovel, the sand is kept loose, sllowlog gold to settle. The "tom" disappeared with the arrival of sluices. The "puddling box" is a box six feet equare, elghteen inches deep, arrauged with plogs for discharglog conteats. The box is fllled with water and clayey dirt containing gold. By stirring with a rake the clay in dig. solved in wnter and run off. Concentrated materlal collected in the bottom is washed later in a psa or rocker. In Australia it was much used and worked by hovse power is 186.

for want of space. Oa a recent vlalt we flisd yet some more improvementa. A derrick planted on the bank worked as small steam engioe to boist the enormous boulders out of the pit by placting them on a truck, on an ioclibed plape, which is also holated up to a level by a whe rope from the engine passing over a wheel at the bed rock and tmbedded in it the box to catch the debrig blown down by the great nozzea (See Flg. 2.) Thls box is guak lato bed rock forming a recotving trough, as bown in the sketch. There the water is forced up through the Ladlum water elevator; and the sand, rockand gold are driven up through the Lodlum gravel elevator with its funnel like plpe by a small glant imbedded in bed rock a few feet below the end of the elevator. The elevators as seen in the sketeh are supplied with water power force by pipes let down at a steep angle from the masn pipe on the bank
The Roseoe placer and other placess is Colorado will soon have to go lato winter quarters and cense work for the winter till next spring, owing to tee formiog on the streams.
Fassing up the stream from the Roacoe placer we see numerous amall parties engaged in placer minting of a swail scale, some with the rocker or cradle and logtom and swall slutces as showe in Figs, 8 and 4
The "rocker" is a box forty thehes long, sixteen noches on the bottom, ove toot high, with asdes sloped The a cradle, and rookers st muldde and bock end The upper eoil is a bopper tweaty inches square with balf. lich diameter boks. The top hoppes is remavable Under tho perforated plato is a Higa apron is para on
end, and elght laches deep. It is supported on timbers or stones and set on an Ibrilion of twelve inches, or obe
trich per foot. A sbeet-Iron plate, perforated with holes

Fio. 3.-Rociess Gold
, mox hinzd with penfolated coppen onekt 2, box

halt an inch in dismeter, forms the bottom of the lower

The "pan" is pressed from a slagle plece of Rusela abeet iron twelve isches diameter st bottom, bitteen Incbes at top, with sides toclining outward at an angle of 30°, turned over a wire around the edge to strengthen and oolletused in prosposting, cleantog gold-bearings practiced skill. The pan fo filled with dilist and sulb merged in a tob or poot of wator. Gravel is worked with the hands till all cement is disfntegrated. Coarse stones ase elesued and thrown out. In washtog the residue, the pan is beld to a tilted position. By a clrcular motion and careful ube of water, lato which the pan is continually dipped, all lighter dirt is worked to the top and over the edge. Pebbles are pleked oat by band till only fine gold and black Iron sand reman. The "batea" is a shallow wooden bowl, commonly used in Brazil and Spanish Amertcan Stateo for sepas rat ing, on a limited scale, grains of gold from sabd, P5r itea and magnetic jron or black sand. A disc of seventeen toches dismeter being turned oxnical 12° will have a depth of one and seven-elethth loches from center to sufface; thicknesa fire-elgbth incth. Oater edze, perpendicular to nxis, requires wood two and a haif Lnches tbick for construetion; mahognoy is used.
Derrichs with a mast 100 feet high and boom nintytwo feet, set in cast-iron box placed on sills are used to reanove large boulders. The mast is held in position by olx gays of one inch galvanized fron wire rope; it has a \#hip block with three.guarter inch steel rope for bolstIng tackle. A twelve-foot diarater hurdy-gurdy wheel is attached, using thiry inches of water under 2.50 foat bead. This derrick will lift stopes eleven tons weight.
The guys are beld by double capatans. Instead of the
hurdy-gurdy, at the Alma plecer, South Park, a Pelton wheel te
derrick.
derrick:
Juat abione Roecoe we foubd a party of four pros. Just abore koecoe we fousd a party of four pras. bearing guartz vels they lasid discovered about 100 feed

 by small veins of quarty and feldspur. (See Flg. S.)

Fig. 4,-Sufici wa a Syall Scale, Neak Roscok.

F, veis

about 30 feet long and a foot wide llsed at the bottom for the lisst 10 feet with little wooden rimfins of etrips of mood an inch apart. The rest of the bottom a mas full of holes like s cotwas lined with earpet or woollen stuff. They had found a spring about a quarter of a mile up ito the mountaio and has procured an old used up firemanly hose which tbey haud patched up with faga and convas to bring the water down to their excaration thanozle about I IDCh diameter. Tbrough this the water was spuirted onto the rotten cein and the tanterial washed down into the sluce, the gold ver thebluice dropering inte the rifles. The greatest umount of gold mas usually caught in the flrst few rimes, what escaped them was cnught to the perforated tio bottou and what ascaped that it the burlap of carpec io thie way they from 10 to 15 dollars per man. In their clean up they would come across black sand, garuets, and flakes of galena together with the gold. The goll was usually in little that, somexhat oral flakes. This small scale of mining louked llke a diminutive caricature of the huge oudertakiog going on at Roscoe in the atream below Doubtlesa it was from sucb veing as this that the IRoscoe placer derived some of its gold.

Electrieity in Powder Mills

The appetite comes mblle eating" say the French. and that the same priselple may but truly applied to the use of the electric montor Is emphasized by certain esperieoce which the General Elewtrice Cocopany bas recently had aith the Artos Powiler Compasy, of Aetna, Ind.
In November, 1801 , this powder compsang deblded to
tnatall two semall slow apeed geperntors for apenatieg Install two semall slow apeed generntors for operatieg Incsidescent lampo on the Edison three wire nystem. As these coald not be dellivered lemmediately, two secood havd machives mere lustalled temporanly, abd before
the tital two perm onea ondered conlt the dellivered, the the tirst two perm ober ordered could be deltivered, the order whs changeir to two langer moderate speed cenerators, with the privilege of changlog there for two still
larger oocs. In June, 1895, the lant two were ordered larger obes. In June, 1885, the last two were ordered tosether with two motors, one of one horse powee, the
other of five boree power. On August 2ed, the Aetma
 Company ordeted another motor of $5 \mathrm{H} . \mathrm{P}$. abd on
August 14th, still another of the same cagacity. The August 1 th, still another of the same cajacily, The
compacy baving enlarged its plant daring the summert fruad its electrical iustallation fasoffelent and oe October 12th, ondered two 45 Kilowatt moderate speed
 tricity had given the powder company such sathaffuction that it now has 65 H . P. To motoro asd 93 iscandescent lsmps taling earrent from the tro 45 Kllomate g-nerators. The oue H. P. aod the flve II. P. motots ate used to drives small mixisg machloes tu the manufacture of dyed for pulverizug sitrate of soda nod the 20 II . \mathbf{P}. rune a oumber of machines such as the dry pan abil rels. tog macthbes. The Fowder Company found that the firg ma 5 H. P. motor, which they subpettited for a stenam frat 5 I. P, motor, which they substitated for a steam
engine, readily performed a duty wilt mblch the eugiue fooud dim ulty to doing.
The reont grsidusl increase in the use of electric power in poocder mills is seppecinlly botewortby. Daring the past year tho Geumal Electio Company has equpped several with electric motors and persent fodt stesm engine from the operation of machinery to abd about ponder masutacturing eatabilshmente.

THE LOOP CREEK, WEST VIRGINIA, COAL FIELD.
Its History, Nature of the Coal, How Mined, Its Analyses, Physical Features.

In 1871, irumediately folloming the inbor troubles in
Peonbyleaula, abd upon the coupletion of the Cbesapeake a Ohio Raironal to the Ohto Itiver, miger, opeodit the Ofimimont Mlibe oe Xem fiver. With the com mernoement of this operation was marked a new era in steam making. and while these conls sre now well. known throughont this oonstry and eveo in Earoge, there may be sotbe fst to the reviected detais of ioter Exauserer asd MEtal. Misers.
The coal thus tirst opened, was in gebeval physical appearabce the Creek or Cumburlabd Coal aod uot unilike it in ehemical composition. It is soft, much broken in mining 2o that 80% will pase throush a if bat screen and f00 , through a i" tar screen. This physical charaw. ter has given rise to moch peejulice mhetever the coal has been tak ω D toto new marketo and frequently causes its rejection.
at present this conl is mined is only three districts, two of which, the Pocatootas tapped by the NorSew River tributary to the Chesapeske $\begin{gathered}\text { O Ohio Rail road }\end{gathered}$ are already well known, while the Loop Creek, an toitnedate district. is of such recent developerent that DpperLoup Creek, Is an atlivent of New River into which it debouchers oppesite Thurmond Station some sixteen wiles from its sources, having Eowed approximately along the strike of the rocke of $N A E$. The diratuage Is in Fayeste abd Raleigb Coustles, West Virginia. Early to 1893 , the Chesspake o Ohio Railway began the construction of a barauch tine to devetup this reghon. and in February the followivg yeat completed the roudWay to Macdonald, the preeent termious, tea miles from Thurmond
The Loop Creek moloes aro all located in the uppergost or Sewell seam of I. C. White's Qutubinout series,

 though in thls more northera reglon the big Pocaboetas vail has thinned down below workable sloe
A detalled bectiou of the seama ebows
Sketox of Skwell Skay, Lout Curge Disvewt

Wherever the slate (1) becomes less thse $12^{\prime \prime}$ thick and the roof ia of gandstone, a la very pyritous abd unmarketable the vitiatieg mibersal occorriog in thin hamisae parellel with the plane of stratification. At
all times this dirisiun of the scam is the most fupure all times this dirisiun of the seam is the most impure of too hikh to sulphor content, It ls marketable.
The coal ts remarkably pare as the analysis made by Dr. Frabling of Rechmond, Virginia shows

Coke made from tbis coal is as yet ber to the market and may be said to be in the experimental stage. An verage sample of 48 bour coke shows:

This coke whe made from 1,000 tons of sercentngs through a $1 \frac{1}{}$ " "straight away" gereeo by a proepective contractor abd la a reliable sample, not selected, sod her-fore misleading, as is too frequently the chase with The condillons
The conditions for minting are almost ideal. The average dip of the seam is 4%, the the direction of the
milway, by gravily, that looded cars come ont of the beadings by gravily, nud the pmplies ate bauled back and dis. than fice foet sud msunlt six foet tives poind geem lese workhig, permittling the use of good heavy mules. The piliar and stall spatem of mifolog is nesed in coninection with a modilication of double eatry development. The asale ewtries are sixtern feet wide, to permit doable meking, and cro-s entries ou alternate 300 feet crnters, practioe. The ruoma are 21 fom wide and pillan ase 29 feet through except pet io the wet and pilans arn 29 are 50 feet. The conl is all ubdercut, there belog a soft streak about fifteen luches thick at the bottom whitle a
stmilar streak bear the top permits the use of an ordinary brenst auger it preparing for the shots. FFF black powder is used, a ktg, lastios a careful malser a baooth As the mines, are all above water hevel there are mo practice an occasional cross heading is rue throogh the outerop to the surface and currents resultiog from natural draught farnish sumicient alr for the mes. In

 damp eoough to obviate any danger of explutions from accumulations of coal dust.
The miners are paid for a standard car of 72 cuble feet 05 cents in roons abd 20 cents in entries mith no allowance for yardage, belag sequired to cleas up all slate withis fiftees ysicls of the face and to set nil props, the compankes lay ivg und maistaining track and hauling props into the rooms on requerst of the mivera
The track has a gouge of $44^{\prime \prime}$, custom differing cobsilderably as to the weight of the rail, though experience seems to show that 40 ib steel rall in the malo cutry and 20 lt . rall in the cross headings are necessary to carry the louded tank ears haviog a dead weight of bearly, 4 tons in the rooms the track is usualy of
$3^{\prime \prime} x t^{\prime \prime}$ oak rail in 14-feet leostho, laid flat oo the hard slate floore, the floor belng notched to recelve the crosethes spaced about slx feet apart.
Each of the six compmiles maintains a store for the ssle of genernl merchaudise in mbich the prices are somewhat lets than those charged by beighboritg coantry merchants. The men ate gald off obce s month
The mivileg population of the district is about 55° y whites and $25 / 5$ negroes the latter being emploged mainly as drivers and outside labosers. Ot the whites folly 80% ste native Americaus the remainder beiog Eagtishimen with a semall sdmisture of Huogariane.
Men of falr stitl suif average expertence can load str cars a day to rooms and five cars in entries, though Instances of seves cars a day per man is entries are not unasush, twenty days belog coanted a moothe rus because of "car tumitens" abd u
The conl finds its market in Nex Eugland and in the West, taking the place formerly held by antbracte and conaleg within the "smokelees" provisions of municipal
ordinames. It is valued tor steam making where coas. ordinance. It is valued for steam making where continued bigh peessate is demanded as in eleetric railways, large mauntactaring plants and steam henting. From this dibtrict it 18 sbigped almost exclusirely mithout betug sevened though, through mistakeu prejulice,
temands are beiog tande for Jump while the so-called demands are beiog made for lump wblle the so-called "slack" is the purest, i. C.. freest from ash and sulphur,
part of the sam. The follosing table sbows the value
. part of the ream. The follosiog table sbows the value
compared with nathraciter as determibed by the Bureau cotopared with asthracite as determ:
of Sceam Engtneering, V. S. Navy:

At the present time there are slx companies in actine operation and several developivg lases. Noue of the coenpanies owns its own property, all operating under lesses at a uniform royalty of ten ceots a toe. The fol-
lowigg is a list of the companies operatiog, with their lowiog is
capacties:

	$\underset{\text { Capactity }}{\text { Cat }}$	Coke	P. 0 Sdreso
Harrey Ceal a Coise Cu	760 nos	100	Bhsel. W. Ts
Collian Coullury Ca	t00 tobs	125	Dlesacan, W. Vs.
Star Cont \& Coke Co.	150 tout		Gitsseau, W. Ya,
Turkey Koub Coal Co...)	(enturs		Vaub Loap W Vs
Mactouaid Lutilery to.	own tosa		Vacdousld, w ve

Worth Having.

Messers. Praser A Chalmers of Chicago and London. have recently tssued a new catalogue entitled ' Gold and 180 pagva deacriptime of cold and silver chlnety balle in therie of gold and silver milling mas chinety bullt in their bloops, (they rank as the leatiog
 will be raved for futumencferenice by every practiosl pold of silseer minling tasa menelving one. It is piat fore gold spplleation, to suy owaer or efladal of a gold of sily mine or to any jursoll eotemalatiog engaglug bive log and treating mold or sllest orear argageg in tuil postst card diceoted to Messrs. Frazser \& Chalwers Chicugo, III., will recure a copr.

Fatal Aceident to a Fire-boss.

Mr. Ales. Ilowieson, of Delancoy, Pa., was Instantly killed ou the morming of the 10th uft., Whtlst in diacharge Or. Howlesson bas-boss, by a fall of rock in the snives. the ealimation was an exemplary mou and stood high in the estimathon of ht a-sochles and belghbors. Ho wa Goember of tbe kalghtu of Pythins, sud koights of the Golders Eagle, both of which socleties adopted appropri-

GOLD AND SILVER MINING.

TIMBERING FOR PRECIOUS METAL MINES IN COLORADO.

The Methods of Working and Conditions Which Influence the Methods of Timbering.

(cosclvers.)

Piste IV, Fig. 8 shoms a simple set designed by the writer for the Stevens shaft, Lesalville, Whthout slde posta. Mistu V. Fig. 11 shows the framing of the Pearose shaft, Lendellen, through mhtets some 1,800 gatlons were pamped a minute, There is a full sectof slde pasts, the dividers are not keged, but can readily bo so
deengred. The lagging is placed Iluwh by means of 2 by deelgned. The lagging is placed ilu-h by means of 2 by 4 boch stripa spdked to the set. In sinking, the new sm Is swung from the last one liy the hangers shown, the
posts set up, all drawn saug by the nuts, nod then
spresdling by in chain, or botter by having long guide shoes on the caige.
A coovenlent way of openiog a station was nod liy the writer in the 16th atation of the three compartment New Figs. 17, 18. The shatt is 5 by 16 feet and this station was not istended for pumpiog. Oa arrivisg at the door of a new station, four bitch timbers are wedgei under portments. crosswlae of the shute and chear of the com for a sump sat befora. The width of the station is such as to cover tuo holating eomprertmegts with the jamb chamafered off to afford scopsat to the pampway.
A tbree post cap and sill set is placed agatnst the sbaft timbers and secared by loog boits and treenalle into the dhe shaft and portions of the wall platerlyigg between ments and This methat of etarting the atatloul is better than having ppeclatatart thmbera oppoitle the statioe ag they delay the slaking and open tooste the stanot. They station miny be continued ns far as mequitred and then tapered down to a drift of the usana slze.
The station may be covered "with \& Inch steel',plates

In reacbing the rock. However the rpen caisson, or the preamatie methol to 80 or 100 feet may be used in The Pontsch froczing oystom for several humdred foet max he used to quiclesait or quielsand nilh boulders. The Elmi-Chandron methol of drilling the full slzo of the shaft in pock leasing the cutor in the shaft and following with a metal tubhing ts applleable to roek giving a lange flow of water. Thesemethods are usually probibited by their eost and have pot been used in Colorsido.

The open calason method of alnking has been uged fo Callforuls drife minlog, see Milis; and the shleld method in Illiools coal mitulog, see IRice, with a modernte cost. I bediene it poasibse to use the sbield metbod or perhaps the opea calsoon method of sinkligg froes a phaft started in the ordinary way in depth on going from hard ground into a quicksasd. For lnstance in sach ground as the dolomite sand or contact matier of Leadville where there Is a heavy flow of water. But the pround toust be drained sooner or later had then the dimeulty vaniehes. The great dangor consista in removing the matertal mubolag from behind the timbers, when rashes oocur
deatroying the aligament of the ehaft timbers sod crash destroyling the allgament of the shaft timbers sod crash-
Ing them.

Ef $\times 12^{\circ} \times 64^{\circ}$

24 Nut-8 urat
10 st Fig. 9, PENROSE
STEVENS HANGER, LAGGING.

MINNIE SQUARE-SET.

$$
\begin{aligned}
& \text { Plate IV } \\
& \text { scale a }
\end{aligned}
$$

plimmbed, blocked and wedged. With this deaign the diriders can be temporarily left out of the bottom set for coevenience is hanilling the long slder plecea and inare beeded on the end pleces. The laggtag is set close The shatt is plumbed by three or four lines hung in the corners a few toches from the timbers and covering several eet9. It is checked from time to time by lines or annealed brasa wires whih hoavy weights steadied to Water or od, extebding from the surface or for several
levela. The wire may be kept on reels with cranks for winding up. The guldes must be socurately set or reant by a template in case the timbera vary much or are crushlog.
The smuggler mine, Aspen, uses tor a reserve saterbox ronaligg in the galdea holdiog 1,000 gallons, sa a re. ilet to the pamps. Four disk valvet in the bottom afford logress to the water. Two of them are covered by a spout and theee two sre opened wide at the top by a bellcrank lever and rods rabbleg on a ellde. Tha spout directs the water clenr of the sbaft. With such an arrangeasent water may be holsted very raptaly and economically.
The shaft may be sunk with a bucket or a backet bsogtig under the cage, or with a car on the cage, the eage beleg run to the bottom on short guldes held from

Fig. 8 STEVENS SHAFT-SET

Fig. 7

Fig. 11 PENROSE SHAFT-SET

Iron Stiver mise, Leadville, 1,100 feet long at 14 degrees bolated 4 mine cars on 2 gigs rumning on a is foet gange. These inclines had no separate manway on account of their flstupes avd were about 6 by 7 feet to the cless,
The MeKeon Incllne. Iron Silver mine, T.eadvil, The stkeon trellne, fron silver mibe, Lesidville, sunk by the writer is 750 feet deep at 50 degrees pitelh. It was worked with an nutomatic skip bolding about 2 toos of rock rumitgg on a 3 feet gauge. The crosseuts
and atationa came away over the incline and each conand atations came away over tbe focline and each contained ton blas in the acute angle for ore and waste. The skip was loaded from chutes in the incline. At the top tbere wrere two bins sleo prowided witb n. flp-lap door for directing the dicclasgee from the skip. Ordiosry cars run from these blus to the ore-house sod dump, The inctive was setted with round posts and heavy cap the manway 24 by 51 feec. The dividet was $6^{\prime \prime}$ by $8^{\prime \prime}$ and fonr braces wore used. The manway was partlitoned off and filted with steps. Partitions are necescary in inclipes of more than 25 degrees.
inclides of more than
The Isolis Inclive. Cripple Creek, sunk by the writer, 400 feet st 00 degrees is worked with an anto matie sklp lolding 20 cu . fs . on a 3 feet gnoge. Tbe incline and levels are on the velin. The stationa are formed by bowlug the level out over the lacline. The
cars to be takes of st each level without fnterferigg with the manway. The Johnson Incline sbove the tunnel has a sklp which dumps autonatleally on reaching the bottom, as the rock is lowered in thls case.
There are 8everal Importaut inclines at Creede, the one on the Untted Mlow havibg three compartments. The ficlibe on the Gregory-Bobtall, Central City, owing to peculiar conditions wha on a curve and botated 64 cu. ft . cars. Theae cars where divided in two tranaverbely, bedige binged at the top edge and secured at the bottom edge by latchee. Wheo dumplog they had the appearance of boing back-broken. The dirt went between the ralls
The allgmonent of a gentle incline is sinallar to a drift, but steep tnelines reguire great care. Four adjastmenta line a sawcut is made serose each sill son the sill. For one eod, before being sent undengromnd. Twoo buls she aet in the sille on this line by an inscrument withes 50 foet of the face, and this line is prodaced by a cond The ber sill is then get by the sa wcot and s made stick one mud brace being in place. In sddition it must be made squsre with the line and level lengthwlige co the corber edge.
some of the posts may be drawn if the stope ts to be shasuloned.
With a tender roof, poats and head boards will be ased for a height up to about 8 feet. With a besvy roof of for a local thickening up to nbout 16 feet cribs will be used from 7 to 16 feet square. Filing with waste will steady them. They will have ronmars between and way be lagged from crib to crib. Wheo filled they geatinaly fail by burytigg vear the bottom.
and of a the roof h bau, but the depoalt nearly plabe nod of a fairly uniform thickness, the ofe may be won by a succersion of parallel cootiguous drifts, timbered with drift bels, cnosisting of posts and lagged caps, each poot cartoceg the euds of two caps, and stendied by collar bfaces to the last 8et. This plan admits of conmround ind coomed ore-sortiog in the stopes is inled back, if there be In led rrount to provent axtensice movernedt in the countrs rock which prevest exteuelve movement in the veighborisg atopea malis levels or constructions on the surface. In bad groand the timbers are loat.

HECOND,-nTBEV THEN DEROSITS.

Ore-bodies of thls shape are commonly found in flssure velns, dykes of on the edge of dykes, as in Gilpin sand sometimes in streep contacts and deposits following pitchlog stratification planes, as in Aspen. Tbey may be worked underlasid of overband.
In underhand stoping a winze through the stopes sud connectiog with the Dext lower level is advirable, sut it does awny with the windlassing and assists in ventilatfing abd draiviog the workings. Underhand stoptng may be resorted to b-fore the level below is drivet in case of pecessity. It ta not, however, economleal nor systematic miniog and is one method of " gouging the eges out of the mibe. It makes easier drlliog and mey be usefal io a country like Dtextio, where the tontives rarely become expert at drilling "uppers." Where the ore is batrow and rict it may n adopted in semall mines, ss the ore can thea be readliy kept from the maste filligg of the stope. The floor may be awept mith steel wire bruable
If the walls be good and the waste removed, or if the rein is of a whath requiring the breaking of beitber of the wails, the stope may be worked without timber. Bat If the waste be elored it the stope as made, more timber Is required thas in the other method. The ground is broken from the top of the winze each way in beoches of about 6 feet, like tao sets of stairs.
Overhbed stopieg is the more generally used, 48 it ig the faster and cheaper. The ore, wasto and mater fall away from the breast. In a narrow rein giving considerable waste, the stope may be filled to mithin 6 or 6 feet of the top, as made, giving a convenient footigg for the minets, the escess, if any, being sent out. To colLoug the ore, canvas is lald on the waste and protected by rough plauk. In barrow vetns siulicd billhofer abont ford ancess and for tromlog town ons aud the feet to of wate. The end with ladilen. The main line of stiuls is plated 11 led Where the track. Unils enct of stillale placed il feet boome crope hoards over the car track laid ppot wree borlanetal spreaders 6 facet phose the track to lieep the ore off the main road and to sfford a lositigg chute the as vela miler than 4 teet the millitales will bo csibbed They mas live twa compartmente, one for a ladder bay. thoist 3 foot segrare la sombent, abl ther may thee be climbed without is laulder by striddliog the hole.
When the vein makes but little waste, the opening must be stulled to afford a playtorm for the miners. Where the walle are good wany of the timbers may be recovervel whon the stopee ts abapdoned. It is then illed with waste from the level above. Where the roof is bad the stulls will enrry wall plateg and laggleg on one or both walls, with braces as required.
When the reln is cooderntely wide with good walls and makes but little waste, the broken ore may lle in the stope, oaly enough beligg drawn off to keep the top sbout if feet from the loreast. Thia plas requiress no mill holes, for when the stope is fibished tha ore remaining Is all drawz of. The flat chutes and the main line of etulls lo the obly timbering required
Where the velin is of moderste whth and ts soft or bas a soft gougo in it, that will be taken out flrat to order to bave some open space to shoot to, using a gouger if the soft streak is narrow. Whete the vein is batder than the ralls and especinlly if it be "frosen" on obe or both walle, the soffer wall will be shot first and then the ore strippod from the remaining wall by pop shots. Where they are of beatly equal hardoess it will be best to shoot the ore first if it bee big +nough to get a proper shot isto and then take out ebough of the footvery purow abl rich anl nilieres strongly to the footwafl, the banging wall may be broken first and then the ore sttipped.

TiHRD.-yasoks.

Ore bodies of large and Irregular dimensions occur frequently in a limetalatenole, osthas Lendeill
 le resorted to without tiubberlug as terp as tha walls will stail. of untll the oet of removing the ovet burtes is prohibitory in a that depoeit. It is possible that in escrjutioual cosers the caving or filling syestemes used with success in the Lake Superior Lrun mines might bee rimploged.
Hasiog regard to the peculise conditions bere the equare bet syotem is the valy one of general application. Prerlous metal or masacs are extrenuly Irregular and then juticua obtained for the ones vary from year to year. It is of en necresary sfter stopping work it a Certain place to resume it. Nera discovries ia the neighbor boon masy alter the polnablitied of ore fin uny given
direotion. The ground may be reworked to some extent the groand muet be abandoned as mined.

gquars aEts.

The origin of the system is a simple and natural extenalon and refloement of the praction of rumang contignous parallel difits th the ore and in two or more flrst step in the way of improvemeet was the obvious obe of maklog the two buttlog expa rest upon the game pogt, and to make the collar brnces of equal atrength to poat, and to make the collar brnces of equal strenkth to
that of the other members. The regular use of such sets and thelr framing on the surface to standard dimensloos appears to have been first fintroduced on the Comstock lode by Philip Diedesheimer, Sapertintendent of the Ophir mine in 1800.
The noth may be so framed that the posts, caps, of tles rus through and touch, the contlouous longitudinal graio of the timber beiog laid is the direction of the greateat presaure. In very heary ground this is tmport.
and, but in most cases it is enflicient and mose venient to let the caps ran through. The pleces tonch ting on end graio are cut a trifie scant to equalize the pressure. The capa sre set the narrow way of the ore
body. The sill floor set ls uavally ope foot higher than the regular set. Where the posts run through, a speclà lead or cap alll muat be used in starting a ran of sets, but wbere the caps ran through it is not always neces. sary.
Where the efll loor is laid upon'a large body of ore,
which is to be miloed from the next lomer level, silla which is to be mioed from the next lomer level, sills covering several sets should be used. No matter what care bo taken in starting the sext lower nest of sets, it
is not likely that they will exwetly joln. Long silla reeder less ilmcult and dangerous the mork of taking up the weight as the two nests conneet. In coming up from below the posts of the top row of the lower pest are cut so as to leave a spsce of about 2 fooc between
the two nesta. the two nests. Long beavy stringers are laid on the
lowee nest to bruak joints and the intersections of the lower nest to bresk joints and the fetersections of the
upper nest caught op oue at a tlme with blocks and wedpes.
Where the walls are bad, plates thould be used coverlog severnal sets nad folbed by specinat pleces to the regular sets. With a good roof it is sumficlent to
securely biock the gets at each intersection io the same way as at the aldes of the stope.
Where obligue pressure is is Where oblique pressure is expected of develops, plain diag-
onals with a double chamater be onals with a double chamer ut
each end must be flited and each end must be fllted and
medlaed in the sets nlenede medged in the sets niready in po-
sittoo, which may be fiselined to ant. Two diagonals ploced like an Λ will permit a sligile post to be removed in order to geatly dithe stoper. Whers the poats show a tendency to cat lato the chors a tendency to cut lato the cava,
they may be assisted by two of they may be assisted by two or
foar helpers or false posta it the stze of the malo post and placed sarouad it.
The sets usually fall by crushtog and ravking so that the caps solit cribs of timber lo prevent this. tro or more sets wite are placed in the sets crosswiso of the ore body from wall to wall
Auother crib may be built forther on and the spsce filled worktivas.
Thene whole door of a large ore body must not bo tmberg. It is safer to talre out vertleal slicest on the of the ore body from level to level and thice or four anta thick ia succession. Io very large bodies pillars may be left which can be robbed as the mibe is gradually absadlosed. Bat if sumplest weight comes upon the pil. lars to crush and pplibter them, serinus trouble will be eceountered on takleg them out atterward.
The system is desigued for work iog overhand although With care a small puthole may be worked underband and trabered. With a rolling bottow, short poats on foot pleoss may be used eparigigly lustead of shooting enough uaste to hold a complete set. A rus of cells may be
readily lined for a chute readily lined for a chule. Io starting a peat it is not
well to work in opposite directlong at the same time in well to work is opposite directions at the same time as the shots may ehift the thebers.
Atter a nest of sets has cru-lied and conved, it may be pecessary to open the ground agala. There will u-ually
be a brap of loose shiflug tock and timber is the botbe a brap of loose shifulug rock and timber is the bottom of the old stope and a large open space above hav-
tag a alakly roof. About the vily thlog to be done is to ing a abaky roof. About the only thing to be done is ta solid filled erib of timber to s-rve as a foundstion for sets or open cribs. In other cases the hole may be illied aud minerd sround by oriling and cribbing from ralses in the nelghboring solid rock, or sinailar special methods sug-
gested by the purticular circomatabces aid the relstive gested by the purticular circumatabces a
keation of the spot it is desievel to Frach.
The timbers may bo suabbed down
The timbers may be suabbed down trom the level above through \& miuzs or takes up with a windlass of smail holst. Oa abcumboning a stope most of the flooring made. If no further prospecthig is fotepded from the stope, tt may be tilled whit wasto frome above to prevent extenaive movemwnt of the grouud. In exceptional cases the sets may be robtbed.
Ot avnilable thuber red sprace ta more durable then
cellow phe, ned that, than white sproce. The eeta sellow plue, asd that, than white sprace. The seta are
framed by machithery Fugtelarb of Leadville makes frawed by machinery haglebowh of Leadvile makes
four ssw machine mhich uses nguan timber. The Heudry framer on rlght saw mumbise ts made by the Huldey framer an right saw muchins ts made by the
Doaver Engineerling Works. Rouod posts can be cut on the latter giving usdutioeal support to the caps nud tices.
Io etartiug the system to a mibe some thougbt should

be given to the style and dimensions, as it is locoevenleat to cbange the patterus wben once ulopted. The helght sbould be about 6 feet in the clear allowing for the flooring of 3 or 4 toch plank, and the width from 4 to 6 feet. The usual stars of timber are 10 and 12 incb socording to the prohable slaze of the stope and the chatacter of the walls. One small mine uses 8 -inchsets. Larger sized
will be uged in spectal cases. The 10 -luct thmber is to
and will be used in spectal cases. The 10-Wch thatber is to groubd will permit.

difalls of gqeari sets.

Pinte II., Fig. 4, shows the aquare set used by the Moger and other mines of the Iron Silver Company of Leadville, whith has shipped 12,000 tons in a year.
The tezois on the posts touch and the thes are plais. The teanos on the posts twuch and the thes are pista. of dirt in the buile up portice. The foosing is
 Centres to centres are 5, 6 and 7 ft .
Piate III, Fig. a, shows the set lased by the Aspen, Durant, Regent aod Smugeler minee at Aspen, shlpping about 20,000 tone a year. The posts touch and raiay be round of equare. The cap silt is used on the sill hoor extenslons sidewiee.
Plate VI, Fig. 8 shows the set largely used at the Mollle Gitison mine at Aspen. The cars touch, the eape and posta are entirely symmetrical and the the slao, is vat two directions however
The set used by the Lattle Johnny mine of the Ibex compsany, Leadivile, shipplog about 25,000 tons a year 'y $4^{\prime} 10^{\prime \prime}$ by b' $10^{\prime \prime}$ centers, sad $3^{\prime} 6^{\prime \prime \prime}, 4$ feet and 6 feet a the clear. The cape touch and the framing resembien that of the Moille shown alresdy. Tho poats are $6^{\prime}{ }^{4}$,
aver all with 6 by 6 by 2 neth teoons. The tles are plain over all with 6 by 6 by 2 inch tenons. The thes are plain
6 by 10 loch timber sud $4^{\prime} 4^{\prime \prime}$ long. The cags are $4^{\prime} 4^{\prime \prime}$ 6 by 10 inch timber sod $4^{\prime} 4^{\prime \prime}$ loug. The cage ste $4^{\prime} 4^{\prime \prime}$
over all mith 6 by 6 by 3 isch teuons. These fets are Over all mith 6 by 8 b
alao used for drifta.
The set used at the E1 Paso mine of the Unlon LeasIng compnoy at Lendville, sbipplog about 25,000 tong a reat is aleo of 10 inch timber exomet tho his. It a $5^{\prime} 4^{\prime \prime} \mathrm{by}^{5 \prime} 4^{\prime \prime}$ by $7^{\prime} 4^{\prime \prime}$ centers and $4^{\prime} 6^{\prime \prime}$ by $4^{\prime \prime} 6^{\prime \prime}$
by $6^{\prime} 6^{\prime \prime}$ to the clear. The espo touch and the the ctear. The caps touch and the
and arrangement is the shafts and fnclines will prevent aceldents and increase the speed and ease of travel.

imbinters.

J. D. Hagree. Minlog Industry, U. S. Geolopleal Exploration of the 40th Parallet Whahtngton, 1820 . Vol. III, pp. 103.108, 112-114, 511
U. 8. Curtis. Silver-Lead Deposits of Eureka, Nevada U. S. G. S. Washiogtoo, 1854. Monograph VII, PP. W. H. Storms. Methods of Mthe Timbering. Calltormia State 3tintag Bureau. Sacramento, 1894 L. D Flicketts. The Ores of Leadville, ele. Pribceton, J. P. Mille.
rater-tion dow method of shaft sinking through 1885 Vot. XIII. PD. 216-251
of N. Tice. The sinking of the Ladd shafis. Sebool 1895, pp 2a4.250
C. A. Slekel. The Grubensimmerung. Freiberg, 1872. Tbo general ireatises and pocket-books on mioligg and use of the rarlous alyles of timbering. The several escellent text-books on tutnelling give the spectal methods domanded by the larger mork.
Many valuable papers beartigg on this isubject may by Mising Eagineers abd is the publications of other cuglneering soclethes.
For the pertodical literature see Francis E. Galloupe. Boston, 1888 and 18%. Descriptivn Index of Current Evgliveerligg Literature, Cblcago, 1892. The Techalcal Iodex, Eagiteeering Magazloe, Nem York

TWO SOUTHERN MINE DISASTERS.
 One at Cumnock, N, C. Results in the Death of Thirty-five men, and the Other at Dayton,

An exploston, supposedly of fire-damp, at the Chd Egypt Mine at Cumbock, N. C., on tbe 19th alt. resulted to tbe death of thitty-five mee. The molse fs sn
old ones baving beee first epened about fifty yeara ayo. ohd one baving beed lifst opened about fifty years ayo.
It was only worked a short time, and was theo athan. doned, till, during the elvil war it mas worked by tho Confederate Goveroment to ger ure coal for blockade runbers.
A few mooths ago it was bought by the present owners, who have spent a great denl of money in reopentigg and improving the property. The opening out
of the mine proved that the coal foproved in quality as of the mino proved that the coal toproved
the workiogs extended further Into the bed.
The mive whs inspected by the fire-boss at six orclock, was reported free of gas, and sixty-six men went down the pit. At elght o'clock the mive was again reported free of gas. A tew mithutes after elght ocelock, as exrlosion oceared that killed all of the meen in one of the (wo divi-ions of the nilde, and two who were to the other diviston. Those ant litlled, thirty-one in number eroped their way to the shaft in the dark, and were Eroped thesir way to the shaft in The dark, and wero
sperdily holsted to the surface. The shaft was nut sperdily
lijured.
At first it was surposed that 200 ll be. of dynamite, stored is a cloket in the mine, hud exploded, but exmomination froved that such was not the case, as the isvamite whs found all right.
As usumi there are nuberous rumors as to the cause of the arcilents. One rumor states that a man was shightly burned by an explosion of gas the alght before, socident, and that ench man was instrueted to "bsush" the gas out of bis sorklok place. If there was enough standing gas in the workles places to warrast the men beting listruct d to "brush" it out, somebody is mornily respenatible for the death of the vietima. The removal of gas by "brushtng" is misely prohibited by both mivo laws of Penasslvanis, snd it ebould be probibited in every state. If there actually was bo gas found by the fire-boss, whes he made his examination, the dlanster mas either coused by a sudden outburst of gas, or by an explosion of coas dust. What the cause sctually was
will be hard to determine as all the men in the affected Will be hard to determine ns all
portion of the mine were killed.
The disuster at Daston, Temn, oveured in the Nelson Mive, operated by the Doston Conl \& Iron Co., on the
moming of the 20kb ult. If resulted In the death of moming of the 20ch ult., it resulted in the death of thitty whin. Tbe telegraptic reports of this accident are so conflieting and coutain so mavy lnconstatent
statements, vidently by men devobd of any mining statements, tridently by men devofd of any mining
hnomjedge, that we refralg at this witing. from trying to sift out a protable cause for the accident.:-

Acknowledgoment

We have receired from the Joo. Dixon Crucible Co. ot Jersey City, a box of asborted Dison American Pencils, with the complimeuts of the season. If there is suy clase of wen who appreciate good smooth pencils, it is elitore, and on account of the suiform good quality of Dison pebills, we use no other kind for editorial work. Our force of draughtamen al8o use Dison drawing pencils in preference to any other make. In fact, among the
ninuety people ta the onlices of The Collicry Eiginerr Co., nhety prople to the ontices of The Collingy Eogineer Co.,
no othir braud of lead penelis is used tur any purpose.

The Westinghouse Electric Co.

The Westinghouse Eleetric and Manntacturing Co, of Pittsturgh. Pa., the sole owners of the raluabie Tesla pateuta, have decided to make a vigorvus fight for the mining trudo an electrical machiury, To speak of Westungtouse electricsi appliabers as first clask, is sti-
pertituous. Their sucecess is hioun to all mine managera. The adveristment that appenrs, for the flrmt time, is this The adveristment that appenrs, for the fret ione form ish first class midelig mactioery that will competo in every first chas wing mactiory that
way with any bow on the murket.

THE FAUGHT PATENT WHEEL FOR

 MINE CARS.
A New Self-Oiling Wheel that is Worthy the Attention of Mine Managers.

During a rropet vialt to the extensive snd mell known ear wbeel works of Measts. A. Whithey is Sons of
Philla. We were shows the drawings of nn Improved solf-olling mine car wherl. which seemed to contate many valuahle faitures. We therefore mode arrangedegeribe the wheol. For many jears this firm has made a spectal stubly of the requirements of |mide 'millways. An experience of nearly 50 years in the mann factare of chillem car mheely for all varleties of service pecoliarly fits them for such study. It is thelr beltiet that true econony in this sirvice demands the best material an! workmansbio and also that to insure the hisheat eftclency and suability, fatternis earefuily destgoed on sclentitic principles nanst be used,
Uuder this belfef they have fatroflucpt a
Ender this belfef they have Introdnced a self-oilligg
oheel which has many poluts of the highest escellenoce mbeel which has many poluts of the highest excellepece. The wbeel, In combination with its pedestal and other

Erenatly prolong the life of both wheels and axlea. The loeg luearing, however, is not obtained by lengthentog the axle or dimainishing tbe width of car bottom, but as the usual Irneh pint is diepensed with, the sdditional total length of axle it requires is all acailable for beatIngeurface As as actual fact there is a kaving in the lesa froms out to out than those flted with iymeh pins lif the onlinary manoer.
The pedeetal castlogs ato goconstructed as to do away with the collar asually welded on mine car axlec. aplit key on the lower side locks the nuta of the pedestal bolts so that they canoot become loose from jarring. In cases where the regular form of pedestal is not adaptel to the construction of car bottom, epectal pedustals can be made to suit all requiremente:
Though the use of round axles is recomnaended, where it is desired to have the support of the car botfom which a equare axle affonla, thls form can be used.
In the suasufacture of theee wheels, the very beat car Wheel Irons are ased under chosical and physical tests, In the Eirm's oun laboratory nod shopa. The material is
the same as used in their heary wheels for freight and

Youre rejeryfully
 JeLinco Coal Co, Per don la

DRY STEAM.

Its Necessity and How to Ensure It.

The length of steam pipe lines at mines is weberally such as to materially rwluce the eflictency of the power, and oftees to cauke basaliages due to the use of saturated steam in engines and pumps. Tbe coverting of stram pipe lises with a good steats pipes covering matarnlify reduces coodeneatiou greatly, atid ebhances
 reppatable rasker of pipe cor-
ixtures is the invention of Mr. Lather R. Faught, their inechsnical engineet, and ite coostruction, in fts lateo improved form is Illustrated berewith.
The wheelis are cast witt the out- hub solldly endosing the end at the axle. The inner hub enters a dust collar is the pedretal casting lined with a broad band of hasir felt, which eerves to esclude nill duat and geti from the wearing parts, and prevents leakage of oll.
With thelr stansland mheel a round axle is used which With thelr standard mheel a round axle is used which cas tarn in the pedestal when on curves. This dimintahes frlectoos and equalizes the wear on the sxie. At the inner ead of the peoleatal there is a emaller basd of felt acting as a further protection agningt dost and leskage. Safficient oil flows along the axle into the pecertal to lubricate the sxie besring.
The wheed is beld on the sxle by the "key block" ancketed in the wheel and entoring a groove tormed near the end of the axle. The key block is retaibed to posttios by the horlzontal "key block plug." By removing this plug and revolving the wbeel so that the bole is fown, the block dropa sway from the groove allowigg the wheel to be pulled of The wheel to replaced by reversog thes operstion, first plineing the key block in its ocket in the wheel, br the ald of a polnted stick inserted in the bole is the key block.
On! is introduced tato the annular chamber in the hab Through the oll hole enterlag the whoel at an augle. This hole is closed by the "oil plug." Both plugs are provided with lestber whobers so that wheo serewed ot oll is thus to areat extent preventel by denkute poeswre
 chasores for duat π
greatly diminished.
Sbould the oll plog, homever, be aceldently left out, the mals bouly of of will be retained in the carity for a loug time, 38 no oil can rus out of the oil bole mithout Itst rialog to s leved with the lower slder of the axle
To aneet an objection which is somedimes ralead to the loss of tioe in oulng, from the necessity of removiog and replacinge tbe bil plog a Berr derioc bas been receutly masde expetimestally. Thla conslets of a "gelf closiog of can or syrlage into the ofl hole, a valve controlled by * epriog is pusbed inmard allowlog the oil to enter, and on withdrawing the spout the ralve agato ctosed the opening.
Thorough lubrication of the entire length of bearlog is
 been found that mhen whects rup ot o ilgh rate of speed for a coosbdurable time, the bearings have a teublency to tuth dry because the oll, by ostrifagal force, is thrown soy trouble of this kitad, atrips of felt packieg are inerrted In the two abore meotiooed opentugs, theit objoct belng to sot as wicks to dram the oll into contact whis the besting surfacts
The length of bearing of the wbeel on Ita axle is very much more thin usust with loose wheels. The position of the hub relstive fo the tresel is auch as to bring its ontre directly over the rall. Thls obviates the fenconsequent cutting of both wheel and axle. These two eatures In conneotlon with close and necurate flting
sod teats cars whtch must stand the severe inspection All wheels ste thoroughly anopaled in furnaces espe. clally constructed for the parpose. Carefally proporaxle said for the servion intendeal. Fitulug is done by tandand for the servico intended. Fusing is done by both mategial and workmasnship are guaranteed agalast defects.
Not onlf are the treads and flanges well chilled to reebs bard wear oo the ralls, but the gpokes aod bubs are very stroug and tough to stand the most severe
shocks in rongh service. These two most Important gualities are supplemented and made fally effective by the eflidency of the oillig srraugernent and the protection of westiog parts. The result is a wheel perfect io all ita parts and which will gire the longest po
xim, no one part wearing out before the rest.
rios, no one part wearing out before the rest.
From the atove description fi appears that Messrs. A. Whiture \& Sons are usitue every hoown menos to produce the moat durable, fllelent and ecooomient malne car wheels possible. Nearly 30,000 of the closed hub Nons in sll parts of the coantry and they levarlably donsins all parts of the conutry and they iovariably One large hae farfar user in the far won, sfle holding for a year molaht usles to nilles thoon whenls, sisting that "as noot lad
 broken of worn out and Elowed bo sigu of dotng so, tor nepains." This appears to be the experlepoe of mos users as but few crina wheels are ordeced.
Abother writes that after most severe service for a rear h, "esamised the asleg and the hub, and found no wearing of the surfacea in elther place and the tresid was as good, not worn in the least, as the day they mere have roo out. Had I not Been the wheets I shoy could stand so loag." Still another pointe with pride to the slewk condition of his males who, he sacs ar growiog fat as a result of the easy ruwning of the Faught wheels.
Some of the varlows types of Whitney wheela have been, and are to use in practivally all the mining fielde standard in quality. Iluodreds of letters froen mibe managers sttest their apprecistion of Wbitoey mherls The following is a vecent onte, expresalug an optoion of the Fought Patent Closed Whoels. Tbu whewbs referred to by Mr. Pbilipg ane not exaetly the same as the ment on the kind Mr. Phililges purchased

Central Jbllioo Coal Coyrany
 Medelptis Fo soss

reputable maker of pipecow-
ering will make such a cloim. There is but one way to entirely remedy the evil, and that is to prevent condensstion as much as poasible by the ues of a goot covering and then complete the work by uslog n tlest class eeparator. Wben the line is a choort one, sutd stenm is plentiful the separator alone will do the work, but thetst resulte are obtained in most lostances by the use of both covering and ecpsatators. Reputable makers of steam reparstors will endorse this
statement, and the practical expertescen of many lance stesm users bas demonstrated the fact.
There are many types of meparstorg on the matket of
more or less value, snd it is important that our readers should be informed as to the exintance of one that is ex. tremely stmple is coustruction, and very eflicient in operation. It ls knomn as Robert. bun'o Steam Separator, and it
 comblues every necessary feature in such a devlee without those objections so noticeable in most others. Thla eeparator is the outgrowth of years of exporimente abd
practical atuad. An examination of the illustration will readily show its mode of operation. The saturated steam enters the separator through the plpe A, strikes plate B, is deflected agalnst the corrugated aliles, depoalts a large amount of water on them, which dropa to the bottom of the separator. The steam theo seeks an
outlet, through the peaforated separators D abd E, one

Robeithan'y Stsay Sepahatoz.

within the other, Is agaln lirokeo up, deposita what ilttes obolsture remains in it, and passea on to the cylisder perfeetly dry, and does the most ealiclent work in a perfectly safe maover. The water taken from the stedu is drawn off throagh the valve at the bottom, the seccasity for This separator is matufactured ouly by the Ilime aod Koberison Co., is Cortlandt St., New York. It is not st expessive contivabce, und is worthy the attention of all mhe managers uslug stenm porrer.
H. E. Collins \& Co., Pittshurgb, Pa, sole sales agents tured by the Aultman \& Taylor Machinery Co., Mansfietd, Oaio, reporte bothess 2.5011 F . Nahoula, Valley Iree Co., secued fown, Oblo, thint onder, 200 it P. Whou Co., YoubgeWyaudotte, M! ich., third order, 210 if P . shoeuberger Stuel Co.. Pitsturgh, beventh order, 500 H . P.; Traders Paper Co., Lockport, N. Y., Do0 H. I., MeKimnon, Dash is Hardwate Co., Troy, Obio, 100 II. P. The bollers for the Douglas Furnaces and the shoenberger Steel Co., are for blast furnace gas,-those for the Sahonigg Valley Irou Co., are for the atilization of
waste heata from heating furnaces, sbove meationed are of the stabdard direct fired type.

THE CAUSE OF MINE EXPLOSIONS. EFFECTS PRODUCEDBYTHE SUDDEN COMPRESSION OF THE AIR IN MINES.
Deseription of Unusual Explosions in Coal Mines:
With Conclusions Reached After Thorough ExWith Conelusions Reached After Thorough Ex-
aminations and Study of the Conditions Existaminations and Study of the Cond

Un the I8th of Jaly of the present year a most unasan aceldent oosurred at the South Mine of the Broken Hill, South Australla, by nhich at lesst nibe men last their lives. Mr. J. 1s. Grayas, the general manager of the mine, thus describes the occurreoce:
We had iddicationa yesterday at about noon, that the groaud in the north sulphlde stoper at the No. 4 level Was affected. I gave tustructions to the underground
foteman to marn the men of the fact. This mas dobe at foremas to marn the men of the fact. Thls mas dobe at the time of the ncelident, and thery were folly 200 ft . from Where the creep took place. No doubt they were loter-
tog and talkivg, feeling perfectly secure.as I woald have tog and tolkivg, feeling perfectly secute as 1 would have
done had I been there-lo fact I would not have beeus afrald to have stood within 20 ft . of the break. The afrald to have stood within 20 fe . of the bresk. The
only explanation I can offer as to the canse of the noeideot to that our ore is full of gas, which is held in the crevkef, and 1 thimk that when the break came it torced
the alr throngt the tuanmel likea man putting a ram-rod into a pop-gun. Had the mes deelied they coald casily into a pop-gun. Had the mern debired they coald easily
have reached the mouth of the shaft, but they very ressonably felt tafo where they were. As it transptred, a sater place for the men would have been the No. 1 a safer plachere the in a deep winase, but they veever
crossacut, where the When the creep took place it forced
thought of that. When the air, which being ebarged so heavily with gas mas llke a bolld body, aloog the ouly outlet-Damely, the knocked over with terrible force mud killed. It is twarvellous how obe man-Johe Treloar-escaped, as be mas one of the brarest to the creep. Possibly he got behlod a poset, aud thus eacsped the current of air. I bave never fo my experiecte of mielug beard of such a
disaster. Of cousse in coal mines tivedamp sometimed causes the death of large sumbers of men, and I have koown a dam of mater to brenk through and drown mea engaged in the werkiogs, but the death of neen ta a silver mine through concussloe of air is
sometbing pheormenal. The south Mise bas tree sometbling phesomenal. The south Mine bas bree
slogularly free from fatal aecidents, ouly two men havstogularly free from fatal aecidents, only two men havwho was in the hospltal, cays that he was stabding near the plat to the mine whes he was suddenly lifted off bis feet and instantly lost conselousness. A yoath who was engaged Dear the moonth of the shaft at the No. 4 level pumpling air up to the mee working in the stopes, had a narrow escape. Whea the creep took plsce the air case along the eross-cut to the shaft with such force
that it took bim off his teet, and he fell with his feet dangling down the shaft At the tuquest the evidence showed that the men received ample warning, but rewained in the level chatting and \&ouoking, and ove man who escaped ivjury deposed that they were all
atoout 300 ft . from than atope athen thes heard a soumd atbout 300 ft . from the stope whee they heard a soubd
like a peal of thubder, followed by a rusbling nolse. like a peal of thunder, followed by a rusbling nolse.
Beiog au old coal milner, be fell flat on his face aud thua Belog au old
escaped death.

LaNEIBN COLLIERY ExPLobtos.

No informating is afforded as to what kisd of gas to referred to by Mr. Glogas, but It caunot have twee ex plosive nor get poisoovous, as no mention is made of any gas by those who escaped, abd the effects may therefore
be considered as entirely mechabical and resolting from be considered as en
If, theo, suctalle excessive violence can be exerted by a sadden compression of the ventilating current and with out the assistance of explosives or ieflammable gas, it becomess quite elear that if the reatilatiog curreot of auy mioe la suddraly amd vileotly cowperbis d, we shall of ruference to the pabilsbed detalls and plats of explotions which are doe to compreselion, and also possibly reviee gome of our notions as to how these accldents ber come so wlisespread avd so tatal to life.
Oae of the ilirst conclusions that we are forced to perceive abd to adopt is that no tall of root can take place until after the compression stase, ed by the flame of the lisitiatory exed byos.
The falls of root, excepting ouly those caused by direct viojence, panslon of the cas or air which has panslou of the gas or air which has abd vacancles above the rondways and which will ebdeavor to find in exit to an equally andden minner is boon as the condentation and vacuum stage onmmences. Io the Llanerch aceident the sble in all the Earrow hery iong on the lower slde and rods of the levels, where peariy all the neen lost their lives in their workiog places, whereas these reserve ais side baving the elasticity of a largot arva of tons, enabled to vin some conslderable distance outbye before suocambing to the after-damp. Compression In thls case was entirely doe to the accidental Ignitioe of a siuall pocket of Ire-damp which had collected in a bole above some new timbertog in No. 4 level. Tbe extunt sad oocmpleteness of the aceldent io very used candles only, snd therefore explosive conditions could not bave bera prisent in the ventlatiug aircurrent. Avd supposing that a quantity of gas had been continuously escaping from No, 4 level, thls would have been entirely nullised by the large volume of car-
bonir acid zas created by the candies and the breathing of men and antmals, and therefore there could not have been explasive coeditiobs present in the ventllating air-
In the Camerton and Timshury aceldents the condt tioos were so rery much allike in both cases, as far us
regards ventilation, humidity of the alr, duat the uxplo slve used and its mole of the air, dust, the exprosrecent explosion at Timstury wlll be cited as seltiog forth the infloence of atr-compresslon in a mine quite Iree from fire-daws.
In the evening of the 6th of February last, Beven med rere engaged in making road repsirs on the through road betweeb the Upper and the Lower Congere pits. and on the rosds in the Top Littlo vein, which jolned
the through road at a polut about haif-way between The throngh road at a point aboat half-way between
"pper and Lower Conygre. About half-may betweon this

Fig. 2. Cosyake Pits.

fancton and the Louer Conygre pits, an experiebced to makn- mone hulght for the to prepare and fire a shot were to charge and fire a hole having a depth of cols 13 in., which had been drined in the roof some yenri previously. Jobn Gage, an examiner, who lost bls life was to examine the plece before Carter charged the hole, abd doabtless did 80 . Carter was warned by G Fhower not to use the elay out of the road for tamplog. because it was saturated with oll which had dropped
from the trama and containel coalduat ani aloo beppuen from the traws and cobtaibed coaldust, abd also because
mben the used a almillar mixtore at Camerton trenty abeo he used a similar mixtare at Camerton twenty Years before, it ailed the heading with diame. Wbether Carter observed these isstructions caunot bo stated Tith accumacy, but when his body whs found he had two
lumpa of thle elly clay with him. The road waspaither ary por duatr, because op the 29th of lanuarr 200 to 200 yards of it had been watered preparatory to firing aro shots on the Soth of January and two others on the 2od of February, All of these shots were within 80 to 50 yarde of the shot fred by Carter. The current of atr pasking along thls road at the time of the scellent Wns estimated to have beer nbout 10.000 ft . per minute, dismar velocty of 6 te per secont. The stiot-hole had in
 with tampleg. About nine otclock two men who were at work near the West pit at Lower Conggre Doticed smoke, and also a brattice door more, and proceeded to ascertale tis origin, but as they coald but get further than to yards along the throusts rosd, they returned to kallif, who had been warned that somet blag wis wrong by the melnomase at Upper Contite, who hal heans goise and bai algo seeth smoke thek wit dust comina from the top of the pit. Carrer's body was found in a kneeling position in a manbole about so yards on the is.bye side of where he bad flired the shot, and it is isteresting to note that the man who dired the fatal sbot both cases the men were severely barned.

DAMAGE EY CABTER'S Bllot

On the out-bye side of Carter's shot very little damage Was dobe, and even the ventilation donrs near the pit were unlajared, bat Inbye there were hesry falls on the roas, the doors and trams were all blown towards the apper their hair sioged, and two men were also killed and burved. Ope of theee who was near the Upper Conygre abeles. toches.
roads were driven tnwards for distabees raryiug from 15 to 30 yands four men were killed instastly (tbree of thrm beivg eeverely barved, and small patches of condais justlon of buraina. Mr. Martin, the iespector of mitues. says that the fudications of tlame were fea, and ouly ueticeable in the places already referced to. After the doors io the through road gave way, the free expantiot of the explosive force was farther opposed by the devious character of the road, the swull dameter of the shafts, and by the cages in the blafts. Tbees cages must have reen lifted up the shafts some distabce, abd then when alling back and broaght to a sudden standstill by the ropes cnused such a jar as to break several teetb out of
the coguherels of the wiodiog engiue aud thus render it
the catse of tue exteostos. As the origioating cuase of the socjulent was nodoubsedly the shot lifed by Carter, it Numins to be
disconered mby the flemts were so widesprrad and fatal, whes blasliog had beete carried on in the mine without any particular precauttons for a
without disaster.
Ooe of the tirst queries which - suggested itwelf to the writer mas powder, particularly as the sabe make of powder was in use at the Camertoe Colliery at the time of the explosion there on the 13 hh of the explasion there on the 134h of
Novenber, 18%. It has, how. Nover, beeu proved by actual annlysis that this powder was of much better quality than the mivers' blasting pooxder which is ordlasiziy used in of rifle grain, and bid the following composition, viz.?

Yirate of potastives.

For thls snaylsis, and also that of the ofly clas to be referred to later on, the writer ts indebted to the comutesy
of the conbultiog engiveer of the Timatoary Collieries, of the consultiog engl
Mr Jobu Batey,
The heat prodoced by the exploston of ordinary miners' blasting powder, when conflioed, is about 3,225 dege. Cent. a ad that of Governement rifee grabn-which in composition more nestiy approached the powder it by the contbastion of the As rart of the heat crested by the conbustion of the gumpowder used by Carter rock which mas detared from the root by ill plece of may be ossumed as mes dooe by the araly ther, it heat of the gas met fieos by the avalyst, that the and that the volume of these gases was 21,000 cuhle

Chiter gTemmed with olly chit.

Carter is suspected of having used the oily clay, two hospor of which were found best his body afier the explosooa, for tawpiog bis shot, ned thenefore this was also 0 . 500 decs. Cit was found that when it was heated up les. Ceat, and Tivo mm. barometer. it exolved 100 times his own wolume of gas, and that this gas consisted of an doltammable rolsture $H_{0} \mathrm{CO}, \mathrm{CH}_{4}$, and CO_{0}, ethylene, and vapors of some of the bearier bydrocarbons. This y fud that we bive wery hichtr at the isqurat. Thus we gronpowder projected Imto ibe Intake atr to the same direction as that of the alf-carrent, asd therefore exertIng the very large unused forme of the powder to pusb that cufront alugg at a very highly increased velocity. At this polat it is to be noted that the combustion of powder is not an instantaneous actloo, and tberefore so the line of leact reabstanee, the rest of the chatge come pletes the combastloe outeide the shot-hole, aind thenfore in the mine atmospbere. The agitation of the alrcurrent caused by thes netioa would, ha a master of course, diaturb any five dust within reach of ite hase and vibrations, and particularly thast which had beed uvknomingly collecting for many jears in a bollow This dust woult at once become misel as the thot. tiflem ane Minazued gases from the powder, as well as with those and lied of the beat rom the olly crey of the tarpping, misture would became the buel of wother el theo Douttess the terme wollen of anoter expinelloo. impltel elther direetir by the realdual hent of thenom chartien or from this hent inflaslan the the powider some powder wblch would doubtless be spllied io clargtog the shot-hole.

Fig. 1. Laseben Coluser

dompenat had a leg broken, and his clothes torn off and carried fitteen yards away
was led hoind way alog the through road the istake air and brought back agaie tisto the Litile vein workings 40 ysrds fartber inbye, the separation of the tmo als carreots being affected by a pair of wooden doors placed in the through rond. If is quite clear that the bighly. heated gases from tho after effects of Carler's shat ooers not freely expand and escape by reason of these the siding at the top of Peter's iocline, and therefore Wbilst sumfient evergy was being geverated to force bese doors a distsoce of fitteen yards, the whole powrr workiogs with the result that all the doons is the gate

tug istexsity or the second explostos.

The lntenally of this secoed explosion would be very great, because all the logredlent parts mere gaseous excepting ouly the dast, and st a consequence of the resiatauce afforded by the force of the incomidg air diacoeter of the shatis adod the minding case the stonil woalis bo or the khats aod the minding cages, its force alrcurrent passing tinbe. Theset lesst resistance, viz, the strengthen ned by the fact that this second esplote farthe place close to the fact that this second explotion took tieing at a sharp angle, croterd gug of inctine which ofered a pastural and uprard course for the expanding and explosive gase, well they wote wit the expandiog tance at the top of the iveline, where the full and etapty trams in the sidllag, the jig drum, and the palr of wooden doors beyood offcred suct a strovg ogposition that the accumulated pressure was driven gttll further uphtil into the Top Little vein woriliogs. This effect con-
tinued until the double doors gave way when the
pressure at once commenced to decresse, and the pentprossure at once commeniced to decrease, and the penttound a vent by escaplog like steam out of a sstety valv at the Upper Conygre pit sbafts
By this description of the protisble progress of the explosion and its after effocts, it must be understood
that the speed of the explosion from the motweot of the that the speed of the explosion from the momebt of the
secoud or incutatory explosion lo calcuisted to travel at secoud or incutatory explosion, is calcuisted to travel at
a speed nearty approachiog to that this speed $1 s$ sttsibed as a coosequepice of the high and saddea compreasioa of the aif-current ereated by the initisal exploslon or blown-out shot, wbich so com.
preserg the sir that it detonates the osygen in the presers the sir that it detonates the osygen in the
presence of nitrogen, coal.duct and watery vapor, and that consequeotly $n s$ boon as the compre
complete the explosive effects also cease.
Thatete the explosive effects also cease. Camerton, mas
That explosion, nid also that at at pot ane of conidust is the brase in which such explosions are popularly supposed to take place, is amply,
proned by the exjeriments mado by Mr. Henry Hall, proved by the exjertments mado by Mr. Mensy
which stowed that the coaldust from the seams of the Radatock coalteld could not be directly inflamed or exploded by the flring of guopouder

cosl Deer Dogs wov axplode.

The next case to be quoted is that of the explosion at the Albion Colliery on the 23 rd of Juee, 1804 . Here
the conditions mere entirely different from those of the the conditions were entirely different from thase of the
last case because Mr . Hall'd experiments with guppowder ared in the preseoce of coaldust from this mine had alrendy proved that it mas the most easily inflamed,
nDd aloo the most explosive of all the coalduats teated abd alao
by him.
For the parpose of the preeent argument it will be assumed that the exploslon origianted at the point on Grover c level belected by Mr. Robson and the otber that the origloating causs was as they suppoeed it to cartridze fired eitber in the arm of la one of the lega of a betting of timber which was being taken out for the a setting of tisber which was being taken out for the
purpose of renewal. The beat dereloped by gelatloedynamite is stated to be 3,220 degs. Ceol., or 5, 84s dege Fahr., and of the products of detouation ab per cent. to is therefore clear that the explosive will produce a large volume of very bot flame. Whether the flame Iguited both gas and dust abore the timberiog or ooly the duat as simellar results might follow is ether case. AD acelas stmblar results might follow in etther cose wit acelbow easlly certais coalduats may be tgnited. At the mine is quegtion the men were driving a heatiog, sid above the floor, 3 ff . 6 it . deep, about 2 in . in dlameter, and charged with vestly a poand of blasting powder. The ventisting sir-current was blowing straight ooto the ghot-hole, and was free from Ens. The sbot way be found that he had forgotsee to take away the dust from the froot of the hole and warning his mate, tbey thengot a severe buralig. Another man wbo mas 50 yards away on the intake side was very badly burned thts shot dild its work rery well, it is clear that the igni. fion of the duat was cauged by the squib or by flame escapiog through the squit hole.
If thes a so small and comparatively cool flame, wben conilast, it is pot to bo mondered at that an explooiton nuck as that at the Albion Colliery should be origiosted In the way ungsested by the inspectora. A space of aboat 90 yards on elther side of the shot presented no
indllatlons of great vloletoce buc within It was developed indicatlons of great vlolesce, buc within it was developed
the areat mechankal foree and tremendous air pressure whith eonstituted the prinelpal factor in cosryivg destruction into every corber of the mine. There was,
howeret, another factor which comed futo the sccount, however, another factor which comed into the scount,
and whith may have exerelsed an tmpoctant place tu the effects produced, and that was the firtug of one out of tive shots in some timber about 120 yards further to. byo by the
flimet shot.
Withis a ratius of 165 to 975 yards inhige of the first shot the dismemberment and bodily injuries werd
extumely severe, and forther intye the scorctivg and extwively severe, and forther inhye the scorcbivg and
coking effects in Nos. 1 abd 2 districts were moere ovl. dent thas in any other part of the pit. Seeing that all
 ber-n expected to be fooni is conjunction with the
groatest dust and heat. It seems to be convincling proof greatest duas sud hest, thase dus to the spontaneons combustion of coaldust in the presence of highly eompressed oxycen and not actual Blame. When we turn to other
districts of the milue wo find no cokivg ludlicated in No. 3 district, but one case of the scorching of timber ne the Junction of Serjusntls and Dudson's hendiugs
This case is very remartable wheo coosidered is cobjunctlos mith another ease in No. 7 districe,
where a braid nind a foot were torn off. Both casea
 borhood of vertiatiog doors. It would appear, there-
fore, that whet the wentllation doora gave way under fore, that the matination.

 by theso men in the workingy wery found alive and
thant.
the prinelpal explosive agent, it would naturally follom That the stterdamp resalting frons its tneomplote com-
bustion would contaln a large percentage of carbon bestion would contaln a large percentage of carbon
menoside, but in this cage there is po evidence to show the presence of any approciable quastity of this very polsonous gas. Fortumately, through the verg careful potsontigations and otserrations of Dr. J. Shaw Lyttle,
nvestion of ciryuydd, and his assiatant, both of π hom went down people, saalsted also, a few days afterwards, by Dr Isidane, of Osford, who is well known from his loven tigations into the effects of $C O$ nod $C O$, on the haman ystem, it is poestble to throm some strong fifferental ligbt on the character of the explosion as well as on hat of the aftecdamp, abd to shom that these were peimarily mitheesced by the great and gudden alr compression exerted by the first stage of the disaster.
Commenctug from the shot on Grover's level, the cople for bestry 100 yaris on ether side of wero, as barmed. Whether the canse of death was i"slook," cxccesive air pressure" or "nspbyxiatton" cannot be was almost tostantaneous death.
Farther Intye theve was more barsing and [motilatlou thau nearer to the shot, bat equaliy s.les with Grever evel, ten doad, and three living perroons were toand. Of these ooe died almost immediately, anotber was found badly burned sad with both armis fast voder his borse, and both fractured. With respect to the above which could be put lows to they showed no synupoma scorched timber meere only found in the working-places at the extreme end of the level.
Exigences of space forbld the Insertion of detalls showing the effect of the explosion on buman life along bhome the erratie effects of the explosloe from end to ond of this almost stralght line.
 io slmost every rase to make the the smact to cause great thirat, and to very considerably afect the speech of everyone.
William Gamett who went down in the first cage destheo tho barning souell as sulphury aud the chect The susell is the returns was deacribed as belng like matchee and like disnbel which had bevo barning, and had been put out again.
Dr. Lyttle's assistant was suprised to find that nill the bjured teen from Grovety bide beemed to hose voeclousueks and moald not readily answes quegtions when taken out of the pit.
tur confositios of titg aftbidase.
It is possible from detalls that have beed made available, to striveat gocue peneral symptoms from which the composition of the afterdamp may be inferred from its effects. Every part of the pit sbows tost whaterer
the percentage of carbou monoslide present is the after damp, it must have been leseto volume than the half of obe per ceat., because men were found alive on the direct live of the blast, and in many plaves far reanoved
troan one apother the meo gathered in groups is their row one abother
endeavors to recape
Dr. Haldanee examined the blood of some of thefthorses for carbon monoside, and as in the cases of buman
beings examined by him, no trace of carton monoside being examine
If theo this gns is only present in such an insignificant quastity that it presence is neither indicated in the are brought out of the pit slive atter being in the direct tine of the explosion effects, what eas or gases are those which produce the extremely serious head symptoms deecrihed by Dr, Lyttle? The descriptions glven by the two survivors Howells and Blumford cannot be relled on with confldeace, when it is uoted that velther were fully sonscious when found by the explorers, and that none of the otber gurvivors cound recollect anything whtch ocmany other explosions are considered from a nem point of view, which has already been suggested tn the course of the foregoling descriptioses, namely, that the exploston velocity of high detonating apred, it is not dificult to tmaglise how some of the conalieting tudicastions immediately become istelligible.
but combrashos frodeces ax explorion.
The counse of events that would produce compresston properly or improperly tamped. (2) A blown out shot, or au over-pombered ahot, of a large mod very bot llame from the insumlichat tampling of some high exploatve, and therefore a lare ane rolame of carbocic oxide gas, hole after the shot has done its work, (8) A considerable aros of the mitie roadway fllled with the normal quantity of the dust always present in the air of a dasty mine, aidded to that which may have been distarbed from motion by the slot. (4) The explosion of thla misture of dust, sir nod intitamamable gases frous the explosive, whisch cousidered as a shot would be equal to the cuole sontents of a cartrdge loo yatis lobig. aud harig as way, and lgaited hy the resblasi heat of the exploilve of by the actash thame from some of the partly leflamed of toe of the whole of the air withla the mine and its igaition or detonation by the exploelou. Hery Hall, H. M
The experimeats made by Mr. Heor inspector of mulues, proved the correctness of the fourth seypence, but were not on a sunfictently large scale to
show the eflecty of the fifh. From ohseryations mado by Dr, J. Shaw l.stles, it ta evilient that afterdamp cas-
assunced in the absence of actual proot oe the contrary but that there is some gns or gases in the afterdsmap,
which are of a desdly nature is also fully demonatrated, which are of a desdly nature is also fully demoustrated, abd therefore it rewaing tion dilicovered aterdamp at gases are. The pribedpat Indication in the stterdamp and eyes. At Camerton Mr. Garthwaite sald, the alr was "suffocatiog, pungent and irritatiog.," and Yr. Stuart Ficient faet that cartbon diosilde could not be detected in the path of the explosion.
Hethe detected in the case of the Ablon explosion, and no carbon dloxde could bo detected in the case of the Cametton, and as both cases ar accepled as beng examples of coalduab poasible whst part coaldust really plays to wbst are posaible what part coaldust

The writer suggests that the indications be has givea, point to ope general coucluslon, bamely, that coaldast does not enter into combustion duting the outward prothe exploelon, and afterwerds the ge of partial diatillation due to the the explosion. This soggestion appears ooly cates of coked lust found were in the Top Little relin warkings ot Tineliers, where the residap beat would remain for the longest time, because it was at the bighest altitude.
The writer now suggests that the fstal gased are oxides of nitrogen, and he does so with very grest conthisce, becanse gome years ago, after sulfering from Dr Camelly on two occasions, he suggested to the late it was dar to ammonis, the College, Maneter, did not agree with the sumgestion, sud took a great deal of trouble to prove that it was alroast Imposalble for ammonla to be formed undeg such conditions, but that oxides of nitrogen mere formed, and caused the irritathon, which was distinctly due to these oxides.

EXAMINATION QUESTIONS.

THE MINE FOREMEN'S EXAMINATION IN INOUS FIELDS
JAN. $22,1895$.

Correct Answers to the Questions, Prepared EsPractical Mining Points Explained.

Quss. 14. What apecial requirementa do you consider
should be observed in the erection of a rentilating furnace or a ventllatiog tso ?
ANs. In euch case duesttention must be given to the requirements of ane eficient ventilathon for the removal of ail dangetous gases froca the mine, and to secure thls resule, three epecial requirements must be secured: first, a sumbient velocity of the current for the removal of gases; secoud, a sumfient volume to provide sufflelent freah air for each separate district in the the mine, and
third, the ventilatiog prebeure pust be equal to the rethird, the ventilating prebsure wust be er
slatanco due to the air current revulied.

To secure this efflielescy, the fire-grate surface mast beequal to the work to be done by a furnsce, and in the case of the machine reatilator, the fan muat be large
esough to obtaln the alr required by not more than 70 ebough to obtala the air required by
revolutions per minute of the eugine.
QuEs. 15. How rould you procesd legally to guand the hesalth and safety of the niners, and the security of a mine placed under your charge?
Axs. Comply yourself, and see
 Wise, in carrying out all the provisions of the "General
and Spectal Rules," and all the "gections" of the Aet Relating to The Bituminous Coal Mines of Peonsylvanla.

In a mine where underblasting ts required feet of alr per mifoutes

Will you theo explain fully bow many eplite you would make and bsy what velocity the sis curreate of As If rould have for the recmoval of black-damp' move black-damp, the quantity of air given namely, move black-damp, the quantity of sir given mamely,
10,000 cubie feet jer minate cannot do what is required. 1ent as firat notice Section 2. Article IV of the Aot Relating to The Bituminoas Coal Mibea of Penneylvanla.
"After May thirteenth, one thousand elght hundred and uinety-four, not more than sixty-flve (65) persons
ohall bee bermitted to work in the same air-eurrent Ehath iee [rectitued fo work in the same air-current.
Provided. That a larger number bot exceeding ode fuydred may be allownd by the tulbe inspector whee in his jodgment it is impracticable to comply with the foregoing requirement.'
As 25 is tea more than the number that can work in ofe, of an ubdiclded curre0t, the 10,000 cubio feet of air per mumate masat be split into two separate
currents and say 5000 cable foct for cach and let the maximum ares of section of the curreat be 35 equare feet, thee $\frac{5000}{3 i}=143=$ the velocity of the sir per minute, such a velocity would neither remove this beavy gns reguires a velocity of at lenst 5 feet per second of $\$ 00$ feet fer minute, to remove it.
Qusc-17. What are the cansea of "blowa out" shots, and what are the dangens attending them?
Ans. There are several canses of shots belng blown length of stemmiogsive a charge of powder with a short the shot hole ls too long for the boling ; thind, when the shortest lise from the chot to the face if thtourt the sternming: fourth, nhen the diameter of the hole is too large for the leogth of the stemming; fifth, powerful charges in holes of lange diameter, blow out more frequently than when the dlameter of the hole is property proportlosed to the changet.
The dangers atising from these sbote ace caused by
explosive mixtares of gas and sir, and the blast of these local expluslons often aweeps np large quantitiea of conal dust, that anturates the fresh air with fuel for further ignition, and so the dapger angmenta.
Qusa, is. In rour oplalen
Quss, 18. In your opleioe lo it decesary or desirnble to malutain the veutilation of a mloe when it is Idle ? Give your rensons in full.
Avs. Even when no cattle are stabled underground
the vr-btiation of a mine ourbt to the vertilation of a mine ought to be coutinued when it 3 Idle.
To prove the Importance of this coeclusion, suppose the veutilation to he stopped for 24 hours; during this perlod the light Inflamable gases wilt oollect to large wol-got-fire exlats a deatructive exploslon will any unk nown got-fire exlats a destructive exploblon wIII wost likely the frest air and fire-damp stare becaute at that period portiona, and if this mixture abould reach the region of the fire, etther by a current or wave motion, a blast is the fire, either
sure to eusue.
Again several cases are on recond where an explosion has ocourred in the fan house on etartiog the ventilation after it stoppage ; asd ludeed an explosion would travel dows the upenst shaft lnte the mino. from a IIght tu the

Agsia the graect that accumulate is the bank.
the gob are sluggb hand dimeult to ramore, and it is always at the perlode of removal that dangerous mis. tures are made, conseguently afier a fan has berous stand. ing for 24 bours, the mine la not ente soms bours sfter If has started agaln. Therefors the ventilation should pot be stopped when the mioe fa Iflle, Section 3, Article IV of The Aet Relatiog to The Bitumbluous Coni Mines of Penosylvanin. provilite that
"All ventllatligg tans shall be kept in operstion contibuoasly night and day, unless operatlons are indefinitely suapended, except Written permalsilon is given by the mine inspector of the diatriot to stop the asme," ete, ete. Quss. 10. Explaln aud show how you would net jroper, botia in a level and in a pitchtigg cas velu. Alsoexplale with s aketch how you would frame a double sect of timbers.
Ase. A prop will welight, or resiat the greatest compresslve atrain, wheo it is shortenst, and, therefore, lles in the shortest line between the floor and the
roof. I would, root. I would,
theretore, set prope therretore, set prope
both ou a lerel atid on a pltch at right anglea to the roof sud the llooe. The eketeh shows how to
frame a set of slouble
frame a set of double
timbers to resist a consblernble alde prossure. It will be sese that the pelvelpal set is made of notehed Umbers and thast it is tusen with lighter timbers all tled nt the
top and shle butts with longitudinal ties, ay at R, R, R, R
 Qud what are the beat gubuns of extingatishlag them, and Axs. Got you gunrd agninst them ?
Axs. Gov ines are the result of spontaneous combue. ists, or fire proluced by chemical artion. Some chem. ists sasect that the Initial cause nuast be sought for In lae oximatou of coal, but oatbon has never been known persture th su the lanitioill, excepting at a higher tem. perature thsu the lgnition oue of sulphur; there cas akes place to $n 0$ doubt that the Initial chemical action ten thaber that has been onturatell with sulphuram mive water aod aftermurds dried. tatres fire, aud has been known to be a prime cause of a gob-flire,
Gob-lires that cannot be treatel aith mater,
be extiogulshed by faclutlon from the oxpren, ef the only and to eut them of from tha air they ares surmuader with barriecs of elay or sand, and where peasible and conventent they sre lsolated with duable stopplage, packed close in between with clay.
Fo guard sgainst them, above
that no timber is left in the gobs.
Qees. 21. What should be the volume of mine prodacing 1,600 toos of coal per day sir for a would be the effective horse power of the veatilstor
with a 1 Inch water-gunge?
Avs. As the legstallowance of alr per man mould not be Gumblent to dilate sad remove daugerons gases,
the volunse of air should sot bot less thau $9>0.000$ geable the volunae of air should not bo less thas $\$ 00,000$ cuble feet per malsute, and the effective borge power of the
 II. P.

Qucs 23. If you were emploged to manage the Inalde witb the development so is to casase no losa of proced the mine to be over ran with crosp, asd also to secure the health and safety of the emplojes abd the security of the mine property? Answer fully.
Axs. Before thls questina could be answered by a
practical rasin he woult inslat on edeling the portlon ot the molae arailable, avd then ho would furnisha correct and sathetactory ansamer,
As no particalars ane given of the thlekness or depth nature of the root and floor, the pitech of the veln, the wetvess or dryvers of the strata, or the sppraschus to the essun by shafts, tunnels, of difts, and ss there has to be "no bou of eaal," and the candidate has to "Anrace fudy," the ouly reply that can be givea by a shrewd
miner who ls master of his aubject in theory and prwelies miner who ls miveter of his subject in theory and porctice
and is ilt thevefure to be a ualue foreman, Is, No answer can be given.
QuEs 25. What rule would gulde you io leying of the Workiuga in a Herw wine property, so as to obtain a
large proentage of lump conl, whit an ecoeocieal use of props, tloabecs and road material?

Axy. It is a geveral fact that where the presoure is aod crusly on the prope, it also falle unduly on the coal does not sult the natursi when thesyatem of working places are requitred for a given output, and the working the use of more roal materlala necessary.
The rale that would gulde me would
up-grade with the long-wsll face in soft bituminous eone and in breast snd pillar I would drive the breasts up the pitch, and thus prevent the crush of the plilste in adyancing up grade in thelr removal. The treatment required in the extraction of the anthracite ones.
Ques. 24. If you were employed to tmanage an old mlue over-run with ervep, and the rosit ways were in a werevers condition, and the dralange and ventilation were very defective, how w
tie condition of the mine?
Axs. Neliher the druinage nor the veetilation could be Improved untll the creep was stopped, becsuse the levels of the water course would be oontinually altering. and no stoppliggs or doons could be laeps alrtlght. Agalo, the return alr-ways could not be kept open, because the bloor would be lifilug, and the roads closing. and if the seam produced much flee damp no one would be safe in the mines, ased if it was over-run with creep, It would coet more than the mine was worth to stop is, until the creep aubsided.
uould be to let the mine alone until the eroep subeided.

The Fire Boss' Examination.

Ques. 1. What are the lewful duties of a flire boss?
Ass. The lswful dutles of s fire bose are fully set forth in The Act INelating to The Biturninous Mibes of Penneylvanla, as In Artiele V, Section 1, 4, 7, 8; Article
VIII, Seption 5; Article XV', Seetlon 1 , ViII, S
TRule 9.
Quss. 2. How nould you ascertaln if a safety-lamp is
in proper and aafe cobdlition for use?
1, Section 8, there are no elreamatninces under whleb you would
morning. Quss. 8. At what velocity should the nir-current slve gas?
Ass. The velocity should never be less than 5 feet per second, or 300 feet per miluute in the working placees
Qegs. 9 How section of a gaseous mine pasaleg $1.200,000$ cuble foet of section of a gasaous mine pasaleg $1.200,000$ cuble foet of air per hour, and diselasrging 1,500 cuble feet of gas Ans. The
already containa 7.5 prr cent. of fle sectlon of the enline, already containa 7.5 per cent. of Ele-damp 48

$$
\frac{1,500 \times 100}{30,000}-7.5 \text { per cent. of gas for } \frac{1,200,000}{60}
$$

20,000 cuble feet of alr per minute, and as air and ghe
mixed, only cease to be exploslve mben the peroen of gas is 6.6. I would forbid any men working in the mine when the perceutage of gas 7.5 taskes an explo sive mixture.
Quss. 10. What are the dangers usaally encountered
on enterting s mine after an esptoslos on enterlige a mine after an explosion and how would Avs. The flrat procome them? Explain fully
Ans. The flrat dagger arlaes from the fallen roof, and the broken timber; the second artises from the dia casts, snd the blowing ont of the blowing up of over casts, snd the blowing ont of stopplngs and the third
arises froan the danger of Inhallog after-dismp. By care fally proceeding to clear away the falls from thy carefally proceeding to clear away the falla from the root, and seouriog the roads with timber, the flist danger can
bo minimized, and the second nad third can be pre reoted be observing the following rule "Take care to travel with the wind, but pever agninst it." Take care to

An Improved Coke Oven Larry.

We Illustrate herewith an Improved Coke Oven Larry,
 Whant effletent and most durable, if to be one of the mobt efletest sad most durable, if not the beet colse
oven larry constructes . It fo made with elither elfu ne ceater dieplasge and for rope or mule baulage. Some I would trat examine the meshes of the ganze cylluders, to sce if they were free from broken whed, soot, coal duet wod of flakes; secood, tou'd uxamine the asberthay wacklug riogs to sea if they were to good oud air and pas tlatt joint third I Nould lig joint third, I would light the parts were is thele plat and that the screw foce, Were tight, fourth, joints teat the lame to the thater provided for that parpose. Ques. 3. In what part of a usine and under what peedtions would you ex gaw ?
Ass. At the face of a
berat or chamber oil breast or chamber nivancing upgrade, or in the
cavitles of the fallen roof, aloog the edges of goaves, lu all up-grude workiugs. rents, sad eeppectally when rents, sud eepecolaily when lige volume of the ventilatIng current is not sumb-
elent, or the veloelty of the carrest to too slow for ratring with, nod carryling off the flre-damp.
Qess. 4. Is it any safety
In keseous mines, to have In grevous mines, to have a furuace with a high
double arch (or lo other double arch (or lo other
words) a largas space sbove the furnace fire leadiog to the furasee shaft

Misral Ridar Cogs Oviex Larbiy.
Ans. Yes the high double arch of a farbace allows the
return nir of thit taing if free and innotasineted poasage return nir of the usine a free and unothatructed paseage
Into the shaft, and thereby reduces the roslatanee, nel Into the shaft, and thercby redaces the reslatance, nud
iccreases the volame of the alr per minute circulatiog iccreases the volame of the alr per minute clrculatigg
round the mine.
Quks. 6 . What would be your method of preventing
an accumalation of explosive gas, in the worked out an accumalation of e
parts of a coal malue?
$\Lambda \times 8$, I would ventliate the grob, by allowing fresh ale to have free aocess to the bottom of loweet edge, and have a return airway runuing along the top edge of the Qoss. 6. Ueler what conditions ascenis.
lizhts be safe In mat conchitions would the use of open lights be safe Iu gaseous miues, nad und-r what condl tions would you forbjd the use of open lighte in such a
mine? whe?
Axs. never be the malan is gneous open or noked light can never be used, snd on the authorlty of The Act Relat-
Iag to the Bituminous Coal Mitues of Penneylvania, Article V, Seution 5, I would forbid them for the "All entries, tunnets,
other working places of a mirways, traveling ways and being Renerated in suah quantitios ns can bo deatected to the ordinary safety lamp, and pillar workings and other rorking places in any mine where s budden inflow of of the subsive gas is llkely to be encoantered (by reasou other causes), shall be worked expluglvele with lowivil sefety lamps. The use of open lights is also probilbited mloe workligg placos, roudways of other parts of tho air curcont whinch flre-itump night be carkien in the Quks 7 Aro thete
oon wonk not enter on the reoonl labce under which yon in the trornigg?
Ass. Acponting to the provlalone of the Aet, Artielo
of the largest prodacers of coke in the country use them The Pretence to any other type of larry-one flem slone, bought thliteen of them in the last foar yusra, und Mr L. W. Robluson, the General Manager of the company speaks of them in the higheet terme.
Tbe larries are built under the supervision of Mr Tbeodore Thomss, who has had tifteen years experience In the manufactare of all kibis of enlee and mine supplles, and who has given the question of the construction of an eflilent nod durnble larry a grest deal ot atudy are reoclvig idge Manufactaring Co. report that they are even exporting these larites to Mexico. They use nothlog bat the best Iron abd steel fo thelr construetloes and nothing is left undone to make them, as is ludeed all thelr mine equipment, flist-class in every reepect.
Thelr shopis at Minerst Itidge are equipped to cobstruct suything in tha Hoe of tipples, either inon or steel, fact naythleg that is moeded la the live of mive equip It.
whees pay our readers to write them for estimated $=$
Experience seems to show that the use of storge batteries in central gtations, affonls a cortalu flexibility Hig euarhinery them a dusirable aljubet to the geverat çilloed, it has resulied ils has beroma gourtilly woo e utral staliong, but also bs several of the lanrer manufucturing conosag in connmetion with thetr own power Douls,-Chas. T. Rillenbulse is Electrie Puifer for

MINING REVIVAL IN COLORADO.

Leadville Celebrates it in a Novel and Attractive

Editor Colliery Engineer and Metal Miner

Sun-Leadville is on the threshold of su ers of prosperity greater than in ita history. 1ts outjut for 1805 is is excesa of any of the preceding three yeare, and the value of the output for the year jast closed shovs an th-
crease oyer 1924 of nearly 50% There are 3.809 men crease over 1534 of nearly 50%. There wre 3,800 men emploged in the nibes, emeltery and allied indastries of the camp. A great des of the earninge of the mise vmploges are golng back into the mines through lesses, properties that have been Ide for years being opernted dow on leases by pools. Leasing is a festure now
peculiar to the canap, the lesoeve ranging from stanll groupe of misers, whose capital is their labor plus the grab stake of friende, to the big companies who lasve plenty of menns to andertake a proposition of any call-
bre, nud who emplor many hundreds of men. The camp is on it eovand footing withont ans boom, and an dile man is a rana aris. Even the store-keepers have enaght the spirit of enterprise, and every dollar they cas spare from their regular bassuess goes into a leasing company. Things are very lively fo the gold belt. The lbex grouge are making a oteady outpat. the tonbaige for 1806 being 47,000 tons of slliclous ote, and developesent work keeps on with occaslonally new dlscoveries. Other mibes in the gold belt are making Ehipmeats, while numaerous others are being explolted. Every foot of ground that has any mineral fodications whatever ls being located, sud every sow and thes a aew strike is roportad. is the old alver cobtscts a steady and increasing ont-put of sllver ores is noted, and cousulta so far, of exporing large bodies of ore especially routle, 80 far, of exposing large bodies ot ore, especiaily of carbobates. The sesse placer beld has in the past Gear sdded a sumber of producers to the camp, and the "Down Town" district is not behind in assisting in the keneral revival. The ercelterd are running to near their
 January- Lawivilets op-rsthg chivenyon itshomeapita ust the ssme, in a healthy fourishlng conditiou out wil Just the same, in a healthy flouristing conditiou and will Winter Cismival. Prohably no American wiplog come trusity has vere had a slmilar jubllee on ro grsma a poale as that which surrounds the Fee Crastle and which continues throughout Jonuary, Febeuary and March in u exontinumous eeries of entertalnmepts. Tinter sports and ratlosal ravelry. It is muler the surploes of ther Cbers tal Carnival Assoclation whtch has erected a palace of ve at a cost of $\$ 25,000$ and enterved intos an additiona exjerebe of $\$ 25,000$ for the entertsinments. The Dirce tor Geos-ral, Tingley 5 . Wood, is a leading mithe operator wod has been mining in the Cartmonate camp for bearly is ycars. The nffair has a distloctive flavor of miners enterprise, and starts out mith appropelate sclat. The foe caurle ta a thtog of beauty midd whtt be a vertable Kobolede grotto of winter hilarity, though instesel of being subterrabean, it is situate of a thige exteviling out from Leadville and among the clouds, 10,220) foos above seas level. The oflicers of the Chrystal Caralval Asacein-
 Frank X. Llogan. Tressuter At the back of the asao clation are the soccessful and wealthy taibers of thes catap

Sin Knownen.
Sors,
Injustice of Mine Laws to Citizens of Other States Adtioy Cultrirg Fingiurer Pond Melal Mino.

Sus:-As my sulyeription for your valuable journal expiges \#ith the preseet month, I beg to give notice that I do not latend to mper it
1 rezrent the secessity for this step, bat I do not foel
justifieil in devoping asy more time to the atndy of justitesin devoing any mote time to the study of a vaila fleny me vee of the pitileges of Ametican ethon-nthp in fefusing to alluw me to compete for a
mine focctann's certitleate, becsuse I have not worked
 Inflomeve, sbeolutely necessary in order to evcure a poai Lion as mive superinteodeut, (which doea not requiret a corliticose), and I bave no butention to retura to the
coal miges as a itre bobs, for which I bave a exrtitiate coopueotly, is I nust remalis outside of the ouly oe capatkou I can trathfally clatm to be fumillar mith, I

My apparent faronslatency, in strivfog to obtain a eertilicare, or position as mine formas, and at the sacue thae, negkloctlug the assistanco offered by your corTesposdence syatem of teachlog the theory of minigg. is

uncertsin, had it been otherwise, I would be very glad uncertsin, had it been othernises, would be very giad
to bave auch an excellent opportuntty to acquire a to bave buch an excellent
thorough technicsl education.
Thankling you stacerely for the faterest you have taken to my case, abd wishling tnereased proeperity to Tug Conanify Esoisiseil asp Metal Misek, the bebt The Collurir Esvis.

Youra very regpectfulig,
EDWARD Halios.
Alloghery, Pia.

The 5th Root

Editor CWliery Enpineer and Metal Miner
Sus:- As a practical rule for floding the fifth root of a number without the nid of logarithus, has been asked for by mee preparing for the Mansgera examination, I ubmit thls rule to your subecribers
For numbery leag than 32 find the diference between glven number and 32 and call it the difference. Place the differnace over 80 to form the first fraction. Multiply the first numerator by the difference and place over 6,400 for second fraction. Multiply the seoond numerator by 3 times the difference and place over $1,024,000$ to form the third fraction. Multiply the third Eumerator y 7 times the difference and piace over $327,680,000$ foi the fourth fraction. Saltiply the fourth numerntor by 19 times the difference and write over $209,14,000,000$ to lorm the fitth fraction. Nutiply the fitth tumerator by differebce sud write over 10, deo, in, oun, oro for the bisth placos ant sids substract thls suswer from 2 and pour places aud has. Substract the anower froan 2 and your It ther given aumber ls sinall pae ull tie fruetlonis pesarly as large as 32 only two or three are Decessary
Exawple. $-3^{2}=\sqrt[5]{3^{2}}=\sqrt[3]{9 .}$ Difference -23.
$83=-2875$
$\underline{93 \times 23}=\frac{599}{0400}=.0826+$
$039 \times 33 \times 3=36501$
$00001=, 0056+$
$39501 \times 23 \times 7-597661$
3976er000 $-0179+$
$687601 \times 25 \times 19=\frac{2568100607}{2621+4000000}=.0097+$
Sth Dumerator $\times 23=59066319711$
$\frac{10485760000000}{}=.0066+$
6th vunaerntor $\times 23 \times 29-3939723524725$
1 Н44051200000000 $=.0033+$
Sum $=.4424+$ Subtact from 2.
Answer $=1.6575$. Correct to two decimal places.
Again, in Difterence is 5 .
80
$5 \times 5=\frac{25}{6400}=.0039+$
$25 \times 5 \times 3=\frac{375}{1024000}=.0003+$
Sum $=.0608+$ Sub4rset from 2
Avawer $=1.9931$. Correct to three decimals.
A slmilst rule can be given for numberg between as and 243.
W. W, Toniry,
Spitughill, N. Scotia

Ventilation

Editor Colitery Esgineer and Mctal Miner:
SuE:-In the Docember bsoue of thls journal, " Alas" gives a drawiug of doable eutry system sud requestis tiant some of your readety give plans for veotilating the sam witb the lenst number of doors and witbout doons
I think that Ajas might have showed a few cross-cuts on his drawiog between the entries.
I sabmit the folloming answer showing bow it cas be revtilated without doors:

Yours, ete
Joirs Piestcank:,
Laspille, III

What Electrieity Can Do

Kome lidea of the diveraity of uses to which electric motors are now being jut ubd the raplif spread of evee tricity lo different directions masy be gathered by planclag at the liat of orders for motono received in the Power Mining Department of the General Blectric Company daring one month this summer:
Operatiog mising machbery, shoe factory, operatiog a yaru factory, a tannery; a puwder mill, a wntet
factory; Iroe worling mawhibery; 4 foubdry; holste for factory; Irou worling manhbery ; u foubdry; holsta for
 charch organe f operathog woolen mills.
These orders are scattercal throughout the following States; California, Colorndo, Imblawa, Oblo, Con wecticut, Michlgan, Peansylvania, Rhode I-labd, Wis ermsin and New York; Lima, in Peru and Rio de Jubelto
in Brazil.

PRIZE CONTEST.

PHIXRS GIVEN FOR THE UEST ANSWEBS TO gurstions helatine to minine.

For the beat snswer to each of the following questions, the value of 81.00 to any of the books to our book catalogue or stx months' subseription to THE CotiszRy Evornerm avd Metal Minge:
For the seoond best answer to esch question, the ralue of 50 oents in sny of the books in our book catalogue, or three months' subseription to Tus CoLsisny Exgiverit and Meral. Miseit.

Both priees for annrers to the same guestion foill not be aroarifed to ang ene person.

Conditions.

Firse-Competitons must be subseribers to Twe Cot-

Second- The vame and address in full of the coutestant must be sigmed to encb ansmer, sod each anawer must be an a ongatate pajer
Third-Answers mast be written in ink on one slde of the paper only.
Fourth-"Competition Contest" must be written on the envelope in which the answers ste sent to us.
Fifld-One person may compete in all the questions. Sirth-Our decision as to the merits of the answers shall be flanal.
Seventh-Answers must be malled us not later than ode month after publlcation.
Eigath-The publication of the answers and names of persoos to whom the prizes are awarded shall be considered sumficient notification. Succesaful competitors are requested to notify us as soon as possible as to what disposal they rish to make of their prizes.

Competition Questions for January

QeEs. 199. In the construction of our new safety Lsmp, do you think we shoald adopt the prineiple of the tubuinr poles that are the drethguisbiog febture of the Gray lamp. This lamp io preferred for gas teatlog becsuae it cas detect a thin stratum of gas juat under the "makes" of thls lamp to eut off the supply of air sowe the peles, and sitult the aupply noens the glase air down the poles, and admit the supply above the glass cylisder, so in the Starsaut lamp, When it is bot required to teat me three questions to ald me in deciding the point at

Firet. Wby is the gupply of alr from the poles out off wheen the lamp is in ordinary use?
Second. When the Inmp is fed with air from the poles, it you give it a quick sudden drop the light goes poles, it you give
out. How the thie?
Third. When the lamp in carrled in alr charged with gas, if you move it quickly and suddenly upward, it fllls with if sume. How lo thle?
QuEs-200. We are going to proapect for conl, and st first we will only search for indications by exsmiblay the exposed rocks, and therefore we must get up in good sbspe our paleontology, in so far as the foesils that characterlae the Sllurian. the Devonlan, the Carboniferous and the Triassie formations are coborned. Will you then sestat us by naming the examples that we ought to know, abd give them under four heme
First. Nepstive examples, as of the fauna of the slumian and Devoelan seties.
Second. Poeltive exaraples, as of the fauns of the Carboaiferous and Triassio formations
Third. Negstise examples, se of the flors of the Silurian abd Devonlan formatlons.
Fourth. Positive exnmples, hs of the florn of the Triassie and Carbonifecous formations
QeEs. 301. In M. Mungue's theory of the equiralent
ortiles, the following ejustion ts given $A=\frac{4 Q}{W G}$,
and I will be obliged it you will inform me how he gete 4 for a constant. I know he takes the rena contracta oribice, Q la the quantity of air in thousnods of cuble feet prot minute and II G is the water guagen
Ques. 202. We hove a seam of coal wien
foom, and the immerlate root is a slate 9 foes thelt wet avor, hid the inmecdlate roof is a slate 2 foet tbick and
i falls. The senm is + feet thick. is at a depth of 619 feet, abl coubi=ta of a soft coline cosl lying nearly level vent, abl coubi-4s of a soft cobing cosilying nearly level.
We have tried longwall morking anil it has proyed. Wethave tried lotgwall worklog sud it has proved a F00 acres avitlable abd the theld is nearly spaane. The coal is valusble for colse making and we cannot give it up, thet will you send us a beat plot of how you would work it. You might locateyurr ehafts in the middle of the thedd, and give us the slpes of your ronds, and pillars, If any.
QeEs. 2006. The name coal senm is pitchlug lieavy If oee macion and in anotber it is lying quite level, The thlelnees abd quality of the conls are bowever equal in the two cases, and we wish to invest in one of them, which do you prefer and why
QuEs. 34 . We have three mines all working the same reln, and we will call them A, B and C. The cover, the floor, and the depth sul] thlekne8s of the conl are in all the chses about ejual and the syotem of workiog this 4 oot vein is the same at cach mine, and that is longwall alvancing. Nuw the superintendent at A, works on the Flibciple of bsyiug plenty of "pat room" or a working face far te excekg of that reguired for Immediate use. The superfutendent at B keopet mo more workfog face open than is required tor immodlate use but belleree in baving all ready for unexpected events. The saperIntesdent at Q does not believe in plans for futare workIng, "hecauee" says be, some ove may come after him and reap the larvest of bla labor. This belug a good preseptation of the thrue casen, wIII you please glve vertieat how it is that ouly one of these mitoes pays the company, whille the other two are a "thead" loss, nod be carceul to say which sulne rays, sod show the rensous nhy it does so.

Answers to Questions which Appeared in Novem
 ber and Previous Issues, and for whioh Prizes Have Been Awarded.

Quks. 175. There is at present a ready market and a good price for flre-bricks; flooring tilee for flre-proof balldings; common bricks for fllligg and backling glazed and
drais traps.

Orar Coal Mining Company wish to share in this manu factare snd traile, and bsve desired me to make dample bricks out of the undevelays of tive different coal seam we are working. I have done so with the following reaults. is the of sesu A makes a hard biroog red bilck but the dressed clay makes a poft white brick that is very porous clay of sesm G makes soft white briek that la very proms and speokled with blackish brown spots: clay of gesm D makes obsol coarea graloe 4 bilck, and of a black and blulsh volor; clay of scam E maken white briok that is very strong and fine in the grain. Now I dealre to know two thinge to evable me to make as satisfactory report to the company
Ǎret What classes of goods as
beat adapted for making? give to the bricks thele different elasmacterlatloe
Asc, First.-A would make good newer pipes.
B would mske fire-bricks and good flooring tiles. could be clnased as Nory go
D would make good filling bricks of would rasiat atmoepherio iodwetboes in exposed situations.
E would make good faclog bricks.
Second. All clays contaln more or lece of the following impuittes: pottsinis, sodium, calelum, Iron and magoes Suns.
The beet or No. 1 clays contain only traces of these towever, and the grester the proportion of the impuritles prosent, the harder are the brlcks, and the grester is their fusibility. Such brick are an Iron red of brown it color, and when highly heated in burning, have a glasay appearance when cold.
Thu chlef constitueats of fire clay are kaolinite that is infuatble and shrinks, and quariz that does not abriok J. Jenkiss,

Dingess, W. Virginla.
Sroms, Gso. Brown,
Falls Creekl
Clearfleld $C o ., ~ P a . ~$

QEgs. 176. Hece are two samples of bituminous coals, and in chemkal compoaltion they are both allke, and ground amsil suit steaped in hot water. Hot water flanolvee out of sasmple A, nitre, and out of sample B commones out of sample A, nitres, and out of sample B, effect will nitre have on the coking of sample 4 , snd what effect will common salt have on the coking of sample B.
Ans. Along with the nitre in A, there will be the bisulphide of Iron or pyrites, and these coojoistly will rubler the coal very inflammable and deatroy the pitchy binding of true coke. The following experiment fally astabliahea the fact just botived I When a carbonacooua and siltrie aclids, and drled, a scrateh made on the wood, veen with the fluger nall causes the emissoe of flame Sample A will makn a silvery coke beesuse earbon aill not bara tn chlorfiee, the cormmon salt belog NaCl . it is clatmed that common aalt in coke deawpharimes it but the samplea leated do not juatify this sonclubloe.
J. Onsisben,

Henry Elted, Ala.
Sround Prise, Cmas. E. Bownos,
Tracy City, Teun.

Quss. 180. The action of obe of our mine pumpa a very peculiar, and it will startle you wben I tell you, that any tucrense scoove a cectain spoed of the priston redaces the lifting power of the pump, and at another neresse of speed the pamp loaes the water altogether Now as I would like you to explain the tricks of this pecullar pumap I wIII give some particulark. When the pump pleton is at the bottom of its stroke, it is 12 feet above the level of the supply water, sud as the force to ift the keep valve sad owercome the friction of the water movigg through the tail of the pump is equal to a
two-feet columan of water, we mas reckon the neesn lift Wo-feet columan of water, we masy reckon the neesn lift
to be 18 feet. Will gou thes fell me two things.
FYiret. What is the highest apeed at which this pump an be run to obtain a maximum effect ?
Sneond. At what piston apeed does the pump lose his water altoget her.
Ass. Fort. The speed of the platon must not exceed the velocity of the entering water, to obtain a maximum pefect. A column of water 34 feet long will balance the pressure of the atmosphere. The velocity of water into vacuum is 40 feet jer gecond, or the square of the In the example the equiv.
Is the exmmple the equivalent of the , lift is 14 feet.
then,
$=-\sqrt{(34-14)} \times 1,000)=\sqrt{\frac{30 \times 1,000}{48}-25.81}$ feet per second, the velocity of the water on eetering the pump, when the piston attains its highest speed.
second. If the slip of the valves in the pamp is equal to 1 per cent., and the velocity of the piston in feet per misute is $95.81 \times 60=15+8.6$, thees when the platon speed ls 100 times quicker than the apeed of maximuna effect or $15+, 800$ feet per minute, the puap will extirely loose its water.

Thoman D. Surra
Seond Prise, Dayid P. Beows, Dunbar, Fayette Co, Ps.
Quas. 187. I am still busy with the laveation of our
proposed new satety lamp, and I still crave for a little of
your ssalatsoce, whlch I have no doubt you will cheerfally give by snswering the following three queatlong 1st. What ahould be the diameter and length of the gsuze cylinder if I use obe; or if I use two, as is dones in alons for of the Hisaut, what monda be the beat diano the slase youl of the
ed W you name
the sinns of the wires and merabres of the gauze, and how many lines should there be to the id. What
d. What ts the use of the bonnet or close shield, nod bould we adopt one in our new lamp?
Axs. First. The length of the gnuze cylinder shorald foot exceed 6 inches, or the dismeter $1+$ incloes, sud when a mode s ittle cylibyer to used, the outalde ooe shoat dimensjons given.
Sicond. The mumber of mesthes or opentogs per enuare Inch shoald be 284, and the lines of wire per linest Inch should be 24 .

Thind. The

ylinder from the of the bonnet is to screen the ganze be flsme through the mophoe, dranghts of mind, that blow the excess of alr and gas that enterg above the flame of the wiek, or In short the boanet is to limit the supply of alr, to that required for the oll flame only.

Second Prise, Jos. Vibann, $4 \geqslant 8$ Toatl Street,
Hollsopple, Pa. La Salle, III.
Quks. IS8. We are going to try some experiments by uxploding Aredamp to a close, strong veseel, made of orel, fasion in mas 10 volumes of air are saturated mith ope volume of marab. ras To the steel vesoel messe going to attsch a preseure gauge, snd I will feel obliged if you will tell me what the preasore will be at the moment of the explosion and after the steel shell and its contents or remsining gased have cooled down to the present or actual temperature of the outalde air?
ANs. The burntigg of obe poubd of $C A_{4}$ ts air, should produce 20383 units of hent
The one pound of $C \Pi_{4}$ consists of . 75 of s pound of carboo, requitiog for its combustion 2 pouble of oxygen and . 25 of a pound of bydrogen, reguiring for its combustion 2 pounds of oxygen, and therefore to burn one pound of $\mathrm{CHE}_{\text {, }}$
Tskiog the erectifc heste at constant volume, then the unlta of beat required to ralee the temperature of escl of the bodles to the resalting mixture one degree wilt be as follows:
$\begin{aligned} & 2.75 \text { pounde of } C O_{2}=2.25 \times 177=470 \\ & 225 \text { pounde of } H 0=2.25 \times .305=696\end{aligned}$
$\begin{array}{r}2.25 \text { pounds of } H 0=2.25 \times .305=636 \\ 13.00 \text { pounds of } N=13.00 \times .174=2.349\end{array}$
18.00 pounds of
$\times .17$
S.

The temperature of the reault will, th-refore $36383=7801^{\circ} \mathrm{F}$.
$3.505=7801^{\circ} \mathrm{F}$.
By Gay Lussac's law the pressure will then be at the poment of explocton

$$
14.7 \times \frac{(450+7801)}{(4.9+41)}=242.844
$$

pounds pressure per square lich, and after the contente of the vessel have cooled the pressure will be

$$
242.84+\times \frac{(459+41)}{(469+7801)}=14.7
$$

poubds pressure per square Inch.
Thomas D. Smith,
Coal Valley, Pa.

Sicond, J. M. Javge, stoux Falls, S. Dakota.

Qoes. 189. We have on hand a veutilating fan that an disclasmge 120,000 cuble feet of alr per minute, with a lestal effect of 30 H . P. We ane going to sink two reclangular shafts, whose lengtha have to be twice their breadths aod thelr areas have to be equal. Thoe of them will be as upenst nod the other a downesst for the renillstion, and to prevent a needless waste of energy we Wiath the shafts to be of amch an area that obly oberthird of the ventilatiog power, of $10 \mathrm{H} . \mathrm{F}$., shall be neceakary alculate for ua the ares and the lepgeth and you, then, quiculate for us the ares and the length and breadth required tor each shaft
$\mathrm{A} \times \mathrm{x}, \frac{10 \times 23,000}{129,000}-2.75=$ pounds pressure used in jassiog 120,000 cuble feet of air per midute through upcast and downcast phafts. $8 \times 16=128=$ assumed ares of shafte. $\begin{gathered}120,000 \\ 128\end{gathered}=937.5=$ velocity. Then, 2.75×129
$00000001 \times 878906.25-40,019+=$ rubbing surface, and $\frac{40,019}{48}-884.375=$ length. or depth of both shafts, and, 834375
$=417.5-$ as the depth of each shaft.
Therefore, the area of each shaft is 128 feet. leogth. 16 feet, brenith, 8 feet and depth 417.5 .

Tnovas Hespos.

Secund Prize, Joun Fartenkb

488 Tont
La Baile, IU.
Qugs, 190. We bave two alrwaye which we will call A and B, and they are both 2,000 yards in length, and the air is blowa through each of them with a difference of potential equal to 2 inches of water gauge. A, however, is 10 feet wide and 6 feet bigh, and B is 15 feet
wide and 10 feet high, sod as we do not require moreair wide and 10 feet high, nod as we do not require more air to pass through B than through A, will gou find what
quantity is passing along A, and what should be the quantity is passing along A, and what should be the
ares of a regulator in B to pase the same quantity as
that of A; the rena contracta belng taken at .65 , and k
t. 00000001 .

Ass-Quantity of alr flowing through $A=$
$\int_{k}^{p} a, ~ \times a=\sqrt{\frac{10.4 \times 60}{00000001 \times 142,000}} \times 60-\left\{\frac{694}{.00142}\right.$
$\times 60=34,200$ cu. ft. per minute.
The quantity of alr pasaleg throngh B without a reg. ulator would be
$\sqrt{\frac{10.4 \times 150}{00000001 \times 300.000}} \times 150=\sqrt{\frac{1,560}{003}} \times 150=$ $108,163^{00000001} \mathrm{ft}$. per minute; but se oely 31,200 on. ft. per minute nre to pass through B, the differevce of potential for the oppoaite sides of the regulator will he $10.4-\left({ }^{10.4 \times \frac{84,200^{7}}{105,165^{2}}}\right)=10.4-\left(10.4 \times \frac{1}{10}\right.$ $=9.36 \mathrm{Ibe}$.
The velocity through the regulator will be
$\sqrt{9.36 \times 1,800,000}-2,190 \quad=89.147$ feet per second or 5348.85 eet per mioute, and allowing . 65 for the tena contracta, the opealing of the regulator to

$$
\begin{aligned}
& \frac{34.200}{0948.89 \times .65}=\frac{34.200}{3466.783}=9.8368 \text { square feet. } \\
& \text { Jons Vrnser, } \\
& \text { Second Prite, David P. Bnows, Lness, Iowa. }
\end{aligned}
$$

Dunbar, Fayette Co., Ps.

Qu8s. 191. An Important veln of Iron-stobe is outcropplag on a billside, and I will be obliged if yoa will calculate for me teg heleht sbove a potnt we will call A. To reach the outcrop, the pearest course is to descend Trom A to B and then sscend to C, sed from C ascend the hillside to D. Now D at the point A makes su agle of elevation of 29 . The distanco from A to B $26^{\circ} 26^{\prime}$. The distance of C from B is 125 feet, and C at the point B, makes an aggle of elevalion of $18^{\circ} 26^{\prime}$ The distance of D from O measured up the side of the hill, is 240 feet. What then is the vertical helght of D above the level of A, when the points A, B, C, and D all lie in the the snmee vertical plane?
$A \mathrm{NB},-$ Point B is atn. $25^{\prime} 26^{\prime} \times 91=40.500 \mathrm{ft}$. lower than A. Polnt C is sin. $18^{\circ} 26^{\prime} \times 125=39.525 \mathrm{ft}$. blgher than B.

Point A is
. 984 ft . higher

Solving the right angled trlangle © A C, we bave slide $c C=.984 \mathrm{ft}$; \& ble $c A=(81.484+118.586)=200.0 \%$ ft . We find asde $A C$ substantistly the same leagth as $C A-300.07 \mathrm{ft}^{\prime}$., and the angle cAC' to be $0^{2} 16^{\prime} 54^{\prime \prime}$
Solving the triaugle $A C D$, we have slde $A O=200.07$ ft, alde $O D=240 \mathrm{ft}$, snd the angle $D A C=129^{2} 8^{\circ}+$ $\left.0^{\prime} 16^{\prime} 64^{\prime \prime}\right)=29^{\circ} 19^{\prime} 64^{\prime \prime}$
To find nogle $A D C-240$
To find nugle $A D O-940 ; 200.07: \quad$ GRaNGS9 : $408 \$ 628$. $4083698=$ sin. of $24^{\prime} 6^{\prime} 7^{\prime \prime}-$ angle $A D C$
Conatroctleg parallelogram $A C D E$, angles A and D
are equal ($53^{\prime} 25^{\prime} 1^{\prime \prime}$ each), angles \mathcal{K}^{\prime} and C ars also are equal ($53^{\prime} 26^{\prime} 1^{\prime \prime}$ each), angles E^{\prime} and O are also
equal $126^{\circ} 33^{\prime} 59^{\prime \prime}$ ench) and we find the equal $\left(126^{\circ} 38^{\prime} 59^{\prime \prime}\right.$ each), and we find the length of the
perpeodicular a 0 to the $8051620 \times 240=192.760$ ft perpeodicular $x(7$ to be $.8031620 \times 240=192.760 \mathrm{ft}$.
Deducting ef

Deducting $\mathrm{CC}=\frac{198+\mathrm{ft}}{191.776 \mathrm{ft}}$
D is therefore 191.726 ft . higher than A,
Jous Vrenebs
Lacsa, Ioma
Secand, I. W. Casty,

Osliniooss, lowa.

QuEs. 189. What would oocur if the force pumps for feoding a bollet were set at ab elevstion of $\overline{5}$ feet above the level of the feed water in the heater when the teenperature of this water was $218^{\prime} \mathrm{F}$.
Ax- A vlolent pousding, the explanation of which is Water b
boll to a vacaum sod produce Fahrenhelt will begin to pooll to a vacuutu sud produce steam with an increashong When the ateam preasure will equal that of the atmosphere. In a pump a partisl vacuum is prodaced in the water end by the movement of the plunger int which the water floms by atmospheric piresaure. Wer, Vator when about at 912" in the operl air wil poduce sten on the alightest prowocstion, such as any redaction in pressure.

To force the water into the pumpa 5 ft , sbove, will require a pressure of 5×433, or a little over 9 lbs. on the surface of the feed water or, -what is just the ssme-a reduction in preasure to the suction plpe of like smount. It the pump is started and thls 2 lh . preasure removed, the water will Immediately boll and produce steam, and we will pump steam instead of rater, or steam and water both. Oa the return atroke of the planger the steam will be condensed, and any water that has entered will be met with a blow as if from a stesm hamaer.
J. J. Onmspre,

Scoond, J. W, Cantt,
Oskslocesa, Iоша

The Colliery Engineer

 METAL MINER.pUBLISHED honthly at scrantos, pa

TEE COLLIEKY ENORNERR COMPANY, PTRUBEKA

TERBS

Subscription, (funce in wr vis, conto.) \$2.00 a Year

F. O. Orders.-Yon cas buy a Nowe

Express Money Oriters cas bo cotelonot at any offee

Reghatered i, ettern,-If a Meneg-Onter ronomot of
 We Cannot Re Remponatbte for mosey aret to abova

EXPIRATION OF seBSCHIPTIOX.
Tee date aftor yoor onime on the wrappor of Tui counint

HENEWALT, ETC,

NOTICE OF DIM OXTINUANCE.

CHANGE OF ADDHESS.

 All gocumuntcations mbveld to midreesel.

THE COLLIEHY ENGDEEK COMPANY,

LONDOX AGENTS.

Patraxomerillotek, Cuakimo Cone
LONDON, w, C ENGLAND.
VOL XVI. JANUARY, $1896 . \quad$ NO. 6.
For Table of Contents see page ix.
THIS JOURNAL HAS A
LARGER CIRCULATION COAL ANO METAL MINE OWNERS AND MINE OFFICIALS
 above Statee, Territorlea, Proriuces, eto.

TO MANUFACTURERS AND DEALERS IN MINE EQUIPMENT AND MINE SUPPLIES.

THE sctuas paid creculation of The Coulugry Esgiserin asd Matal Misen excerds by fify per oent. that of any other mialing joarnal. Its colomns are devoted exclualvely to the publleation of Aret-class artictes on mislug metboda an d moluing to miniog men. It reaches more mbe owners and mine oficials than any other pribileathon. Is circulation covers every molulng fleld in Notth Amert-a. Ita subecribers are at afteen houlred and seveuty-three postofloes in the Uuited States, British Provloces and Mesleo. Its editorial slaff and force of pabl contributors embraces only mee wbo have had vxirielve practical experlence as well as the oretical knowhdge. Its mail. log list is open for the irspectlon of alverlisers and prospective sdrentlecre. It is unquestion ably the bent advertloing wediom in America through which maustecturers of power plants and andlavere, milulag machinery, and mintog eappiles may make their bustbess k nown lo every Amencan maleing firld. A bsidsotee and useful probphlet on Mine Equiparest asd Miso Suppiles, containlig, valuable laformation mad entatemeats

Examerit axd Mital Misez will be seat free to any manufacturer or dealec in mine equipment or tuppliee, ob applicatlon.

COAL DUST EXPLOSIONS IN MINES.

MR. DONALD M. D. STUART, F. G. 8, in a pecture delivered at the Techaleal Schoola, Derby, Eagland, on the above subject sald "An experience of aboat twenty years in collieries where coal dust aboubded, where shot firing was general, sud gob flies had sometimea prevalled, had, up to the gear 1893, led him to the concluston that coal dust was harinless in bon-gaseous mines." Explosions at the Camerton colllerlea, where for over one hundred gears no tasee of gas had been foand, deepened is blo mind the myatery as to the cause of the explosion. A simple calculation showed that the quantity of beat generated to the explocive that was fired was utterly todequate to prodace the results observed after the explobion. It was oely atter many months' reflection, and some experiments with coal gas, that the dimeattles were removed, and be found that when conl-dust yielded up its gases under the action of hest from an explosive, cbemical actions were initlated that provided a solatton of the observed phebomens. Upon thla basta of fact the concluston became treesistible, that a disastrous explosion, slaillar to what oceurs in gaseous mlues, had been produced by conl-dust alone; abd there remalned no bladow of a doubt in ble mind that coal-duat was as explosive agent. A more recest explosion at Timstury collieries, also non-gaseous, which be inveatlgated, preeented phesomenn identical mith those which he bad obeerred at Camerton, aud conflimed the cobeluatons at whteb te had artived.
He then turned bls attention to explogions in gassous mines, and found that the phebowena in these exploslons correspoeded with those observed in noe-gasevas mines. He exponeded bis theory that an explosion to a mine was charncterized by numerous local exploslons, each diaturbance belog Isolated and preceded by a lengith of mine passage, to which the materials were practically Io their bormal atute, or had not been sutjected to violent forces.
Mr. Stuart illustrated bla lectare by stereopticon vlews of the poenes of explosions in several collierles, showing the placee where the disasters were origiuated, and their subeequent development through the workliges. Each dignster was traced to its origio, and the developments of the explosions mere showa to be charactedizel by numerous bulabliary explosions, which left their evtdence In leolated exhibitlous of expleelve violence. He explalsed the nature of the forces in the explosive distarbances, and lo the latervenlag apaces, and the extent and causes of disurrangement of materials is the latter, and with that qualifica:lou be remarked that the Belds of disaster ta the Camentoo asd Timsbury collivites ex-bibtr-d the effects of ugmerous dis'lect and violent distuibanees, in wileh duors were shattered to fragruents, Iron mork broken and distorted, trans broken abil eruappled abd theis contents seatlered abtroad; ralle torn from the Ir sleypers, timber fractured and knoeked down, anclive demollibed, stope root ripped in thleksenses up to 3$)$ feet, sud men muthated, esch disturbance belug preceded by lengtha of mine passage in which the trans were ubibjored and their contents undistartiel, the ralls were unnoved, the timber unbroken ant uedlaturbed, the arches uudanaged, the roof ta its natural state, aud the wen not motlated. The evergles in the tisturbances, and the energles in the futerrealog epsoes, therefore exbilited distinct modes of action.

He slao revlewed two other bitable explostons and showed that the ruio wiought and the extent of tho mutilation of the bodies found to different localities proved hila heas.
Wih thla eridence and numeroas other facts of the same definite character, sir. Stuart focmulated the theory of loternalttent subsidiary explostons, and that the mystery of colllery exploshons mast diappear, for it was no longer neewesary to supproso that thero were mudden and lucredible oatbarsts or accumulatlone of Bice-danap at the moonent of the diesster. He atated that cond duat, aloniss and ownigahene pregent ta the mines, was capable of glving the to expications, and of prodocing the pbenoanetion of subsidiary local explodous.
In conerluding his lecture, ho sahd, "We have now examuend dirasters th 'ypical gnscous sud non gaseous mbers. mat have obreetval, that th their merption, anid to thels developmest, thry prebent an ithent is at ratiomate that demambls fir its explanation an Wlentical esplosive
 the cxnumon sonke of the gases that producel the cnlamittes to which tho had drawn tbele attomione."
Throughout hla lexture Mt. Stuat, heturally treated
ouly with explosions in British mines. His conclaslong as to "coal-dast, always and everywhere present in mines" does not apply to anthracte coal mines. The dust may be present, and may to a amall exteot, when present, fintensify a gas exploaton in an anthracite minnt, but it will not originate an exploston or propagate it. The low precentage of volatile bydrocarbons in antbracte cosl renders it freer from duat exploslons than the varlous other classes of coal. In fact thls feature indirectly proves the coal-dust theors. Some of the anthractie mines of Pennsylvanla rank among the most gaseous in the morld, and there has never been a gns explosion in one of then that has not been comparatively local in tis effect. In botb Brtieh abd American bttunalnous mines, bowever, the case has frequently been different. Esploslons of samall accumulatlons of gns have frequently been propagated by dust and carrled with varying Intenstity throughout all, or the major portion, of the mise morktags. Sodden outbursts of gas, authenticated by posittive proof, have occurred in anthructe mines, and have caused disastrous exploslons, bat the limit of the explogive force was comparatively small. Soch outbursta undoubtedly oecur to bttambous seams, and are sometimes the origie of explosions, but weare of the flrm opinion that the extent ot the workings affected, outalde of a timited area, depeods entirely on the quantity of duat present, and the cbemical compestitioe of the conl.
Mr. Stanrt's lecture, which was widely publisbed is Great Britain, has drawn out comments from such other eminent Brtish authoritles as Messre. Arwold Lapton, A. L. Steavengon, B. H. Thwalte, J. W. Monaldson and others.
Mr. Lapton enys, in a reeent letter to The Iron and Coval Tradi, Recien, of Lobdon, that "the exploskve nature of coal duat was demonetrated thiriy jears ago by Prench experimentess, and the fact was proved conclusively by Messrs. W. N. and J. Atklneon, in thelir mork "Explosions is Coal Mines" publl-Led in 1880 ; but notwithstanding this cobelusive demonatration, and the equally conclusive and most strililigg experiments of Mr. IIenry IIall, II. M. Inspector of Mives, there still remalued sceptics, of whom some mhere convlaced by the Timabary and Camerton expleslons. I think Mr. Stuart is doing a good work in bringing the matter prominently formard. Mr. Willism Galloway was the lvader amogg Engilah mining engloecrs; then followed the Measrs. Atktuson; bat it is pecessary to bave a sucoesslon of teachers to bring this truth bome to the rank sud flle."
Mr. Lupton dlacuaser the location of the greatest explosiro force in as exploston and says: ${ }^{\prime \prime}$ It does not $8 s e n$ to me that this is necessarily colucident with the position of the greatest evilence of explosive force. These evidences of force beem to me to be produced by a rushlog current, and I can coneclve it possible that the grestent rash ts not necessarlly at the place where there is the greatest intensily of heat or of explosive energy. For iustance, suppoeling the esplobloes to take place at the end of a heading, there could be no rush of nir reseept is ooe direction, and I think the rush would be greater at some distance from the ead of the headlug thas close to the end. Similarly, if an explobion took place in the middle of a leugth of roadway, the explosion travelling both ways, it is to me coseotvable that at the polat of origln there might be a deatral polat from which the rugh of air woald pass tn each directiou with luereasIng voloner, although the greateat heat abd greatect prusaure might be at the polat of origla, where so slgna, or but alight eigus, of violence might be observed."
Mr. Nheavenson, In discuselag Mr. Stuart's lecture is luelined to bey sarcastle. Iu his letter to our Loudon contomporary, he practleally colechles with Mr. Stuart's atatena-nts, aut calle attevtion to the fact that the latten's conelasloos were not origlual, but that they are the snise so other tareatigators. He eltes a namber of autherities to prowe this, and quotes as follows from the report of the British Commissloners on Acclanets ia Miuws, pabilobed in 1886 :

In discuesing the manner in whtch coal-dust operates ulose ta propagating flame from a blown ont sbot, Mr. Hilt does but adrawee say point of boveliy, bis vews belng that, as sugbested by Fiaraday and others, the flame furzibhal by the duat is due in part to tho combustion of the conlduast iteelf, and is jart to that of the gins developed from the dust partickes by their es. pusure to beat."
While Bte. Steavenson asserts what is an undoubted truth, he cuu not detract frour the credit dien Mr Stuart for his lavesugations and the puobility he lo giving the fiecth that he denonstrated to ble own satisfaction. As we rend Mr. Stuart's lecture, we are tupresed with the idea that he is a wan not batisfiod with besarsay eridebet or evidenee dealueed frum the fuvestigations of others. He wantel his ows, he recured it, aod he gives it publletty. Tberefore the fo cetitied to honorable commenda-
tion and we regret that an nuther of Mr. Steavenson's ability should attempt to detract from his bovor by saroustle references to former investigators who arrived at practically the same conclusion.
Mr. B. II. Thwaite dlscasses the subject as follows : "Tbe proot that coal-duat disseminated in air ls or is not explostve to the sbsence of marsh or other coms. bustible gas can ouly be satistactorily estabilshed by a long series of teats with the dust from conls that bave varyligg content proportloes of volatile bydrocarbon and varging degrees of pbysleal आoeness."

I belleve that, given that coal-dast is suflicenently Ane, eves if it is pure carbon, or without the least trace bydrocation in its constitation, if it is well disseminated througbout the alr, and is ta explosive proportion to such alr, it will certainly be explosive. We have many exsmptes of explesions in dour mille aod in the coal bunkers of steamshipa. It has not beea coatended that the presebce of gaseous combustible nasoclates was the cause of these exploslons. It the explosive proportion of carbon conl-dust ratio to the alr is lom, and this mis. ture fllis long and attenuated roadways in mines, the flame of the explosion will pass along the roadways, but Its fall explosive energy will not bo immediately developed; the explosive action will be tis requential sertes, and the violence will depend upon the proportion of the suspended carbon ratio to the air in the different parts of the rosdeay, abd upon the charncter or form or size of the egress for the escape of the explustve alame, In
some proportions, as thls egress is contracted, the Inteasity of the explosion will be locreased. ${ }^{7}$
"Angooe who has had experience with the workiog of long flues for the conveyance of combuntible gas knows that the explotions occastonally occurriag from condessation along the flues act with varylog degrees of energy upon the manhole lids, and the actlon is distloctly sequential."

It will thus be seen that Mr. Thwalto brlleres that anthracte dust ueder certale coeditions is exploeive. There is a possibility of his belog correct, bat as prevlously otated, there has never been a coal-dast explosloo In an anthracite mive, and some of them are at tlimeser duaty as to make it fimpoesible to see a light ten yards off.
Mr. J. W. Ronaldeon, whlle not disagreelng with Mr. Stuart's theory says:
" I gather that because evideaces of force bave been found after an exploslon to be, not continvoua throagbout the area affected, but lo apparently leolated seetions, Mr. Stuart concludes that there must bave beed a beries of explosions, each one fsolated from the others. If this is his argumeet, 1 canoot aceept it as conclusive until satikfed with the proots in eapport of blis contentue."
One of the Britieb Mive Inspectors, in commenting on the lecture, anonymously, to The Iron and Coal Trades' Revies says:
"There can be no doubt that there are coal-dast explostons, but they require a detoeator in the sbape of a shot or an explosion of flredamp to start them.
"When oncestarted, It depends upon the dryvess of the dust and the amount of air contained in the workings, for immediately an explotlon commenoes, all the supply from the surface is cut off. There are many polats deeding further exambation, such as the quantity of heat ovolved and tis actioe in keeplog up the dume.
"In this way there may be an explosion in a non-flery mioe by the dust belog igulted at a ahot.
"I belleve that In all the large exploalons quoted by the lecturer conl-dast did perhaps nine-tenthe of the danage. It fullows that when na exploston happens is a weil. ventilated colliery, the effect is coore serious than in ose that is badly weotilsted, because there is more pure air for combustion.
'Ot course, ooce establish the fact of a dust explosion, the queetlon follows: Why do we allow explosives to be used in sach misees ? This is a very large question. The present idea is to have a flameless explosive, and there are parties who protess to have dlacovered such, bat I have not seen them set."

COAL IN ILLINOIS.

THE Report of the Mine Inapectors in the State of
1Hinola for 1894 has beru reepived from the Illinots for 1894 bas been recelved from the Burean of Judustrial Statistice of thst state. It tables of statistics.
Bilefly summarized the Report sbows the total ontput of all grades of coal for the year 1804 was $17,118,526$ tons, a decrease ns compared with the prodaction of the jear 1893 of $2,835,988$ toes. The privelpal cause of this decrease mas a strike. Thls strike produved the ueual collateral consequences of all strikes; asamely, a considerable tacrense fo the perventages of tatal and now-
fatal soeldenta. The futal accidents shor ail locrease of
26% over the average number of the previous twelve years, and the non-fatal aceldents sbow an increase of 30% over the sverage. The Report ascribes the cause of the Increase lo the number of socllenta to the excessively focreased number of men emploged nod the very large percentage of toexperlenced twen. Natamally this has conslderable to do with lecreasling the peroentage of accldents, but another Important factor that has been overlooked in the Report is the condition of the mives succeeding long periods of finactivity. During the tlmes the mines are lile the pillars frequently distotegrate to a large extest and the supporting timbers are very much weakened. When the mlne is in active operstion these causes at dsuger are noticed before they bave goee very far and measures are taken that check the destraction of the root supports. When a mloe is blle for severnl months the "stitch in time" is not taken and as a result the worklags become more dangerous and remaln to uotil a sumblent length of time bas elapsed after the reaumption of work to enable all the weak polnta to be detected asd guarded agninst.
Severnl curlous facts are digclosed by the report. For example, the number of machines in use for coal cutting durlog the year 1804 was 296, or 14 leas than were in use in 1893. Cotocident with the diguse of 43% of the machines there has been a loss 13% in the sleld of lamp conl, and the reducel sield of lump conl occurs chselly, but bot exclusively io the mackive molalig dietricts. Machine milolog requires a long face and the long face caused the greatest settlement of strata, and crusblag of coal, during the period of the strike. When, on the resamption of work the macbloes were making a amatler sfeld of lump conl, the casual observir would tmagtee they were to blame and not the strike. Quotlog from the leport on machloe mioling we bave the followtog: "Machine mining is now virtually confined to the Fouth and Fifth Districts. Here is disclosed the lons and gala to the tonange of lump coal for flee years. This year's production shows a shrinkage of $2,247,615$ tons com pared with the year betore. The Pourth District sbows the largest decresse, the First District is sext, the Fifi in next, the Secont next, the emallest being the Third. Here then we see that the falling off io production of lump is the secood grestest in the First Distifet, that is intermediate between the Fourth and Fifth, and that the falltug off ts netther doe to land or machine mintigg, but to some otber cause such as we have mentlobed. The sumber of aceldent dev to falls of root and eldes is, weording to all mining experience, bere as elsewhere, atove 69% of the total number.
The State makea a fairly good showing for the ventila Uon of mines as 37% of them ste ventilated with fana ated locluding fane, furnaces abd steam jels, 62\% have artilicial vestllatlon. It is probable that the other 88% are very small worktigg.

Book Review.

Modery Exavisatiose of Sxane Esemexine.-By W. H. Wakeman. 12 mo. Clouh, 800 pegee. Price \$2.00. Publlobed by the American Iuduasifin Pubilish. wig Co., Brtldgeport, Cons. Thla volume conishath of a finefurirs' Gazelle of lioston. They she complied to A3 chapters, each ehapter belog the same an the sithele appearing in exch bsue of tbe periodical. The author has
 soande the techuil-alities of the subjext on which he has
writtes, but vuffortuialely he docs not go linto guflleteut written, bat uuforturately he does not go into gofllelent detail io make the book all he intesded asod clalus it to
b. It is a good work for practical cugineres, Itemeti, it. It is a good work for pracical evginerers, themest, giblet to ther averngre man whose easly vilucstion was
 the price for which it to gold. 118 only fante liea in tis
 lag too briefly ve eunse subjecta which chanot be wasle
clear to a man, unlets the bas a faik knowledge of eleclear to a man, und
metary phywich ete.
fisule 180 , Tad of Lanon Statistice, State op

 tables of anaisilics ete, to prove aud exempplity the wxit, and an elabonate tratise on the evils of and remedice
 together whit a coniliveral low of the sesales of the strike, the dedisou of the Supome Coert of lininois on tha
 opuolug of the Woant's Building. Woth's Collumbtan Experition, and Gowrnor Altgeld e address to the grat autes of the Universily of Itheoth, on Juve ?, 1893
 by lubt. S. Brulh, Qovermentive Priator, Melbomine
 as ove ut great valueto the mhe manaper, er whe owner,

 (3) Staistics. It is splesudhly y Hustraked, aud is worthy
of rebinding in moneething better than the uasan blue paper used by the British Government. It will be tound
of ereat futerest to evary ninier enriover of grest futerest to every minigg engineer in I motning
atadeot, pot only for its jueoeut wortb but as a book of stendeot, bot obly for it,
reforenco. for the folure.
reterenes for the fature
TuE Y
 calues.-By Berpamin Siwith Lyman. This it an Anthort ropriot frum tha Proceedtugs of the Americsan Phblosophical soctely. The arat la a description and on the Bound Brook Div. of the P. \pm R. R. and the eecond drecribes and discusses the fault at Chalfont, Bucks rounty, Pa, Both papers are linterestiog readlog for all turerested in grology and the stuly of tsults. Metallenaical. asd Otheit Fgatonks of Japaxkse SuouDs.- liy the same anthor. This is a repslot from adrance shurts of the J.arnal of the Fronkilin Institute for Jnauary lez6. Mr. LFmas, in this lestasee devisted that mas mone of a popalas patud preparrda moture interesting fo all elassers. Il is long experienen to Japin, In the practice of his profesaton, and bis furbiliarity with Japacese cutoms und methoith, togethur with his obscrving nature, speclally fits htm to describe the perallertiles of that wouderfal mation in an intellisent and correct manner
 Stimig. Anst. Govt. Grolozlat, Thls ts one of the
British Goyermments " Bliue Borks," and treats of the woal flelds in the proviuee of VI torla, Anstralia. It is illustrated by a colored geological map showing the tertisrg, voleanie and enescopse formations, and by a shilings. It is published by llobt. S . Bralo, Gove. Printer, Melbourve. Australla.
Tikar Boik of the Rooltix of Enoiskens, Usivensity of Mixkesira. This is ab Illasirat-d megazine consisting prisecipally of treations on engiopering subjots in which mining enginowring is repfesented by two artlelve, obe on Syetrons of Mining in Mlinesoln Iron
Mlocs. hy Chase D WilkInens, and one deartiptise of Mlies. Hy Chas D Wilkinens, and one dearylptive of
The Ore Testlig Piant at the Univestily of Mipnesotn
 Poster Baln, Asat. State Geologht, Ioma. This is a pamphlet or author'd reprin from one of the State reports.

Mr. Erokine Ramser, Superintenilent of the Pratt Mines Dievision of the Tenensises Coal Iron and lkaliromd Co., has been Chis Fuiloerr of the compastuat Geberal Mannger and Chief Engineer of the company.
the Jratt Mines Divialon be Me. D. J. Hoserndent of of the Pratt Mines convlet prisons. J. Aogers, warden Mr Pogera will convict prisonis.
to his ber oflice.
Mr. M. Q. Monre, Mining Eagtneer of the Cambria Iron Co, Johnstown. Pa. called os filends in Scranton
during the month. Mr. Moore is an old Scrantonlau and Is alwaysa melcome vieftor to his old bome.
Mr. David J. Llayd. of Pawnee, III., has broken the Illisota recond in thaft sloking. Last spring he started as alr shatt for the Chicago and Virden Cuat Co., and completed it to a depth of 893 ft . In mivety dayy. In Jame he malle a proprosition to the prople of Ihanee, III., that if thes would adrance him some capital, his would locate with thwn sod sink a shaft for coal. Mhs propabition was necepted. After waking all hits surface
 a depih of 315 ft . from the surface.
Mr. Wm. Grimith, Mining Eagiseer, of Scranton, Ps, The Slund /iecord of $\mathrm{N}=\mathrm{w}$ York. The orticles will treat of the sulject tu a compr york. The articles wili ireat $\mathrm{n}-\mathrm{r}$, and wilt eoutain much informathen for tivevtors that will prove of gevat valuo. Mr. Grimith'y raprikenes. his npperiunitles to gather the necessary data, nod big ablilty to make sound dedactions thriefrem, enture the resderg of that excel ent financlal journal, isformastion that will be well werib reading.

The Columbla Calendar.

The Columbia Pat Calendor for 1896 bas made Its apparance, represuthing the eleventh anbual lisens, and
 eyellag fisternity, 10 ray nothteg of the gevenal pulitio lins nepuired a tuectdedly friendly feeling for the ColutuLha Cal-udar, and lis antual silvent is looked forward to With batetest sud plensure. The bew Calebdar coutaling a minch better urrargement than in previous years, nove space having been allowed for marmornuda, while a greater charm has bevin adled by liberal Illubtration and a ubique amt convenient proaphyg of dates.calculated to muret the harried be do of buslenses nen. The Calewdar call be ohfataed foe tive 2-eent atamps by atdenslige the Calombar D-portamen of the Pore Masevacturisa Cos. Fasy at Hartford, Coan.

Western Penna. Central Minins Institute
At the sianal woveling of the Western Pewai Central Mtiming Instinute, beld at 'ritt-burg, Pa,, on the 2bith And 2 ith uit, the +leretiou for ofleers resuited as folloms:
 Mr Dasuel Bomen of C-megle. Vlec-Pretident; Mestre,

THE CAPELL FAN

Its Efficiency. High Water Gauge Obtained, and

An lotereatiok sad important controceno whr reently Io progrees to the columing of 7 se Colutery Guardian, betwoun Messss Wm. Fairley and G. M. Capell, regand. ing claims made for the Capell fan. Mr. Falriey takes
issua with the followlng statement pabliahed in our Loodoe coetemporary on Xov. 8th:

The patentee states that the new fan has been suecessfully intioduod ieto the deep pits of Germany nod
Belgfum worklug thle geams, and gauges as high as 11 Belglum worklog thle seams, and gauges as high as $1 t$
in and i2 ta. have been obtained with it. Mr. Capell to abd 12 in. have beea obtained with it. Xr. Capell
aloo informs us that the rolumetric eflicleory of the fan has been largely increased by the new form of construc titon.
We reproduce Mr. Fairleg's criticism abd Mr. Capelly
anewer terlatim, merely noting that Mr. Wm. Cufford. suewer terfatim, merely moting that Mr. Wm. Cllford.
of P'ittabarg, Pa., Amerlicnn manutacturer of the Capeli fan states that "a guarantee of $200,000 \mathrm{cu}$. ft. at 12 ' W. G. menbe that the fan will produce that volume it
the ribe wil pasa it at that water guage. In the cases meetiloned by Mr. Capell, the quastitles were psssed at jess than the guarsnteed water guages."
To ehe Edither of tar Colliery Guardians.
Susi- At D .889 of your last issue it is reported that
thie new type of tan has recestly protecel a watarthe new type of tan has recently produced a water-
guage of 12 in . It may be well to consider belelty what this awount of pressure representa. This torce is equal
to that gebersted by a body revolvigg at the constant
epenal of $\sqrt{\frac{12}{.00045 s}}-161.86 \mathrm{ft}$. per second; to other
mords, 12 in . of water-guage is the result of a fan runfiog contlouously st thts tip speed, reckontng the maschibe to be pertect as regards the production of pros-ure. Pans, bowever are not perfect in this respect,
abd do mot usunlly produce more than oue-half of the theorstical pressure, bat it it be assamed that this nem typu of raschme has a masuotuetrical efliciebery of .8 , it
will lere requifed to runat a spevd equal to the theoretical mill be required to runat a speed equal to the theoretical
pressure of ${ }^{12}-15$ in. water guage, and therefore would have to run at a velocity of $\sqrt{\frac{15}{.000458}}-180.97$ If per eecond. Amoagst the recueds of scores of ohservatlons of the work done by fans, wo such speed ls
to be found, so far as the writer knows. Indeed, he constders htmselt justibed in asying that there is no fan o England runulag st guch a veloctty, and that it mould not besafe to ran any of them at a higher tip-apeed thasn 135 feet per second. Again, If the fan producing
12. In of water-guage has a manometrical efticiency of 12 . In of water-guage has os manometrical etticlency of
only 5 (and traby faos bow ranaing on Engllah mines are giving less than thig) It will be required to run at a

11th November. 189

To the Editur of the Colliery Guardian

Sik: - Your correspondent, Mr. W. Fairley, seems to
toubt the posaltility of runutur fans to give 11 in. and doubt the posatbilty of rumnthg fans to glve 11 Im . and 18 in . water-guage, and suggesto that 185 ft . per second
is the limit of safety. 1 quite agroe with him that this is the limit of satity, Iquite agree with him that this
is 80 with ordlanary fans bot designed for high speeds The fan at Pluto Colliery, Westphalla, I designed to
give 210,000 cuble feet at 11.7 in. water-gunge, ealculagive 210,000 cuble feet st 14.7 in , water-guage, ealcula-
tions beling masie from s Guibal fan on the mios. I de-
 hawe the fan was abure Its work

Renolutions	2\%0
Water-guage.	12.5 inches
Cubse feet peer minute	240,000
Horse-power in the air	472
Periphery	213

The first high-gunge fan in Gerwany mas at Probpet
Colliert. I deoligeed this (old etyle) $12.3 \mathrm{ft}, \mathbf{\mathrm { f }} \mathrm{ft}$. I. Colliery

Rerolutions.	323
Water-guage.	10.7 incles
Cabio fe	127,000

Hince that thee I have bat numbers of fass ranoing at s ins, 9 io and 10 in water-gauge, without dilliculty or danger, and all above 135 ft. per secood. I have eece criviug 30 in wstenguage is ateelworks, and ruoning oned
300f. per oecoed, with about 10,000 cubic feet per min300ft. Der secoed, with about 10,000 cubic feet per min-
ute. Thiere is no difticulty in meeling these spectls by groper constractios, asd I expect in the near fritare to
 upan eronoenteal eoghe nud a hilph-prosaute fan than to
att-wpt to enlarge the airways fo mioes working far att-mpt to enistree the sirways io mioss working far
from the shatts. Fsits srestronger than theory. There hre the tana working and to be keve, sud it thecry does ot like-why, so much the wonse for the theory.
Another mioe, General Blumentbal, also fe Weat. Shalia, has receutly put down wy 13 ft i in. double fan,
Ther cuaranter mas 200,000 cuthe feet, at 12 in. waterTbre ruaranter was 200,0
gauge, and the result was:

Wuble feet per milsutec..... 224,000

Tbe dealgn of the fan to these high gauges is most important, and I need hardly say I have mande a spectal
turly of it. The age of wooden blades uDd caot Iroa is Nver for fans. The Slemena-Martin steel has given a ner poser to all modern ventilators, and blyh speed
no longer the bugbear it was twenty-flive gears apo. Pasaenbans, Stony Strattor, , Se

November 20, 1855
G. M. Carbal

To the Eiditor of the Colliery Guardian.

Sill:-Mr. Capell has the writer's best thanks for his保 that there are. Do such outset the writer had the bell in England, because: first, such preasures are always associated with small equivalent orffices, and seoond. nouase it would not be snfe to run tha machloes fast yot far away from thila opinion. So tor yot he canool nows, the rary, say, from mbout 1 to 52 square feet -it rare cases there being some swaller and some larger. The highest Water-kuage on an Eaglish mioe which the writer bas
noticed is reoorded on pare 223 of the Tranactions of hotices is recorded on page 223 of the Transuctions of
the North of England Institute of Eugineers. In this the North of England Institute of Eugiuecrs. In this uble feet, from which it will be seen that the equivalent orifice wat 17.18 sjuare feet, which for an Engligh mine is comparatively sinall. The comparative amalloess of ioce
vation, $\$$ chatacteristic of Continental mines, although in the examples referred to by Mr. Capell they have i comparatively good area. From the data supplied in Mr. Capell's letter, the equivalent oriflces of the thren cases cited work out to (1) 26.38 日quare foot for Plato
mine ; 12 15.00 for Prosper I. mine; and (3) 25.92 for Eemeral Blumenthal mine. The writer's luteotion, in his letter of the 11th inst., was to show the ligh velocity his opinion, uoprecedested in Eaglish practice. The manometrical efliciency of the fan at Pluto worls out to manouetr.as edacieucy of the ton at Pluto morks out to
E0; that of the machine at Prosper I. to 53. It Mr. Capell's fan will stand morking continuously at the high velocity he has achleved- - Yours, se.,
Shafto House, Chester-le.-Street,
W. Fableky

25th November, 1895

THE CARE OF BOILERS

Some Important Facts of Vital Importance to
Througb the coartesy of Mr. Albert II. Cary, englYork, we are enabled to give our residers some important facts rezarding the usen sud care of boilers. These facts were brougbt out by expert testimony in a sult brought by the Phila. Edison Electric Co. agalnst w the latter company nasaibet a counter suit brought Cint the Abendroth x Root Co. sold the Ppars Co. some $3,500 \mathrm{H} . \mathrm{P}$. of bollers, on four different contracts, each of which followed the other at short intervals. The Alrst sult brought was to recover $\$ 34,000$ rom the Abendroth a Root Co., on the sllegation of the Pbila. Co. that a series of troubles and flonlly a fatal aecideat, Were due to bad workmanshlp, bad materisl and fanlty desige in the boilers, and also due to the costractors falling to comply with all the articles by the Abebdroth \& Root Co. Whe for $\$ 6.830 .99$ due on the contracts and for additional materials furnished.
The Abebdrotis x Root Co., succeeded in the tirst place Ln establishing the fact that they had lived up to every atficle of their agrecmest, and had even done wore thas they agreed to. They also proved that they The suat was tited before Judge Wheleler and a in the D. \& Court in Brooklyn and a verdict was rendered in faror of the Abendroth \& Root Co., for the amouot of the countersuit.
In this conuection it is interesting to note that the greatest number of bresks occurritg in these Edison yotless were regrotted to be in the item of bolts: and as It is a nataral cobecusion that the greatest breakage milt occur at tbe Wenaest point, it was necessary to establish
by evilence the fact that these boits were mual, If not by evidence the fact that these bolts were equal, if not superior, to anything to be found in the market.
Whes these boits brolke, in almont every inatanco When these bolts broke, in almost every inatanoo a
curious phenomebon oocurred. At the point of fracture, the wetal, instend of belag contracted to a smailer area than that of the bolf itself retained the original slize
and area, showing no contraction whaterer, but breaking and aten, showing to contraction whatever, bat breaking
sharply and squarely in a fimilar manier to a pipostem. Thls cansed the question to be ralsed us to Woether cryslallizstlon bud occurred, and to determine
this point, many of thear holis this point, many of these bolts Were taken to a steam
hammer and flattened out cold to leas than f ofan inch in thickness. In every lastabce the flattenting was done in thekness.
mithout the slightest
inatuace of the flattening was dono without the sligtetest show of fracture runaing up toto
the body of the both, wherens if crystallization had taken place st the polnt of ruptare the nietal would necessartly phom st the polut of rapfare the metal would necessurtly plece of east frousimitarly trated. Another test applied to many of theqe bolis was to bend them double wben cold oo that the two ends met, and the also proved the ex-
cellence of the quality of the bolt that no effort had been spasted to improve the quality of the ussterial used, other bolts made of the best rivet but all such bolts were fractuiced in the original oves, masuer, and a still further trial was tuade with stoel bolts, which were affected with the same revsulta. In order to make this breakiog polot test still strouger, better results. Beyond this, the shape of the bead no aloo the shape of the lug which reoelved the bead of the to no avuil, as the fracture of toolts contimual but all almost unaccountable manner, whereas fracture in the It follomers that no better was very lufrequest tondeed or was needed thst good material was ugol throughout. It was also proved that the workmanship on the bollers was thrst class, and that the morkmanshlp nod
design of the hollera mas not
tset that almilar bollerg, made under exsctly stmilar
circumatabces, ueed in other plants, had bever acted is manper slomilar to thone to question and it thereforo followed that the troable was due to local causes. It then becnme necessary for the manntncturers to prove what these conditions were, sud this portion of the evidenee is of interest to every power user.
It was proved that the accidents were due entirely to the unresonable hasdliig of bollers by the Phila. Co. It was shown that the botlecs were frequeatly foreed far titwea exveeded as much as 100% and over. It was also shown that unskilled labor was employed, ned such ecoployees had instructions to keepsteam up to the required preasare, irrespective of nay demanis that might be made on the boilers, so ns to keep the lighta goling which the Phila. Co. had contracted to supply
One of the very important masters brought to light in this cheo, and ackbowledged was the use of extremely bad feed-water. It seems that the Phila Co., sunk a they used to thelr atation, abd this was the only water shown by the abalysts presebted during the trial, contalned not a smsl smoant of sewage, and ran thirty-four gralos of impuritles to the C. S. galloe, almost elght per cent. of these teppuritien beling proved to be sulphate of slso, a number of ultrates and ammoniacal salta. This water was what might be called the surface drainage of the City of Philsdelphla, sud as the clity bis unfortunately, a very poor sewage aystom, this dralnage amonnts to what might be regarded as sewer water which had undergone a certain amount of filtration in the earth down to the imprevious strats along whleb it ran snd flosily
collected ln thlo well. In order to counteract the bad collected in this well. In order to countersot the bad effects from this water, no small nemount of chemicals
was used. These were changed at tiaes, and thally the
 Phils. Co. seemed to settle down on the lase of cutch, or
what is more properly kuomn in chemalatry as Catechu, What is more property known in chembtry as Catechu,
which containa a conaliderahle qusntity of tanvio add. Which contains a considerable qusutity of tanbic add.
In the stomge tank located sbove the boilers large In the storage tank located sbove the boilers large quantities of caustic soda tere alko pat is the water. making so atrong a solution that water drippligg from it
would take the hair off of the borses that passed beneath Would take the hair off of the borses that passed besesth Were so unfortunate as to catch a sprinkle. Tbe result of the use of this bad feed water was naturally shown io the collection ot a large mmount of acalo in the tabers. varyiog in thlokness from th of an luch to one inch, and thervby closllug down very bisterially the ares of the tube opeatag. The chemkals wsed atfacked the metal tacked so as to torm iocrustatlons, which had at times almost entirely covered the bolto and bends. The incrastation proved so hard that the work men were obliged to use a hammer and chisel to remove It. Thls state of aftairs caused a rigidity of parts whlch wece dealgaed to
be itexlble, abd it alao cosused the uunecesary burntug out of many of the tulee.
Another very important point establiahed by the evidebce was that an execessive forced draft was used in which they were coners to the cureasobse exteot to draft was suticlent at times to support a colums of water from three to tour inches in befght.
Several well-known experts appested in thls case and Oocounted for the varlons troubles above ebumerated One of the most interesting pofnta developed was the which was explsibed in the followivg masuber: It is a well knome fact that every plpe or tute has a defluite capacity of discharge, and when this capacity is resched op wore water or steam can be dellivered through an charge 18 recthas ares: so that in case a harger dis. tig thesen hoflers to such an execiestive extent in the course of natural circulation the water and atesm rumed up along the ivelined tubes to the front headers and there sivanced upward into the overtocad steam and water arasi from which the stessm was delivered to the plping the cas. Whea the circulatiob seached a poiut equal to water sally of the tatee, of coatra, bo wore stesmr or tube but ns the beat still continued to tere applied smomed the tube, more steam was geoerated, and of coarse the pressure of thly stestm in tre tube forved the steam and water back down the tute until it reached the tear beader and here the steam suddeely had achanoe to eacaberup mard by the courso of the rear hiadera to the overben Ateaw and water drutas, and the codder feed and circulating water frying to eoter the lower eod of the tubes from thean
 thus sceking passage of eecape. The result was a sudden coudetisitg of the stazu which was follomeo io a rusho water tuto the vacuum at an exceedingly higb velocity. abd this water rushet along the tube at about this same The mely untll it resched a bend at the eod of the tubee practloall was a very suaden ubd powerful blow there bolta to rupture to the a caenus them, in fats to raptly that a tlow octal composing them at the pofnt of rupture was impossible.
This flow necesestily would take a certaln amoun time. Theconsequenceof this suddeo blow wasexhibited th the lreakage of these boits without contraction of area at
the polat of rupture. It whs remarked daring the course of the trial that it mas fortunate that these bollerg were comprosel) of small beadera coverad by staall casting knowu as conoecting bends, and that thus the damag done affected merefy these small castloge, producing the focal results lustead of rupturing large cisctiogs, which tores, Glass modela were shown at court whileh thlue trated heautifolly the theory thus preseoted mod to such manber us to carry eopviction to the miled of the Cour that thla was the true theore of the dlasstrous oceur rences. Other glass models illustrated the Irreelatible Hicent to break the tuber, which beldid the water surrounded by a vacuas.

THE PROGRESS IN MINING.

 ABSTRACTS FROM THE PROCEEDINGS OF THE MINING SOCIETIES
And Journals of Europe and America, Illustrating

 he More Modern Developments in alBranohes of the Mining Industry.
Notes on Mining in Portugal. - In a paper recently Flaher sald
Very little has been done in Portugal in connection eith coal mintog, not because the country le destitute of coal, but largely on account of the protective policy of the Goversweot, which Impoesa beary dutles all round, thereby crippling industry and discouraging eaterprise. There is little doabt that a systematic and thorough oal sid other mibers to the materlal beneflit of tis frade and eobanieros. Then ame three distinct cosl deposits in Portagal. In the north, near Oporto, anthracite coal of good quslity ocours, but it ls often so mixed with shale 18 to render the working dificult. The prinelpal
mines are :-St. Pedro da Cora, Passal de Bsioco, Covello, and Midors l'egns. The large oont extracted from these mines is used in Oporto in cooking runges and stoves, sud the emall coal is tande futo briquettes for the ssme jurpere. Near Basace, at Santa Cattierina, there are seames of a semi-bituminous conl, bat they are not now being worked. Near the town of hatsith, which is situsted sixty miles north of Lisbos and twelve millee a0uth of the Oporto and Lisbon milway at Leirin, there
is a coal.fleld vxteading to 1,200 acres, where the oatis a conl.field usteading to 1,200 acres, where the out-
cropa of several seams of coas have been located, aud a cropa of several seams of coal have been located, and a
tew drifts made to prove them tomards the dijp. Tro adit levels, about is tille apart, bave been driced inte No breast of a ragge of hills several hundred feet high. No, 1 mibe, near Batalha, cross-cutting to the dip, has
interancted four coal seams. The first scam lies at an inclination of 49 degs. towards the east, whilst the others are tnclined at from 25 dego, to 30 dege. tomards the west. The first coal seam, 6 is. In thickness, of good quality, and having hanging and foot walls of of stratifled beds overlain unconformably by the other beds, but strikes scross the strata. Poselbly it may be in the line of a dip fault. The other Besme have the ollowing be

The coal in these seams has the appenrance of Ingaite proportion of sulphur and sah is blgh, and sltogether the coal is of Little commerclal value. Gallerles have been drives for a short distance to these seams where mprovement in thickness and quasity towards the dip. No. 2 mibe at Alcanails intersects No. 2 beam, into which a dook or dip drifi has been drfven for a dibtance ower sbut 10 ft . Another bdit mine is being driven at 3 the dook of water. In bection, Inclination aod quality these gesmas are slmilar to those at Batalha. Tbe smai outpeat of the Batalha minus was within the pest yesr, mold at 1,000 rels per cuble metre when the rate of exchange was 5,600 rela per 51 . The coal mas riddled at
tbe entrabce to the minet and the droes carried in lassketa be entrabce to the mines asd the droes carried in baskets chlse worked by a woman. Women were pald from 5d to $6 d$. per day. The water was directed by means of a dam sod mill-race, part of the latier being steep. this poist a woman abovelpd the 8 masll oosl futo the current, which carried it into the machibe; the wasbed Iroas was dischanged over the mesh fato a basket, whicb when full, was eruptied into the heap. The dirt was similarly treated; a 8 mall shutter fised at the top of the shoot prevented it from getting out-until dincharged When almost illei up to the level of the washed dross In the vicinity of Porto de Moz, six milles south of Batalhn, may be bees a coal sesum 3 ft . tblek, with sand stone roof abd hard fireclay pavemeet, dipplog 25 degs.
to the north-enat tomards the mountala limestone range to the north-east towards the mountaia limestone range
of hals, at the base of which the coal seam is exposed of bills, at the base of which the coal seam is exposed-
Undetiying it are beds of larnivated blues shale with Undetlying it are beds of lamionted blue shale with
ironstous balls, limestone beds from 2 ft . to 10 ft . thlck, ins show below :-

The foasils found in connection with the limestone bed ompriae corals, shells, and encrinites ; but even with their ald it is difticalt to determine whether these beds belong to oolitic or carboviferous messures. The total Imports of coal and coke into Portugal in 1899 and 1893 , were as follows

The decrease occurring in 1893 is attribatable to the strikes in England, sod cousequent bigh priees skked fo: fuel during that timen ; and the trorense in the mabuimporter! from England and partly from Portugues conl. This fuel is takiog tbe place of Engligh coal to sotwe estent at mills and other factories, and coal from the North of Spsin is also betng istroduced
Notes on the History of Coal Mining in Scot-
land. -These aotes are copled from the jouras of the

British Soclety of Miling Students, nad aie the work of Mr. Waster H. Mungail, B. Se.
At as eariy period to the bistory of the British coal
trade the coal-fields of seatland trade the coal-fiplds of Sootland seem to bave been
known and to bave recolved somed attention, although there is linte documentary evidence of the extent of the pperatlons. Much of the early htatory of coal minlug is hsaoclated with the blatory and deeds of the mobks who oceupled the various monasteries then established thruggout the coustry, and some of their writiug
throw a little lighs of the Infance of the coal trade. Thus a little light ou the fnfancy of the coal trader, Thus, nauogg the earzieet legal documento thst bave ery, is a Dered of Cousessane from the Farl of Witen to ty, is a Detd of Coureyatice from the Earl of Nifeni to borbood of Thalkelth consaluing of stone tive nelgh-
 a algniflcant of the that that prior to that the year 1210 , is olgoincant of toe fact miai prior to that datrocol min log of

About the begianing of the seventenntb centary frebh diticulties arose, and the fesch that had beva entertalined The supplyry cirifer seemed sow to be almost reallzed was now well blgh eshouspi, suif to malutain is gupply equal to the demand that had arisen, it leocame Dowes. asty to work the coal that lay at grenter depths. The bew diflicuitles sow to beebcountered soon became apparent, alld of these, not the least considerable was the
 of the mine and other local elroumstances were favorable, thla was overcome by driviug level tuanels or adits from the lowest part of the workings scross the strata [11] the surface was reached. Throagh thege tumnels, of lowed from the workings and dis.barged into some rives or stream. In the case of wiuns leas farored by locs Circumstances some anechankal appllance had to be teorted to for unwatertag the minturs. Probatiy tbi was the tag-and-chain pump wbich consitated of a column of piped througb which so endless chaib, with bunches of rags of other material attached st sbort diaLabces apsert, passed. These somenhat primitive plstons, aseending in the pipes, carried the water beford them and it was diecharged at the top. Motton was given to thene water-ralsing machlese by borses, wind-mills, of water-wheels where they could be applied. An improvement on this form of pump mas the Egjptian wheel-a oort of dredger or bucket elevntor. Obe of these wheels was erected by sir George Bruce when re-opeping hls some-time abapdoned collery at Culrose, bear Dutfermine. Sir Geofga, lieltig a mas of bo thean athity, uan has in these days," his colliery soon became teoombed, not merely in the immediate nelghborhood, but hroughout the districh. There were two shafte st the colliery, one of the ghoresud the othenf beat jow water mark, protected from ibcursious of the sem by an artill isl embankmett. IIIs water-ralsing machne, cobalsh log of thirty-six backets, mas placed at the pit on shore, and was actuated by three horace.
About col heries in the nelghborhood of Cultoss were the moat importsat in the district, sad in 1669 considering that aeveral questions sud debstes do arise betwist the
buyers of Coal and the Customend sad Recelvers of the buyers of Coal sad the Customend sad Receivers of the
15ullon anvot the measure of the ('halder" the measure bullion anvat the measure of the Chalder the measute
then in use at these collierles maa mado the standard then in use at
measure for coal
The firat pumpe, apart from Eryptlao wbeels and arlier contrivances, that wern introdured into the pitsed Alloa collleries
A syatem of serfdom contivued till, in 1775 , parila ment deverel that no pergon shall be bound to work is the mibes, ln any way ditferest frum common latooress, and under certain restrietions, libernted the collier from boudage sfter a given time, but ble emabelpation was not coopleted iill the restrictions were removen by a till contr in 1799 . Fuaske and chilirea, bowever was not till L ard Aablej the bearing syetem in Scosland was doomed to extibeson, and the labor of young perkons became regulated by statute. In carrying conls along the roadeass and ap the ladders io the shaft, the common load of a wo-
man was from 200 to 240 posuids, wbile girls and small man was from 200 to 240 pounds, whtle girls mod stman
boge canted slogle blocks of coal, proportloeste to their atrongth. The conls were carriled in wicher crenta of baskets fitted to the back and steadied with a strap
across the forebead. In reporting on a colliery in Midcoross the fornbead. in 1830 where this syeters was then in operation the late Statthlas Dunn gage: "The bearets flut thet own lights and creels, and are hired at from lod. to 14 d
per day, by such of the hewers as are not fortunate per day, by such of the hewers as are not tortuante alty of which tends to constant and early intermarrlages domestic comfort." To quote from a letter written in 1851 by Fobert Brown, factor for the Doke of Hamilthe grapd quallification by whith feme mate, bot besuty, was atrong young goman by which she mat tatimated, abd a strong young worman was sate of futiog a husbanal
readily. There is an old characteristio Beotch sasing Sbe's like the collier's danghter, better than sbe's boo nte; proving the value put upoo the description of
The condition of the collier boy at the time of the passing of the Act of 1842 mory beat be described in the ime makes an appeal on hls lophatr, Wbor at the same

 sae ranail
lain
and
and

From thls time onwards the social eondtion of the collier population has steadily coutisued to fmprove Hoan has heen renilered less daggorgus, they vicasgood wages, and have many opportuntles for axif tmprovement mbich where ankbown pot many years ngo From belog in a gtate of bopdagesat the beginaing of the Frovin belog in a gtate of bobdago at the beginaing of the
b) ginning of the century, the collier has rive to a state biginsing of the century, the collier has rivia to a state cines of workrmen. In many coses, edpecially in the east of Sentlant, hew occuples hite own bouse, and in sotse of the thriving mining villages a large proporthon of the housea belong to private individusls of the minibe
Coal Mining at Hanover.-The following is copled

The cosl mining industry of Hanover dates back as Eir as the fourteenth century. With the exception of the mbines in the conl measures of Plesberg, near Dinathe thin coal ename occurring in the Wenl en pitarmation at the north eastern Hanks of the Deister DIHs at the Suptel and at the Toccum Hills Deistor Ifitis, at the withstanding the arnall namber of serama and their thin. Deas, the industry has sttained consilterable innportsume and at the preaent time more than $4,000 \mathrm{minen}$ sho em. ployed

At the Delster malaing is cartied on partly by the Prussian government and partly by private capitalists. The govervmeot mine is the most imporlsut. It is
morked excluslvely by adits. The only workable senos dipas 8 to 12 degrees, and has a maximum thleliness of 16 to 35 inches. It has been worked for a length of six miles. At the present time there are four adits in use at different levels. The Erat or Kloater adit was siriven In 1858 , and encountered the neam at a distance if 4 , 250 ft . It is used for horse-baulage, the horses haviling twenty wagous, ench boldiog is ton of coal. The coutput a mounts to 200,000 tose nnmually or about 650 tobe pet ehift. The work of the Kloater adit rextion is farried
on by 1. 240 men . The second, or IIohebbostel ailit, was drlven in 1834 in the north-mestern portion of the mine At the present time 280 men are employed in this soc. tion, the ontprat being 35,000 toes. At this alit there is a cosl-bcreeting and washing plant. Thecoal is rua down on toclloe at the surface and converyed by a framway two ailes in leogth to the lonifog station at Barsingliausen. The third or Egestorf allt in the gouth-ta-tern prition of the mone, has an output of 40,000 tons nod euncloys 280 men. It is in coanection with the Egestorf atation. The fourth or Klng Willism adit is situated furthest to the east and afforns acceas 10 a miti- panhased from Baron Knfigge. The dally output is 60 tons, which is ased for local consimption; abd 150 neen are employed Bealdee these, there are numesous older adits which In some cases have to be lerpt open for thatning the
workings. A dialocated portlon of the geam at the workings. A distocated porthon of the seam at the Kioster ailt section is worked by a shate merne bollef 102 ft . to the adit as well as to ventlinte the workings. No merhanleal ventilation is ured, fire-lamp fortunately not betng neet with. Thessam is wirked longwall, and the minersi is trammed in trucks holdileg 5 cwt to the mato haalage level, and thebce, in tbe wagons men-
tioned above, to the surface. The ream is extremely tioned above, to the surface. The eeam is extremely
variable in its eharnoter. It is rarely guite pore. the variable in its eharnoter. It is raroly quite pore. the
partiogs beiog frepuently so thick as to render it [uectionable whether the senm is worth working. The andstone root is rery flrm, and coperquently bot litele timbering is required. The swount of coal wrougbt per man per shift is calculated at 0.66 toba. Altogethed 1,800 ued art
297,000 toens.
As the working by means of adits mod naturally moon ame to sn end, the sinking of a decp shaft has beve hegras. The shaft whlch is 21 by 13 ft ., has Bttained if
lepth of 400 ft . epth of 400 ft
That western belgbbor of the Government mine is
the Bntorf Coal 3tintag Compazy \cap leve 200 tuen are emploged, and the annual production is 113,000 100. From the Autonle minding sbaft, levels sure delven at a depth of 280 and 500 ft ., the senm belag vorked by the longwall method. The output per minee 0.75 toe pee shift. East of this a stanill coine is worked by forty-elght men. It was formerly morked on
much larger scale, but the poor qualite of the cont and the dimieulty of dispoeing of the ontput, provent it a and the ditturity of disposing of the output, provent its
derplopenent. This is also the case with the BredeabeckSteinkrug Collery, where coal is mined by seveaty-flve men for supplying Baron Entgge's limekilus
The Government mibes st Oatecwnld and Nesepllery are of greater Importabes Some 250 miners are ensaged, sud the amum output amounts to 20,000 ton mals shaft is 300 ft deep. sod the longwall syetem of working is emploged. The coal obtained is used chledy on the sugarworks, glaseworks, and bejekworks of the vicinity. Near Munder, conl mining was formerly carrled on on a large seale, but on socount of the distance from the ralluay the works were abandoned at the begrinning of this year
Thene is an old colliery at Loccum Abber, where a 9
in. senm has been worked stnce the beginning of the century. Notwithstanding the thimese of the sesars, the coal realises a good price, and with fifty miners emploged, the leasholder E sble to carry on the work it a potic. The seam dips 3 to 8 degs. soutbwest.
The Obernkirchen Colliery is owned by the Pruesiau Government and by the Pribee of Schaumburg-Lippe.
The semm averages 18 in. In thicknes. It is morked The sesmaverages 18 in . In thickness. It is morlied
weed where it is oaly 9 in . In thickness. The dip is 3 to

7 degz. bortheast. The coal is very variable in its charactec rungtug trom gas coal to sumitty coal. There an
 pumping, their depthy varging from guo to gor f . The
 sift $1,4,20$ miners are emploged. Special atteuthon has to and puid to the ventititiou, wis large quantitles of fredsmp see wet wi:h. At the colllery there is a conl-washing plant, and a coke oven plant in whleh 35,000 toos of coa ate chid amanally ylelding 20.000 tous of hesvy sad 5,000 tots of light coke. F.ur cokligg there are iblrtytwo open Heder ovees, the so-called \$chnumburg overs, In wbich the beavy coke is produced, and twenty-four Schnumburg coke, s very lisht, cpongy, porous voke, wurh prized la thes mitallarey of copert. The coke: the Hanover-Mindeu wala line by a brabelt raliway of sormal gauge.
Turatug to the coal of Carboniferons age, we find that
the old at eat of casi minting tu the province of Ilabover the old st esat of cosl mining tu the province of Hanover to the cathedml, the colliery was transfersed to the toma in 1568, nud in 1839 tho eviric sathorties basded it over to the Grors-3tarien Iroumorks Company. The cosi is an excellont suthmeite, with a sporithe gravity of thic-nes of 10 ft . Both pllar-nud-athli sud jougwall methods of workivig are in use. Up to 1872 miluing mas carcied on by mesabs of alit levela Non, howover, the Sture shaft in the northerm portion of the antiellas has be-ch suank to a depth of 200 ft ., and the Huse shaft tu the south to the deplh of 300 ft . Tbe Stuve sbst is equippeol with two Woolt pumping eogines at the sutface and tro tundrn englos underground. The Hase shaft has an undergrousd corapound evgloe as well as
one at the surface. The output, Goe tons daily, is one at the surface. The outpat, 600 tons daily, is
brouzht to the sarface by cudlese clasin bsulage along brought to the sarface by endlese chsin bsulage alung
the Inase adit level. At the mouth of the adit there is a bew coal-mashlog plant cajuble of treatlog peventy-live tons a day. In addilioe to the Plesberg anthracite autse,
 In thickness, brparated by a partiug of 5 ft , dip 60 to 20 d.gs, nurth. The seame are however, math dislocated by fualts. The deepest \#orkinga are now 480 ft . belum the surface. The cosi is a very good gas coal, used ex-
elusively in the gas producers and in the brick-kilus at ibe Oswabruok ateelnorks. The collivery to combected with the Oraabrack-Drackweder Railway by ua aetial In roperng.
In additiou to bitumlons coal, bromn conl is largely mived in the proviuce of Habovir. It is mostly referied oo the lomer Locene p-riod. At Dellietasers, In the
Sollinger Fonest, four erama ouxar of che to four ganla solinger Forest, four beans occur of one to four rants wheknets, nessolated with lireclay for glass manafacture. The quariz sound coal ts wroughe partly by mituing aud partly by quarrimg:
 of the output is made luto briguettes. In 1834 thu bulne prodacod 60,000 tous of brown conl, the atuount of
brignettes manufactured belug 13,000 tous. At Duderode three seanas of Mioute brown coul are worked. The top, one is 5 to 8 yurds thick, the recoud 2 ft . to 2 sards thlck, and the bottons oue is to 18 yuuds. Whate he instertal of the two upper seams is curlig ond poor. the third coatalus a largo proportion of liguite and coutalus +7 to 51 pere ceat. of moigture. The dyy coal contulis 48 per cout. of combustible gas. Safety limpa have consofueatly to be used in the workings. The output
Atmospheric Pressure as Affecting Mine Explosions. - Codiery Erphorions and the Survmeter. - The tion have brea considenng, at souse of their receut nasettugs, this lelluences of metworologeal changes upon colLiery oprrations, and particularly the connection, if auy, damp explostous. Optelon on the latter question, says the Nercosolte CKronich, has nudergobe many changro durlug the past frw geark. it was onglowlly beilevad that escapes of zas were wort likely to occor when the has, bowever, hhown that wany colliery explostions, perhight nat cuedilinea are what the meteorologlists eall asitegelonte. This has led somo experts to the coneluslou that flustuationsof atwoepheriegreseure havenothing to do with the enusutton of collitery explosioss. But 4 num niluilted to play in throse disasters, , that dust is most dangeroun when dry, and that the nir of an antiogclone is usually very dry, it it evilent that dhaty minus rien of the lastometer to an abeormalig high level may
 infeet the atiso-phere of a pht; for thery may become mote of lesk tamp in the course of theif juarney to the morkings. Thus qarstion ts not obe upoo which those
who hase studied it would care to dogmatize. But, on
 thon butwees barometric varlathons ant collery explosions: that this combection is budirect rather than ditect;
and that it is due not so mush to the hygrometrice stateof and that it is due not so mosh to the hygrometrice stateof
the atmugithere as to the phaduction of eorth tremorg by her removal of mulatit from the oarth'a crust, or the tenomer jewrs nzo calealited the w-hath removel from or finpoest ap an a curtain ama of land tariog the tion of

 It may not leogeberally known that a mavernent is oo
foot to seeare reliable records of British earth tremor of aband of voluaterrob-erverr, fust no a stailar bion The leasler of the movement is Mr. Charles Davison, 373 Gillott Road, Birmhingham. If thoss interested in the matter will communkente with him, he will, we are sure, gladly
quake.
Isflammable Gasea in Quarrice.- From the French Annaies des Mines, we copy the following
M. Uppermana, Ingenieur-en-Chet des Milines, has for several yeara noticed sudden disengarements of inflam-
mathe kia molle gas tut the nderground quarried
Bollene; but be states that thls phenomepon, very rare and tregular, only oceurs in the nelgbbortiool of old worktugs, to-complet-ly gobbed, while it always the gas ancumalatea under peogene When these cavitles are broker tuto br driving, the gas escopes, mbd forms, with the air, a rixixture which explodes to conact with flame, sbd often caused perions sertled by M. Humbert to connection with the eley pits of Vanves and Malakoff, in the French department of the Selve, and deon wh St. Roberti-Llatermans io cuenec plastlo chay in Belgigio. The gases thus thengaged are hydro cartons, among which formene or methase prefomivate As regards the orlgin of these substabers, taln organle matters, the decomporltion of which can generate such gases, which moreover, do not fasue f/ome great depths as the compact elny mass is but little per neable. It ls true that gesms of Higuite are foumd to the beds of mhites sand which aeparate the clay arrate; bat this lignite The fart that disengage hydio-carbons rom old workings, in which there exist Umber gapports. had been boticed, and it wna concluded that the gna is genenuted by decomposition of the wood. It bas onge beell known that celluloer, which wood is suaseptible of fermentation, and under the finfueben of bocilur amylahneter it decomposes, wbile glving of corboule ache, formene and a residuum rich io earBon. As a role, all vegatsble mattier left in contact with water underioes a getied of tranatormailons which leard to the prodactlon of hydro-carbons. M. Leoo and St. Luproux, lageuleurs des mines, have
notheed. to many colleriy of the Laire oastr, d lwozagements of toflammable gas, ansed by the ferierntation of timber whlch has remalned ubder mater for a long Ame, when the miney bave been drowned, and thes in colliegles wheres the gesms anrked sever give off flre damp. So. Indin recerded numerous similar cases which recurred in metalliferons mines, ohserving that if colliwiles have ooly
bern seriously troubled with fle-damp this fact must he attribated to thele fon recent times, bis foct must be nttribated to thele devolopement not Electricity in Minea. - Thu fullomiliterous mians. Electricity in Minea. - The folloming ta thken from the electrice explosion of mining chamos will he went in

 fom the polat of vlew of the tustroctive efiet dewituble
 hont by conamotlun digchag ges hast of tive brought have to take place in balls pentlated warla whea they which the smokw and paser produed ty the expleto man ouls be cleated out veryslozly. B. siten, explois Innger from mana-lioses, suil the woillegs can be temedl ately apomachel without fear of the delaged exploaloe. which is alwaye a posslbility with powder fases. Storeover, there nead be no danger from firm.damp, or from the act of firing the fiase. Alt these resocoun. M. P. F. Chalon, writiong in L'Eifctricien of O-tober 5 , thloks, will faror the use of eleetris fuser. Unfortunately, however, they are very expenslve. In France, wire fasea cost 300 fr. A thoasund, and the dischnorgiog apparstus coness to 400 fr . or 500 fr . Iligh-tenalon or spark-dischargers are a little more economatcal, bat it is not essy to determine previous to the explosheal whetber they are In perfect oriev, suil it is neeesssiry that the lasolation of the cosiloctors shoald be aboolutely perfect. M. Chalon then goes on to drecitbe a cheap Ametican dischariser, whitch hut strongly revoments for adoption is bery worktngs in French collierles. The discharger conalsts essent tally of a magnoto-electric machine driven by a rack and pilion, so that the nction ls very much like that of a gar lep howd.pump, an latermodiate gear betrg proviled to give the necessary opees. A discharger of

 filminate letomatora op to a distronion of about 500 yarda. It is fested by connectinz up to the terminals a small speen'ly construeted fucandescent lonp. A eeparate

 the suabler of fuem in clicelt.

Wanted.
A proctleal and experiewocal winn foremne ot strictly teamprate babite.

The Blanton Cam for Stamo Mills

A device receatly introduced by Frazer \& Chalmers of Chlcago, by which the changing of cenes on stan p mills ls greatis tacili
parylog engravings.

The dimculty of

theo the calry rersoving worn out cams from ahafta whee the cams bave been secured in the ordinary way
is too well known to mill men to bo dilated on bere, It too well knowa to mili wein to bo dilated oa bere, abd torewith illuatrated known from its asentor we Blantos, wan devised.

The constroction and operation of thacam and fraten-
The constroction and operstion of this cam snd fasten-

Tue Blasitos Cay.
tailed deseription superflaous. It is the work of but a few minutes to remove or renew any cam and guch cas be earily done without taking the shaft to a machlue shop.
The expense of refleting mille milth these statups ta comparatively slight. A sliabt "backtog" of the carm on the eccentric-shaped wedga, and the cam is ensily removed. Mesars. Frazer \& Chalmers bavo had a large
demand for these cams both on pers atalw demand for there cams hoth on new stamp milla and for refluting old obes, and tbelr uae bide fatr to become
geoeral. geberal.

Cablewayz on Chicago Drainage Canal.

The Chlcago Mala Dralosge Canal is to-day probnbly the moat intereating engloperiog work beiog carried on tractors machibery. The vistior to this cacal la at opece tractors machipery. The visitor to this cacal la at ouce As built by the Lidjerwood Manufacturing Co. of Ness York, they sre to he foumd on maerly all the rock of New Yo the canal On soctlon two, Mo Crthar Brose uet two on the canal. On soction two, MoArthar Bros. use two eabtemass; on section three, The Dva Pialoes Covs. Co. use four; on seetlon four, Mc.Arithur Bras, yse two; on sls, Masoe, Locher \& Willamson use four; on gectlon seven, Loches, Harder A Willismson one on bection elght, Mason and Kigg three abd Locher. Harder Willianson two. The only reason why alvut ten more cablemays were pot fustalled on this work was becane the travelling cableway was not perfected io time. It is a fact that canoot be cobtroverted bowever, that slace the travelling cableway deaoastrated ita present eapseity no other bolsting nod convegligg mactibe was eold on the canal. One cablewny was used on the river biveaston work, and to now no longer used, howerer the monling nineteen can be been in dally operation, in fact capable of hisudling 600 cable yarts of rock to place per day of ten bours, aut nny eapacity short of that is due to the dimiculty of londing the skipe.

A Creditable Publication

The "Record Almanac" Issued by The Wiltes-Barre (Pesua.) Aromen is ove of the most complete nunuals we
 ete, ete, for the year 1895. Its mieling statiatico are very completely, yet concikely stated. It reflect- great
crells on Jleser. Johnoin t crellt on Sestra. Johnson \& Powell, the pubilitiers.

Easy Lessons on Mining.

This Department contains articles to assist ambitious Miners to educate themselves, and obtain Certificates of Competency as Mine Foremen, or to become Mine Superintendents.

The articles are written to be understood by the unlearned and the learned alike. Plain language is used, no obscure terms are employed, and each subject treated, is made as clear and easy to understand as possible.

Further: The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors, are printed and answered.
er The Beries of Artioles "Geology of Cosl," "Obemistry of Mintag," "Mintag Mothods" and "Mining Machinery" wse pommenced in the isaue of

MINING MACHINERY.

Recapitulation of the Principles of Action of the Centrifugal Fan-The Varying Density of Air.Blance of Mine Resistance--One Ventilating Machine for One Stream-Advancing Curvatures of Blades
98. Recapitulation of the Principles of Action of the Centrifagal Fan- - It is important that we ahould review the coneluaions we have arrived at conceratigg the mode of action of the centrifugal fan, fof maalfest to the eye and the mind of the reader that the deductions of our previonas lesanss were based on invart able law. For example, in the leason given in the lact October lasue, it was shown that as stream of air in commoen with that of other fluids is never get to motion by tenaton, but by compresalon and therefore the direetion of the stream is slways tnto a regton of depresalion.

Fio. 135. Now the statement juat mado ls capsble of the most satiatse tory manifosta tion: snd in sup port of this coes. cluslon we iotroduce Fig. 13 ${ }^{\text {dit, }}$ geen that water $\mathrm{K} ~$ ts the course
of heing
ap of being ap-
nalsed or really putaped by centrifugal torce.
The modo of conatrodtloe and and the pribelple of sction of the apparatusshown
by the figure is nis followe hollow bortzonIsl shaft at S, is coenected by a rotating the srrangement,
and between the supports a tube brabehing from the hollow shatt exterds to O; the object of thls branch pipe is to geserste by its plpe rotates railal fashlon in a vertical plane it is the plpe rotalas ranalogue of the blade of the fas. The is the alast S ls counected with the fixed upright ploe or tall colums $P P$ by a gland G, to make a water tight foint and allow for the rolation of \mathcal{S}. At the bottom of the "stand plpe" PP, s faucet is shown Juat orer the surface of the water tin the tank V. To start this eentrifagal pump, the radial plpe O is set in a vertical poeition with its opee eud upward and the trap valve or fancet ls closed, whee water is poured toto C until the radial tube, the hollow shaft and the stand pipe are filled, then the faucet is opened, and at the same lustant the radial pipe is rotated by the haodle II. At this same time water will be discharged out of the open end as geea at O, and will thas continue the outflow untll the
tank V is cmaptied. Now arises tha all loportant ques thon: how dope the ixater srise the sil coostderable elevstion ahove the surfsce lerel of the teed water in $V\rangle$ the answer is elear and conclaslve because flaids caunot be moved by tension like solds bat by compression; and this being so, it follows that there muat be a depresalon to the region of the jusetion of the radial tub O, with the bollow shaft S, for otherwise the water exald not rise from the water level ie V,
up the stand plpe $P P$ to the elevatlon of the hollow up the atand plpe PP to the elevatlon of the hollow haft A.
To underatard the matter clearly, let us asaume some values to rwasoe mith. First, then, let the preasure of the atmosphere be taken at a colums of 34 teet of water. \bar{F}, be equal to de feet and thind the mater level in V, te equas to 10 feet; and third, let the resistasee due to the thow be equal to 5 feet of head, then $16+5=21$
the smount of the difference in pressure required between the smount of the difference lo pressure required between with \mathcal{S}. For the depreesion at the the junction of C with $^{\text {S. . For the depression at the junction must be }}$ is equal to that of a vertlcal column of water a 4 fleet Is equal to that of a vertical oolumn of water a4 feet that due to a vertical colomin 13 feot bigh, consmpently we bere establish the concluaton previlously arrlved at, that alr cannot enter a fan until a preveresion or a peductioe of preesure has taken place in the air between the tan bisdes in the reglon of the orifice of entry. In addttion we lears that the velocitles of fana must vary for the same quastity, as the square roots of the belgbts or tenignaces, and thast the same fan cas be made to pamp
differeat quantitleg or rolumes of alr with the asme
water gsuge wben the mine resistances per uait volume are dilserent. For exsmple, with a degression of 21 feet of water oolunsn we obtain say, a digchargo of water out esy, of 21 feet, but at an elevation of ? feet and with a
depreselon still of 21 feet we would obtain $\sqrt{\frac{21}{7}}=y^{3}=$
1.782 or $1.732 \times 20=34.64$. Now it we obtain differsot quantities with the same motive pressure, we can by be ilgure before us discover the cauee of the appareat asomaty.
There ts another matter of flrst importance that elnims our attention while this flgure is under notice, and that as, the velocities of fluids futo depresslons, and bere let as make it quite clesr that flulde, spart from gravitatioe and ibertia, ste only moved by a superior presuare into a depreasion. We may then after haviog realized this truth practically, apply it in a few examples that will sow eogage our attention; as for example: Air is found tre blowing into a depreselon, where the pressure te atronoppore, what then is the welocity of the wied? By the well known law, the velocities of air corments vars as thosquare roots of the prosearas, of the converate the preamimes settivg alr currebta in motion vary as the squases of the velocities. Now if we know the square of the velocity of air fito a vacuum, and the pressure per square foot of the atmosphere. The atmospherle pressare would be to any otber pressure, as the equare of the relocity of ale Into a vacuam la to the aquare of the relocity of the alr sought fot by the proportion. Now the equare of the veloctity of alr into a vacuam bo $1,800,000$, in feet per second and the pressure of the atmoaphere is 2,120 pounds on the square foot, then
$2,120: 2$.: $1,800,000$ to $1,688+$, that to to $8 s y$ the velocity of an alr current subject to a preseare of two poands pet square foot, if the debalty of the alr moved was the same as that of the normal atmoaphere, would be \& 1,6es 41.2 feet per second, and shoold the density be hait that of the normsl stmosphere, thee the square of the velocity sould be 3,450, or the veloclty would be bis feet pet
 per the mass at 41.2 feet per second, and of full deunity as $\frac{58}{2}+41.2=7$ or as 1 is to 7 in aod It la for this resson that $2,130+M^{2}$ was takeo as the denominator of the fraction in the formula given in a former leasom; and whlle we are engaged is thts toquiry, let us introdoce an example of the use of the formala we bave referred to. Tben let T' be the presand let 4 bee trom the fan blades at a given veloctiy. that of en mine resistanc, $(T-M) \times 1,800,000$ that of an exhauat fan, then $\left(2190+M^{\prime}\right)$
equal to the square of the velocily of the salr into or out of the fan, for let T equal 18 pounds, and let M the mine reslatance in poands per aquare foot equal 10 pounds, then $(13-10) \times 1,800,000-2421.52$. The velocity tben is,$\frac{2421.52}{20} 49.2$ feet per second. As a further Illustration of ited Fig. 136 is given.
89. $90 . T h e$
arying Varyibg
Denalty of Air.- To farnisha a graphte
Idea of the different dee. alties of the fao, let M and V of the opposite blaced density of the density of the air on enternbich wouk to Boyle's

Fic. 136.
lav and the M just given $\frac{(2120)-10)}{2130}=9059$. At D and D the pofnt of maximum depression la reached, and it A and A, the normal pressure of the atmosplere is attulned, and at P and P the presure of discharge is
attaloed, or $2130+T-M=21 \pi+3$ and attaioed, or $2130+T-M=2130+3$, and tbe density ase as follows:
Density of the in tlowtog air . 9953 .
Debsity of the air at discharge 1.0014
100. To Find the Voluin
Fad.-In thind the Volume of Alr Entering a
velocity of the air entering a tan ls greater than it is on leaving a fas, because the masa of atr enterfigg a fan, is cotlows that the valosity will be lowarsely as ithe and it bence the velocity on estaring the fin will be in tho proportlon of 10014 aed the veloctty on losven the tan rill be in the proportio of race an lid the per cublic foot entering the fan mar be proportlonate to Land that lesving the fan will therefore be 1.00623 or
Mass enterlag the fan $1 \times 1.0014=1.0014$.
Mnsa lenving the tan $1.00623 \times .9952=1.0014$
It will be remembered that we reterred to the resa sish that before it coald bo tsken say st 62 don allowance must be made for any obwould constrict the ports ellther at entrance or discharge, and we
have tintroduced fig. 187, to draw attention sgaln to these tmportant matters.
Camenations for velooltles sud lanays be made for the smallest orlfice, whether it be tocated near the eetrabce or discharge of the tan. In thls case $t h e$ rectangular
orifico a, b, b, d is
i and is theretore supposed to have the smallest area, and is theretors taken, and to ward off any misubderstandiag sbout how the quantities are calculated let us suppooe the velocity ts 41 feot per second aod that the orlisee gives a clear
 contrarda at 62 the quantity passing through this orffice ta cuble feot per minute, nust be $48 \times .63 \times 41 \times 60=$ 73303.6. The true meauure of what a fan does ig clearly
indtcated then by the procesees gives at fret and now repeated.
101. The Balance of Mine Resiatance.-We bave great plesware in Lntroducing Fig. 188, because it makes quite clear and satistactory a
matter that mas calculated to excite gurpries and even donts about the socuracy of the cooeluaton arrived at to a tormer Cluaston when we a larmer two te, wr s we thated that number of thos would, of any oumber at nearls the have speed as one fan to exhanat the speed as one fan to exhaust the
same quantity of sir nasd no same quantity of atr abd no
more than that obtalued with the slogle fan: and lo support the siogle fan; and in support
of this concluslon the figare of thin conclusson the figure turniabea
depee. Before water can be raised by centrifugal force out of the tank T, four centrifugal pamps in this case A, B, O and D mulst eact and all run at a speed the snme as that of a single pump to produce a depresalon isto mbleb the atmosphetic proseure oo the surfsoe of the water at IV cas lift the made. Nou this depressiton can ouly be mule to one or amount of exhanstion that is due to an equivalent amount of eentrifugal force, and thls forve la due to a velocity that cannot be substituted by a issaer one, for if the columan
from W to A or B, or C, or D is equal to il feet. then for the water to rife to that eleration,

they must all make the same amount of depreselon: that 5s, they must all lower the atnoospheric equivalent from 34 to 13 feet,or let us suppose that A biss made a depreesloe of 21 feet of head or a depression to 18 fees of pesesure, then the centrifugal pumps B, O and D, would receive no water from the rislnge maln, or they would be yseless until they were run at the same velocity as A.
Here theu we gee that an increaral number of fans Here then we see that an increased number of fans
would reduce very little the peripheral velocity of any
osmber of fans wblle the reblstance reenalned the same
102. One Ventilating Machine, for One Stream.
102 . -The flgure under cobsideration teaches another grent lesson; namely, that there should only be one fan, for ove ventilisting current, or there should never be more tban one fan exhausting out of the satwe drift, for if
there is more than one set to eshasuat the gamen gtrvan of aif, they Introdace a high realabace that arises from an unpreveatable cause, aed let us try to discover its that it is Irupossible to set up two fans exactly slike and andet the ssame condithons of spproach and diacharge; and it is still moretmpossible to erect two steam englnes with their valves so made sod arranged, that the clearanoe, and the cut off, and the release will be tdentical in the two cases, but as we nsaume that ench fan is worked separately with its distinctive engibe, we canoot, 60 rue the engties ss to sychronize their movemeates so that the beginnings and endinge of the strokes shall be coIncldent: the result is, We would find a high resistabce, arisigg from an intermittent action developed by two causes, first, the inatability of mechanical equillbrium; and second, the varlatious in the power dae to the vary engions. It is singrular and get trae, that in meechanles, we can only get uniform time out of varylag velocities, and this is even true of the clock, for the pendulam or the epprigg, only regulate the escapement by accelerstion and retardation.
In celestial mechaulcs the orbite of all the planeta are elliptical, and the result to the bedy accelerates in going into perithelion, and retarda in going to aphellon, and it is so with the comets and all other wanderers in spsce. the wiode thst blow are intermittent, the noise of water eacaping from is fancet is the reault of intermiltent motion along the line of equllibrium, and how much more will this occur with two of more tana? Let uis
suppose that the pump A for a moment accelerates, then st that moment it will make a greater depression than B and will eause the inert whter to run in ite direction, but When A gets more water is will do more work, and if A gets nore work, it will rus at a lees veloclity, abd while B gets lesa work, it will run at a higher velocity, und at that moment it will make a greater depresalon, nod the reeult will be the water will lesve A and rus to B, and
so on with the otbers in succesblon. We cas, thetrfore, 60 on with the otbers in succesblon. We can, ther-fore,
see that two or more fans ranelng together will provide ace that two or more fans ranslog together will provide
work for themselves, by developtig an tocreased resist

F10. 199

103. Advancing Curvatures of Blades. is an fllostration of what is called the - Mg. 199 Dismetral Fan" aDd we only Iotroduce it bere to rean pltalate what wan ahown to referebee to the retreatiog
earvature of fan blades, for thla fan fully fustalna all our conelasions, ss It wlll be seen that the curvature is the reverse of retreatiog sed is setually advanclog as ohown by the arrow on the B side of the logg arrow $\underset{\sim}{p, \text { A. This tan does not take In air st a coocentric }}$ central oribee but strange to say it takes to air through charges it through another segment that is open into the evasey chlmaney as at C. The makers of thls fan clatem that lits priseciple of action is independest of centrifugal furce, and we sre sorry to say that we thlok they are mistaken because the psrticles thrown off the ravolving blistes as by gare sot only pubject to ceutrifogal force, but that in a multiplied degree. Thry clatm that the courso of the particles pssalag through the fas la aloug the trajectory A, g, or the arrow A, g. Thwos coectuslons masy beright or wrong but nith that wedeellos to treat, for our preseat purposen to to show that if otraight radial blades were s eause of loss of mechasical efbelency, bow
mach greater thould be the lose dua to liades havint adranelog curvature, and yet along the liges of what wo clsim and teach they get, as we expect, food results with out ubusual resiatabce.
This fas flonily sots astde the claims of the retresting curvatures of fas blades, and suatalns the conolaslone We have arrived at to the former lenson
This fas is mase to intake air by scooptng it to, and
takivg advantage of its inertia, and this is dono on the

A B able. The inflowing strean enters at as angle of 20 degreers with the masin tangent of the zegrowet fores that is farrensed toy scopleration along the bluies that ant carred in advat ex. In our nest lesson will be introduced a vumber of examplee worked out to elucidnte the priociples of the action of the centrifugal fan

(To us convisugn.)

MINING METHODS.

Air Coursing in Relation to Haulage.-How the Cars Produce Coal Dust.

79. Air Couraing in Relation to Havlage.-It is pow a decded principle in cosl miniog that haulage athould not be carried on in the return sirwsys, sud conformity with the plate
Haulage
Gagulfage in a return sirway introduces a greatis maguthed dacsinf, because the sir of these roads is
always charged in a greater of lesen degree with the coal duat in suspension and marsh pas, and observation and experlence, sad well nttested experiments have eatablished the fact, that air charged with these very infamtasble subetances is always elther in a dangerous condition, or in a state of perilal saturation.
The presebce of these two combustible bodies in the air of sach a haulage rond is due to two casses, and one of them is normal, or it is peculiar to it; for the object of ventilation is to gather up and carty of in the return alr the gas produced by the conl, or that given off from thesures elther in the working pluces or lu the roof, sides of floor of the roads, or the brokes cover or underlyigg rocks of the gobs. The other dangerous body in the return air is not ooly bot pormal, but arbitrary, and it is therefore dispenesble, or is other words it is a self impoaed danger
80. How the Cars Produce Coal Dust.-Nopracs tical miner can tail to motice that fast runnigg cars produce more cosl dust than slow moving oues, abd grautiog that this is true, we at once realize a great fsct, namely, that fast runsing sbould not take place in a return airway, it is true that We caubot in level seams, or those of smal pitch, avoid hanling eare from
the working face io reture air, because the frosh sir of the working face io reture air, because the fresh air of the last room, is the return air of a former ooe, bat this as not to any pecase a maln haulage, bat a local one where the cars are hauled sibgly at a low rate of speed. The queation now arises: How does the rate of apeed affect the production of coal duet? and the answer is decisive, for the duat scattered on a glvez the them, or directly as the speed; that is to say, if the speed of a tralu of esse is doubled, the volume of line coal delivered into the air will Los doubled, and we might conclude
that thls stateraent had about it the "air" of a flonility, hut this is bot "air" of a tinality, but this is not
80 , for the writer knew a case where an explosion occurred durtog the runoling to of no empty ing a flaming torch light, 8^{*} ing a tlatmin wow, in a case alle the
only Brrive at one concluston, and that la that the liftsmmable cootents of the alr were raieed by the
whisk of the irnin of cars runolug whisk of the irain of cars runoligg in a conflied gallery of relatively
seoall ares, or that the dormant swail ares, or that the dormant
dast bad been lifted by the rapidily Whitiligg wind eddles developed at the front and rear and alowg the sides of train, and as we have reen In euch a case, the bright air ber
comera denerly clouded with wnsils coners debeely clouded with ensily nuppented Booculent particles, that coutain so little matter, that the shell of air that eavelope thena combuation.

We see, then, that the saturation from twe meshat with cosl dust srises from two mechsnical and correlated agencles; flint, the dust arislng the duat ralaed with the whlak of the frain: and the confolnt effect of these two causer is startling in its magni tude, for the amoant of the aaturation of air with flooculent duat varies as the squares plas the velocities of the dust varles directly us the velocltles of the cars, and this we cas difecower by no4jelng that the shaklog effect tes up by the rocking and vibrating of the care varies as the equares of the haulage melocitles, asd at firat elsht this fact preeente the phase of a contradiction, but on further Iavertigation It Ig foued that, though the volume of dust given off peve aecond in quadrapled when the velocity is doubled, the time of runniog the coureo lo laversely as the velocity, or the trals rans the journey is half the alr and on the floor, the wolume of dust scatterval in the to directly as the velocitles, because $\frac{v^{3}}{8}=\%$. We have

Juet referred to duat brought in and acattered ta the airway, but din greatuet mouroe of dabger arises from the lust that is raised by the whisk of the fast runalng raied the dust varfes as the squares of the velocities and, therefore, the sam of the canses of floating dust due to a train of loadrd cars is equal to $e_{1}{ }^{1}+F_{3}$ Ot. raries as $s_{1}^{\prime}+0_{3}$, and the dust due to an eapty tratn varive un *
With the fsects fose elted before us, we learn now that
the ranaing of cars in ontues should be as litule practioed
as posaltle io the return airmass,
raised dant is more to be dreaded than the dust glven off by the coals in the cars, sod, therefore, it is Importaut that the roads frum the working face to the maln baul. age should be kept as free from dust as poesible.
To correctly establish our meaning concerning the haulage on dusty roads and espectally on return roads connecting the rooms in flat workings with the main

by a practical miner that the ventilation and local haulage are both bad and it oftes oceurs that more atteotion fog than to the collsteral particulars that mas affect the mode of obtaining the coal favorally or unfavorably In this case we introduce a novel system of atably. rall in which pob packs are made if sumflelent top roek falls for that purpose and slide pack walls are triit as fails for that purpoes and sole pack walls are buit as
$P W, P W$ oo the right hand slde of the figure. The object of these two pack walls should be to do duty as heattice. On the left side of the longwall gob are two pack walls sleo $P^{P} W$ and $P^{P} W$; their intended wase is to so break the cover as to prevest it breaking over the flret liue of pllisrs. Now this "part longwall" is often econvenjent and successtul where top rock is not available for maktrg roads through the gob, and therefore the roads aro

Fw. 122

tosile becure with pillar walls and are used for ventilathon and haslage, beat hres the haulage is dove in return air when if wonlit be otherwiec, and therefore the ouly
cxcuse poasible In a cabe tilie this in to suppoes that the pitch of the seam is nervas the map from the pillur to the loogwnl! worlitug or from A to B or from G to M. In that cane the wentilstion of the longwall face at

Tha gas from the face and the gob, but before this longwall with coal gates or rosds was commemeed the forewinnlog of the diatriet should have been done by advancing the pillar roale down the pitch, or by commencing the loogwall worklags on the west fustead of the east stde of the pillar ronds, nssuming for the anke of explanistion thst the top of the rasp is porth.
Where the seam is quite level, howorer, the "part longwall" can be worked and ventilated on correot principles as Illustrited by Fig 123. ER at the top of the map and $E \&$ at the bottom indicate that the aram in not piltehtag

The cars now ruo in fresh air and besides, the main haulage roads are directly in line with the holetiog shafi The sdvantages of the last plan are so evident that bo arguments further than those that oone from practical experfence are required and yet when the two lllustratiocs are wort sila by alde, we can see how bistakrs can be made, and furtier We casa sos the ing how we should ventlinte as mell se work is Beld of eonal before we put any plan into practical effect.

(TO ne costisume.)

GEOLOGY OF COAL.

The Alphabet of Life-Life of the Devonian Period

53. The Alphabet of Life. -No man can ever auc-

 cerd in making the study of the aclence of geology pless Iog to his own feeligge, sud aecful in bis profecston, unless be firat studies nisd learns the firat prisciples of the science of blology. You might with as much pro-pri-ty call a maker of jlogling purposeless rbymes a poet. as call a mso a geologist who bas collected fosalls to fll a cablues, and koone sothing more about them than the greole named he has written on thetr labelsThe sclence of biology furnlsbes the aiphabet out of The sclence of biology furnlabes the alphabet out of
whioh we are able to spell the words that revenl the Which we are able to spell the \#ords that revenl the eurironment of the life of every onganisen, animal and
vergetable that obce lived and it bow only repreeented vegretable, that obce lived and is bow ouly represented
by its fosall oust is stone. As a proot that the atady of by Its fossll ost is stone. As a proot that the stady of
geology requirea a qualifyling fitnesa from a knowledg. geology requirea a qualifylng fituesa from a knowledgn
of hiolozy, the writer remerabers a case where a col lector of fossils sbowed him some examples of trilobites, snd pusbing obe of them to a slile so be consldered it Wurthleas, he remarked, "you masy have that one if you cboose, as I have plenty better ones." Now, the cast away spectmen was worth many times more than all be
had becnnar it was slamped with the Inalgnis of to had. becouse it was stamped with the tosignis of ito rank among gentient belings, abd thli whe bo less than a perfect print of the fasets of its compound eyea.
Why! To be able to assoclate thls crustacea. insects in 30 far as ite organs of rialon were concerond insects In 80 far as ita organs of vision were concerned, Was enough to 6ll bla soal aod his cabivet with a spark of that liviog fire that exclted a higher joy than gold or dinenoods can bay, and it was cast away. An alphabet his its vowels and its consonsnts, and blology has it leacbings of the muscles, the berves, the booes, the vital organs, asd thelr different slevelopments fur the different organs, abd their difereat developtments for the differeet
befltruents of the life conditions of the various outcomes betitments of the life conditions of the various outcomes of animailife, and fortified with this and the kindred knowledge of vegetable playblology and botany, we are
duly qualised to begin and make words by the correct association of letters, and thas interpret the blatory of associntion of letters, and thua interpret the biatory of
a bygone life. How little can we underatand, for a baygoue life. How little ean we underatand, for brntes unless we firet learu bow to correlate the different eolargemeata and suppreasions is the oateological atructure of each example that comes before u8, and thle is eapeelalily 80 when we enter ss we are now golng to do, the cradls of vertebrate life, or the Dewonlan formation. 54. Life of the Devosias Period. - The Devonias period gave birth with startiling feenodity to the fore-

$-a$

Fia. 88.
runners of the highest antmal and vegetable organismas and although the life of thit period was only embryonle

In the two hingdoms, it was remarkably colsebdent with a greater fitness for ilfe on land and in the sen, for now great land masses had emerged and still left large areas abder very shallow watera wbereln immature abarlane found a congenlal eovirobment. The struggle for existebce must bave been tiedce and eevere among creatures
Those organs of locomotion were rudimentary sad it mhose organs of locomotion were rudimentary snd it
adspted for offense, and therefore thetr oncans for defeece adspted for offense, and therefore their ongans for defebce were of a very formidable charscter, sud the reant wa, mers of thernes of the perton that were slow swim88, with olhecwlac inert, wece protected, as seea to Fig. from the pasasils of their predaeous (rom the ansauks of thoir predaceous ebecoied.
Wha the age of ganold and placoll bshes that awarmed in these early aras, and ont of their differvatlating cartilages have come the rudiments of the organs of the latest and bighest life forms that now aport io the scas. It was the age that emstared the vertebral colume, sad the pecullar organs of locomotion, the pectoral and ventral tins, of paddles of propulalon that were extended by processes hiliged on to the vertebral columin of these primi. tive Iishes. In nothing is the unity of structural relationship so manifest as in the skeleton of an sulmal; for if it is viewed spart from sll types it is found to be homologoas, and the only differemoes foand all along the differentlating live of vertebral organisms, are in the extebalons and suppressions of individusl boets. Traly thes we may elatm that the Devonlan perfod was the cradle of the higber llfe now on the earth.
Most of the Devonlan flahes were placold and ganold. The placo-ganobds were shielded with defenslve plates of arnoor, and these were of the most curlous sbspes cases a large bone formed a bood and neck collar, in other cases a harge logle one formed a hood and mantle, as in the case of the Cophalsapis, a aud b, Fig. 85, others, Bgaln, had the mantle without the bood, ns lo the case of the Pteraaple at c. Others, again, were armor plated in the vulner.

sble reglons of the head, shouldens and belly, as the Pterychithys d, and the Cocosteous e; others, of the g thald type, were covered with bright, ghining shell like E ues of rhomboldal and other angular forms, as the Holoptycblus f. Is some the bony shlelds were composed of bumerous seale-like plated, as the Ptersapls, abd on others, agnis, the plates were of considerable rise and jotated in composite order, is on the Pterychthys. Many were placold nad ganold, that is, they were covered with plates and enamelled scales, his in the ense of the Pterychthye. In many of these Devoulan ashen, if suct they may be called, we fiod what is really Immature saurians, for the pectoral fins have become arm-Ilse paddles, as exemplified in the Ptergchthys. We see, thee, that the life of the period was characterlzed by rullmentary forms in which stmall chavges in their environment would at once develop extenshong and suppressions in the cartilages of thetr immature osteological struetures. Fig 89. The compensatlons in Dature are very remarkable and the armor plated flishes were no exception to the rule, for all of thens were slow and sluggish, and we are justifted in thite conclualon by three sourees of eridence. The first is mechanical, for creatures 80 hearily welghted to the region of the bead could bot turn ewiftly or 8 wim quickly ; therefore, tbelr movernents would be languld, and, again, bature never provides a mesans of defense for a creature that can act offensively, and is the third case, the gavoids that have condeued frons the Dotoulan perlod until now, as for examphe, the sfurgeon aba 8uversl otherg, foumi if the thelr morements. The laar sturgeon is the spgath in their movecuents. The lazy sturgeon is the scavenger
that lles on the floors of the rivers catchlog what the that lies on the floors of the rivers catchiog what the
atream helnga to hla month. The figure before ue atil gtream brings to has mouth. The figure before $u 8$ 8till further exbibits the pecuilarities of the singular diversesploes of fonene of the gfigantic placoids that flourlabed in spioes of eoose of the gfigantic placoids that flourlabed in thees primitive eras, as the Ooteolepas a, the Giyptole and e. By Fig. 90 \#eare able to contrast the ganolds of the past aod present, for a, the Lepdoairen, nod b, c,

A and f are living examples, as for illustratlon, e is the Auria of American rivers, known as the "Mud Flah."
We oow see that the life of the Devoelan perlod furWe oow see that the life of the Devonlan perlod fur-
wished the rudiments of all succeeding life, both anlmal

and vegetable, and perhaps no otber formation or Ilfe period has furnished so good an illuatration of the renson why certain groupe of the rucks have specithe names,
according to the characteriatica of the orgnalsma that flourished during their deposition.
[T0 BE costintisd.]

CHEMISTRY OF MINING.

What Will be the Future Miner's Lamp.-Electric Lamps in Mines.-Velocity Testing of SafetyLamps.

79. What will be the future Miser's Lamp-

 We cannot undertake to say what will or will not be the future of the miner's lsmp, for in theae days tho march of progress in sclebce snd turchanics is so rapld that what appeare to us unassallable to-day is totally untensble to-morrow, and the greatest changes come without the warnlag of a prophet. A very sbort timo ago we were told that the chemist had succueded in liquilyling air sud bow we find that the mechanle has succeeded Is making liguhil nit a mechantable article for the worlds wants as a subatitute for fee.What effects us bowever, In the lamp question to this Itquid air only contaios $\$ 0$ per eent. of sttrogen and coneequestly 70 per cent, of oxygen by welght; for durleg the compreselon of the goses nearly 89 per cent. of the nitrogen in the alr is set free as inanluble in the oxygen. The liquild air then cooslats of nearly pare osygen and a littie more than a pint or oue pound of it would sulsice to burn 4 ouncee of oll, but the light would be so brillant that 2 ouncen of ofl would beguflicleat per sbift to maintaln a good light with the ald of half a pint of liquid alr. Now such a lamp could be made to have bo otber coanection witb the external sir, thnn by a funnel for the diacharge of the Inert gases prodooed by combustion, for the olf and the liquald alr woald be contained in close vessels completely faolated from the exterbsh bir and the consequenoes would bo the gauze cyllbder could be diapeased with abd the falver would bo aboofutely safe with his lamp in as exploelve mixture.
Such n ismp may be tified, nod it may be found to fall, tor just as much was expected of the tainer's portable electric lamp and up to now it bas not diaplsced the Aafety oll-lamp, and perhaps never wll
80. Electric Lamps in Mines.- There are two dietinet classes of electric lsmpe used in and about mlnea. Firat. The magneto-electrie current lights.
Second. The battery carrest lighte.
The magneto-electric current ilighta are divialble lato two kinds.
First. The are, or fire atream lamps.
Becond. Tbelscabdescentlsupelbaving a glowing filamornt in a vacuum in a glase sheli.
The battery current limpe are diviaible into two distnct varieties.
First. Tboee baving in the cnse of the lamp a primary battery of cbemlcal cells, to supply the current for the light in a portable lamp.
Second. Those having in the case of the lsmp, a
secoodary or stornge battery to supply the curpont for a secondary or stornge battery to supply the current for a portable lamp
Ail the varletles of electrio lsmps, further come under two heads, and these are find sud portaßle. With the fixed lamps we have very little concern, as they are used
mone for effliency nod ecopomy, than for safety, snd it is therefore, only with the portable lamps that wo tnterested as they have beeo istroduced as a means of safety in mines.
sis.
The draw backs to portable electric lampa may be clased under flre beads.

First. They can only be recharged and kept in worklog order by gkilled roee.
Second. They are coatly at first and expenslve in
malntenanee. matntenance
Thided. They cannot bo used to iodicate the presebce 4 fire-dnmp
Fourth. Tbey are too hesry to carry to the hund. Fifth. Tbey give a relative small Light for the prime oet, and that of fature masintenaber
To realizs, correctly the valus of the facta enumerated you only seed to contrat the first, with the latest examples of the miners electric lamps for all the makers are bow aiming at the prodection of a lamp that wil be
free from the fauts we have noticed. One thing, bowvoe remains that cavont be otherwioc and that is pesus that to obtalo a good light, you must have a beary lamp.
Fie. 119 is an illustration of the Bulls-ege lamp with

Fug. 119. Butats in we have just indlented, it is
impossible to obtain with as primary battery
of small cell's that can be contalped in t be
case of a portcase of a port-
sble lamp, ablgh voltage and 1 without at the without at the same ticue iutro-
duclag a blgh chemical potential with th
resultigg corto rive sctlon in sive sction it
the celle, and therefore an econombeal light under the cirimpossible and the result of thls Is, we soe that a very small flasment or very is uned, and it is expected $\mathrm{th} a \mathrm{t}$ by thle means a light will be obtalned thst will rival the oll flame of an ordinary lamp, and
thus solve the probiem of electric Illumination. Now it so happens that s fer inteose beacos of Iight that Illufield of vlew tatengely dark, bafte the human ege, and jeopardize the miners life. This may seem is stroug assertlon but the cooclusion can be established by proot The Iris of the cye or the curtaln that gived the characterlstic color of blue or grey eyen, contracts and fimfutabes the puptl is a bright light, the result is blind. ness in a subulued light, and what makes the motter worse is the fact that the iris or curtain is not sabject to volition of the power of the will, but le under the control of retlex setion, or it lo only made to contrset or dilate in obedience to the stimulas of light. All mibers know that they have to find thelr "plt eyes" on entering the mine from a eage to a vertical shait. Ifith a slope
it is anmewhat different as they leave the light by slom It is somewhat different as they leave the ligbt by slow
grsdations of chauge. The sanall bright bundle of rays of light is then
a source of danger, sed a twuch weakez 11ght more widely diffased Is a soutce of Increaned
Bsfety, sa the estety, sa the miner is never safe unless be can $B \in n$ the
floor, sad the floor, sod the root abd the aldes, mithout much handlim. of his lamp At C we havis
the case, Σ is the case, A is
the bull's eye, snd L is a contant maker shutting the current off or $\begin{array}{ll}00 & \text { Th i } \\ \text { lamp is acta- }\end{array}$ ated by primary bat tery sud obly beam of IIght bwam of ligh tion. Fig. 120, Io so example of se up and all round ligh sustained with high roltage

Fro. 120. frota a etorag a cage of atrong wism ghas is exe to be protected in

Higbt and bat for ito weight sud coat would no doubd be h succesa. The uase of the different parts of this lamp are as followg: B is the chamber contalalag the storage battery, OC are the cage bars for protecting the glass shell of the lamp, and $I L$ are the terminals of the cartbon
81 V
81. Velocity Testing of Safety Lamps.-Lawps are teoted with the view of buding st what velocity they will pass the dames and explode. Is the post the "ex-
plosive mixture" was prepared without regsiding the

differebce between a stmply explosine mixture, and a volume of marsb gss was mised with exsctly 9.5 volumes of purealr
unless with safety lamps nre, however, of nay value unleas the mixture in which they are tested is of deterall thend ofandard proportious, sud therefore it is of gas mhous moet importast that the votuanes of air nod bus bhouid be correctly mbsasared for the teat. The tester, in use, sud therefore is not one of the beet, but it ansmers our purpose begt for illuatration and explanation Here, then an upright shaft with a crown wheel on lts apper ebd, and an arm keyed on jast betiow the cover at L, is made to turn by the haudle O, abd revolve the lamp that is hanging on the end of the lever L. To prevent the rotation of the sir within the case, arregting cylloder. A, ete, it ire insed within the shen of about the apparatua, as its modle of sction ls evldent st sight. but the length of the clrcle in which the lamp tarea asd the number of turna per minute have to be foubl. ao that the velocity of the lamp in feet per seoond may be determined, and this having beea done, all lamjes may be tested in a uniform relocity, asd yet the velocity ber secood at whlch any lamp will explode in a unit of times can from the time of the uniform velocity be the velocitis B. For example, tbe Davy lamp "flree" in one second, when the relocity of the explosive misture Is at the rate of 6 feet per gecond and at a velocity of 4
That lasto say a lamp that fires in one secood, at a velocity of 6 fect per scoond, will tre in 225 swoonde at 4 revocity of t feel fer secoon, OF the velocity per pocrelocity par ferond at which it bas fired, and the time are given: because if the velocity is multiplied by the quare root of the thme, we flod the velocity for one unit of time us in the cage before us is $1,2.25 \times 4=6$
foet per necond, the veloctis at whteh a Davy lamp fires feet per socood, the velocity at whtch a Davy lamp fires in one secomid of time.
We eee thea that the velocities locrense or decrease the time; for esample, a velocity of 12 feet jer secoond

Fia. 122.

througb the gauze follows Such a lamp as thle has

 Such a lamp as thla bos a small motive columen for of the foul atr from the lamer,may fucrease the ingress and egress many times sod convert the interior of the lsmp isto a veritable furnace. This lanap in its ofiginal form is now a thing of the past, and it is chiefty used now in a cas with a glass pane for the
passage of 1 ght. The con in a soreen that provents the passage of light. The can is a sereen that prevents the rapod entry of gas-charged nir, snd thus secures the
satety of the lamp. At T is wren the ofl foustals, and safety of the lamp. At T is seeb the ofl foustats, and at F. the bottom rimg in the lamp frame, that is seen to be screwed outo the top of the fountalo. The whek is sbown passing up the wick pipe, and a sllt is shown in
this pipe at B, for the entry of the pricker's point A, to adjust the length of the Fick and the flame.
82 Safety Lamp Dimensions.-Fig, 123. The writer remembers sceiog some lamps at the Blantire Colitery in seotisnd, st which so exploatve mixture was
tired. They were rode copsed of the Davy lamp snd contired. They were rude copses of the Davy lamp snd consisted of a large gauze cyllnder with a conleal cap. The Inches bigh and form foches indiameter, with s rude rul faches lookighand four loches indiameter, with a rude, vulthe le cover anok tiveted outo one side of the gaazes, aud ble cover aud hook was atted one a ruser well, simd,
 taught a lesson, and that was that the cobleal contents of

a gauze cylinder are an important matter in the coos struction of as safety lamp, for in the first place, the voluthe of mine alr entering auch a lsmp is a draught will Le proportionate to the surface ares, and as the explosproportion of the cublcal contents, we cannot wonder st the riak and danger that such a large lamp engenders. To enable the reader to roallize the magmitude of the danger, let us look at A in the figure and contrinst it with E, and the inatioctive foelling oet up by a glabee makea you feel that as explosive misture in A, if lgnited, would pour fito the meshes of the gauze such in flood of flame that the wire would at onee become hot aud allow the fiery stream to pase on ubobetrocted; whereas, is E the volume of flame would be small in propotilon to the surfsee area of the gnuze, nod, therefore, i lamp with the small gauze cylinder would secure greater safety and protection. It is exsy to see, theo, that the relative safety of every gauze In the sertiea A, B, C, D and E is inversely proportionate to their size.

Important to Mine Managers.

Every mine manager ant Buperintendent employing -lectric machibery shound gend for a circular of the Boadreaus dynamo brush, made by the Boudreaux Dyasmo Brush Co, 203 Brondway. New York City. whose advertisement appears for the flret time on page if in thls isaue of the Colnigey Enounege and Mktal. GIsEB. Ao the subject matter of the advertheement inficates, thie brush is beither woven wirw, copped, wire ganas, nof carboe, but if made of foliated anti-friction metal prosacssing unusual wearing asi conductive proprties. The nableres state that over $\$ 00,000$ of these brublied have beet put ioto ube, which is sothe evkdence of their pognalarity in electrical circles. Mining mee sonot aford to be left behimo on a good thing and we elleve it will be weil worth thesir while to topaire more fully into the meerifs of this small but important part of Muman Nine equipmedt
Mesers. Hine k Kobertson of 70 Corthandt SL. New Yotk Clty, begia with thie banue a curd calligg sttention to their line of steam speclalties, Steam separators, indicators and packligg are poonds upoa which cossiderable erophnsis will be lakd, but they are prepored to furvish anythlug in stean. goods mine operators want, from a gauge gisas to complete powne plant we bevieve. Aebil for their catalogue.
Artilicial Hmis call hardly be counted ns "mine equipmest," yet they are articles a hich too often motne operators are called upon to furuish to anfortunste employer who in the course of their work have met seceldeets depriving them of natural limbs. Whee this bus to be dobe it ls both humane and proflitable to furnish the best that can be procured. A. A. Marks, 701 Broadhay, New fork, whase advertisetment appears hereto. has probaty supphed more artanchat fos to mutued retrone than any other maker of thege apphanoes and his hati-toon showing bot ouls ohat eail ber dowe. bulleation of renl thowh opain of thely in a pubbication of real though socuewhat mefancholy iser-

 The Prons Mye supgly Co. Ita of alas Pirat Are
 Pittsturgh, Ps, is a concern composed of men who thoroughly ubdenstand the requirements in the way of is strletly copilioed to miniog foole and mibing supplies, and they ofer atrictly firat-elass goode at perices that will meet the approval of mise managers. It will jay to get their circulars and to corrospoed with there.

MISCELLANEOUS.

nlondoa pearl fishive

A writer in the N. Y. Sun thas deseribes his experience of

 A Althisg trip wist two Fiorids pearcithtersThe Pieskes are a collection of rocky salest lyisg out teyond ano ontermost keys, With the shosl water of the reets on one
side nad the deep chaneel of the Struits on the otter: and to rewnh them it wis nowesary to erces Florid
wross the ooter roet- n fail of some hours.
 you what," the divee said, say from 30 foot to 250 . The
bottom comes in ledges, nud a mas can po down thirty of
 Oorty tmhoms. Conchs ary phedry tore, bercthem.

 Yon'll not see any bottom bere," be went on,
gitriger, "- Dot veven uitb the sun orerbend.
The water was no chear as in nearer the kys, but on accoan

 plece of comil rock that lay on the boat's bottom amidshige
This roek was ks lag as five or six fuili-grown beatis nud hasi

 snother parpose When oee end of the rope was secured to
the stope, the otber ead was made fast to no fron ring in the the stope, the otbee eod was made fast to no iroe ring in the
sharpio's bow. The diver then slung no old coffee sack over
 havip, a sitit in both siong
thes from fionting up.
"Now youd better wit there on the starboard thwart to haiscee me," LNo sald to the stranger, and whes this Fhs done he
ufted the big stone to the opposite thwart and threw off his hat.
The stone spparestly weighed in the neigbborhood of a
hundred poupds, sod bilancigg it nuatly ou the narrow
 be atose in place with the cther.
"Keep that line eleaf," be ordered, tut before there was
time for a reply the stone toppled over into the water, and tome nid diver dissppeesred together
The lise puid oot with some rapidity, bat not so fost sa
might have bere suppocid, for it whe evideat from the might have beee supprod, for it whi evideat from the
 till left is the eoll.
"Wal be live the
the stranger maked.
the strange naked. "Drawn up! "the skipper exclaimel; "he'll not peed any drawiog up. When hos reaty to eome bo has only to tre go
 don't know just how deep the mater is bere, but if its mork
than flyt toed a mas would have hasd work to get dowt without weights.
While the sikiper whe spenking the divers besd appeared
at the surface tee or lifeen feet awny, and he immetintely struck out for tbe boat. resting witt his hand on the side of the boat. It may an well get a load while Γm about it.
"How deep difi you mo?
How doep dich you go?" the strapper asked, whilo the
diver thok canct after conch from his lag and dropjed them

 could nill the boat in mo time
Tbe stope was up at the surtave by this time, and with look at the wet hine to see that it wse properly colled, he
disappeared aprait.
The period of satmonsion each time disappeared agrait. The pertod of notmension tow time wescent be
an toand.
"That will do for to-day," be ssid, "for we bave n long sanl yet telore supper. I could stow, roor wome coochs trom
 Rever think nbuot me, so we have no trouble concts were paled up on the teach to wait till morning. Tre

 Wbes the sevesity couchs were opesech ind exnmived is the
 Marger than a smatt pea, snd imperfeet; and it oasin from one "tt's soll right," suid the diens. "Tve do
"It's all right," sald th
work for less thine that.

THE world's holidavx.

Thanksgiving Dny comes mearer eves than the Fourth of July to beisf A legai nationai hoilday, for altogetber the
Fourth of July is celebrated in some parts of the country

 people, neflecting
With pipoper cercmony,
As a matter of fact, the people of the United states work

 Wortd All the important tporting events, whether criteketing or rocing, are mode the excuse for a geveral boliday,
 ${ }_{8}$ have more botidays that any otber state, it observes Jase

 tolitay in Illimois.
Texid makes Feb 2, the anuirersary of her independences A boliday, abd niso April 21, the antuserkary of the tattie of
 Carotina also celebtates, ten tays Inter, the naniwesary of
 Mobeers Day oo July 24. Califtornis koequ Ademissios Day ob sept , Mad Nevada on, Oce. St. Sasd 27 as well. This Soubtice, is a reise of slavery times, when it mayy jurth of abd Now Years, Wben hittle or po work st doser. It is was a ort of trucs of God for the
a free man and mate merry.
Aftar
 ing fr
witer
Gire

Great Britnis rally bas no gabliw hodiday that eorrespondh
o the Pourth of July. There is no day uben Britons of very pobiniml party and factbon come together and cele-
 is, of coursh, evetetrated throngtiout the Niugsom, but it was made a statutury bolitay in Nothasi, bernuse octherwise the
 halt Loliday is as mact observet as Sunday. The Bank
 Aay, the firs) Xoddar in August, nal Doc 25. In Reotiknd the legal holsday - nre Sew Jear>> Day, the list Mobday io Nay, the lime Monday in August, and Cbristmas Day, Chritmas Day abd Good Friday are lioly days but not legai competied to elose. New Years Day is the kreat hobliday in Sectand It is mucb soare midely otwres than Clirismas Goy Fankeot Day, Nor, i, is kept nterer a fathion is Esiz
 The French observe New Yesr, lay. Jour de han, in groed pomp The glory of that day has facs in New york, ath
Vex Yerr's calle are atoot extiact, except that is some of the old American quations orer on the Fest side, in some of the The people keep open bonses, egenog and otber drinks are provided, nod tbere are cailerre ail duy lon
The Quecn's birthday, which wh totally negloeted in Great Britain and Irelasd, is obarveed with groat enthusiasm in most
 than any cher in the year. The Casudians also have na numal Thanksgiving Day, eebernilly a week cariler thas
 or Soctelmen have in isrge part made the cotcules of Gireat

 though, ef coure, sot a legal nee, It ta coletrated wherever
Socthtmen are. St. Putrick lar to all morts of poople uberever the warring foction of
Irishmie aro found. TVe Welah celebente Bt. Davids Day at booes asad abrood
Englistmen in Indin keep not only their own bat aloo the stive bowitayk Tbere is Holl, a carnizal of livenew, whem posider, and theit mitite carmeats aro dusted ha with red Pepler. Tivere in Dipwali, the fose of inntects, celetrasted Japas, a besutifal and, to the si ranger, marrellour belidsy Tbere is Dasera, whee all the animal- are decontel witt
 Boxing Day in Grast Briain, Dec. 2, ubers postmes, street
 for a loug time to variose parts of the Vaited states. Foo Eany years it has been the practice of workies people on the and to spead the rest of the day fishing, bustiog., or carous ine, Tbat is be dsy whes the cosptry begrote cowe the omentime calied Pubbic Day betne the day when coustr)
tolks drive to town to make their purchases. The villag sures keep opes later on saturlay night than niny otber
 the wholo year, und many self-employise men quit work ai
 Soniy call it "Whatiling Modidy." Io thoce Kouthere state

Euglad Fust Day are the veron huver

 A thrustened, much iaterest has ieven exceited. Jost peot
ple, howeret, wio bave not made a stady of the sulire havea very ragroe ides of the pastare eatent and value of the
 retrious
The Yakon Biver is navigalde for about 1,000
miles for stemmbonts It has tive outlets, and yet, so thave intimated
mo direct, practicatie cbanoel to the ceras bas lwes the evered berutafore, its mouth at this vemon of the ywa
teing, for atiout forty mile, filked with Lars and ishands For some 600 of 500 miles up the river the witer is very deep abd would be navigatie by middlesined oceas steamer is
there were any way to get is over the sond bire at the
 milos wide for the Devt 800 milec Tho waters of to Yukon cast of the Missistippl Eityer. The country is mountainous. tut the mountain sre not very high They have evidenty,
been ground of by the glacier period to thoon casyons. The

 ace sppear is the poblie reaord, for the ressos that the
 from, ndid the Yakioe neree jotos the erednat for it. Usually the coustry, where the mine or asay ofloe in vituatei, is the
country that geto crotit for the production of that poid. I mention this berail Houks no apron who is interested in that to the situation and to the mas Gulule and ralpe of the altse try that we ous thefe. Toc Cabatist dioveromeut is fully

 Government in the Sokon conntry. The dicilite line be
 good deat of the valuable pold coustry lies not woly in the
 who are seeded to develog it are sturdy miners who have
some money to take uilt them, so that in ceare they to not bapsen to get a rood 'prospect' immediately, they will havi onry ran of bumasity to goo into that country without modury.
 skis, marteo, shble, sulver tox, encen fos, and red fox, teaver
 seals are takes, this beinc too far dorth for the lur seal,
"Abotber matter whicti should le of grest tuterost to the
 Penissula, with its myriod isinady, tot the entire wisters and noerthwestorn conet of Alaska, from Nortoe Soubd to the
moaths of the Yakoe and the Koikequile Thero are fisbivg
 district mentioned, and anl the rivess ranning toto them ditfermat inlandr and coasts at the proper seneob of the year sume of salmos. The bativer of the luken cyutry con
 drem in etins if the winter, orer thes shax or ker they dreso in stins; in fact aro Eakimo. The todians of the that sturdy people, pood natured, and जrually hourd, white st lanatu of the Yakos firer are mory kuauinely forman
 are a species of Escumb.
iovernment that moee the ahrartage of the Uolted Stalet that a proper survey to maite of that gromd river nish its mot And our Alsakn."

DOCTOR OV MACHINERY

Among the smultitudinnus trader and jrofosiose there are
 that of the expert in moctinery. The work of a mechicery
 to nt the expert for his duthes There are only Alont halt A

 questly the builder of the caerinis, cannot discover, the maebibery doctor is called in. Erefy chiet cogineer of a Be
 Though he bas never woss the vasin.
 dors for a stek patiest. Tbe listrument moot woel by him

 txorking of the gristan is the cellinilet, and, initerd, of the

In the cate of a myterious knorzing which was heard in fav tory not lobz ago, is expert wis enlked in to determise
the couse Every method had leen tried to discover where

 koass, whe
tho tronble

 hous ubee exerted in a particular Wuy. Every suthatinos io
 duwed. When the great tobular bridze was teing boblt nerow
the Menai Straits, which divide Engiand from the wasd of
 pote of the buge brifles structure. Tbe soand ectioed atobe the vast tute had re-ceboed with erer-increasibg force unt1

 Hucts in a boiler cas alos be isotandy determined by the Wricticod ear of the specialise. A plate in in- boiler is erciental note of the pulch of the somid mede when the plate i.
truck with a bammer. All the otber plates are struck in the vane way, nad nny one whibl dors por rive troe and conon recoril where a machiwsery specialist whe crosing the therefy averting whet might bnve been a serfous aceldest is
midoenn. Heasures were taked to strengthes the sbaft io

ANBERGRIS.

 ceived its name, amber-gris-zray amber.
allactes that puzzled sarants bave set forth when they wern at ons to ncount for it oricit. It is nuw ascernited

 oneated in the istessinal canal, and some savants suppose it

 vet that drout nilment that has toat lately loe
one the
It is krown that the anstergris whale feeds apon the cutointrd curvent turk horn remmting a tinds hak, mact like that of a parrot. only tep lower mandthber is the lageet
The is foud nasy peeisens of ambergris, and mosy oftontimes sith to
 A smbergris is ertimely free from the tomgh littlo boras ously magailed - Whaess whish, when establisbed in oar own

 the insblioua destroger is eloguent of tbeir tenacious hold on nertown, the discovery of ambergris is as vaexpected and
 when the cry of "smbergris" is uttervi. This is the hapDy the bowels of the whate nad is packed in cusks if it is in lbuid form, of is sacks if it is dry ebouph.
It is then beouzt direct to Doseno. Where it is appreaised
 ing the malue of the article Ho has to nxamine the fetad
mas-, whith is yometises in a rank Liquid state , beetimes of That which is of sof liko putty abd agsuit a chalhike subatance makiong the best market ambergris, and eroutunty, as st dries, the owly curing process it sidergoes, the unwholesome dark
shaide turas to a soft spuirrel gray. The satistare lightens
 athe like the blenting of sow-wous hay, the damp woody
raurrase of a forn copse, and tho falatest posilide perfunie Abd to what wee is ambergria put? It is an lestiopeesalite artiote with ine perfumers, is it is uod to give IV Fermavency
 powe, the attar of gardea flower, neither the peovitrating rork. That basls is alsuyy ose of the four animut dors of Givet, trom the civet cost of Indrom nod and asor, s deerntion of the custar teaver. and now almost otaolen in the perfued
trase. The pare and wrgarate tincturs of any one of these odors is too istenee and powerful to be talerated. L/ke all
 then thay contain A virtue wbich clinct pertinascously to
 yalae to the perfamer, abil are tbe foubdation in ulucot feery
foemula.
TTe

LAqVID AIK IN COMMERCE

Fectare-room exjerimeat of forcing a piston suddealy downa
cylinder, and
clowing the ylinder, asd wouring the ipnition of a serap of touch-paper
by the bint thus prodned. II while the compresclon is mainthibed the sflinder aud its contained sir bo eooled to the oflitioni tempecnture, tbes, ou subdenly withdrawise the bere will be o fail of temperature corresponitiog to the rite On comprestion. If now the cocidd air could be used to re
dune the temperature of a wond quatity of air tofore ex pantion, it in ovident that, ctarting from a lower point than polet. This s the pribriple of the nemp biquid air aptantue
 possitst by ordimery refrigeratiog methods, had pussed into
 the end of the isserspiral a certais proportion of the come presed sir st allowed to expand in tor spsec betweep it and
 expaod, uad arrives nt the throtile value is a colder state
 pourfolly the advaiciog stresmo is the itiver tube. By carrying this comulntive cooling effect suftcelently far, the eir-
culating nir is at lint toroght down to its critical point and

 the nid of dagrams to explans elearly how the continuity of the peocess is mintained, but the cycle of operations can he Febdily appechenited. Thare is compreston, expasesion in a closed chamber, abd utilization of tin cold thus produwes to vestor, Herr Lide, who is a man of great experiewico is re. mand will ahortis arion for this mole poxerfol of all referize aters. In the meantime his apparatus protores fith the restest case a sulatanco for which there in alreaty a lares Colustrial demand-axygea ghk. During the proese just
descriteal the air heromes Jesecibed tbe aif beeomes stendily ricter in osy gee until that
cus forms some 70 per cent of the prodet. Thia relatively Sus forms same 20 per cent of the product. This nelatively
 of oxygen gus the obtsined compare faromably in respect of have lern gratilying to hive leen able to aubsunce that this
 Eoglisid. Bot, unfortuantely. in this, has in 20 many cother rases, it bas been "made in Germany," where there bs at preasel har more alertoess and a far bigher shaukind of tech-
 ing far more than of chentitry. This remark upplies to many of the moot important asd lucrative manutasturiug proenses of the day, nad, unhappuy, ongineoring, ctimatry,
on chemical engineering, is jast one of the things in ubici the Germans are comptctously superiof. - The Loudom Thurs.

UNDEHCHOUND WATER

Ustories about a great eulderranesn lake or aca beosath
 states geological surrey., "They are accompatied by details relating to the bottomless posis occupyby areas where

 " Buch tales become curreat periodically. So far ns the कells are cobecrned, they afe bised on frect. 1. myselt, bake华tervals. This is not an ubeommon phesomeson io parts of the Wext. It has a retatios to changes of the tarometer. When the barometer ia high, the proseure of the atmosporev
 is low, the diminbtied persture permits the water to rise Slow, the diminbled pressure permits the water to rise
The surflave level varies from day to nizbt, for the shme
"There are many phenomena conseoted with Wetera
 thon of the otserver frow the Enat. They are pussling somer
time evea to a weleatife stodest. I bave hever seen a well that roared, lat I know of no reason why such a thiog may not happes. There are wello from which currents of ins burbood of "tirith the needle of the compases is affeted. I never sug obe nad no tsett appear to support this pocclint
yarn. Water is the most common sutckanco in the world, and lisere is nothisg nbout which so much bumbiag exists.

 bis edough to hoold a water ubtel. The erream ras the vonot amid pumped water up to the owber'y bunt They are

 brso streans aro fouriog shous that they are seeking a bise rell ${ }^{2}$ beccause the water will sod rise "There to no hurs thing in the world he an unteneround quenty by the imaprontion of hoyeful settless in the West. The trath in thb matter was established years nge, by the Getob, journeygise serosed the great plaibs of Kaisas nuil No
 the niderkrond dute. Of the favt that there wan wo suter-

EEVERSAL IN INVENTION

Mit. Esaward P. Thompose, in an artiole is the Journal
 is the past. Bie reminda us that a large sumber of inpartaut that tho calt " " remersal " of the cther. Thas, tho dyosmo
 bock natals into the mestasieal form. Now if this primiple aire of iurentions would ham regulred tot a slegle levent-

Mr. Thompson's illustrations of these "reversed" inventions: "At the time the microseope was invented the prineiple of tant large object could be made to appear nearer, could not a ocrear object be mode to apsear lanerer? Had this bdea been sut by "xperiments with lewess of different conevexitices, concuritios and numbers.
A A rewereal of the telepthose, which causes distant sounds
 creates a soum. When lims isvented its wondertul power Wus yoket of st making the walking of a fly mound tike elecerfis cont hets therely rent and violeat action of the recefiving telephobe
real of the early type, but a long time jaxned before the ohange took plase, The primcipte had pof twes used as A
 circumstanive that is to say, aceidentally. The two sytema remerf, the flrot opernatian to stop a train ly the poitive wo tion of compressel nir afyulst the wheels through the medtom of the usasi benke soss, sod the second by the bepative
wetion of coepresed air, which normally boifls the ahoes away trose the wheels to opposition to a spring. Tbe advanto their the secosd way are apparent as soon as compared an aot be atopped in the sumty for, by the former the train, white with the fatter the trsio wasd will no nown on the sir leakt out or the pumper reluse to mork.
the priseiple so siopile that it is ating this sutject makes the priseiple so stapple that it is a woader that haventions Electricity farnistres several examptes besides the dynamo motor example, where the prinotple was pot applied by a prom detervised act. The old torm of burglar alsrm lad an opeo eircuit, and the process of openisg the window closed the cir-
euit and rang a bell. The rerorsal of this is a normally ebeed cirvilt. TBe opening of the window lireaks the cir ewit and the bell rinsk Tbe heo once gniaed, sad the odeuts the wire.
The storace tastery, although condemped for railway
truction, is stil one of the valuation iaventions of the tay and 5 an axact reveral of the galvanic battery. The reversal is dischoed hy statise that the operation of the primary of
calvanic battery coesistel in placine metal plates into a moly-
 wire Tber reverse of this concista in starting with an wifotric current, atter the battery is partly extasusted, nud puetiag the currenet through the zoluthos is order to restore the
chembenals to their original composition, realy to kive off equesat as before the chargisg.

SLEEP

Whizabeth Culy Stanton in an article deceribing ber masuer Fects "-gomeabe, kowing my empius for aloep sass, "Y eanot te in bendet and slesp as you so on the silightest prov:
 father male Banday a dny of res. Attor foeding his cattlo
and tazing A birds ege view of his farm, be slegt uatil
 st the sus went down be retired and slept all nizht. My hather, coutormidg rather mowe to the dematuds of a progresat choritaion, solvead bimbelf with a fow short naps both Seoteb Prestyterias elourch, to sieep standing all through the long prayer, and on a lew oocasosss to maintation the perpen-
 a jutse asd a amyer be was almays awake to the interosta of Ho Ho was tho oldes julge that ever sat on a bench in thit I was difappouted in asy anticipated pleasure, panistes) of

 it a rule to sleep througti all the pretimitary servies: that might be wide awake for the sermon, a friend mear by arounlog me at the right moment. Just os in going to a ball, party
 asd look of regces that follows sleep. No rouke or stimulas equat to it. If from no hiptere mative thas vasity, 1 any to
 dissati-faction. I bave emphasitied this point berouso most
 oseo loctrise in tho gospel of beuld that I hare prewhed to Texas.
who iculobsily you will meet a crotchety mall of wowas wot kis some theory about early rising, and bot amisilad brawhuht, palling young olhldron out of their neats, wakil them erous wh tay, The insase asylume are full of people Home ignorant theoriti. One of tho most pitiful sighte I re by ebsi whent ducug the by cabde-ligbt, the thin, uervous, tired tuother in beming half a down zunds of rumise for an pll wotham Seeing ter coatumally yawnisg und stretchage, I said, 'Wby
 in view of ber comparative impoetanico in domestie life? is a

WALKING BACKWARD CURE FOR HEADACHE.

Ab apostlo of physical culturo anga that an excellent and
 mone thais ton mivetes to walk at all, foove is verg "perione" Dat it is me underaton that it is mecteary to will a chath It is any kiad of walking will do, provifed it is book wand aro high, sai malk very wlowly, plaring first the ball of the foot on the thoor, nail that the beel. Datides caring the bours Fill bexhuard Firery day will do woders toward

SHAFT SINEING APPARATUS.

No. Sag, 5si, Ticuaxu P. Eoruwell, New Yosk, N. Y. Ph rough the ppraratis : and Fie, 2 is a decaill of the governlog spparatus, oe s langer biale. In sinkiog sbatts or driving twanels in soft or wet grovast, great dimitulty is fousd ia keping the hole straight. Whea the head is fored forward it is apt to ebounter softer earth on owe side than oa the
other, and thus be deflected out of proper alligment. The
thos of the ring is eveured with mamall upurant movement of thede for the passonge of onater tetwees the parts, wdapt the Jeili to all varieties of work.

HOCAK DHEL.

No, 548, 524 Hosacs B. McCang, Lakewoup, Dota Paf-
 Fig. 2 as a section of the kame; Fig- 3 is a partini won of the $W W$ in Ne .1 : Fig. 5 is an enlarged section throagh the Hed worm : and Fig 6 is a cross section through the same on a crank, which rotates the two cams 23 and 24 , These cams cogage the pins 18 and 19 , whith are attuched to the hammer bars 18 and 19 Tho tour 19 ha tubular, nast the solid and the for 15 is thrown ing she sprig 22 propels the bammer 19 ,

MINING MACHINF:

 ter bar. The chlef nowelity in thes machive is in the eviter lar. The cutters are bolted to the outsite of the cutter hav. as shown in Fig. 3. The tar is tabular and is made in four jections, whico turn upod a Bxed spitaile C. This spindion bo Armly beld in three brwchers b, bo. Each section of the cutter bar is drivea by an ibdependent chain, the two mibale
sections revolving toward the jelt, and the outer ones tomard the right. Thus, half of the cutters tepil to ifft the front cod of the mavhise, and the othere tend equally to depress it, eonseqquently the machine is free from any tendency to "climb" of "Hive" Each chain it armed with atront four cutters, which make way in the coal for it. The outer chaisa F, by means of the wheels $K, f, I I$ and a. The inuer chalas

apparatus here sbous, is designel to gevers the hylraulic
janks which force the brail formard. Each juck 6, is supaoks which force the bewt forwand, Earh jowk 6 , is sup
ptled with prosure water throngta pipe sadd all these pipes of thesse nal to a belt pipe co, hy valyes f. The mechanisum in Fig . 2 The supply of witer to noy one jnek, is rarled by moxing the balaneed planger 24. The valve lever is opermad by un iron rod 14 whiseb moves through a verife of majecebe ooils 15 . The terminals of these coals are brought togethef in
a gaitch twand 18, sni ebectris consections are made by beans of a swisch lever 20. A plpe 21, whichestruds around the inalde of the bend, is flled with meprury. Esch switel ever is operated by the rise mod fall of the merwary in a cedi telow the planger in, to which it ts coupled. If the heat tiles out of plushl, or out of slignment, the presaure in the mereary oells varies aceordingly. The shaft lisiogs 2 are
pat in place, in sections, at the same tione that the soft earth pat is place, in sections, at the same tiae that the sofe earth tween the tabes 4 and 5 being saffletent to permit then workemen to operate Eeveral water jets 2 are arrangod at coaconvesient poisth, by which water may be projectod with wore or less force upon the earth in front of the beal, to
loceen it and assist its removal.

ROCK CORE DRLEE

 ILI Paterded OCL 22nd, 185. Fig. 1 is a section through the drilling bead, with the core barrel and core lifter in place Pe. 5 shows the lifting ring, and Fig, 6 shows the sleeve at
 chrough the drill head as shown, to permit the free phaskige of water. The core larrel is provided with a sleeve D, which

By 6

bas egdrsl grooves a' upon its outer surface, aloo to permit the passige of Futer. The interior surface of the sleave is
 the ring E. This ring is split at one side, so as to contract esally, soal is nowath upoe ito isnide sarface, so that a large surfase ha peovided wits which to grip the core. Fy makiog

 not 34. The spern! feather ofernten to turn the drill -tem it cuch formurd movement, The foed is operuted by the smad can B on the crunk phaft, which moves the rod 35 by means of the Buger 62 A plass ob tbe back end of the rod cagiges a lerer is nod works a tooth bar 17 across a small

eagages the teeth oa the edgeo of the frame 6. The reood of the bar 35 is limited by a collar 39 which bas a luz reagagiag the groove in the bead of the drill stem. Thas the tar 67 Will bot receive saffelent motian to enguge a new tooth of
the ratehet foed whem, and turs it will the ratchet foed whew, and tura it, watil the irill stem bes
ailynaced within its caking gearly to its formaril limit. The feed worm is supported on as eccentetc spinille, sod to turning the knob sbous in Fig. 5, it can te liftend clear of the rark teetb, so that the driil may i= freely drawn back.
are driven by means of eprocket wbeels S, whicb torn locoely Wi the kbaf L, and are roluted by means of chains P, and
sprockets O, on the shart $/$. The marchine is fat formard and prockets 0, on the shaft). The machine is fed formard and and is fastened to ench end of the stationary frame A. Thls drum in keyed to the sbatt x. wbich is turned by menus of the clutches of, 0^{-1}, Ove of these elutches can engage the ourth wheel 1 , which is furned slowly ty the worm at^{t}, fred and draw out suinkly wath unorm U, To reverse the the hevel gear W^{\prime}. Which is driven by the pinton of eggage gear e and worm V. By making the rope a litter slack, it will stip on the dram, uben the eutters ebcownter snything

- MAGNETLC ORE CONCENTRATOIS -

No. 548,136. Cinales G. Eecuavan, Bacoklys, N. Y, Patinted oct, 22 nd, 1 Nas. The pulverized ore is fed through solves with a surloiver at f, obto sn iron drumis 2 , firch rominute. Inside of the drum is a large tlectro magoet baving Its poles N and S, fixed as shown. The ore partioles which are rich is irob, Where to the dram, in proportion to their
rictanta, und so fall inside of the feace 15 , porticies ampirojoctel by rentrifugal force, oter into the chute 16. The bwide and tailimgs thes separnted are again

subjected to marbetic treatment by comise isto eontart with. rus pust the magentie roller 6 , and all valuable pariseles alhere to the lelt uad are carried formard by it, wbile osly the worthless gaskue jusen clowa to c . The hesde a slso fall on the belt, and are again subjected to maznctic influence
when , hey pass the fower jole of the magres The rien uben ibey puss the lower pole of the magbet. The richest
Tarticles adhere to the drus nod ner throwo opward ower particter achere to the drum and nee throwo upward over stuff strikes the plate 19 sed fall tack on the telt. The flos separation is male by the magzetie roller 7 , and the middlings
ane deliverod at A．The leit anall follers afe monnted on a \quad Tbe cutter whish is employed in this machine is a tapering aiuged frame，which permits the beit to be aljustel mote or spiadle R which projecto from the soded of the mashine as unat cloself to the drum 2 to sait varying qualities ot ore，It
 thas tuarthian to sexty－igglet per vent．

MKTHOD OF MINING COAL

No．S50．001．Epwand M，Mivlar，Desrea，Cobs Put

apiadle R which projects from the sbles of the machine as Eotarv tuotion is implerted to it lo antable vevaring and an cogine of xhich valy the caimbers R are shown．The eutter bar is followed by a civaniag chain κ ，which removes the
chips．The outhetruction of this clati，and the serapets atcached to it is clearly shown in Fies 10 abd 12. The machine is propelied by means of a windlase F ，uthicts is rotatod ky the ensime，nad a roge y^{2} which extevids formand to a polt pe．The priselpal novelty in the marbine in in the upparatus fior steering A foug steering
aivets given to the jnus by this mechanism，are clatmed to be very efthenceous for the purpose of crasbing stones and ore，

ROTARY SCRENA

No，549，965．Ebwis H．Joses asp Baytele Nicmolsos， Wilaco－Bianax Ps Pabeted Noe．5Ch，1N\％a．Fig． 1 is a lengthwass section of the screens．Fie． 2 is a partial end view， on u iarger sosie；and Figs if shows the manoer of construct－
ing the spliders．The shafe is made of plates which are rolled up into tabular form，and are joined at their edges by welt

Fダに只

on hise．The machine employed is su undiuary＂theadef＂ of tuaneling man＇hitir，nati if reasorve the voal in small
 C．All of the large lumges are plicked up by the cofvegor $\sum_{\text {，}}$ and are throurn intn crusting rolls P ，whels reduce them to Itsousk The ongines whieh drive the thachine sre driven loy compersed air，sud the exhawat is ueth with saitstive jet
 losery pipe $\langle 0$, at istervals along this pipe ject of com－ prosted air are intromeced ty means of gopes E．，from the air masin Et．The jets ane Fointed formand，to as to drive the pulserised coal toward the poat of dedivery．Whes the dertination ts resctiod the pipe $I P$ ，is enharpod，as at F^{\prime} ，is Fig． 2 ，nud the stuff is shot upward over the mouths of the
pockets 2 abd 3 A separation of the good ooal Irom the pockess 2 abd a A sepurution of the good ooal from the oul teing laghtect fies over the pockets，while the heavier imgraritied ohis－h move more aluccishly drop isto them．The cual is intercepted by the nervons II，$/ F$ ，and st wapht is the pocketa 9，6．The last gases on into the dut cateber M ．The coal passes by suitable pipes into the recriver J ，from whist rial producral by this apguratios，is perferted ty is they maste－ futberers of coks，to lomp conl，in fast they usually irind or puloverse their lump cosil to saimilar conditiou．This hppa－ tatas pulverizes the coal in getting it．

LONG WALL MINING M ACHINE

 Lows the construetbos of the elesming chain；and Nig， 12
dhwe one of tbe scrugere which arve sttacbed to then chum．
 whicht abd left mut i．The truck resth of tro sharp olgoi wheois 5，which are made to telte lato the floor by means of a
larges weigh $/ \mathrm{F}$ ．These whreis are stered liv in tiller a which eson te severed in any hole in the lar fi．The fionalat sud exast aljustment is male by working the nut t Wheo at work，the cutter E temis to forice the mashise out of the cut，slthough the rope palls at nat hughe busting to hold it in． but it can be besaup to its uork by swting the steering whenh to kad inwards slightly towhrd the twee of the coal．The ande giten to the sternug Wheck depends apoa the hardness of the cutters．It may be variect wbile runnine，thus the sperator ia rashilet to make s full depth eut throughout the entire travel of the manhise．The forwaril part of the Wwhine rests on a shone of sled me＇3 which ia pivoted to the bechine fratic at w，see Fig．7．Jacks n, n ，Which are Worked by air pressare，serve to stendy the machine asi masintain a proger inclination of the cutter bar．

ORE CRUSHER．

Na 548，177．Montos G．Dowsell．Cmbsac， 111 ．Pat antaf OCf，22ns，10as．Thas machine bse two moving jaus， lower jare D is katpended from the mate frame by links IR and a poin s，and is beld in engurgemont with the pitman by then nol P atud mpring 4．The upper jow O ，k suspeaded by lisk：E．asd jif F．upod the lower juw，on the pin Q．Thus to the upper ons．The faws are roeked on their sapports by the up and down motions of the pitmas L ，but they are

moves formurl and lack in alteruntion by ita redecrays mo－ Bow．The back of the putmonn bue bears on a rolling focerum M，whish has teetb emanging the getmas insi the bearing
latock N ，and moves up ond down with it，though to only half the distanen Thus ins the pitwas is moved sideways by the cocentrie $f_{\text {，one juw is forved aliuthtly forcuard whise the }}$ othor draws bovk．My whithing the block N ，the tearing piat of the folcrum cun to mijueted relatively to the hear－
sirips as in Fig．4，or by Tiron rits as sbown in Fig 1．The －verans sectiose of the athat are apticed and stiffened by series of Trils are tubet or thimbley Es．In Fives 1 and 2 a series of T ribs are riveted to the shaft，and the armat，whish
are made of flas iron，are riveted to these rila．In Fi，fant iron spblema are employel，nind these are maile in fas 4 cant－ are elampel ufon the shatt by bolts as shown．In thia cute the welt strips serve at keys to prevent the spiders from turn－
ing on the shaft ing on the shaft．

VALVE GEAR．

 modifleation of the iderbere．Tbis mechaniam is intended to take the place of the link motion．for reversing an englue sud for graduating the strake of the valve to secure na cariy cut off of the stento．A gear wheel A is keyed to the engine atuft A ．Turo otber gears C and D ，which mesh into $~$ ，are
 sition by meons of the latch and hasdle shown．Each gear C, D ，carrite a crank pis ct， 0^{0} ，upou uhich a bar F ，is sus－ pebded．The ralue rod a ，is attached to n gion at the middle
of F ．As the ataft and gias s regolve，ile of F ．As the athaft and gear B revolve，the crank pias c^{4} ，d^{4} ，

nust the ple to which the valve rod is utta－lind，revolre in
 The pis f^{\prime} ，is ebows at the ieft eard of its stroke in Mis 2. Now，when the parts are turned over to the poeition shown i． the dotted Liues，the poars O noil D ，turn on tbeir sptudles sutbebenty to being the pis to the lower quarter of its thoveneat ；if then arm ios turneol in the opperite direotion， versing the engine．If the arm is put io pow indermediate position，the angular aslvasoe of the pin is correspandingly aitered，asd the motion of the salve，which is sttiocted to if， is anclifed a coordingly．For use oo gus engibes，which me guire the walve ta be opened but ober for each two revola－ blous，the gears C, D, nre made of tulce the diaweter of B ．

The Colliery Engineer N IMIETAT IVIINER.

METAL MINING.
Yentilation by Xatural Draft and by Assisted Draft.
 Nitrogen inequtive, net pognotous) and when othey rock and ion
As a mine is opwosed and imined, and the active oxi-
dizing netion of the air comes imto play, while the couret dizing netion of the ase comes moto play, whed there is every opportunity for a varivty of nactions 60 owear totween
the consliturnts of the ore and nok tmibrols, the gases and the waters; and it is not extmordinary that sometimes these resections retult in the formation of proterete injurious to गoppiration. While the nally erivis came are but very fre
be bost right ot.
depeh (a fex fied only) whero ation-pheric the shallow depth (a few fect only) where atnowpheric and surfare
changes ceare to have influenose there in in the andisturbed rock a sain it temperatanc with itirrease in lepth. This ganis now of less rapid acmording to bere to attempt to ayeruge the obsswvetions, for the mange is so wide that for any parictar mine the rate
might be very far from any arbitrary averag. The older aothorities stated the "averape" at about i- F for incense to be generally muel less rapod, and c° to 71 feet would now be conividered a harp rixe. These are plenty of caree where the advance is only in low feet stances in which a considerably faster gain than the for
 mine, and it is quite likely that there are poots in which cooler zone existing hol (he hated thy a lateral and feal flow of hot water, sinee it is well known that rock temperatures are largely affected by those of the perplace to disconer the law of beat increate with depth some such regiose having store- of recidual heat from volcabic eruptions and carth movements, whike many quent hot springs in the neighborlood. Irokably metal mina- (excepting thoee of bog and lake formed depois. as ageneral thing are in ground that with depth growrarth at larec
The cssential point is that the rock is maturally hotter as we go down, and in mot very deep mine (ray from
2,000 to 4,000 feet) thin inereard heat is a great drawtack. Uitimately it will pat a limit to all thining apart
from the losser mechanical diftienltios. At prosent it is irom the lesser mechanicul ditfienlties. At prosent it is
wafe to look foruard to working it a depth of at least ,000 fect, probably more, bo far as heat is concerned. in hock and mater temperation of 150 , provided the inols fir supply was abundant. In extrener cases the intake -ondated Virgisia (Xexaba) used sis,000 worth of iee it It is iocond that thongh, ater waching a certain depth in sinking, the mek at the botton of the mine is always
hot and growing lootter, the upper levels after being prenel and properly connected by meane of ninges, and acopsots volutwe of fresh air constantly facwid thromgh, rock is slow, as there is so large in stor of heat, mek so poor a condoctor, and only the small expesed surface than an uppot owe in time, hy giving it bether wo
tion, as cant he manasel thy soitahle arrangenents. For immediate purpses, howner, what conecrns the nater, a- the conlnees, frobanos and volume of the circoating air. Sfer glarting a bevel it is wat of the question reloping it. Later, it is so monch the bever that a muin ganguay, poosibly to be necd for sweral ycars, is becom-
"utilation. The thercising heat of dep wums has ansither mathus shapes thi* hest act- like that of an urtificial farnawe is ing divnuand intabo to mplere it. Whetler of not portance.
The temperatom of -hallow mines, if nu4 rainel artificially, in cooter in nomene than that of the varface, and mle at considerable depth that the rock tomperatare is hotter than that of the surfiue atl the your nount As metal mineo are) floce is a marked clange in surface temperature from day to night, it weten happens that umberground temperaturn- in mines of smatt thyth ventilatom, hand an important lowaring upon aritivial vestilation.

In the great maprity of metal wine thim is the eole

 tions. As the workinger an extensled, the evoneetions

 peec- the reoult is moth better, ans there is penerally of surfane machinery for hoisting and pamping pow
drills driven by comprowed air are conmonly nowl,

is lard nock, without knowing in advance to what extont the working- are to be carmal a small comprysor plant xpedite development
xpedite dereloppumt.
fuat if nutural ventilation is of tomere importance to the nectal miner than to the collier, it is aloo requixite for the former to underaland it thonooghly and fay mon tas. It is so that it will op-rate to the beal aisanLas It is always desimble to avoed putting in fans of aboctutely imprative. and thine all the fore tow in the cane of a mine which has to other machinery

Gromel Primopfos. -The theory of batural ventilation simplicity itsolf.

1. Air heated above the temperuture of the atmos
 thy oppolte nawn.
 to heoome uniformly admixed without regand to the differcmee in weight.
2. Canrection is the tendency of earrents of differen fon thas pralucod an equatheram, and in the cicula-P-rature within a elvect space
The first principle explain- the movement of main rabk currents it a mine Diflusion and convertion together explain aly powder nomke and foul air, in the cone dilated throngh the mine git, so that, while the whole bedy of air is deteriorated, that at the place when the bla-t mas finex or the foul air p
time dilated cnomght to he nopirable
Nompl. Tisk-The direction of air curente, not other. nase
tainereptible, in bovizontal morkings may be asereteadily and nos breathed upon. In a drift the candl. shoult trat be placed on the floor to teat the lower Mrrent, and the
hie nperer eurront
The velocity of a current can be fuand by burning a pinch of pworler at ube point, a pocond oloerver at, xay vach hims If there is ny curnot werth consbidering the time will be lese than that required for mere diff!n
tion. The time requind for the flumes from ala+t Ach a given post aleo give indication-
Ther folloning are some common and situple cases of
Cwownoted Workinga-1t might be thought that hem is no chance for veptilation. Bot mo suall are the dif Gerones in comblitions tognired to e-t op a curreat thal wherever mork is guing on the air is bever absolutely dewl
At the hesaling of a turnel the air is lieated by the burning of candiks and the animat heat of the men Thisair rises to the moof, drawing in onler air at the Wothoth to replace at, and if the tumed is not too long
theme will be a gentle outward flow along the roof to the tunnel month, ant an in ward thow along the thoor. This He. Wham disamice may sumfice. Wha a shot is fired tikyl effect as may be wen by naticine that the -noka follows the noof cutuand. If, however, the up-grate of thi- movement is cheeked of altogether stopprel, and
the air at the face becomes permanently bod, ropuiring artificial or aneisted ventilation

Sinailar condition- bold as to inclime-
In a verical shati the dripping of water down the folen tay canse downual exterior currents, with ounpensating upenst entrally, or there may be a differbec between obe ride and amollet
rncar he fumtiun is maruar than it, -18 the air a plore, it will rise throagh the shaft, making it an up Gat, and conler air will whter the tannel to replace it If the tlephtand horizontal dimane ane moderate th -eatobs, of chang- from day tonight, When the air in the mine is cowber than that of the exterior uthousphece
 the mine is warmer than withent, the intlow will te MPe thanel. If cooler, the rexers.
Sith more than obe connecting ninze, the general gurae will 1. the abse, but the air following the diree than the other our ithers, even sitnotimes to thee exteat
 everal connecting winxes, the same gencral principle mitorn thonghons, the air again taking the fasbec
straightmes and emoothbese of counc: have a selective ffect if pon air currents, as suainst crookelness and itrynanty. If the temperatam
shight they may beofect in this ma
 hat win tow downat atm which the uprast will des of air they contain. The problem is sonewhat coansit

 awh shath. Whome these differemerare alight, it is per casy toperdict which way the eurront mill goy and in
may thetuate. When a curnot is oner set no it las entency to evntinue in the same direction ; and, if n cetrel, to go on in the mew dinction. Thes after a fin
 the curront was permanently neverecl. In thi- caec the change could not he overconec. The direction may alsi ary with chatue of seamen, somectimes from day to Wght even, or accorfing to the wind
will the a rising obe, of (what is the same thing) the wavier will fall. If the monthe of the two shafts are at onsaberibly difterent iltuter, the case noembler that
 phatre, it will rise through the talher shaft, making that
 piocijples of ventilation are so simple, the influenee of mall connter-acting conditions (to which no numerical actor can be asxigned) offen producer unexpected and puzaling realts. Thas the engineer who hav phansed
 (the "air" shait) the opeast, may be disuppointed in his calcalations, muless the differences in conditions ans so marked as to lee wamiotakable. Thix doreo nat argue Gmorance of the lane of phyeiog or signify that there is any myetery about the principles, bat ooly that in a pmblem of mach delicacy the necossury data are not obsanable mith pwristion. This dithecty, itstesut of the must cuedol ohservations and imfersnces before planning now comections for ventilation.
The which way the curcont mowes 1 and welocity ane saffleient It is thoirable the wolme posxibse, that a working dhaft shouht tos a fommest, is fhat the men entering and heaving the bibe may have fresh air, while an ifle shaft may be the upeast for removal of vifiated and heated air and vapor. It is also decirable that the fresh outer air should be led as directly as possible to the working places, leaving the Some large metal mime have meveral shats or tunnels vonnected on many levels. To direct the currents to the beet aitvantage it may then berome neesssary to resort aluec artificial ventilation, for with a multiplicity of pasoges the cuments are very poone to short circuiting
 triking in at the mouth of a tunnel, of defleeted by a fillside of baildimes down a shaft, mav canse the mine air current to be nwersed, like the draft of a smoky
 incs, the combustion of illoninants, the heated gases A.oss, and uminal heat, canse hecal disturtaness of wement worm is is mosivably that thyy may retard it, white of couree The
bolm, beneforal +ffeet thomeh a stationary cage the car may cupporarily black circulation.

There are seceral ways in which natoral ventilation nay be wreckeratell and properly distributed, withont Whech expenter or trunble, to meed monkerate royaire-
 arrents or moving air from dead air, thus giving them clear pancoge infecad of letting thom be retanded and Ppleess them.
dome morne arm |morizatal partitions in drifte and dong main gallerier by which the losatod air from the vianke fing The ais changel into at up ast shaif. They arv bame of beging ussist the air movernent, but have great offocting dis intrantagers, sit that shery are very whlobs weed in wetal miner: (1) In oralet to allow howd nown in the gallery, the excavation manst be a foot or so higher than if wowlif 4 hernise be, ut eonsiderable expense for laber, "xploaves and for the ahlitional length of proper ; (2) they dsetiont of any woulwork berkides that actaally mecteri as timber spjports, and especially wostwork of the tight and inflimmable character in soeh an vxpussed position, is to be avoided on account of the danger of
fins. The wood has exwry oprortumity for drving ont anil wotsht Incoune hgnited wa >mall provecation.
There are ater hottom suthors, atomg the floof of a gatKery. If constructed for the salae of ventilation alone they woald be egrally objertionable ; but a ben ot water bell coragh to allow a lithe vitra spoce for the pacas A air-which, lowever, mombl usatilly have foconitent with an opjooing water flow and thos mone sluggishly, Bratioco-Are vertical partitions extebiting along und Car ofe sicte of a gallery, or if the latter is rery wicte ose an intake and the other an vot let air parages. They

 which in the large anmant of estra -pawe meyuirend. Itratfioy are mot in facor in metal mined,
 ficen. They ame maghly made and do but need to be anything like ar-tight. The nenal prawtio is to place
 out hese so than mollams.
Mofal Pipex of thin sheed iron, thal tinnall roofing iron,
 Lagre Cirnms IFom-A elurap air cobluctur can be exeroporized with old eanvas or any clesp fabric. The
objextion to lmeth wetal jiper and camas hoee is that, ath mataral ventilathon alobes, their croes exction in too cuall to carry a suftichont volume of air, unkes the hatumal dnute is omesally drong. The canvas pipes an required; and buth the wooden boxes and metallie

Aie Phorz-Thee are very seldom, even in metal
mines, thongh there are many situations where thes woold be of हmat assistance, as wher the correbt whariciresits and efues to paes through the working placex or plank, fitting ethoe to a fratne or the timber sup poris hinged and cli-closing. A simpler arrangernent
is to hang it hooso sheet of canvas (of the vamer -ize a
 into preition.

Enleed there is epecial reason otherwise, the two
 left with open frames between the compartmebs. Thi-
is for safety in the case of cage accidents of some hinds is for safecy in the cabe of cage accidente of rome kinds
and for comsenience in getting at the pmop compartment from a hoisting one. But, if advirable, the voun-
partments may be partitioned offloy lining f with boandpartments may be partitioned off by lining (wish boand-
or planks tatally wet vertically with his fointa) or planks, tastally eet vertically with but frimts), ov
that a sangle shaft may scre toth as in upeost and a that a sangle shaft may sove both as an ifeas ind
downcast-though by no means mo well as two kp. arate shafts. Air doors nould generally
stations and nppecially at the botfom level. statione and vppeciatty at the botion level.
and it would mint interferi. with any not draw well be made of the shait, a cheop, chimney of some sort can be built or placed on ite collar and carried up to the ouccosary begelit, which need not be very mike
 machinery are placed in a hoese boilt to cover the staif, bead frame, sheaver, etc, (as io the coblom at Western
minke, on twonst, mainly, of tho spyos wimtera), the
 is an upeast, wer it should be an upen, but booded, ming air amolinke strunc mine air and vapor, If a downcant, the air admitted sloobl to frekh and free frots the dose made in the
sarface hamdling of ore anal nasle. -haits of moderate depth, by wetting up is funnel-shapod chaits of mollerate depth, bay bor turned to face the wiod, and connevting it with the shaft hathom by means of it
largo canvoss bose or any sort of pipe that is large lagge canvas bose or any sort of pipe that is larte
enough. This is a simple ated commencot makn-atift for
 depith.
posileng fow fir.-As in well digging it is cowasionally possible to partially get rid of the beavy bad an
champed with $\left(O_{2}\right)$ whirt may collert in the stams and mear the bettom of a stuall rhath, by tailing it out. This can he done, in an imperfect bot practirable may, by

 portant ascosy for ventabimg misus short of puttims special mawhinery for the purpose Inderd, where
 they do away with the neve-
Altrough the drill pipe is so small, it carrion of enot deal of air (as mearured by ite expambed velume at
 exhanst has the additional great sulvantage of largely rechecing the temperature, which is ondinarily too high, at the working face: Thi-air is delivered preciecly at the place where moet necoled, and a better vfiect is peom
 there is no shifting of ventilating pipe-s, boxcos, ote, as
the work porgroter, All of thee points an of ligg importancv, erpecially whea driving very long galleries.

Whencer it is practicable to get along nithoat the ne of blowing of soction machinery the metal mimer
will inevitably fo si. will ibevitably do Natural rontila
Natural rentilation has these molvantagos : (1) It ocetmothing, ater the costectinnw ane ince made; (2) it
taken care of iteslf, for the moset part. And it has there takes care of iteelf, for the mast part. And it has thee
disadvantage ; (1) It is often insatficiont ; i2) it is me Anays reliable, thwtuating with the weather, the time of day, the wind, and artiticial disturbing cansus require a consinderable imitial abilay in making omp mections of sinking for maising i me shafts whirlo woth not be otherwive meetal. As againet this latter point,
it may be renarked that moet of the wrork in akeveloping It may be remarked that moet of the wrork im akeveloping
fits in with that dome to gain air exnmections, and fing All metal mines are started on the ke-i- of natural ventilation. When that frexome mmati-factory, the
varions "absialing" experdient-come inte play. Finally, varions "abeisting" expedivent-come inte play: Finally,
if theore is po other conrst, the managoment will have to if there is bo oflor conirse, the management will have to
turn to mestas of artificial ventilation. (These nill be considered ander a veparate licading.)

Tue Gamme Pakise Co, of Patmyra, X. Y., with branch offices in the cities of Nen York. Pieton,
 Was the mone jureoperoas in the history of the coms pany. Their Sectional Ring. Elamtic Itimg, spiral and
 but are becoming mote jopnlar year after year and am
coming imo general favor with emgimers of all sections of the coantry. Their new Water Proof Hydranlic
 hyclrantic machike sud propiogy platinne. They have
mently placed in the market a high percoure pocking recenty placod in the market a high persure pocking
intended for high preseure work oalocemotive, otatiotary and marine engines, which ia devigned and mado to innom long sepvioss. Rnginoxre who ane anfamiliar with the proslacts of the Giarlock Facking Co., and am using cheap, inferior jackings, woald do well to in-

COAL MINING IN WASHINGTON
The Coal Resources of the State and Their Stage of Development.

A Paper Read at a Meeting of the Washington State Immigration Assocation, by Mr. T. B. Corcy, Late Superintendent of the Oregos Improvement Co's Mines.
In writing ant urrick on this subgect, 1 fital that the

 into a detailent statewoth of the varisas conls foume in This state, owing to che divensition conditions of the owe
 has nixudy ben fonsd coal fosm the:
liznite to the highoss graple of anthoncite
al imbinetry of thiostate is only in its ibfancy. Ilandly

 preconceised plan of propecting.

 quality of anshravite
 ane mene imponlar, in lacl, in the leintuinme dintrict
 symelimals, Faw if themommaink the xvink rum a great theal
grat.
Comborlosing at the mothboztern pars of the state there ane thres or frour seank of high grashe bitumionu-
 this fact slows that thes are in an ujshewal; the cest measams, comscyuenty, ane in a wry distarhed cost-

 Gue bighor upss graidually losing cardesil us they recol nem the echiots and thue on the skagit river sidhl a whe crgal to any tumbe in ther Thited Sator
This oxal diedfier is in the regioni of skagat river, Lake Whateom anal Nooksuck river and rxtemds aluose to the Conadim line. The lips are from ol dezncos on vertical
 alike, ahbungh in geveral ternos it tany be said to be morthor suath, depembing on wheh skye of the grat antielinal and symelimal folder the semus are expoosel. The ana of this ection in ahout 2al soame miles. The in carlon. There are four distimet poabs, hiplame at an angle of about is degrese. There are ulso here Larg srowe of mon ste whel are "xproed to vew tal the
 realy lewn diswered. Anomad Ilamilton the ost mansare more regolar than in any part of thw lield in is west of Hamiltou, an' 1 anor burate mame et cosil.' Quit,
 third of tho- outymt teing waik into coke, ani an exeed
lent colse it makes, ton, which, as I have bofore stated
 near the inon orv, will by accowible for samelting imen The coal wins run from thirts beyt to whe fort in thiek

 qualitios of the slagit coal, bat is a gonal gas conal; it dipe
 nhich a
mining
 whas of habery in erceting lonnkers and buikling a largs onct to tran-fer milroai cars acrows the lake, at the for New Whatcom. From thence it i- commeyel to the

 wamy'x -framere putu forty wors ame Thu will is from
 upper moumares of the Crefacoms ; it is u lignite, ami is
 a-veral nhall sume of coal, bot me in saflime nt quant î \rightarrow to make them woekah), Soalhof this is (Therkanus hay, whure the oxal mwasams erop one for miks, show ing an emormoas thickners, bat no veins an set hame valoe. The toeagares end aberoply in the mestowest corner of >kagit county Cining Morih of Xew Whateou
 grase bat the same ane thin. The puotartive port of the momntains. All thromgh almost the entire peril.
 timbor, fir, ceslar and lembek-the binst in the world.
 mothing for justifs rtarting a plamt.
 fionvered, hat from the hos isfocmatious I bave, ou is Iheit worth.
Noxt is King contuty, whels is the latgeot anal mext levoloprel cuat theh in thestate. There are tue clacke

 have driven off volatile gavo and mointurg, rewalimg in

 larity of the seam in thelromal. The Jignites of ifis Gonity mose mot he contomakial sish the logriter of shee Teriaris frami further to the suath, from which they

 binttor than "lowwn oul." The goteral dip of the lyt-
 acet of mocth, while in the hitnminas diatriet there
 holl in this put of the ticke, as they ran into or apt

 nos ame expmation to show the pecaliaritios it ixal ractoil strata than in soction \times, town-lip 21, nuge
 side of the river hank, then it rums over agam amel thes-glpar- in the river in the oppeite direstion, all in a thetaner of a linke wev 160 feyt. It the Jment sbere it

Scarly the n low enf King connty is cosenal with drift
 mring the gheial equeh of the Cquaternary quotinl,
 ie pet of ank kat. Thas, mere it out for the
In journeying eloser to the tmantains the cropeive

The mince at Lharham and Kangley are on the Eastern alse of this tie-hi.
At Imox enah i fonmerly tilman) there ane five syams of woal, varying in thimbocon from three feet to vight fert
 ceattle by rull and fiftesen miles in a direct lise
位玉 mon', the old one having been abambencl. There ane
 abuet 10^{2}.
Bentum, alvat lice miles vomblower, is working ome

 etarted at thi place, lout as set coal ham not been Evdar momatains, which is emoc wis builes cast of tien(on, has just bect reppenel, after lying idke for thowe

 ix und evaru fect in thickaces.
 Thone fail.

6- lecaterit the dasivels by the Ihenn Clay foajomy at Katile
 Penal. Ther have a threx anal a six-foct sein of st amimons coal, whels are being workel. There is also

The Black Hamembt and Franklin mal is an exorllent Thenet, mises of it fiming a market in Nan Eranciscy Terobit thes are Kangley, Cokerlale, Htu and Durham,
 hrev placoes natued ane not morking at posent. There has bero moge-developmont wofk thom at Kangley than at uny of these plases. It las the louge- slope ifl
Weotern Wa-hinglan, and is ahoal 1 .ant foet in lengils Keattoral all alome from ate mile eanth of Falou

 amil Nihlock
Fant of Franklin ahoat three miles, on the Northern
 hitmmineas aval, whech they aty working, and alon two
 Ilse Nary mime has four or five workahbe veins, which will average alvat four foct in thicknesh. These mines
have made considentble imporevent sluring the last three of finar years

 Tieki A porion of thiv dtetriet ir berben up, by dylate There are tume
to perpesticula

aporpotmicula

Comathencing at the suathern end of the exanty, the coal is expereqt, averlonking the valley of tho Nimpailly

 at beasy angles. The ground is coverad with it tragruifi-
 Mabnt
 of the Northern Parifie milrosul hawe texn lobilt mp to the buinesot Carlomalo, Wilkewa, Barnets. Pitteloms
 let the seams ure \rightarrow, mumwnes ant aggregate so grout theknow of cod that harge onfjeats 631 qualy lavep if mot in the state.

 making cobjgaran- if cas in this uv-leFt crontry,

 are two or moure workuble scatns, dipping to the west
 1acilic cres-t citice for making gas
It Mittsbang and Letae, whach ane farther cast from Burbett umit sitoated on the same creck, wonsicterably Work har leees tose, I think it can he eand Incyotid
 fram three to nime fox
dive bow coble to Lewis comnty. It coal fieks ar
 biles. It the morkot juetion of this vetanty the ligate
 "pening bas bew mate at Buecola, them at tentralia ant one at Chehalin Suthing -rotheth this has leeen

 to lack of tran-purtation. This is no dosabt a continua-
tion of the. Wilk

 This coal makes exevllent roke
Still ferther esot is the anthrwite fiehl, bot not devel
 at this time a dithenht master to place any estamete as 1 . their utility; fout thre will, modouht, at some future tim be consiblerable eal produced in thim metion of Lewi-

In

there ane two smatl mines is sath no Leuis comery Sock and the ofloer at Keleo. Iedf mining lignite ocal
 mines snnually, anel they could proshor- half a million
 steam woal ami nesd nosily by the raitranis. Them an
 is a mime whoch is wowking a nam onerlaving the Boelyn, ami is ahout four anis a half fivi in shick buc.
 ana uf aloeat tave whame miles of Weshimgteth cover an imea of 1, bith mpan mileN as lat
 There are at prrsent onfy thiny-zan mibes in phetacosid give emplayment to mone, as there is a sammisy y

 a loole las proncel to lay -atiofactorn Aोt Waslington teat bs hernght imberomps-tition witl that of Eagland, Susintia umel Vancomet I-latal, ant

tate, erime,
 momht be a lifers task to arrive at the strue pological

 mineral

WIRE ROPE HAULAGE

Secessity of Proper Stuiy of Conditions in Deciding on Type.

Avoilance of Friction Mosessary to Secure Mest Satis factory and Eonemical Kesults.

年 7 1: Ru.kio. भ \&

An interclanace od isfose of a peactical subject of thir kind is boumt to result in the cotamon grant, atad if this paper doer bot prowe in "xacjeinan to the rake, it will For umbergratial lambage there ane to-day igemerally

 tin. Tin emilea tupe, ami 3 rol. The chevtre systom

 atber than these producal by the eonditions as lee finsle them at his-particular plant
A gemeral rale to bo bleorved by all as to the manamer wish in cost buming lat me right forw quote literall Wrom an article rout tafore the mining engimeors th Wiotern Pemu-ylvania, us follows: "It is very ssew tat in skobling which syedem of urechanicat handage is
 shler all the comblitaons to to cobtebaked with.
This vital point, which sentirmos my romark at the nat-otart, covers the true secret of a succossful haulage Hetem, be ite manner of operation what it mas this pajer will have to to. conswleted in a momeral nas, pralucoll by olorervation of varzoss plants woyking um
 fieular phant untit tirec the cronditionse of said plant hav ben canfully stuilied wet
terncrally ofcaking, at tail rope system problues mome
 arrying the tail nope tevueron the tracks, alongeride th
 ong call- for a double gangway, to proxluee coonomis
 time the lested otes are being taken cont. This is the
 Plant admits od sod doing the use of a tant rope system. The mext rawos (amit it cansot be considered loo cancstom then objeclonatbe fadure of the catices
 anal tear at puint- of contact; and if said friction or wear
 tomething, of at solus poant
Then are everal mechods of fortuning to or attaching we lesuled train of cars to the ewillese rope, ome being
 heg warls ofber at the tace when ont of servier, the shats earrying these trop pelleys hoing esmbested together by a night and left land sre-w. When caid soren 15 nevolved

 takes pernatient arip on the palleys, und the towin is
 gount on a shall truck a detice working oan the jrin phe it as use oprated by a secu. Thas by the clow

In ancrating a wire mow, tw it for hambage of other

 pat in, with lonler cajoucts and power of cmgane 2:
 imveleal
It inay have cocimel to mum of you by thi- time that
 True, lini antual veporionee by the rope pabors, Ihink, sill demon-frate the following to be it fact
 with a bail rope rystem culling for 2lakN feet of roph
 mobl like conditome, (if esch a plant ever existed

 Th, han mpe is in "peration, this saving b-ing pro Wive as oftow as the ohbot tojer

 nited statex where the- ceat to luy Whandlest wonlal war Rat tlem inx-ltomet.
Firat, thene in a plamt within tmenty-tive miles of Pirtsburgh, oys rating the tail ngmesystem, the leagole of

 There is bat litthe gradient, and that is a maxionam of 1) aganset the empty cars, i. ©, in faver of the
lonied cars. They make sixteen trips, and it takee to
 They use for the track a 201 pound seyl rail well hallasted. Aoblers is feet aport. The rand bed is on a cond lastobs, uncher which is a hand limectay, and under this firreclay, a limustotoc. This, as yon will see, gives nhat might be ternuel an almost ithat condition for a roat heal in a coal
mine. Tlo mine is well drainel to the 'quming or openings.
 are geared it to 1; they derelog, i: 01 II. I' while hauling hae trip of the care op a grace of 1 in 20: the griee tonage

 pouer houre. They nov at $11^{\prime \prime}$ hauling mper and a sal rolk Oha od the main mpes of this latter plant is
 ystem. The main moe ant tail rope taken off last
 ont will mev, be a shont proness of figuring, the cest of Thopepre tois latulet was xemarkably low
The plant first meferred to the mat hase any haral

-
llaving now refercal to a crepple of plante hasling Gal maner favorable commereial reabis, I now want
 tail rope. Derhapso one of the mose rital aind beneficial changer that var engineers have raale, is that, where ue lave to make a turn in onr gangway at a right angle (or warly mols, they. wloervet it is jemible, row introluce

 rablux, and naturally monh lem bent or set in the ralk than umber the old comblition- Szain, the tuinitus
 azineer in the folforing muy: If. clovates the incits कisi abome the level of the cutside rail, owing to the fact
 friction if the rasly any on a level, while on the conthe engimece of a steam road chevates the contsithe rail of a curve instesed of the insick, as the mining engineve It will not do to leave thix dixamion without noticing another imporiant factor in a well eqmpled plan-
 omprosed of six stramis of en ven uires vah laid around a benge eventre. The wires isencrally skaking) being mame of eted.
A rope that has neceves more attention than its berat warrants is what is krown av the "1ame lay
rope. This mpe is comporent of the sime ramber

 wisted together are twisteal in the sotre tlirection as be wires have been in cach particular dramel.
This produces a much more ficribie rope than the ruge make in tho way known a- droderd lay, the stramals In the -tamband lad ruge being laid up in the opposite lirection to the lay of the wims in the strabd
A flexible rope is a desimable ono, if ue the mad sactifoce some clemsent of vital forec evoul to of greaket than What we gain in thexibility
Thece are exceptional carex (n hich the cliseussion of

 lay
By examining a extion of a Lamg lay motry yom will

 class conclition. This will not make a makerial differnes in the life of the myer; best, ane these comblitions
 at fuse examily itw ration of the coliclition of the pessing
from the julleal to the artual, just at the came ratio doxs

 (he ex:andarel laty
Tofarther ilforate this, you will notier ilat when a

 cath etroke of the file, If the towhanio wilt do it with that noject in view, dose fort the satme mealt fallow wits She lang lay mope, a leon posting wer the pulley- foll of (goweally -weaking) mecreizing chat fact, haw imetoled
 wantes for the alerator
Yout will potice in the stamban lay mone that she wires Aa) parallel with the motion of the mons, and for this

 dive over the pilleve nutber thans erape them.
 gle to the mer hance s ham and tell him, to posk it over with the musting of the sumbe, lee will at viloce tell yout that his fike will stide over the-materas imstesal of cutting "f Tha thastration will best s-rye my purpee in my Hoal servio (gencrally veaking) as ith stamban lay,
ubere the Lang lay mpe will work, but only exeeptional, They shall be vubject to revision after thirty dave frob they being perhasis controlleal by the following conditions: " A high squel motion, very shall at
numerons anghes in the operation of the plant."
Under these conditions. perhajes it might be ak kisable to uee the Lang lay, on worme of its extra flexibitity
 question whiels only a rope manufacturer should decide, is to whether a rope made of nibeteen wire- to the aramal (stamdand lay) wotld not give better sirvi
This illustration thece nome forees mon us-and, like Bampoo's ghose, "will wot donn" -the fact that frietion is an exponave luxury, and only thoee uto now bol cars what tow experm
should ignone its coat.
Fefore leaving the suliject of tuulages, ne toight in
 the latest development, 6.5 , "electric hanlage
Electric hanlage (as being introluoced tocdry) means again) travtion masana friction
The problem-a simple ono-is, we monst mase a gime lexul (the power bexiled it is presumed we have at win commant/ by a sulticiently bavy motos to give us the
 wid. This (after carofnl incestigation) I ame firmoly ow vined has, us yed, not been surcessfally accomplisherd theokieng
Of conres, I nalize this remark will brige down on me apposected head, an avalanche of criticism froms our chestrical enginevers, yet 1 will frankly say right here, the efoor of my ways and only two glailly will make dow apologiex and comeveions for turb di-cropatsies at. they may point ont to me. but, as 1 now see it, there is tuot in opsration, to my knowledpe to-lay, an electric hambage systeng giving the desired me-lanical nemblts and I mouhd be willing to guaranter to excert said mechanizal results on leve than 25% of the capitat incested in the ollectric installation, by suln-titutibg wite rope; lience, if this is $⿻ \mathrm{~m}$, electricity, is as yet, econson-
Wally speaking, a failum

 fully as foreibly when applied to aceking coal-4avoid Tom
Take the best of cane of the liesalth of your plant. See that all thinge mork in harmoby, see that "the joint-" are well labricated. Koc that cach part of "the plant" performs its particular sloty. Sex that it gets, the faily care that it should have to cuable it to to to-morrow's
 live to a ripe ol
contact nith it.

ANTHRACITE TONNAGE ALLOTMENT

A Satisfactory Schedule Adopted by the Presidents of the Anthracite Coal Roads.
The roult of the mecting of the presidents of the mothracto cosal romes bold in New york fity on the 3inh att, is a most katisfactory settloment of a dingote that for trany months
antbucite coal truil?
Inability to arrive at a sati-factory allotment for cocl rad wax dhe to the revivers of the Phitasklphais ame Resading Company, insisting on 21 jer coot, of the total paid to proportionate tonbages, inul evelo company
 atly glatied the markit and minmaly tow prices prerapke The elam of the Rembing Cotupany to 21 per company, and many othere conversant nith the Keui ing's coal property, coneidercal a fair ome, beat the mansagement of the veler peads clameat that the salvent of thew rowis, in the transportation busimes, together with ectain other features, hat changed old evoditions se mush that the Feading as well as some of the other whler rasul- somld lave to enbmit to a sualler percentage of allottrent
called for Jannary 2 persidenten of the exal red to corse to wate ment, ami a combinitfes may arpointed to maloe op a neport retative to the diviblon of the tomange for the yar 120iti
This exmmitte made its repart of the Buth nit., tay meeting which was attembel by the following gentle-
 ern Company ; F. I' Wiltor, Lebugh Valley kailroand Coupany, J. Harris, Roiladelpha ami Rowsing RailSew Jersey; Ehen B. Thomas, Eric Company : Alfol Water, Telaware, Eu-quetanna and EChmyfkill (Vow pany: Thotase P. Fowlor, Xew York, Obtarionand Weatcon Company; Simon Soeg, New York, Suepachanas
and Western; IL. M. Olyphant, D-lamare and ILaboun Camal Company; Geo. E. Roherts, Iennsylvania Rail roal Company.
The repors, which was abopted, makes the following allotments

\muylama k. N
\muylama k. N
*)
*)

Theee perentages lecame operative on the 3lat ult. and they mill continue in fore until danary $1,1 \times 15$

黑estion makes vasy and practicalhe, a rational perticy;
 Slespoplitan newspapers, and sone porly infornect gournal- in the anthracite ngions eppowe thik paliey,
 is the region at licurt, fayors it. It is simply foosl tmosi bere policy, which if properly carrial ond means a fair prodit tor the alator and fair uage to the mimes. I
 mathe to maintaill fair priser for eral em infinitelv ladter than forved son-peotionis dhe to an overemowhel markel ant the estasequent tirnak in prions

The Johnson Self-Feeding and Self-Releasing Tube

 Expander.Mine managers and all who have the cure of tubular boikers will be intere-ted in the Johnon improwed tube xpander, which we berewith illastrate
Hevises siner Kielurd Dodprowement in the expanding deviecs since Kichurd Dadgeon's expanhler was invented many years ago The new expander requires neithed leasing. I wort,
 that "while it may wear smatler, it will pat wear oat."

This is a heature that will be appreciated by all who pairing anal noplacing the old style expanders.
Tbe Johnson expander has feen sold extensively 1
 (6) of Wifkes-Harre, nhich has jast toen organized. will hercafter manufucture the expander, and will gay are made in all sizes from $1 \frac{1}{2}$ inch, up, und a smati publ catisn entitled "Some Facts" i.end by the manofiec turers, which is sent free on application, zives impurs tant information concerning the tool.

Watt" Mining Car Wheels.

With this isew of Tue Cobugn Fwaresz and Mess Mryen, the Watt Mining Car Wheel Co, of Tarnestille car mheels anade by them. This concern in thair ad wrisoment in this number (fage xiv) slow a truthfin illastrution of their works, whimh, wishut doubt, is the largest mannfacturing plant in Amerien devoted ubunls o the making of mine cars and mine car wheels
The lu-inese which has requinal the establishment of sach a plant has been buit of, mainly on the Wati self-oiling Wheel, which has mene a bery faverable neepsiun from mine operators umd superintomicuts

 per day. The Watt Co is also preparel to fimain axles and car irons to any spectication.
It will be worth while for mine superintendente amb bayers to follow chasely the advertisements nhets wshall publish for this conesm, for in cach one lame after, some special style of car (with notes as to wher U-ed) or emone component part of special design, will be put on the market will be illmarnted there at an earl) date.

Catalogues, Etc.

The Link Belt Enyinering Co, of Pholahelphia, has Fried an artistic edition of entvanee shects from theif 120. catalogee, ahich illustrate and describe the well

Mr. Hobert Mlisan, of the Franklin Iom Worke, Mor Carton. M2, has issued a neat entulugue of eir prowors puops, high epeed engines and zeocral minim machinery made on the line of his well komun origimal designs
Balletin of Cutalogue No an VoL I. Part is is the

 machinery-
A handsome souvenir catalogue with illuminuted core Mustrates abd descrikes the Thomson reoothe wath meters. The third poblication is an artietically benm set of St plates, flustrating by five engravinge varions electrical machines and phanis erected by the Geneml Electric Con
The Hine
steam plant \& Robertoon CD, who make a eperially in
 The obd allage is yery applicable to the Hiome \& Rovert eon Cr'ospecialties, as their goorl- are desigued to phe duce the most coonomy peesible in power plants
We hare necrived fomu The Gicueral
4 Re have received from The Gentral Electric Cil, No It Einoad street, New York, copie- of three handonee publications iested in connection with their exlibit at the Atlanta Exposition. Obe is a twelve page folder
containing, besidea other illustratell mattor, inow fall containing besinks other illustrated matter, three foll page view of their worls at selbebectady, X. Y: Ly Lu,
Mas-s and Harrivob, X. J.

RIEDLER PUMPS

Their Efficiency and Economy Attested by First

 Class Mining Authorities.N. nexotly pmblished a dencriptions ami rut of the Kiedler Tump bammateral by Mlewers. Fraser is Chataers of Chusco, abl it a gontral aay gave the pimonk of purehasers as to its merits. We are now xtruets from the official mperte of the Montana Xlining . Ltd.,
Prom repnets of Mr. I. T. Kayliss, generat manager,

"Rivilr Pompugs Euviur,-Thix plant, which has meently bra erecteit in the 1,000 it. hevel, was rendered bexssary waing to the groater quantity of nater met with in the dredupments at the hodton of the mine, cond coteri-s of a duplex differential kieller pmomp, with plangers $3 /$ in, and if in in diameter, ami $2+\mathrm{in}$. stroke, sctuated by a burixustal compround combenaing Corli-0 Hgine, with cylibicrs 16 in . and 25 in in diameter, and A in. struke, and has a cupocity of bog gatlons per finnte again-t a head of $1,2 \mathrm{sh}$ feet, uben ronning at on rotatiots, At the prosent time it in working to about mesthird of its capacity, therefore it will be able to Gamille witbout difficulty any quabtity of mater which

 pamps whict wen previoesly sitat
 levels, and it is evislent that by tiouller rump will tey the thet fiedher pmop will refay the coet In additions to the saving in the colloumption of faid a concillenalle comome is effoctall in the balor and repairy neeveatated by the operation of itw punqe liormerly Guncl that the intronluction of it may be safely ascmable us to nowater the mine at an expenditure not in "xecos of th per cent, of that ineurnd umber the old syen cm .1 may mention it is only within the grast two

 man conairins
In conclusion, I desire to assum you that the of craHen of voar mine anil works is béing comblostal in an Gumate and conomical thanner by the varions ne mato of your -laff, who, hy their long erviee, ame
 on them one ant afl fir the assiotance nendend ner in He athinixtration of the company's affairs.

Belore ta, Geathemen,
roan- faithfally
(signal). If. T. Burase."
 gemenl manager: Thowhminable ticelle pumping plant reventy placed ofr the Lank here will permit opronations to he pronefar of unv distarimane of the- number work of thatmin ov a suldion inflex of mater. This pamp, is nexlemhtectls eloruate to humb all the nater that com bo encometemal atowe the 1, the It is now tixed tow wily une-thind of If copraity; and met of the water comery frome above the 1,iek hevel. Years traly,

Immunity of Colliers from Cancer

Mr. T Iaw Webly of Irontridge whoe Labare to clocilate the rates of canner ane wifl kronn, in an infirod for thente-fine soare in a diatrist onerlying the limplain ocol-tiedo ant deritg that time he has then corgeon to two collicries, yef to has mever secis a single cose of cabc-roas discase in a cosliey who uas working The tronke of the di-trict negiotrat shome that of all ereon- a hose deathe ane ngistend as doe to malignant divase doring the past thisy wars unly two ane deSiribal as 'coal miners'. Of these, one I know positively hail long netired from the ardanses cceupation of oul-peting, and had for many year- followed the moren
 ane krabiuss, anal hat worked the the jut foi vame lowality canory is enr commou, and is aften men atrong the farnacemes, momhlhte, ima-workets, ani Eroctal laborers." Amother pactitioner living in the game district is also unable fo necall the case of any col-
 Mr. Wehbe thinks in the habitual cleandinuen of the col-
 bim to drink nuter from cusual sourcer. He goes to work carly, und habitually in his working hoarr carries with him a guart can containing cold tea or coffes, with yost milk. Ile aluaye ntarns home to dinner, at whiel be whally trimks tea, ow, if he can get it, somall beer while his supper consists of bresol and cheesel, witt Nometimes an oniog and a pint of beer. The colliers in Shrop-hire are a temperate, puavebibe, law-ahiding clase, not given to excosesz of why kind. Though they ure often seriously injured in thieir damperous occupation and allthonith them lonk pale and anamic they are in rality a healthy pet of men.-Sizow acol Art Ninise.

EXPLOSINES FOR COAL MINES.

Their Classification, Composition and Gasenus Products of Combustion.

A Comprehensive Study of the Safest Explosizes for Use in Caseons and Dusty Mines.

Frian Thiowaitane al Beulser-

Lakt winter the writer hakl the lomen of defivering a Wires of Candor lecton- bevone the Rencety of Aris, of

 mining exploevive, umi slewned, to his own satiolaction
at any rate, that all exphesisex which give rise to carton

 of the rixk of ingury to lualihamel life Erom the perewore mature of the gas, hut alse bequase even smallimasz of
 impartant subject.
 Gria known as bbeting-qualer were practically the my vepporeive tuent in bubcs, imm ithe dieconcry of the

 in the hietory of blationg explowixes. Ather that date int the hietory of blationg explowives. Ather that date

 mixtuns of this class, it which nitro-gleoverime wa taken op ly nowe abourbent material, and by practically cotsertimg if inte a melid forin tliel amay with many of the damprs inveparable frem the liguid -
As time porseyl on it luceame mamifes that there wa -till rowen for improsements in explosives for mining

 coudition casily matable for copulastion, mith bighly uxializing bulici-in xach poportions that evopléte combastion weald to enerred Many attempt- were

 be a monaiderable at
their pwaserow.
Its reviewing the prop-ftice of the varions mining

 Clas I.-EXphosion dos lo rimple combanetion
the ca-e of blasting ganpombler
Clam- 11 - F
Clam- II-Eyplemion Alue to desonation of the s beoke
 sube Sprengel vxpleoiver
Clace III-Expilesion dn
C'az- IIL-Explosion doe the kenation if pars of the exphome and crush
bathite, worttatit, ete

This bay at finel right ex.m to lev an alkward and

 taite, atod as this in inm langely dejwtot- "pon the way

Nation
Teas.
pers
Hene
 endinary blark zunpouder amil hasting pousler, luth
 [-tlasebe nitrate as the oxidizang material, the great
diffenney betueven the two heing that while in ontimary

 oxn, the protuctx of comherien afthagh incraged in
 which are thentseloss inthmomabs
Compumeter itsolf in practinally meser used, and the ary wood that can on cand it baver of tom hastimy

 neturbesi to Ining cousent by mining explosives. The nturbat os
Ereat ding coment by mining explosgyes. The
 dencempuation, a bector in coat mine explowens whel the- nriter evonires to think canmes le oxerated.
On tiring a charge of 1 the of blasting powecer, over

 exphisione or ut moy rate nupislly beraing mixturo, amil expurimente ahich lave been mude upon the effects of lin-dampant det combined in cauring colliery explor
 pocout in such minute quantities ar fol form a misime very far nemeved from the print of cexplosion, it maks the mixture of cosal dost and air highly explusire
 tompe-rature of iznition is louser that with metlates. that when the air of the mine is clarged with coal dust, ibe powabilitine ane that a very large colam. if expl. -ive mixtum i- formad by the riphal cotap of the pralocte of comburation into the dued lathen air, and thin Uxing ignited cither by the flame or ly mol hot soli-1 podocso driven wot into it by a blown ent shot yinitiat.s. aconviterable arca of explemon.
A- the cexplasion takeo phacs and an the carlvin men
 the action ophan it of water vaper foresent, anat alow in it - direct embonstion with uxyge-n, the byilougets of the mater vapuer is ect frece, whilet the lesated coal dust alo ga hi- Geriain intlammable producte of diesillation to the atr, and gartial combustion of the ecal duxd giver a cob
 this, driven rapuilly aheal of the explosions, forms, with thore coal dond athi air, a new explosive zome, and so loy waver anil throke, the explanen is cartied thongh the dust lake 11 gatheriks of the thine.
In this way any explesive which g-werates inflammahb problacts of bomplete combastion is ansale, and shoak

 ap ant cxplomin will cul thas ahoth
A still ervater dander arises if any trace of bin-damp exists in the bime as this, hemether with dus, procides
 crotved hy blastime powiker ane capable of playing the satue part as snlphus on a mateh, atel cumsing ignition Fince cxphosive mixtur:
Finchamp, as las been hown by the sumetore

 for everal excond-, rothelimect ar many an ten, befor ifruition take slam

This phetwumpon is the to the ahsolate ignition poin onethane beyng extn-turly high, far highoe than the empernature it uhich it decranpuas intor havionen
 eak> first takes plave, anal the likerated hydrogen they gqniting names she mass to the trow ignition point of tho
 anel it is thinabome whele giver the comparative sabel

If we take the tomperature therelaqsal by the bum
 ghition perint of explowize mixtura of methatne and ait for a -trablils applinal lecal

Fers how lowe Falir

Mrotine erlatiow	3:31	aus
Sitm-ziscrime	4,12\%	A $7 \times 1 \times$
Premenite	2931	F, 2 kl
ciferetbly	29.4	tase
Taute	2nen	L.7.0.
Ilicre amal	2981	47%
itstarite	3,184	\# $1 \times 1 \%$

Tese dent, brys Fahr

 xion eragnal into the mime it shim temperature amy

 firertly thery bom wat inter the workings, expainsion trimg abont stac changer learling forthe ignition of mix

It is impoctant that it sloulal be fully malizenl that the

Ntarding inftomove of the clowaical chang- wecenary Whforv the ifnition taker place, obler eares that comsil Ghs withe exploneve buxtark
Fertumately the inflummable oxinatitient of pit gak is pactivally obly buethans and wist the une of puryer «plowives, explo-1
 nor bapming ensin
stifety imatanmal

 lown laton the ignition point, and the gaseosas mixtare is firel.
It will alwave In matiove that in makimg triale with arions explociver a lecre pit gas in uend for the mixtmre it whind the explosise is final, igmethen is mere, whilse tather than the excention: and survily po cope can telieve that thim tovernl- byoin the few degrev- hizher point of ignition nhach the methame is crppuces io proceven, anil it to this obliterntion of the factor of retankel ignition which malkes it ityproative to discard any explosizes gerenting combustible poralow
It is alos cviclent that the mowe rapill the explosein the safer will it les, and we explosine plowild In teeed
 or eccourlary principle in its actom.
A still greater sance of langer fonnal in the explecion 04 wast blasting powiknt is the exoxes of solplour which it contans, amil which shring explesion show e it- presmev by the evil alor of the esruping mamer nhech cotr-
 abiker ecrtain winditions Irame of carlon hashiphiche are boy prialucest.
As ha- frem aln ady pointed ous, the ignation point of有

 wish cartum monaxide lowers the igniting point to When tekF P
Thasting puader and ofleer expleteiver of the bire clase truald unheotatiogly be diecarcled not only as being omsate in nea, lint alear an deletetanat to bealth, the powlowt ent ineomphete combastion all having a distinct wxie effere on the sy>xteth.
Taking bow explisiver of the secoed clate, we come to
 xploneves, and the dis-limetive characteristic of this divisens is shat all the members of it are capable nf compplete detonation, jerovish
wort ef detonator ir employed.
Xitn+glverrime, which first inangurated the montern rat of hegh explosiver and eombameorl its cancer as ithesting ail, stathols apart from all wher nitro comb-
 ham in ami hydrogen formel it its monkerak.
4. $\because \because=15\left(H_{2} \because\right)+N \because+N$

The rusalt fe-ing that it evolver un combastible proalacts, whitef it-rapisfity of itclonations wotat make if the for the stanger imeptarabor fman its physient coondition or the atanger surçatam

 Masele if obly meveary to prepare a fornloske, paraly till water, 位water, the uake borming just as gomit tatuping or the hat bren plugesal wilh woul or metal. The uee of Hitro-glscerine for blasting porpose is leamexer attembed

 finally, the limilit selte is peat very stitable fies dotome

 dating ite power and lexoming as stame of dampor in stiteorptent olerations.
When contionsly lisateal to 100° (\%at. it slowly "yaporates, it sea tivent it barns, anal cletomater if, if tmrne guicely anay, aenl naten is applion to emexal the thane is.meraliy goce ont ; limlesed a lighted
 tycerime: It is, lowever, destmatel by is subliken blow.

 mert: bermax it is ukration attembes nith courvelenthe riok It is stated

 - Tn+ tarespo- deconnpeition

The geveral in-tahility of nitnoglycerime, the liability An freces, and the daniter in thasing vatomb to the mixturs in whoch it phays an impartant part, anol vexdamger on nett realizeyl that it is mecelless to doedl "1uat is.
 class od exploevives, shels as blanting-kelations, an sanoug
 bustable profincts of cuanberstion, as the de-lionebey in

Abstract

Such smokelcse powders as cumdite and ballistite an of mueh the same charncter as blasting-grlatine, and in all of them we find the same evoloting of combastible anal prionoms provacte marring otherwis beantifn exploeixue.

	Hasling (itelation:	Sallistites	Soerlite,
Son-motestible-			
Cortain flowter	3	3 F	8.5
Cantestile			
Hydman	${ }_{10}^{16}$	26	11.
Methare	trace	63	67

It is the nitroterton preerent in theer explowiven which is responsible for the bulk of the cartman mon uxide, whilst in cordite the vaseline prowent, by mpply-
 it than in the sase of blasting-gelatines
it than in the sade of blasting-gelatime
Xitro-coston alote has from time tw time been uncl for

 thaws the proleste inom a mitrocoston containing is per event. nitroger on detonation :-

The amount of carbon monoxive prohluced can the medocel by almixture with varions oxdizing materials, ami Frot. Haroh 13, Dixon's obecrvationo as twe the oxidixing aetion of water vapor upon carbon turawide
an well illustnated by the fact that if wet and dry nitm. are well illustrated by the faet that if wet and dry nitme
ootton be deconated thene is a notable revloetion in the quantity of carbon monoxide yielded by the met sample. and an increare in the hydrogen, howing that the water prescont has hown neting as an oxidizing ayont
When fetonated the gascous poosfacts of the com porition are:

	$\begin{gathered} \text { Wry } \\ \text { Gme } \end{gathered}$	$\begin{gathered} \text { Diry } \\ \text { Lun-outbes. } \end{gathered}$
Cartos diuxide	329	2431
crave momaske	3212.	H2,
Vitrogon	1100	115
Mcthatm	8,30)	tome
Toials	3003	9300

Soverat explosives have been matle on the principle or mixing nitrocotton with oxidizing materials, but ity ooly now of these still in the marke is tonite in which the gensration of carton monoxide is neluced by mixing the nitro-cotton with mineral nitrates. Such mixtires,
bowever, give rise to a noilloce of fased calts, nhich, if blown out into an explosive atmesphere, wotald be ex romely liable to ignite it, amil although the combuatible gases evalvid are relnced in quantity they are ont done-
away with.

> away with. Revilen

Betides nitroglyeerime and nitro-cytton, such of the Sprongel explo-ives as are eupable of complete dedona-
tion come under this uroup. The sprongel tion come under thim group. The Rprengel explesives have been largely need for blanting parpowes, both abroant and in this cosintry; thone nest fere conrat of mixe
mitrate.
Kobarite, intraluocd by Irr. Carl Koelh, is is simple mixture of mitrate of amamomion wish chlorimated buta: libitro-tenxa. The ammoniam nisfate of fir-t dried and proumi, then hesptex in a elowed styabi-jacketed vessef to a tomperature of $s 0^{\circ}$ Cent, and the meltod
organic emmpoumd is mided, and the whole stirred matil on intinate mixtare is obtanol. On cooling the ywlow posoler is roady for use, und is storcx in air-light canisters, of is masle up into cartridges Owing to the deloguescent nature of the ammoninm nitrate, the atmosplere, and for this reason the cartrideve am waterprowded by tlipping the-m in melted wax.
This mixture is bot exploded by ordinary pereussion, tiring, or ekectic sparks If a layer of the exploeive is strack a heary blow with a hammer, the gatios directly developed, bat no detonation whaterer takers place, lien are there jortions of the sithetance aroand the spot in any way affected, whilst if roburite be mixed with gunpouvder, and the gunporeder be then ignited, the
g pibole and -catters the roburite without tiring it.
fobarite can only be exploded by a spexially poim ial detonator, and on decotaproition the gaow evolsad contain no combestible eomstitnents, but con-iet obly of carbon dioxide, water, and nitrogen, with a small trace of hydrochloric acid gas, which is at once condensed by the large volume of water vapor evolved, and gives rise to no inconvenience.
Ammonite is another explosive of this clase, which is banafactared froen ammonium nitrute and dinitronuphthalene, those subetances being blended in the proportions mevessary to give as the prodacta of com-
bustion carbos dioxide, water vapor, and nitrow n. bine during the decomprettion taking place, probably some more coniphex action ocedry, as stuall traces of ammonia can generally be detected.
Bellite consists of a mixture of dinitro-benzene with
anmonium nitnate, the latter being kept rather in excers.
*ecorite conntistx of ammonimen nitrate and dinitmprobable, thet corbhe proportion of mitrate ned it iridges are oratest with bitrated resin, it onder to protect theen from the action of the atmosplbere.
There is mo shabt twit that thin groep of explecives approaches move bearly fot hal safet
any which have yet heen introduced.
The kow temperature of explowion - ecural thy the
The kow temperature of esplocion ecoured by the tee of amonainm sitrate, the abeence of any rotntmaible -and the fact that both the oxidizing material ind the

 the-y are aboslutely safe in hamiling

The stifety of the Sperngel explosives in hamiling anal ase is to a large extent deprotient upont the lact that whencoly segabic body is ggnitas by ofdimary flame, the ammo
 posailable for the combandion of ther varhest atal lovilrogen it the veganic body, and she tenaprature of the Inening -ubedatue is net sutliciently high to popagate this action throughant the tham, the resalt lecing that to sasecontimed combenstion sues tunst liave a contimuns. *apply of beat, of the tlame fire started cimply dee one practically pon-indamimable, and when they are made. practicaly mon-indaminitie, and when they are mude
to explode by detonation, a mome than nanally pomerfal detrnator has to ter employed, \&, that althemght witb nitroglycerine mixturs a charge of 7 graine of mencuric fulmimate is amply suiticient to peodoce detomation, such a boly as mburite necds at hast is grains. Moreover, when idetonasion bas toen produced, the amonent of hesat abearlecd by the devernpusition of the ammonium nitrate causes a very considerable lowering of the foalpratury
explowion.
 constituents should moxture for moming work, at tho resems for this is that under thespe condations- the showet of the detunator rewalves both the oxidizing and emm buscible bodies into their respective molecules, and that these then revimbine into the gascmas fierms which give the explosive forog, the uhake action beitg practicalls instantancous, and consing the propection of the hod groducts with such veloeity as to give no time for the fiecompreition of the methane in the pit-gns, and the Egraition of its contatituents.
In order to obtain the requikite rapidity of explosion for onsiaring satecy as mgards the ignation of gamom. bixtures in the pit, the reweting purtions of the explosive must be in the condition of molecular division, and bor blasting parpoen- thi- can only be obtained by cumplete deconation. It is inguecible to odetain safoty by any attempt at mechanisal dirision. An exeollent example of this is to be seet in uestialit, whels is rad to be made by mixing ts per cont, of ammonium nitruse the aleolose is driven off by heat, and the mixture is ground and mado up into eartridges. In this mistun the resin or sbellae dannot be detonated, and the prosence of the inert inaterial necesoitates the 10 on of as Xos. detonator, contabining 2.5 to 3 grammes of fulsoinate, to explode the mixturg, and when detonated the ammoBiam nitnute only is dosomprosel, and the zimple evorbostaon of the resimoses matter by the profocts follow-
a- a wcondary maction, with the- resalt that the. poraua a- a meondary reaction, with the resalt that the jersorl
of explomen is very womilhly increawel, and the nok of of exploeson is rery wamilly increasel, and the nek it
itmition of the pit gases bucouss math gevater. The ignition of the pit gaess becouss math greater. The
resinons material andergoing combostion is aleos zrave resinons material abdergoing eombtrastion is aleos grave
eouro of damper, as, ibetead of being in a moslecalar mource of danger, as, ib-tead of being in a monlecula
plate of division, the smallners of the particles is gov erned by the degry of finernes to which it is gromind, and a blown-out shot would be accompanisd by a slow of sparks of the burning resin. The fine comsition int which it must be ground must al-o ineroase the troable die tothe hygrucopic nature of the ammoniam nitrate least efficiont and least safe of the. xpengel explasion. In deciding as fo the relative claims of the other Gembereof the sprengel givoup, ammonium nitrate Ioza comman to all, the bost will be the one in which th mithated exmbustiber is the manel rempleble for detoms tom, is the redmees the chamer of mas-finz or partia detomasion as well as increases the rapidity of expunsum
and the writer shonld expect the chlongelinitrobenzen and in rolarite to answer beot to this reguincment.
The third group of explosives eansisis of bexture= of the first and second groups, in which a bonly sasceptible to detonation, and geberally of an oxidixing clatacter is exploded and the prodecte made (or aut up=on is exm We-lfa
h-t of fles, wheh has just beyl eontrastenf with the of this gran laf explosives, is an mimimble example bonite, whieb consists of a mixiure of about 25 parta if nitroglycerime, 30 purts of nitrate of pritabkiain, ${ }^{4}$ partof nitraie of bariom, to parts of womb-acal, and I jart of carbonate of eodium. OD detonation, the nitmo glycerine is decomposed aml cumbustion of the wood meal at the expense of suane of the oxygen of the nitm
glycerive and the metallic nitrates takos place. Then is un doabt that the almixture of कo large a pmoperint of carbonacexns material rexloces the tempenature of the explovion, beat it aloo makes it otec of tho word offemers as nganis the g-neration of eombontible procluct-, abel escuping zases can be ignited and will burn with characteristic carbon monoxide flame, wver to per cent. of the problucts of its combastion oun-i-ting of thi- gat in a very satisfactory toame ous in trials and in practicy dusty mine would be quite likely to leal to an explosion, dusty mine wonlid be quite likely to leas to an explo
whilst the funes must be very injurion to leeath

For the reasoms which the writcr has hroaght bufore the momberk be think - that the wedection if a kafetyeex

1. The exploeion mant be dae to detonation abal not a simple combenstion.

and uxale explisive be a mixtury, beth the combustible. | atril |
| :--- |
| tín |

2. The prolucts of explesion most be mom-imflammahle and moth-phisunoms
3. The explocise mued bo -afe in handling as well as if action, ant congnansl- of an on-able character which arv liable to change shombl bo avomed.
A. The temprrature of explosane sloushl be as low an is compatible with rapidity of action.
Tlo following talse giver an illea
The follouing table gixe an ibea of how far the
 the foremest place :-

> 4Isisx: ExVumivex Con:- Son-rum-

Given an explosive which answere to theae require: ments, ami using, rhesrie firtug wish detobstors contain-
 minitutam.

The Preservation of Mine Buildings.

Mine owners ant mine managers are gradually alopting the plan of painting breaker, tipples, engine howses, mines
Thee prime object of this painting is the presercation The eormor, athe the imbed nestness geren the plant. col of tor appoying the joint is at least as great as the

 mone to apply vach a pant than it does to apply a phor ynatity.
The manufacture of paints has kept pace with other indastries, abi today paint can be obtamed which mod only poose-exs all the exsential paint qualities, roch as coverifg capscity, beanty of fimsh, lastung quality, ete., but whech also has thu property of enormously limiting
the combustibility of wool to whirh it is applial, and the combustibifity of nom on which it is applied, and ootisequently will resist fire, where tortowny paint woulol increase the combertibility. These paints, forthermore, enst bo wore than gooll ondinary paint-, such as our gnindiathers uexl.
The value of tire-resisting paint can le matily underdeskl, for while it serves every purperse for which it is destigned, it is an abovololy arifowndir fire extinguisher, as it is mut neossary, as is the came with buekets ami bout as mane as the flames reach the paime they will die out as mon as the th
The Jamieern Fire-Itesisting Faint, made by the ambeson Fim-lessisting Paint Co., of tid and if William It ha- been on the market long eamenth toretablish all clatme makle for is, and its lim-ro-foting qualitios are of a high onder

Novel Plans for River Gold Mining

A bighly intonoting and ingonions metheni of rive Bohl mining has reveutly bect evolval by Mr. (Yarlebitit in codnection with this important, bet cuturame tixety fitt fown ii, teanch is activity. The wethont in goction is bxat illaserated by a desciption, neconarily Sref and imgmenary, of the plant recotis bammate ide. The apparatur in que-tion, if en it may be called,

 atovat 2 fest + inelys. In the eventre is a wall, inside of n hich moxe up aml sown a cylimber 2 foct binches in
 is fet in diamotro and f fere in lowght, and at the lop an
 the bedof the river-its uperar rim being kept at a hejght the bedof the river-ats 1 pher nim being kept at a hogght
of inote than a fort almere water level-it workern entons, anal the water is graulually foreel ont by meana of exmprosed air. At longth the bottom of the cylimeler retr on the bed of the niver, anil the- operator is able to procesl wilb hie work dry-slosl, and by the aid of chow tric light. The -vinuent on the river buxtom is raied
 side or just beyonal the calge of the mlinder. The brexe

 cesofully, a distine mbuce will have then made in the methonla of river mining. In any ease we slall wateh upplication of an old principle with oon-tderable inter-

PROSPECTING FOR GOLD.

GOLD PLACERS: HOW THEI ARE WORKED.

Theories of the Origio of Foold Sands and the Histery and Distribation of Geht Placer Depusits Tleroaghout the Workd.

In theee days, when all the uovld is attee gohl, any information as to where to find it and how it is extracted and mined is of interest. In former artickss we tane given some accoant of it vecurrence in veins, bow to propect for theoc, and low they are mined. We have aloo given -ome accomnt of placer mining and cited one Ir tha typual example histore of plapor depo give it encerting artiches in tull hestory of ph
their mode of explaitation. Placer mining will, we provict, won come more and usore to the front. Sthough in early thmos it was the only kind of gold mining, yet for a long interval it discovery of gold weine in place The proepect of getting suble mily rich of thee and striking a bobanxa cansed the mote steady, regular and less ex citing work of placer mining to be in any form of fondition anat in any sort of place of cireatustance will be monght for, and we prediet that mone atten-
 humbler akpueite.
In Colotado the signix of this are alrady apparcht. Od, ubandoned
placers that were joet -kimmed over py the oht-timere of tive are beitog resexamined and efforte on a lange scab made to reach down to bead roek, which the "old-timer," with his cimple appliances, never dreatued of doing. Sew tract- of placer groeand liong. Ne tracte of piacer frownd litebes comslructod fos bringing wateto bear on place deposits which were mevertomehed in the old days, because there was no vater at babd. Vey selsemes on lange scalos ake being started, and withele be-wet and thool appeoved applances, like the placer sides gwing down to lo-l rook in river beds whene dry tonke were jose skimmeed by the proppector aith lis little -luice and Chinese wheel, the water of the rivers themoslves is b-ing turned from it- natural confee, vxjur ene long reaclone of rizer beal atol

 continuoss tremelos nith the belp of giant noweles and Ladtum clevatore and approved errive of undercurreat -lnicera The aht-tiner with his "Lang Tom" ", "rocker," and his litule syairt of hose pipe woeld look on its annazement at eneat ;if-inch stay pozcles and Lasilum phevator- and shave after shaice in long pocorsoion.
Macer maning is the carliest form Macer mining is the carliest form of gold mining krown. All the gold of the atcients uas obtained by -omes
 cases from the sante of flowing rixers The goll of Guthir that manke Solomen corieh wasextructed by washing tivey
samix. The golli of the tates sandx. The gold of the Axtece am Indians wat all derved fratu the same pource. The amconts baver matis ing hesds in place. Eveen their tim Bicha wad procared eo abmalantly by
 taking beromae itaplewinents, was "haved ifoll, sariace waslamps of stream tin, anal their exteneive girface pacer- ane weithe in Girwa Pritain at tha days It was the till
'gute a late thate in the world's like.
 togy that pold leat- in place were
looked for and twinkel. Even in our looked for and minecl. Even in obt
 uefe ail jower miners, afl gode washthear piek, and is wach be4 till -atse bowe aftor gralil was thiscovvreal at -hticy's Mill, it 'ahtormis, ahd as chablitheal, that the mimer totloweghi him of lowhame up the foralities ulorn all this pold might coas from, an fourd hoato of got anel -itver in place athl thereloferl thom.
Pacer thining of goll washing ter t staall of large senle is laing and Hiw been curriel on in nearly evers vontry of the known world, veve in

orginally occur in veins and that all gold foumd in fiy streatns, to beak up and winnow whole monantain placers and in the sands of rixers mant at one time or culles of smeh porghyry, we might readily acoount for
 strams and flosls. l lo bot think this is cotimely or in sume of attributing the pold to pold veins in place. The a large part the caee, It is very eertain that many if Eandberper's latetal eceretion ilveriry lav any weight, placer depmaits derive their gold from each veins, bat by moot cryslalline rocks coatain in these chemental crys. no mosans all; still less the amount dietributal oter the tal-and minerals minate potions of gold as moll as of rivers of the worhl in regions not remarkable for gosd- the ether bectals. In experienoe in the Weat it will be ixaring veinc. 1 believe shas gold is coboentrated in found that by far the largest and moet important gold veins, lat is widely and perhaps minutely distributed mincs are decompeed dyker impregrated with gohd, and also through the focke themeelves, bore especially the in other rocks the expert is ofton eorely put fo it to couhl break up and mill lavas, potphyrive, efe. If we letme his dube, whole monntains of granite, we slould andoubt- if the comotry mek alone exertain mut sharply defined
 veins. Many of our lavas in Colorado, espcially those tain ranges over the earth's surface by the wear and tear
 groand down, will yiehd golel, and often ever on a small found far abd uide in tivere, though poesibly a mothical scale will asoay in gold. In the Cripple Creek rezion. Pactols- river tlowing polden sanis mavekerive it- extrawhich is covered with a dense mass of andesite and carlinary wealth from gold veins aod far distant.
 festricted to se-called veins, bet alncet any piece of lava

Atrong the carly recoonls of gold washing we karn that the Greels from the carliest times carried on with the people wha livel north and cast of the Hlawk Rea, and drew largely on the god fekle of siberia, from whim soarce the (zothice tribe of the Massugetoe ulso obtained their wealth. These gold depoeits are suppoedi to baye fiem -imatiरो in latitude 53° to 55° North and ame sait! to be inkentical with thoee worked by the Lissians during the perssent century. In Asia ghmer the mome tains and rereatas of Phorypia and Lydia yielded gold in ancient times. ari thete was suppeeti to be, ace conding to Herototus, the mouderful lactolns fiver, froms whose golden athelsterens is caid fo hoye dorised bis wealth. The cande of A-is Minor, homever, lave lomg sither ceased to geld the procious metal.
strubo says that imperial kotwe was imuntates with a glut of gotel rom loer motllert mothlains, the Itps. (These tmontatns, be it said. are bancly compesed of tranite and other crystalline rocks. Polybue sys that it he- trave gotel mithes wore so rich about Aquileta thet if you dog tot too ket below the burface you fomm gohd, and that the diggings 保nerally mere not leeper that fifteen feet. Italians aiding the berbarians in the working for iwo monthe gold became forthuith one-third chscap-t
ores the whole of Italy. fiold al. wes the whole of Italy fold al-
bous loealitioe in upper lialv, bat reins or veins of any kisd, of evell to fissures of any workers. The suble of the Grea, the Jassin, the Io and kind, hat goite often it is diffosed through she -ubstance serio arn entimated to have yielded 300 ounces gold in of the lava along a certain brisul zonv or in a dy ke p-the 1,ke In spain and France the Romans are stated to
 The Plonnecians obtainex sobl The Phecnecians obtainex ${ }^{\text {Bobl }}$
iram the best of the river Tagus 1100 If. C. and washimgs ane ngerted Tlo Fold to sle vralis natil 1157 Tip to the clase of the fifternth ceratirs the depreits of the Ariuge vielded anmually aboent 100 pounds of the precious- buetal. As lateras 1846 gold washioge ane repurfed abong the Thine betwoen strassbary amil I'hillipsturg. It is worth noting that all thestoug rivers mentioned have their socuces in, or drain regions of erystalline rock. 1
tii Sfrica the abcient Prygtians mincd for precions metal in Nubia, Perenice umb sazkim on the Red sea Theseare spoken by Disatomes sic These are spoben of by ticaloraskfopmgraphical mapuextant, preverved in Tanis.
The varlient requod of the Fgyptian mitres thte- from the I welfth dymakty, and these of Kondofan, in SlayeThat erysalline moks exist in these regions is shown by the great monolithis that have lxi+1 tug up taany of which are of reet crystalline syonite, a moek xeey like mod wranite. In fact, it very large portion of the contiment of sfrica is of gramite. hence it has been clained as one of the oldes coastries geolugically in the morlis.
Nearly all the gold obsained in
sfrim till within the pol fuw wars bus been from alluvial deposits. The
 world has bees more or less werked for gohl, aud even mates, Again, at Leadville, in the Lattle, Johnnie gold-hearing allevions wowkel by begross, The product the manis of the wa teswh.
 Transvaal ant Leydenburg district, where coarse nog-
gets weighing as monh as 11 pound have been fonnil, gets weighing as moch as 11 pounds have been fontot,
ne will ctesk later. The gold export of all Africa

 the Mabrata comintry. The katul- of the Niartur are gobl-hearing alon. The central prosimers of Imina contain many staall deposits of poll, but the manatner of gold waslings is conporatively limited. The ancient
gold miner of Maulrak have focon rediecovenal. Tlu
 come from slese inimes ant from Malalar. Fingrons are in phaces covered with tailings showing the imblustry of
 of rivers laving their sonrecs in the >late of Travianenfi oontain gohthowaing samts and todd wa-hing is carried of the raink jow as in Cotoratho at the F-ginnigit of spring and in must of our western states, with the
cloer of winter to it coman-weement wain, for placer

 been exteuxive mining by the Chinee ami matives, ovel fields. We mas note licere that the rekes of theos islands are for the boost part voleanic and ersstalline amel the whole archipelago is mure or less volcuivic, In the reventh century the Chinew fravaler finell the desert of tiodut as a mold-tating district sumbe where in this distriet Ilamboldt locates the land of gold sand spuken of hy the Dariai. Panpelly states that
menced in ists. In the southern. Wral the rivers are
monarkable for their minerals and procioses stomes. It menarkable for their minerals and procioses stomes. I
is me metomomon to find peme and precions stomes it
 bave bect so foabit Garmets ane exerodingly combum. Rubies, tow, are foumi, ami many othor hesivy erystals and zens characteriotic of erystalline rokk, The Altai ngen in silmeria wan early cli-wovired On then Yenashime bres viry pentactive placer wor fomml, althongh the gravel was Ime 10 fiet deep lui tow fext wide They work fom, May to Eqpember. In some
 river in places is very mapiol and iamow. The pay it

 elimate is very severy and the gronail frower the vatir vear. (In Alaska they Liresk oat Large blockes of froxet cramal ambl thaw or prinnl then golel ant of it

MINE FIRE EXTINGUISHED.

A Fire in Port Royal Mine at Port Royal, Pa., Extingnished by Successfully Cutting Of the Air from the Burning Portion.

Port Royal Mine is sitnated in the Ninth HituminomsBistrid of Pennsylvania, und the coal workol is the pillar and chamb

 divided into iwo main splits
 Yoangatown, Otion. It is ucll expoipent with all the latest und most ayponea mochinery. The under-cuteing of the cosi to skobe by the Jeffry air trower
mining marloine. The holos for hlat. ing are made by the Jeffiry titant air puacer coal trill. A large comproxse manefocturest by ther Norwatk Irom furnisbes the power nevoimd in the mine for all machinery iselading the ['impe, When the tmachimery is all in thation the ex latet air materially awi-ts
 gan the part of the miners when nsing "xplowives, of prevert the flanws from the perder gesting the gane given off from the irsobly blustect coual
a miner, fin thy face of No in baft entry, anol it had buble sach rapid progros and exvend such a large urea th lieel diseowered, that the ordinary methods of dealing nitl stoppinge of enitable materiap wer hastly thrown "p and later sale-tantial -toppimge of briek and stone wet air from the fire An iron pire litked witha valve was placed in cache etepping

 cloded from texts bume at the menilse
of the piper, that the Gine was rxtimet. of the per, that the Gre was rxtimet.
The mine was safels chematel from

Abstract

gold is fonme in fortreen out of eightern provinose of the the tirme the fire保

 vielding coare gold. Howdred- of thousande of natives work the sulids of the fiver Kin-ha Kiang. (That plawe miming fo "Jobe" is no bew boximes se evident frotn placvers and masager to get beth gold and wages when Ho white man call.
In Japan gold was first disenvered in 279 A. In, ant the art of moning is said to have been introduced frota China. Marco Pok in the thirteenth centnry says of
Japan: "They haul golal in the greatert ahundacer, itsoureer being thexhatistible," The Forthguese bet meva 1500-1139 exported $300,000,000$ dotlars in gold, till the lapamese goverument forlable furiber export. The des posits wew mostly shallow placere. The pravel bels goor. The richest d-posits near Yesson coatain loss than 7 ones per cubic yand and the averuge of the hest does not excoved 5! cente.
Russia has extenrive gokl-tharing thepreite and in these northern regions wo may expeet that many of
them were Jaid down thromgh chu. them were laid down through the agoney of ancient placiere as well as by modorn sivers The princijal
mining alistrims are thow of the liral, the Ntai ragion
 in western siberia, Wustern Turkeotan, the boribern frkutek, the baein of the Lena ant the comatry along the Anher and Norelimok. The total yield of pold

 Who miles morth to the Aretie coean and eonth to the Cascack sistricts The districts of Miank and Kavhgar are on found and at thoc lafter enommht- and pink topazes been lownd and at the latter enomade and pink topazes That is gold-lasaring. The first mashinge nene some

On Saturday, January 4th, it $5 \mathrm{p}, \mathrm{m}$, after all the

 fy the mine forman, deserbetel Xis 1 shait arsl pmovaled to the soppings alrealy mentioned. Two bm se that every wokman was out of thos mime tant as they returbel and reporiced all safe, work eas coneEnemset on the lirick and cement and soma aif was mew ing into Xow, 16 ansl 17 lout entries for the first time it about fire mosthes Two of the vxplatime party pout fullouvel in the direction of the air carrent and in Nort time all were able to mach the working lawe of An. 17 votry. There we founel the evntrios almoet chored Eith falken sis rata, and we coukl starnsly crawl mer tle Gallv to So 16 votry. The opmoing was mol vallicien ally sad won removed chomgh stone to allow if satlicion oproing for air:
Meanwhile, the ventilating exrrent was etliciently foing it- work, and by 11 r, 3 , a contiturns curn-nt a air wax powing through boch entrics, Wre fommet that the fire oas eutimly extimguishest, anal there uar hol the slightegt imbiration of losat amy nhere,
I examined the territory to enileaxor to leara she ex Ient of the fire Ifound charrel coal, coke and ashes atattervel profabely in all directions. Ganvas langing on poests was crisp, charrex and hbockenel hy the firm, anal if
 where it nas clearly themonstrated that the fire lad Incil
on a large scale. Many minime antlorition inent toat
 mine fire cunnot be succeo-fally extimgnielool by the

 grvat crestit on the managetment of the mine, and mom orentific on the min serarion to a acousful ternination

W00DEN WATER PIPE.

Its Advantages Over Iron Pipe for Use in and About Mines.
The mooken water pipe (gatented) made lyy Monrlyrantt Thos, \& Co, of Tonamama, Xres York, is Wraby the attention of mike owners and mine manaWit. Owing toils non-curneive gnalitics it is the lest spe of pipe for 13-e a- sotumil pipe mader moelerate is. is practically indestruethbe for sach servion if proprly pudected from frevzing It is masle from first 2routh Mochigan pise, with the rap entirdy turned off. Ordinary wooden water pipe- will not meet the regnire
 nomgh to so-tain the presone they ane peterally sulb
 timed by Merors. Aynush and broklurs in the followigg Imperiblable cemeat is applied to the ontside of conts
 lus peoterting is from the artion of the eoil, and effect-

 is to make it sutticuontly stroug to oustain any untinary scomary pweseam
Av a water pije it prosscses the following advan(1) It is elocaper than inon: (2) is is more duruble: \$1 it can be laid for lese thoney; (4) servioe connections

 fiable to invar: (1) if fromell, the elasticity of the time ber in she pipe allows the action of the freet witbous injury (10 this qualiry rembere it lese tiahle to baret
 prosemes sould bue Is loept on the lime in case of fire; 121 its weight luring tunch lows than irom, In ighting it is mach chesper. I- a columan pipe its advantagos are practically vontaratesl above.
Messes Xyranli liros of (C, iteme a neat illosiraten) fithogre that heserturs the pife mene folly than caa la done in such a metixe us this. Thoy will cheorfally somb

Garlock's Water-Proof Hydraulic Packings.

 arlock jowking- 40 pros match wanla mentx Mifer many weary of it is oonsiderabl. trpense, thery
have maccuedhal in prolucing a water-prous hy-
dranlic packing
which-thas minit a hich they claim all purposes
This pocking is

 tionl feats in the water erot of pumpon, byelranle qlevatoreand byalranhe buehnery, with resalis that fully justify their claim

 rhich is strieth free from acial. This gacking is mashe

 vater-secalievl anel sutt irom the use of vils, losing its trengits, atul piston plungers zere sare to kak buily; cypuring om-tast repacking. This pocking is intendeq aif the pimajal clams for this patking is that it is athonlately waterypond anat oil-pronf. Emegiocers who daily experienee the difficulties os leaky pany phangers will
no denht genatly appresiate the advent of thi- packing.

The Chicago Drainage Canal.

We lave rocoiveal from the Ingerwall-kergant Drill
 the leculing engiocering prigects of the ov-utory. Tbe kaik erntaine tmuch intereting tas cancrotsing tbe anal, and while intombed to slow the encorok attertiting

 cow pabpsint sheal with resal wory

 pamy of litteleary har nceivell a namber of awarde at

ELECTRIC MINING MACHINERY.

Electric Pumps, Fans and biowers, Showing Latest Electrical Designs.

 truck for maty tran-puttation from phanc to plave in the -idne ams, like the motor, loutasel in with it slevet im cover. The jllatration -lowe Ibe truck mosmitel

 1 hech W:

the power coxpmeat to any great extent. They op rate at shwer speed than any onber tontors of similar capocity sut built, abst althongli relortion of yoval mast neess:

 marbuctie peramalifity, allows the fonsmetiong of a mizor lighter than ofler motars of the satare outy higher dpeal. The armatann ane thumoughly wentilatel:
 tonnd down securdy on the purijeting thange of the
 of exprivener. The machioce are parkleos ant the loost can le cariel trom nothing to full hoal withont the berosoity of shifting the bruslows. Precuotions ane taken to provent any tendeney on shee part of the borings Ent cat of sligntusent abl proper constact of bruslow with

Anatleer conshination, introlscing the renteiphase mestor for

 This sye of mowe dereloget by the vane compary aside frem its compsectome, whinh allow- of its emetion

 Sith hetter nquatation atai without any of the dixsal antager which the presence of conbutators, bruslues are tow in us om all the there dezelop. There motortransmission circuits in this conntry, openting nithent attention and mithomt axibhot anf to the entirc satio

IRON ORE MINING
Systems of Mining Used in Minnesota Iron Mines.
(Vrom the
The irnan mines of Minneeola may be dividal into tar guneral elassus according to loe conditio

1. Miass in which stripping will pay
2. Minser in which stripping is nof
3. Minex ill which stripping is not peesible or will

The poy The dividing line of these two clasese is the ene Thw dividing line of these two clases is determinex Somdan mine it Tower: "strippog will ray uhen the volume of the ore is prat to or greater than, the volume of the material th i. pithis comsidered in this rule.

The first class comprises
Mine

dh. Mines in which she deprest bs thieker and eovers "wire restrictel arra.

Mines in which there is a juor hauging wall, oprially wluese the dejorit is divectly under utacial ${ }^{\text {Irat }}$) Dlimes which haw a gool banging wall, or it Whech the deperit is at a great depth.
These dixisiont menge into ome another, as for example the tirst gpocral divesion into the econd, or 1 The ex-tems applied to each of these conditions of "eguret ane as folloux Th. Open-cat mining with steam shovel as in the To f. The "milling" syotem as used in the Auburs "Ti. ': The "raving" rystem ax next in the Canton To D. The onlinary kyntem of "xtopingenat" as assel nt tor kitherota mime at Tower
Mining by these shiferent syeteme is carried on as
First, open-cot mining with stean slovels.
The exphation proliminary to the location of mines on the Mesabi range in generally carried on by means of test-pits until the on is rached. After triking the ore, imestigation us to its gencral quality, the thicknesy of thee depecit, etc., may bee carricd on with diamont drills When the lowation has been make the stripping is done ber of times do thestripping hy steam alomel for when

hay ge caken ant bonchese work by hand. Whate orc 2 of the ana alnady atripocl, for the oquention of the

In* removing the ore if the deposit is very soft the shovels may work directly into it, but if the ore is hard it must be loovened by blasts and foaded into the carby the shavel. The work ingas carried forward gradually fop ex downward, so that a great depth may be obtained witurat making the gradient of the tracks too heavy. The one is looded directly into cars by the shoved and mative. The crew for a ay be handled by a single ter ratie-man and lelper. The claim is made tlat a good mine and lecomotive can load and digpoe of a 2-ton
 This sutem
This system is peculiar to the Mexabi range and to The of the norking- in the Alabsoma iron rgions
Explan,
Exphone" and simpuied for mines operated on the mong sus
When the deposit is strippod, a shaft is sunk at one sabe deep enough to run in atevel to the loweet point of the ore Another shaft is sunk to connect with the end Blasts anel and at the bottom an orvechate is placki. haft in such poritions that the mounthed material will Gatl to the thotlom into thie creectonte. In the Authirn fitue the ore is trammed from this clute to the main shait, the- hanlage being done by mules. The material is hoisted by skipe and dumped cither into small cars and conveyed to the stock piler, or losided dioctly into bee railroal cam
As the work proceeds radially outwand from the crater. The men daing the drilling for the shats are uspended from the edige by ropess and the blasts ame firel at chavge of ahifte
The only lewel drizen is the one abich connect- the main shaft nith the orecthete, asid the onty timbers onesoary are the pat frame, shattitulacs of the batio dhaft and the level timbers
Nith a correct gramient, gravity hanlage may be subTh
and uanding systom is pecular to the Mesabo rang, Crouvelland Mr. F. I.. Whitteles
flind, the caving xy-am
Where the owerlying material in too thick'lostrip and bit firm chongh to thrnesh a good root for ondinary stolHy dilt, it in mecescary to use another system of miming. ath this is ponvited in the caving *ystem as noel in ber Canton mine at Eiuabik and in part of the Claandler

In operation the shaft is sank and the top level dricen hred at the extreme end of the level a room is cut ont

 The bext rawen is thentaken out and mon till the leve sempleted. Then ther serond level is treated in the
 as-ly. Atter caving, the maternal thme bemeth dom hith exavera. Thess when the bedtem of the diposit is nawhet thexe is oothing left hot the glacial itrif protatecl on thic scstcm, by matting or wellying of finters after caving down onic of tmo fivels, wh that the Fourth, "Nopping-atat" $=$ y-tom. Miet of the work in कlinary zystan of stopsang-out. sumple of this system, a* it las leven the longyst in peration and hact toe mact linety crpipmel plans.
 The ak peeit is bratiol a shat is sank to the loweot part. rosceats are ran its for abuat low fect. Frons toe eme
 the materabl is taken wot by overhanil stopigig The we is milked to the level bufow, mille lning providial it vonnity mock thken from the sido walls or bo delet
 foth of the lavel amf is timbletal with ret- comsisting apging is ascl. No oblow timbere are a meqosary in the leorbs as the- hanging wall is very strung.
Corectusion are provideal at the battoms of the mills. rasumel in the, Fernabest nowluay. The ore is
 or blaste. This use of the diamonal dritt for hbat bote.

 its Joneth. The iwo shots an firal simultanowasly and arige toum in immonee amoant of vre hat hat or
 hueker, ther milling syedem would neem the mone oth coutuins mull water it will ho wavesaly to drice olaife

 Thu fiot iave great dillicully it hashing vat imainIl thest of them. Fasoms has tmbeh weggh, as bearly the shor mous are very wed al the lower levels mi lath tuwh
 and prognerinsucl stationary engions, carh an are nect The latig ith the bitlimg bitue.
conditions. To the prexent tine nobetter methal- hace Payment of Royalties. Without Working Minebeen formit for -tach mining. They an certainly trose osotly than the open cut and milling systems, bat with high grade ores and fair prievs, can be operated with protit. The permament plaut neoxssary including winding engines, cobapicemor plant, marhine shopec, haft-
 paring the eost of the systenss.
 ing engiae, compencest plant if meocsary, abisl a wheir strop, frotatity has the advantage as to first cost. The expeneve of of rating compare This can b answined deprosit.

LEGAL DECISIONS ON MINING QUESTIONS

Abstract

Location of Mining Claim ir Another's Name - The suprome Court of Californin says that whem naw, aet possession, lacatex and hax a mining claim nowoted in whother's name, the legal title thus- vestal in the sthe

Moore y , Hatnmer-lag, 31 Pacilic Iteporter, wh Sale by One Cotenant of Mining Lands.-Tie Nas mos locelijoined from minine, but that un mocumt sloutd be kept of the coot mineel and that le - low hat puy inte the I Merear v. state Libe of KIE. Co, is Atlantie Isop

Homestead Right Royal'y from Coal Mined Under.The Chart of Civil Appeals of Texas holds that mestity
 athboef to hiv dult.
Collins MIg. Che

Negligence of Employer.-It is mot Degligenoc, it iteclf, for an enoploye lo marm bie hande in cold weathe at a fire abont dynamite is boing thausal. whon then

In thasing dymamite such reasumable care is reguinal
In of the employer as is commensurate with the thanger of the employer as is cosumensurate with the tanger
that way he apprehendist fom someh ow abil such orthmary csme as reaconnble smi pordent men mbler like-
 of cume most bee uscr rained by the gen-ral asapas of the bowners, as "ondinary" cance must depend uposil the peculiar circumelancory of cach sate

Construction of Mining Laws-Micking rock from the salls of a shaft oe onteropping of a hetgge, in swall quantitics, from slay to clay, anil tersing it, Iin owler t. worth "al work and improvements" reguird to low made by the licator on lise rlaim nithin ume year from Cnited states.
Bishops v. Bathy (supmome Cr. Ore 1, 41 I'avitie Isep.
Negligence of Fellow-Employe in Mine-- 1 jari, Nimpoyed to lexud ore into cary broinght to the flow his the mimers, It was the practice, as successiwe spacis in on mutiec from the mimets, of thromgh the ohiff lowe Before a neuly opericd spate had bovif put in cowdition
for ther timber burn, anf bofore they were antibel that their scrvicxs uvre requinal, this party was injurad to ore falling from the poif. There was civience that too
 accident ibe formonar's attention hat bew ealleal to, the
 of Michigan held that if
that of a fellow-worvant.
Petaja y, Aurom Iroa Mining C'o, 64 N. W. Eepurtor,

Laws Applicable to Construction of Mining Lease. The rights of the parties ander a mining hase of lanel in Penn-ylvania muet be determined by the laus of that sates thengh the leave was mase at the nesideme of the
cartios in another state. The numen of how the partirs in anotloe state. The question of how the one of fact, on which the testimony of jurists ase experts-- armiecible, when tried in anotber state. The courts of New look will mot, on a bill to recemim a contraet if nemove bis machinery from the land and deliver joceece sion of it to the complainant in the sait in New York.
N. Y. City), 35 N, Y. र Kep, 142.

When One May Not Claim Coal, Ghe whe was preaent at the sale of cral ander the surface, und trabde no abjection; not procesterl againet its being mineel for serenteen years, is theroby prevented from claiming
title to the coal under an alleged gift, as sigainal sach Mopeland v. Frick Coke Co, iknןneme Ct. Penn.) 2e
miming on it portics lamb, by provichag that it mow veal be
 munher of lom- per year, then on long as they muke this mil prisil lusildings, tixtares amil apparte-mances buml and cou4rockef for bining proparing om! forkanding coal on

 b) the agncime nt to any partorolar time it is focosi-finn- untit the ovel af the contignour land is exhametel the lam of the Insoor. and the comert will wat make storls con-fruetion a- will he to make al mew contraet befues-l
Cone partion
Ched
B. 1.11

Cumal
Bec. $14=$
Contributory Negligence-The laus is, thas the

 aby put the comploge on him guanl. Whown the localits
 coly ane equally within the kanwledge of sho vaploye

 geane lefors the acil not, rosiog on timh iss, and mad nalks. That the romploy war an experimevel timber man. ind knew the plank- nero motum ; that low umber

 planks te he hat hy him, lyy anking for thom. Evy
 Io warn him of the ©ublition of the plamk which lowk

 kowwlofge nliof any on coulif have as to tho getueral

 the ribl imolved, and the conserpuemers cammes in thew it span the cimphoner. II kwew that, if the phank happerical to tor dovayovl ur detevtive, thene wies no che tom of the employs, ir of any mines, to mpase it. Ile knen that lye was therwn entinly upon his own dixcre fon anal judgoent, and could expect bothing on accomis od any care on the part of the employer: The comers,
nithont hesitation, is all can- like this, demy ridief to nithuat hesitation
thie pariy impural
an inosmer, but an inourer agatinst the focklosstows and sarckestowe of the conjtaye hamself.

Construction of Mining Contract.-The nwbers of mine, which was being rorked by a party under an agme the 1 t thes the one extracted shand te morked in a mill belooging fo the mine owners, aml the ptocest-
divided as follow- The mine on mers were to, be pati部 per ton for thilling ; the party working the mim Was then to be puid the exprone of vextracting the ore
and the balance was to be evoalle divided luin and the balance uas to be expally divided lutween him
and the ownere of the mine. Is was lielof, that thene

Duty of Master to Furnish Safe Place to Work It is the duty of a mine wwor t twatopt all reanonable
manans and pinceastions to provide a safe plaw fur
 ib rumning a tasuel in a mioe, bobler the imbactate sppervision and direvtion of the forman and manager of the mine, is mos chgaged in ewnting place, on lis own julganent, and at his own risk. Ilv- assumen the
risks patarally altendant wpon driving it thanel It is the duts of the mime owiner to krep that part of the tunnel of place alrocaly ercatexl sate, by whatever reason able means are necosary, If she mine is injured while
in the actual work of drilting or blasting in the fawe in the actual work of drilling or blasting in the tase of

 I. keep that pars of the tonnel or phame alfondy corated dasonably sate amil ecrome
For instance: If a stone or material bla-ted or dy from the tunnel by the miner shomhl hase bbown againet,
 woudy xatnet the mine owner for any injory sastaimed

 Precautions as are reguivite to prevent the daving and balling of the mof of that part of the tomael abready

 debris as mot to materially limeler or obetruet his ceame from bis place of work, it ca-ce of arcuh-th, which tuight occur lov premature of erexpected vxpleseons of the damgerous material he is aring in his woplo. If asoume the risks incident th the work in front of him, and not the tuanel or place behind him, n hich he has completed.
and turned over to the care und consfol of the bine Kelly v. Fourth of Jaly Min. Co, (Sulpeme CT. of

When Machinery Becomes a Part of the Realify.

 and, with the latter sulbert to at existing verndor's leen Hrerem

Mining Liens.-The statute securing a lien on mining
 Sor for takar in worktug a mine on lands held obsler an aticultural gat-nt if
Monse v. Thedies.

Fie. 1642. 1018

Mining Partnership.-A partner-hip, agrevment to Meate minits chams leing within the atatute of framelby amother ubive tas orsil ugreement that they shosild bi. gartmere in all sakh logations, when wo trist arises
 or interest in lands other that loases tor at torm mos dorming lande or in any mammer relationg theretor, shall
 declancd unless by are of operasian of lan, or liy teed or
 swfol agent, Ihemtnamiturized in writing." Equitable Flief may le given agan-t the jartuer holding the legal ithe when the prop-riy has- bevil acyutre4t hy patmerfiip capital upan the theory that a matatat trinet esiotEtrint miving to © © Cition of tle -latato

licp 100:

Construction of Mining Lease With Regard to Koyalues-A joint leane for buining purposes, exevated by ownese in severality of tav adjointig tracts. provided monathly to the lexsoes. bue of the besons enhmaçuenly coucurvi hiv -wparate trwet to the losevs. It was heli that ther romaining lewer wa- cotithal to moyalty thete aftry in am amemut expal for the valher of his distinet

 rovaliics in an action b) Alse remaining lesors for tract. Tomber the statute povicling that tweaty haniond
 in a mintug leave as the ta-is for payzacnt of royaltios,

 misech, baken, of remongl" from said promisis, the

 onsluct, after lsimg thimeal from the premises In
 the ayplal tiken from the the lignit duphoit, anil met

What Constitutes Negligence in Case of Injury to

 had chargo of slvmanite blasting. le knen bow it ought to Is doney It wave lowl that shio did mat show might
 workimens weF. dritlimg is blasting bote- aml a chane which one of them did not know was then explodel, Ine reveive injurics, the exiblone thowing that the woek it five w'elock in the morming of the accialowt, had directet two ment to manipulate the drill becanse it was ... heasy for tome and hatl -ent the workmert it charge if the bla-ting tor slargen twilx, wipering the charge in
 is to superintemd hasting in il quarry, lat when daty it one-1 of hiv time in alfemating to the firco unelor the bilens, in sharmoning boms, and shone other acte of
 buty is that of superintembener, within the meaning is be - - athte relating to follom ervinu-
 chucrits) it N. F. .i.p. bit?
Rights of Lower Riparian Owner,-If a minc ounci plase the minwe irom hix own tume onl bis own lami, orlinary storms, and damage shereloy nonli- to a how owner, he is liable. Thas, whers, in an action by a lower riparian owner to recover for damagos by the ower-
flowing of a -trvam which flowed thrugh another's mining lamis it anpared that the water unal by the upper owiter in mashing the coal pased thromgh a trougl chastructed hy lisu to it point trom which it was dischangal on his own land bat from that pesint it passorl into the strean thickly chargesl uith cons grit, hipooit
 filled to it- lanks, when it exortlenod ower the lami of
 wher was liable for the danager.
Findeon v. Markle suprome Cy. of Femnsylvania

35 At. Bp p . 74

A Fan Problem.

EFibur fallory Engiure nei' Mirot Miw

Sat:-1 will 1 as ablogit if one of soar nablers wil

 thinte with + imh of water gange We have nphace

 tity of ra, wes cuhtic foyt of sir Pr minnte, and this wi
 tauge of nill theroton- os glai to hnow what is the

 fan is ia Your-iruly.

Jone IINx.

Ventilation.

Sal:-Will you kimilly publish the following quentionGor abswers in your valiathe paper

 mat-kal!?
 bile long Work nat contimist until the airway was \#t mis-in keneth, whon a cm treater un, othich miletel

 then gave, the pouer ntmaining the same-
3. What actiats rake- phace when thbawosomke cotars

 -w other dixatiotance nomsed the zas.

tam, mhe 1 Ne.

To Find Any Root.

Ehiour colkerv Emimer and Moul No...
Sin: - 1 think the follon ing methont of extranting ang
 foumel, and Δ sthe inl-
2. Find by trial a number that is twar How nymond

 um of of + 1 times ot, phis
 Hy trial, une tion lat is to. litale, bevane raient to the

 Sy the athow furmula amy mot can le fomid will wear ppowimationtic

Time II, Nxal.
Pumping.

Eiliver filliorg Singiun nows Motal Mia

 avrodethom
 the pump? What sixe -keam pig- and nhat size collum,
 deaper plant than if there is me:
To compute to an: of water cylipater of planger

 Relating to Mining.
of cylimht in ey in In pent practice the discharge
 A 1 ince langer that the disharge for orimary purpuex
 the findowing formula:

-an- in lim
If ltast in feet neocmary of owervane the

 Haring therminat the vulor of fis, or the proseune is
 theranat of the
followimg mame-

$H=\mathrm{F}$
 1. $1 \begin{gathered}-1 \\ -5 i d\end{gathered}$
 dianuter.

If theight in ir. the uater has to he pampect. P. Pher an |kT -1 in. dae to vertieal heizht of colmas uhich

 Nowne pipe Whan computing the anve of the rispketive
 tiva, vetr
ir example, requind the sixe stoam panip nexyary
 mp. inwh.

 twat ancrain the velecity of siertarge in ft IET

Biveharg pipe
Kation gip
vacan
-
Exlaniz
Nemike
 will wit promit of the live of a clesper plant. That it

Jan. Isily, INTM.

Air Compressors.

 persicularls in bining alverations, amy lirat class litera

 cill mat ber los puas, ami itw matler contaninal it it

 Fin the wemel bout anew
For the socomal bost answer to each question, the ralse of ab eront- in aby in the bomks in nar book cata-

Conditions.

 amy Esucken axi Mores Mixent.
Srani-The name und ablrossin finll of the contestant must he кigned to ench absucT, and cach ansuct mist he "11 a - -jarate lstper.
The papco colv. Fumbl-"Amupetition contest" mats le writhen on

Simb- (hm prown may coanpete in all the questione horth-ther
Aimmth-Ansuers must be mailise no- toue later than me month nfter publication.
Fizabh-The pablication
Righth-The publicasion of the ancucre ant manu-

 li-proat they wish to make of the ic priat

Competition Questions for February

 tell us low buch iln illommating pooser of Ito. light

 tean by the herring of bitnmianere ival in Iber State ot Thansese ant as wo are going tol mambartone the whit papr we wi-h fo consimec all the valatih. mattot atif wkitgizen off hy the lomrning coall: will vol, therey

 totap W. We tor mat want any plans or notions for
 stlves when you supgly us uith the parsighe numand for the barning of thi- waste cartons.
 iv low, the sein is temoler anst uw mako to geveret. of lack he have a pomil morkct for loomedoid twals and
 cail furnisls tue with is sucesssful plan for dowing on, I
 manth. Thi- hoing m, I will b. nbligal for yom if vou willasonet me by sheplying the following farins
Frrs-Which of the followimg baterial- will maker

 -
 Thind-which hinder is the Inos bew it- frice anal Funcrial whantagos?

 CI:
Ginents -Whary is aphatern minet on the conhameteristios of if Nambly Amorieaz What anc the

 urigin vital ne cheminalt Ant furthor, on what y- meral

 tum, that is, a,h, cor of, epostatyly can fill in son day?
 Lappeal a ferily uf wator llat shat in sis host me
 tur.
 expal to lta -guan fevt, and I will bu whligel if yoat
 Itw wofatics of the inftowing uator at eight expastly phan salenlate for me- the lime ropuinul for the fousy,

Answers to Questions which Appeared in the December

 Issue, and for which Prizes Have Been Awarded.

set within the ganze rylimeler, as in the Eteploeneco side of the genxe, as in the Jack lamp, amel to make the nse or intention of the ce gliee chimney eno clear that a
 you plenge explain to tae four things?
First. What was the tree of thecer glase cylinalios in
then Jromusing caf 4 y "
ish the light from the glass chimmons inercase of diminThiml. Thid these glase cylimiere imenase ther motive coltun and make ibe lamp burn where otber lamys uwild pione
Fourts. Was the safecty of the lamp ineroaed or de
 as a shiche or bennet and prevent the powibility of owif
corrents of air and gat- blowing the flame throngh the currents of air and
mertere of the zanze

 forther coneiderabty meltued by the wine limes of the
ganaes Third. The glass cylinders no shabl incerase the mo Fourth. The salesy of the lamp sas decosasal tolou that of the atamband of a lavy lamp, bacameo the thatu
 larger than that of the Dovy, und as a consaymenec its contente of thave were grater. Wiks fithose,

Quex 194. 18 fon cotntancing io -ink he are buring of find the thicknok of the samer, and thene of the ith
 the top one A, acconding to the prevailing thicknesses

 but if the exeited story of otar master forur is to be be bered, these thickaisess will be found to be quite dif. forent for the folloming reamens
At 2 cichack this morning var beuse dow-lx-ll ramy mose cioleatly, and running to the stairs I slowated,
'"Whio's than , "Who"s there, whon a voice, rephes, "It is ane, the
mater boner from Handrock," and be comimaci, "I bring good mew- w. hase cat sam E with the boen
 but he replied. "That is a tritling consoderntion, and this is what you sbould know. The thim intervebing rock
 if it is bot goosl neus, and I will le obliged if you will foll tom ons what geosposal facts or principles the master cast of us ane dovper to the I scam than we are,
Avs. The master boner foumbed his opinion on the facts of him experienee nupporteal by the foachings of geology, or he kbow that the secroaeral theknoes of the noker fiekl. proved that the vegetable deposit that originateve
 hasl comploted ion thickncen on tho wet where var

 trou, Ws. IS. Msics,

Ques. 1!5, Witt sou calculate for os the guantity of air in enhe fect pre minute wo will ohtain nith a 2 inch water gange. The fan is 20 foet in slianeter atal ruan

 length of the blades is 9 fext.
AD- The diameter of gyration will be 2a-3 - 21 firct, and therefore the muan velocity of the ratial collunn in

uvight per equare foat of ecetion of the relial colume

 is cqual to the velority of the air in fere per scevoml res-hing eut of the smaltes , arifice, that is in this coser exual
 the quantity uill be $21 \% .11$
cnloe foxt of air per minute.

Qers. 1thi. We are passing Mi, tise cuble feet of air per minule thmong im airway 10 foct high, 12 fevt wide ans , (08) yanis long with a uater gange of 3 , 20 inchos, and
 egolator and pox- inotemil only Di,ukt entice feet per mants, and we will bo obliged to you if you will calegate for as the area noquifed in mpare five to pace the
 etticiont for the 1 .
friction (ownowl.
Ass. The pressure-rixpired to overome the friction of the airway will be $\frac{20000^{2}}{2+10 y^{2}} \times 239-57118$ of an incly of
water zamge, and the effestive freware ot the nematar

 ajuan feet.

Q2 ba, 185. We have wold a conical luap of cant- I
 isthing us with the lecights it a hich cack purchaser wi

 ibe lessp in fon- of 2.240 posmels, limel as eneh of theme
 We lave arrangeil to surfomas the lecap at the lvoight

 jost share as the remaining frostrat.
 arc iqual, then their contente ar. dimcily prugnetionate
to the enbes of their lecights, ane it h bs taken as the
 tion of the plasform for I in ät his share mest be 13

 The weight of the lvap if meale is

Quas IMK. Why is anthracite oral broken in paces before it is sent to the market for rale amel for usp ibs 0nel?
Avs. The prime newossity for the beaking of ant hracit coal is its porperty of show burninge oh hen it largepricer
 emall, and when borken info poyportionately stinal
 ercasivL bitunmans coal the mol roguing linaling becanse when borning it swoths, cakes anil crock-, atm
 or the action of the lire, asm make the berosany pus

 chamerl- Itomogh the mas-

Whi,isu Hrato Kim, 6
Arcoml Ifice, Ciras. E. Bowhos, Tracy C'icy, Tion.

The Action of Electric Currents on Mine-Surveying Instruments.

In siew of the nupid increate in the nomber of checiric railnays ite the Westplalias coal teld and in the taen
 e-H
 umbrerounsl. war selected at a lorizmat distance at
 Cleqtic railway, amd th an $(1,+3)$ fo, below it. Theres by means of it Fromel's magmetonster with quarte Eiom
 mase lawal on a Gixed line. The magnesenneter was pre
 the Pixhus Toun Park, aml the 1 m , in-(nmenter wen
 in Nelember, INas, was make by day, the secuand by
 itwed groat irmablaritios, that of the bighat revaled wan per feety regular and in wecord with the magostic rovomle
 ass thenght that the deriativins might loe acorilkal to the iron-tree safety lampos comployed a Ihirnt wharevation uar Inate in the morning, the lightimg baing sffectoil by

 as the shat was 30 yaris away, it is veiclent that tuay
 of the magnetic earront. Amedier momene of ermer is the kafety lamp Compused of various metalk, the latup in act on the magnetir nequlle. In ureler to ohtain informa

fand no antion on the neotle, whilst all acted on it aben

 perature of the lompe is grite Dew aluminum sulety amp cat-ed the kow deriation when cold as when but.

 of -light magnetic propertives may be lese need by holling
 sith lighting grat cam is lucemary.

Mine Cars.

Ther Forsa dity far atal Mannacturimg Cobugany of
 if the gorthem part of the Suwhern Anthracite Ccal Fichl. Thir company has revently evompleted new diope, yuippand with the laten athel tomed approved appliances
 site cats ubects, ve., at xery low prices. A-a epecialty, thi- comptery manhfacturers the $\mathrm{P} . \mathrm{F}$.
 proven its serit in tixarly iwn vars' practical serviox It dow wat saste oil, amb camme get ont of onler

 axe hoxes absat at var ami a lailf age At that tome
 hasintion shi abi n-mbercd aseless from impertary等
 is sat well satishorl that is is eqmipping all it- mine carn
with the Gallagher for, and it low las atusot one foncansl in uss.

Wooden "Column-Pipe.

Thes matter of "eolumat pijpe" is mines where the sime water so -trongly impngrated with aciud is a sini-

Alasi ration. The crastroction of this pijue is su clearly deocription. Thí- sipe is manle of sarions degreve of
 that >utheis-nt to murk unk 2 at fes beat, which will over most casce of mining ecrvies. If will pay mine

A Good Rope Record.

 eck, was repube of the Lomblon Tramways company. in
 Thw tolal ryw-miles nore 128, 129, and the car-miles
 atal $\frac{1}{2}$. loce when retmenel. The onet of the rope per
 Inerican aoverstirough, Mr. T. A. Wigham, 51.3 First Vatimal Jank Suilling, (Micago, III.

REMOVAL

The New York affice of the Namel brill Ch has been

The Colliery Engineer

Metal Miner.

WIth Which is combised the mixing herald.
PUBLISHEO MONTMLY AT SCRANTON PA

The Colliery engineek company publismirs

p. O orders.

EXPIRATION OF SUBSCRIPTION.

CHANCES or adoress

Latie stitron- Betwh sersment" London agents.

VOL. XVI. FEBRUARY, $1896 . \quad$ NO. 7.

THIS JOURNAL

A LARGER CIRCULATION

COAL and METAL
mine owners and mine officials

bama	town.	North Dakota,
Alaiku,	Kansas,	Neva Scotia,
Arisonk,	Kentucky,	Ohio,
Alkatsas.	Marpland.	Oregos,
Calisornis.	Massachunstas,	Pennsylveniz
Britisa Columbia.	Mesico,	Souts Carolina.
Canda,	Nichigan.	Souts Dakota.
Cotorade.	Seinnerotas	Tentessec.
connecticer.	semsouri,	Texas,
Delawars,	Nocetem,	Utah,
Flonida,	Nerade.	Vermant.
Gearcio.	Now Hampshice.	Vircmia,
taxio,	New Jeriey,	Washiecton.
Hilinois,	New Nesico,	West Virginia
tediana,	New Yoek.	Wricomain,
tosian Ty.	North Carolina,	Wyomins.

WEAR ON HAULAGE ROPES.

E
 sawing of the mpe wor polleve whinh fail It
 pallegs sometimes manain stationary with their thinker

 pull or train we it.

A miller las Exen extenoivily alophed at Retitioh mime of hat seoms to have largely woucdied this fanit. This

 quality which canmet aluave be ayyuired in a cust ion ablience, the - state Collese will furnish the hecturer. poller. These molkere ase sait to mevolve alneet at the
 they meyniow a greater zrip of hoht than the lat surfaex molker, owing to the clinging form if the grower Bury man ulow haw hanl any experience with mow Gantage lats fropuenty motiend the tembeney of the rope to run in the grove worn on an origiaal lat eurfiace moller, or to slike to the flang of a new flat surfane molkor. This tomkney is takon alvantuge of its the

 The id ca secmes to bre a national one and is worthy a trial.

A DENVER OFFICE.

II
 fog. Tenver, Cole It is in chasee of Irout
 te merived at that offler, as well as at the main afficen in Scrantors.

AN ENGINEERS CLUB IN CHICAGO.

TIE tendency for men of one profesaon, of of allied in a mamber of inviabore in the formatien at teelonical clats.
These elubs are prietically first claws European plan hotels and restaurats, the wevommoniations of which ane limitest to members, or to friewde of members. As a male, they are equipod with librariev and realing mons that uppral to the tastes of the men compreing the elub Tbere in a movement on foon to establish such a club, to include in ite memberehip members of the various engineering proftesions onty, in the city of Chicugo The indieations are that the clab will be a eacoces. It will conriet of resident and non-resident members. The initiation fee and does bave been fixed at rery woulcrate tigures. The grathemen connected with the organization of the clab have received uceeptances from nearly ebongh engineere who will curoll as nembers to marnant ns in aying that enocess seetms aselred. It is a good morement, and descrves the support of every engineer rexiding in Chicago, or who is a frequent visitor to that city

CARBON MONOXIDE AS AN EXPLOSIVE AGENT.

A
 cornct, furni-hur at "xplanation a* to the caus prixamear effect of carlun mosnoxile or " uhite-tamp'
 sive claracteristic has met lever combebted on lexaume it uas mixicosally suppeet thut its pixaman- offect war mable apgarent lefone a sotliciont quatity of the gas to toake, with the air, an "xplowive miston' cosild ween mablate,
 suitable explesive in geascuas of desty minso, Prof L. Wr- call-attention th the fart that curton monexide is. the ohe mantiag conetitikent of its explesion. It has beven conclusistly proved that whon timedanap is prevent in swh buinute grantisies as to form a mistom

 Boats in the air, a highly explesise taistors: If edates that inave of carlen monoxidi nill de exaesty the sathe

 benoxide and duat loken air is lower than that numimal 1.0 ignite a mixtme of fixchlamp and that laden air

 a very large volune of explonise mixime is formad by
 ther lathenair, ant thas (taing itntect cither by the flam

FREE MINING LECTURES.

 11E: Thjortment of Mining of the Pemovelvania Sate Folhze, nefer- to deliter it servins of froe

of Mine Explowhas, Propping and Fack Walh, and Wasting Energy at Labor.
There ure all interesting and important subjects, and One opgurtunity given fo. Pennoslvania minere to hear

FAILURE IN MINING.

TTIE hery cothmon cause of fallure in mining is lack of gool mine manapement. Yery often the taine itself is blamed, and urongfolly blanecl. As an vidence that woceseful mines are bot always thoee that postue the highest graike oues ue quote the following irom the repert of the Birectar of the (ionlegical surney f the V'nited stater

In the history of the Califurnia mines, a number of claims, like the Cederberg, Chariod, and others, which yielded very rich gold spexitems, sach as are uorked into jewelry and somenirs, have been very disappointing; while on the other hand, the ore of many of the fatuons and numt productire mine-, hardly ever contains gold sutficinotly ware to be seen by the naked eye The vast how grabe anriferoes dopeoits of Dakota, which have been oo remunerative, had an uverage yich in 1×8 of ouly thas juer ton. Very many lange mioes, loeth in Califormia and Dakota, hawe ben worked at a gool protit on one which carriest much teses gold."
Connumbting on "Waste in Mining" oar cont-mporary, 7 h I Imatrulims Miving Nombers, pmintelly states this frivaent conse of failure in the following statement:
lad management taker such a mulitnde of shapes that it is almest impossible- to deseribe it, unless it be deecribed in the peneral term 'ignorance of mining.' Its anst conatuon form is seen in the wattage of ores A general proof of the fact is found in the haradreds of ftrmpe wbich have been hand-sorted over and oxer at a ptotit. There is an ofd saying that 'a good workman can be known by his chipe, and with equal troth it can be said that 'a had mine manager can be koonn hy his thome." One thing that is indiopensable in a manager is an uppreciation of the neceseity of thorangbly underotanding the mature and value of his ons. He may not be able to anderetand that one bimself, bat if he appreeintes its impartanes, be can employ sunieone u bo does underetand it to take charge of neesssary work.

Thee world gex the eridence of waste in the dumps that lie in the daylight, bat here is a still greater sonure of waste that is hidden from the pablic in the dark stoper of the mise. Every practical bun knows how often the orv is knocked down in the stopes, and there partially sorted, and the supposed waste left upen the stull-, If are ensted by daylight loses mueh of its salue in the naste, what is the low liable to be in the dark, narrow and cramped stops>? Who that is competent to hand-sort ore gives, in the great tmajerity of inetancer, any attention to this portion of the wook? As a rule the miner is alhonal to have his own swet will in this latoor, and his oun suex nill is too ofow to sh that which is chsiest, instcad of that which is best, even if be knows ulat is hest.

Thin is lut one kind of waste, and the commonet one of bad managensen, u here seores might be mentioned. To the man who underedands it, the lack of a-wayos and aksay officer, ot individual mines, often angeors: a doubt about the quality of the managenent. It is but all minw: hat nequire the onstant sayviese of at assayer, bot a gool many more than recerive them do reguir- them, anial nould thind them the nowet valuable of all pecealde inco-tmentita

A Suggestion to Advertisers.

 whirt will, in titue, form is iair illestrated talalectore of
 unt themoctives.
This invosation, thongh it involecs mane work nut
 alvertisers in luew manfactarere are such as to tmake it pwible Poyers ut the minus, like wher men, bey ghe- goal- isith whieh they ane mot lamiliar, other thinge Theing copal. There is bo way in which makere of the varimas limeof mining goods can casier familiar-

 tisernent a char illowtration of onate makhior on mpeli-
 of stating the size, equarity, where in use is mining Grrive, norking combitions, cte., we fext safe in ausuring our jutrons of more carefol ittention to Cheir alverioce Hems than they coukl aflornies wblain. We know frome expocspons we haw had from whertions amisab
meribere that in few trule journals are whertisuments as gas, thus lowering the temperature at the gome of fusion, closely scannoxl as are those in cach isoue of thi- jourral " vin thereselves.
II is morth while to spemi time and maney in the pongaratiod of afvertising moter in is paper ohich
 There is sum earciol attention to the propanation anal placing of hisulvertising matier that live thee to other temo

Book Review.

 Sugimer Co, Kranton, Is. Pries, protpaid to any part of Clev morth, stis)

The manatacture of colve in the. Thitod states thegan car Ikiol

 cal.
cince the bater date it may In saill that ur-hane fully "Hetrat inta she erat of colew.
It is also evident that this
tain this leating place of nowfoluexs in destimaliongion operatione, amd its increcaee is sketimed fo accompany the expration of the iron atwe steet itsitustries
In constelering the prement comblition and futare vo-

 mane-nt
dustriess
It-pablicstion is resanded a- Iter mene nextlul at this tibe, on accombt of the effort- being mashe bintriducy
 and sippbate of amamis., from the gaves expelled in coking, and than nupplement the protite in the coke in-
diadry.
Instry,
In the Vited States, the manufacture of colse bas hitlerto bees confined mainly to koralities affording the lewot qualitioz of cokites Eralk
It nopuiral litite ekill to soake vexerllent colee from
 promuction of coke, ank the Erainal exhainstion of the area- the the prima combary qualitios of wiking coale, a thorough, -tody of the merits of the several kimis of eoke ownos bom
 which have been publisfuel in Tum: Chatasay Exavere sxD Mistal. Misize, haye levil recas and carefully revied. They exhibit the several torthorls of coking with accurate reante, for
interveted in this imdualry
The mathor foele that very monelo moas s to be learned
 an scelerated askance in tuenfil kow hevige along the ceveral ections embeaced in ite pageer
The nork has bern madertaken nith a foeling of the
 tren gleaned under the conditione of the old adage that 'mecrosity is the jurent of invention,
In fle (wenty vears experience of the mathow, in his managet of the Cambria lron company, he bas lexen re quired to stady the manulacture of eoke in its clement-
 cal ngion, by everal metboul- of coking, affombed the eirable ogportanitiee fur itwotigation ami for the comparionn of results.
Is the year 1575 , the coke marle at the worlas at
Johnotown, in Eelsian enke omens, failed to mecot the
 invetigation of the cause or canee of the ineflicfency of this fuel in hast farnace work.
It uppeared at first un easy task to asevgtain the natume of the defeet or defects in this coke. It was assumed
 ter ; bat, contrary to expectation, it did not; it shoucel
the coke to te very pare, with nuth less ash than the Cobnellsville, and with marked exempthess frobs othen injurious eleonents. The rexult compelied an exponsion
of the method of invectigations, a- the chemural methos of the medtool of inve-tigations, ae
alose woulel not rewal the cause

A stady to devise a methol for the physical examina tion of the colse was then enterel whon, which, after
 ase-its want of the principal myuirement, "hanlosss of body.
 was wasted in the upper ecction of the blas furnave, by
dissolution in the lath of the asconding carbon dhoxiste
of the furnaces
These early methole id te-ling the phyeical propertioc grgeney of mecesity, it is believed, has nlimately dicheosl accurale modbol- of determining the trme ralon
 forminutions.
It has becume exident in the namafactun of coke from She econdary qualition of coking calv, that irom, the
 It ie confikenty leypel that the plase and -tatement-
 telligent e-lection ami applieation of the special type of nasd in its mabnfacture, Viry moty care las- bey given to the consideration of the best modern inethals
it the preparation of seals foe coking, especialty in the procyote of crusbing ami uashing, nith Ilw climimatinn

 er 111. is decoted fo the preparation of eoals for the Guanifacture of coke, amb de-cribes amb illatrats al
 in the "peol air, or in partially chasel avens of the bee.

 devarrits clisprisseal, ambl their semeromin! application th
 medallurgical eqneratione, viz charmal, ;enthracite coal of Latoratory mectos-b of skectoinime ile relatiow caloritin valocs of mesallurgical frek Chapter VIII: is as sm

 a-vent cosusilar meperts on various sy-toms of coking Gilles of comparative teats, deseriptions of wew devier etc. Ae lamether with at utlicial mparl al extombat

 It is up toclate in cvery purticolar, anal is n ritten in an MANIML, OF LITHOLAMEY , TE

 E. M, F. G: < A. Prof, of Jtining Engincering ambleattrated hy eis fall pate plates. Prios kive, Publiolual be
 Ltd, London. Prof. Williams, proface to thise editions explains the mature and soope of the mork so planly and conctely that we give it aloncet in its flatirety "The microecope has forcxil lithology and petrograplyy so uidely apart that the layman is ofte日 at a low for neorenize ofd requaintances under new nuthes. This celition of lithology is written on the same basis as the last - for the begistare in the eubject who wishee a thorough ject, in a fuller and mone compart arrangenwet than cam be obtainet in geological text books. It is abloo dosignel for the engineer abo wialacs to understand the valuation of rocks for econombic prorpece- The arrangerment is sach that those who wish to contime the uork in the microscoquic analysis of rock-forming tainemis, an tameh in petrograpley, will bave nothing to unleara. The reader is -npromed to have a practical acyuaintance with the hownpipe, and the ordinary methosls of chemical analysis, on thit these subjects are menely touched upon in the devcription of the mare common megascopie rock forming mincrale. An ablition bas been made in the tine of the ceonomie value of treke, and the to ly of the book has becan entirely rewritten, and is from fivi io si> times the eize of the former edition, sor rapielly has the subject grown," Prof Williams is onse of the moot practical and hearned tectomical inatroctors in America,
and in peparing this uork he las- carried , sut his u-raal plan of treating the subject in the troest prowtical manner: As lie states, by infercuee, the lowis is not specially a ritien for bea of very limited extacation, but rather as a text book and trook of reference for mineralogical and geologieal stindents who lave attainel a certain mandard of edorsation. St the sume time, cach subject is 80 preenented as to make it a useiul book for men of compara.
tively limited polication. It is arranmel, and cacls sub jevt classified in a very convement amd intelligible manner.
Tue IT

 of Furvetry, and insoed as at repurs by the I. S. Thpt, of
Agricultare. This is a very exhanstive ami comple mport on inventions, metlocke and applamos produced
 cossumption of timber for raifroad tier may he tuatern ally reduced eitber by the substitution of tuctal ties, on
by applamon and tratments for woolen tie- to prolong

its objove is fo assist in proventing the rapid destraction
 steatilx, batil mow buese than 35,000 miles, ar atoant O\% of the nitrod mileng of the wodet, mention of the Conisel states and fimada, is laid on motal. Although prophre in thi- diruction in Surrica has been slow, it orest simpolies will forec on railreat senneanies the thee of mestal tios iand therse, it is plaimeat, will insure greater ethemency, cafety and finat equmbay. In the

 the time whent the metal tie, mone expensive in first

Personals.

Mr. Edgar G. Tuttle, mining and cival vngineer, ha*
 Au- Altright Cublury of the Albright Chat for, of silver-
 bevobas- acting persident.
2t. fateman wan one of the first mine formant in
 of the state mime inspector for insk as well as in Tue

Fallowing the protontion of Mr Fatemans, Mr C'barlus F. Long becomes Hasile fotwanan and Mr. Tharlor J Finc, at
foremain
Mowery Long and Pricy an boch stmilente in thes
 Мгти Mosest
Mr A W: K. Mores, slectrical engimes, nojzand his

Mr. Jamer- I. Dickeve lak- Noigmell as Preachent of the

 f Berwick, Pa
Mr. Thomas F. Nomoning if BE . Clair, Ma, formerly the Thilactelphia and Ihasting Coal anal Jron Ein, has been pisamotel th the pooitana of ineide foraman and will thave charge of the Gileruhoner atout Taylorvville calleries of the satue collapany
3r. Thowning ha- Enen a hard stadent amel by nerit alose hat risers to him pevernt re-jemasible poritina. As Ihowning passox an excutleat exatumation and thomendrated bis ability both in the thouy and pratice of coal mining.
Nleore Gequme. Mair anil F, C: Whatmore, in charge

 The Rosint of Fxaminere to examine camblidutes fof
 Stmumels of District Su. 1, and Josph Jame of Ih-

 the cootre, in fart has altoume complesed if.
Mesors Frank G. Clemesis anel IL. W. Athouse Lave Pencel atfices as minime verineste at Pottsville, Ita.
 We Tehigh Vallev Ceal is an an vars condected with

 the vogincering departacint is the Phita. A Thading Coal and Irons for wevral ywars, and later with the and -athera coal cotaparios

Mining Machinery

To many of our readers, the nanoe of Mr. Ifobert
xlliwom as a baider of minimg machinery is vers fatmil are After having to a large extent mithdrawn from the businese of mannfacturing thming machibety for secoral veare hee has again akeamed the direct management of his Franklin Iroin Worke, intif in an adxertiectment in this isoue solicits besimss in the liar of loststing and haulage engines, dir comperssors, pampos and mining mashinery generally,
iower. Anfon's well kown ability as a mechamical engraer and inventor, and the reputation ot the work
tornes out at his slopes in the past, fuarantexs that his eatomers will ges mauhinery fully up the bighest tandart. He reporte order- for a pair of "3" xcon" firet notion boisting engine 8 It. Irume, from the Soush, wo pairs of lage duplex air comperessors from ihe Conmelloville region, a los of bodraulse ey linders for clevat. ork, and sollicient sualler orders to keep his shope runhing full time A new catalogre, which be hat just issued, will be rent free to any miae owner or mine
manager.

THE PROGRESS IN MINING

Abstracts From the Proceedings of the Mining Sucieties

Ant Journals of Eurnpe and America, Illostrating the More Medera Developmeats in all Brancles of the Vinine Industr.

WESTERN PENNSYLVANIA CENTRAL MINING INSTITUTE

 mhinos

 - rity of thw In-tilut inhlal.
 Siter alvising the mombers bent to :allow the intro cot- and the atm- of the Institate, lo. drew astention to

 ait and shewate is ligi-bative loalfor nuly lanx a- will

 at the renctimg nith their mare and eclemper, th th
 fory, that thenv gratid aitus athl abat ubjecte of our asse
 chequer of \times-lfi-h bu"s
 I'nosident's allonss, ami it is mosembe Iram- that this in.
 spaters wherdamage then own came by lrying to fots
 Mrevidens, Is In Xrmit, it moving a vote of thamke to the

STOPPINGS.-Hy Mr. Hirnard (Sllaghan, Ginn-ll-

 The sabe in elasheter, (ant mot the salk in kimi, as Mr.
 rate monv 1hama paminy motion, lirst, for hi- raluable poractical pageq, and secoand, fier intrialacing to the rontor

 beans againsta frame monecty tixal, amel the dive is cuade air tight of sho cloetre with, couvass stertiogg, \rightarrow that

 divir valus. lun shey ane a pmovision that to erotoco the

Wifer the roating of Mr. ABllaghag's paper. Mr

 rather make. the noek toppings strangor. Mr. Cliftomi. M. K. of Pittelxing, xail that in vies of explesinis if was aloay- fomm! that the neot, di-asforak notalts blat was confinial, and he br-leval that fowe >topping

 3losors. Sigloy and Srint lowk sislem with Mocors Cal Baghan ant Cliffool After the nawling of a ryport by 3

 morking tie. Pitstourg syan, bat as lue phoaitel that hi-
 straght to the wak point, anal showed thit the peraini
 The following paprow was propored to bo toad at the mosting

THE USE OF ELECTRIC MACHINERY IN
 fiane we lize charackeri-te of the tomerations of of emphasies the nse of theotrie apptianess in all the ofera tions in mines where pouer is applised to d., woth He claim- that tran-bithed electrical energy secures grater efliciency and ecomony and therely consider.

The strong peonts in the pajur may be stammarized an formes:
Frot-seving that the lio- hy Iran-mi-aina of the cur-
 ath therefore the power muy be applied through a motor directy at the portise whete it is wanted, and that may Ge- for pmoping, drilling, ooal cutting and having, in he mont diviant mook- of the mine
 beyond the spernlative and experimental periol, its

Tome flat cat is saloblated with cerlaint

 forn si woil understors, the generators, cables und mom tols ur
pairs.
finar
 geterate the- exrrent for lighting and foe the maltifarionmotoos that ire leceated jest wliere the moik is rexpaired F706-
Fonk-Fior anderuttiog mol the electric cutter do. the work in ssee-lalf the tame, and dfect- a kaving of *ith-Mr. Itando- vi
coth - Mr, Itamele gives his experienee of eight

 prime sosam porner is cijual to tol II P and thex
 b. pt in neerve The threw gemeratom have huil bething Ive to Ibom >ime lay May zace cleaning the corame chamed unly unt limber ataly othe
 dan, They an giving, vevillent kati-factian. Cho mime was ti honk cars, vall ramving from in to za

 tho cintput of machime mines" and then operator- will ulecteve lowy gall, the laher ianl fiom seving atal

COLLIERY EXPLOSIONS PRODUCED BY COAL

 pleteros, will lnol -veve the parpase of illastras

inktantancons action, and prosonally I have always Giboted the inilocations of this accibk int as there nearly pimeching thoer ufforled by dedomation than of any

 of scahb $\mathbf{1}$ compercsion of the ventilating air-curre-nt in mimes, callet tav attenfion to mhat he them ryported on thiv subject. "The -rith we -heorvel that the main newh

 and loa-t dibery that there wore the gratest signs of
 thw main roak soum of the prinuipal coking boing in
 and an sixplowion levag epecsel wit a nith aria be prex-
 -aiosy by Dr. Angus simich, late chicf insprestor of alkult worko, in whels besbercibetan apparatus (which
 damp in atmerphorie air might bo detutal by jevers.

 provary uf urlinary air withomt gas on tho promiphe of
 likely solation of the wiskerpsad nature of the jorsect xphecint, with the foreve cobing towards the shemes -npporition that it was the dust alone that carried the tame throughast the morking-, ""pecially in the donk. which it would have to coter quable first, ambl thon is turn, leaving the indications of the fone ontwands. The pravane of air, both in thr closk and Blantyre Noctions,
 anel to whers.

In the Cametton explowion, the explocion traveled How don Mr. Stast acconnt for thin fact

 amI at Kpring IIill, in Noma Noulis, in IN2I, the lampe barmul it the after damps that, therofors, the expliceioncoakd tat lave lewn raneal by fore tamp. This be cere
 shat did ngiginate 4 lifton Hall and Llamech, if it wen
 aveks simye from my fromal W. II \& Pumb, of the lcanlin Coal cimplony Limitol, referring to this very
 oat imsatficiont.
$W^{H A T}$ ARE THE CAUSES OF MINE EXPLOmil Minime Susitule at the Devenler tumetime
Mr. Ifall clamest the caseen of mane exploeisne umber tharee hostlo, as

suef.-The Hen of ilefective nafay lampr

The paper betieal the faet that is comaman to all , man comblos, natorly, that fostyes were takem cither

 grolemt, |rantical man. 引lr. Ihall says that matwith
 Itwo ramain wifl us sill the shal Clansy lamp nith bis ""w wow," maning the Irounct, an "eve in the bon-
 That the chicf shortconvinge of the banneted Clanmy arian uloen its tery is ahmesci, for low sayo that mesther a

 out to tor sati-lival with the minimum ventilatemathomed
 chilnte it holiom she ignitilse peint.

 st cat of sliminisling with the spozl ne the correat, and

 Irymore are van. fo, Ie the matural cobcomitanits of in-

The extmbenter on thes baper Wem mory interating and

M^{10}
INE MAPS-By Mr. Ben W: Ikobinmon, M. E. The Eleventh Anoial lepmer of the Inspector of Mines of the -tate of
goosl, accunate, earefolly mate mine map nill
 to ke
the
th
year.
The nap sheould be a bavis from which to make all etimate, rnch a- Materials for trects, timber, drain-
 been left in pillirs. It elundd to a basis from whiche to locate all mex workime, panpus huating machinery, dittors, crominge
laving machinery
ating machinery, thil and complete map of the surfuce shonld be made lefome the pirk of the morkman counco on the
 marked. This map atombld to filkd in with ill impertant totaile shouing railmods, pesblic and private rad-
 sobects which shall serve \Rightarrow lamhark- for futher refor ence Elevation of all protninebt prants above a certain datum shemble is plainly marked.
The underground nap, should be a complete rgirwo n-
tation of the work, jus an llee ans If flould show an
 ditclese and water crossings, fanlts, bratticer, doors pumps, engines and machinery ; shomikt show all place-
 All elecations of junacipal points, such as entry erose inge, sumpe, ote, shoutd be plainly harkeil thereon at
the proper point. Also, height and character of the row the proper point.
should be noted.
In connection with, the maps, there shosald be bept prodile, showing in detal the lecels on the primeipal trie., grades of existing thacks, water-ways, el
1 want to say that mcurucy is, above all, of the mond
importance in a mime map. In inaccusate, corelessly made map is not worth the baper that contans it. It is an inevrect kows for estimatis, concers but a
ration of bondary lines, is a prodacer of endle-s lati-
bation
The
The importance of ascurate mages incroases as the
 extensive with the warkines an the partwhich are akandoned
chain of recerd is hroben
In making a mup, neatuess is a desinable feature White 1 do not bothewe io puting mig extra buar-ine-
 nod, at best, pgeval to the urristic eres still I think uz pat on them. The one bhea to naintain constantly in a matmer as posestle, avouling all lines imil marks which
 are too prome to place as lon standard upon their ou
Tunmel sarveying lax rewled an almose inendibl wcaracy, owing to improved mastruments, inppowed expected fur such work , and hoonht mat the practice mistake in the alignosent of a thanel nonhl catase fiman cial loss, but al mistake in it mibe survey might canme a loes of life
The enginecring instrome ints of today are beaby noet the denand being muele by the enginecring por piece of work without govel beils ami of the proper kinit a surveyor'velain. These may have answered the powplave in mine work.
It cseites var tuirth, and alat onr paty, to eve wene enginecring outfit ot some of our mines. fivod nows
 instruments. Yet, bu doulte the manager conpratulate himself that he las left nothing to be desired when he

 part well, and any engineer who has not mistaken hicalling will do cralisable work.
It shoakt tor be forgoten that permanent monnomentwhose grestions are shown on the map, should be rstab-
lished. From data supplied with these wonmoentlished. From data supplice with these monuments, every point in the mine should be quickly foumd, nof
only alfer a few years have elapeed, lunt in yeare after when othere have taken charge in oar places.
Whes our map is complete it slouald be a perfoet rep reventation of the umberground workings
-lonkl the engineer bake acourate -uruil
-homht the engineer make accurate sonceys of tho worl as it progreswh bat he rhould ree that the working-are
made in the rizht direction. Ine should coukavor th educate the buiber, the mine lioss, and all who have any educt in the direction of the work, for this is an abtemotet
 nterost, bat a pricle in is
Finally, the engineer's note book should be regardeel as a valuable piece of property, to be taken care of amt
preegryed, aul it shomki be his constant amm to mak it The Thitas of all sarmeys shonlt be classitied and indexed, so that uny purticular point may be quickly
found. We should emileavor to leave oor lumince in
 move to new tilds of
wark where we lefit it.
$\mathbf{T}^{\text {HE LIMITATION OR LOCALIZATION OF }}$
 bery explesinus is the vast areat of workinge ami great

 dixates cxecpting to thex who have actually wow the surfarc of the sarth, veveptimg ouly that of lightning:

 that it is at all presible to immeine what
bust have lson it uotk to caume a Ilame
far withent lowig suatarally extimgusheal by the condin

 tave, or a towal lomgth of ho,bal yareb, nore thevastaked

The bifede pralocral have in many case luen son som
 of the vanks and elocmient vactionse affocting thi- sats.
 -friking the fit and Ifrovxing I wo nouluays-for in

That satue bicans slembl be diecovened by ulsieh thee

 tore to widel to the alreably lang- momine of werk-peroph

 divi-i=ns of

kafogoanl Wlaat,

\circ whirh an

 out inverporated in the vexphasion it self, suche as uatel

 of roulwas.
Of nil these turas the simonnost uflicial seyplont am
 atthough the latter have not as yet been tosted by the
 Thus me fimil ourniver lotnly nuthen pmof of ther utilicy of any justitication for the dequ-noleme wher splecive thame or to localize the latent forces is i
 कfor to information which has been before ons for zom conoside rable le pails

erateal Iostitute of Mining Engimors

 radimery corebhastion of the gas. Mesobramonts of the
 owtwe the mixturs, antil a maximonn wherity was it tainet when betweon $\$$ mat is $\%$ id stean was prownt. Gunting from Berthelot, curtom
 corbomic oxide, triming in ondinary matis air, bs at ones ver the Ilame

 near Nairlowenes," and the comelosions arrivel at in of such great practical importance flat som excolee mevied for the reprombetion of eonae of the ruoclasion-
arrived at. The temperature of the airaturent at the arrived at. The temperature of the air-qurrent at the
working faces wasonly lowered 1° (s.nt. by the siraviong. "It has lean olverivet that monistening the cial tove perature considerably and comtimbusly, amd that the lamper of fir-latrpignition woald be greatly diminishem Scan-e it in uell krown the inflommabatity of fire-tompe, pory antion to the mifu. femperatum
phypotion to the mine tomperation sos, howover,
 (o) thetraise 1be action ot damp alt-carsuts on coal dast sceumblations, samples of coul thast were taken
from varmus places in the fivhl of working, anel their
 Aceonling to the cobclis-ions of the Pruesian Fire-dam! Cupsibisonet, the capracity for explowios of cosic dast is
 Mramentes upon only contained ik of jur cent, of water at the ontsite, althomg it wam alnays nobjerted to tha
 that even in the datispot mise atomeple-we the danger-- profnrty of conal diat is me climimated.

It is, therefore, perieqily clear that all methole for forl of water into Ilw vatering aif-current are abontutely burthios in practice
The practical experience of Mr. Martin, of Thus laik,
 Ale pratical resules ndatimet ite the Masharls Callien thoss she reloction of temperature ga- only z^{2} F, anil
 uen Hot at nork es whew ther mere at wowk. of the nery greatsot impatame that all the facte lycaring
 laken in leand for eollevtion anal collation by sume
 atell Institnte of Mining Engimerry
 Nechanmal Engitucos in a slomet papar written by Mr

 रet it wain alloued that they uere applicable to mew
 ive have lxen wheted

 thaty splate, atat the zley wet for *ow enneiterable

 fanlage- mod, abi the- llame disl met travere-theso work

 an vepplotion anl limet it to the, lictrat in uhich it vig.
 the ouly Imetical "ncans of limitive or livelixing in

 ity, leat matcutanaloly, as ite vobilation of ile mime is

It hus, homoxer, covarnal of the neritor that a much

 ii- Irily hail luyb fanil, it was sarmised that lee might
 Tow pirty of explorers in par-sing throngh an olvening
 Olong another thas chous ani sus in the least ingnowi.

 atue foeve which smoslo
 of savigig anas many lise ib the lnambore loril, hal not an airevesing eloes by lacen cobpletely destromel. This iscisknt pervees that if we proxithe at thous uhieh is

tirection. Thus, men n how wembld soccumbe for want is

 it has dowe in past time If in athition to thits preran-
tion, all impontant air-crosings are constrouted in the

 way at itapmerant junctiany, We shall low better fortition against the pascibility
the perce-ty movnent.

 ane alnost aniwerxally exempt irom being traversed by
 and viwr diffromer- that any lmod theht can le thown on this excmption, and the writer Wialk therefowe com Hacod thas fart of the subject as being aso nell
of flie samest attention of all taining institutes.

CONCENTRIC ELECTRIC WIRING SYSTEM COR MINES

The folloming is on alsthuct of the details of the unel its ayphicahility

Ther mastout of comentric wiring is lagecl upon a fal Fogation of the fact that elestric lights wiring, itcorabet to be permabently sturable and relable, most he inspre
vious to mointure. The main suitch loont luas the u-ual single-pole switch amil fure arraugenemt, and the
 and sbeathings of the coperentric eables. The thain cables, which are leat-hymthed throughous, arst are
 of joint direst to sheir mopective distributime luosen

 revpirayl. Tlu-s. boxes lave chane bucks atid himgel

 ruluction lowing maxde. There i- Hos mecro-ity for any
 marcly that nerasion xequires any departane impos this
plan. Many lagse in tallations have fena the lime indicatich, ovelue of them anmanting to -veral

 -alation within the lead sherathing orve as is backing
 Give Company's West Puarter Fadorg may be vited.
The Imildinge to be lighted ane isolatel and sestomel

 foll athalf time higher thath the mout strimetit of the

 $-2=5=4$

With is comeratrie cobstuctor, however, the fall womld
 sable partal. The roark womble thens lake place at the
 twols several devices have been propesied for the pir
 the lib hathes of thes- devievs perforaing their fanctions
 enncoutric cuble is mols more simple ind it is probohly
mone m-liable than any of them. Forther, bowe of mowe molinhle than any of them. Farther, bowe of
thes arrangements athonl in the miner the imonomit) from pereonal danger from show w lich ibe concowin

 sccarsiy is but wrif fermionl is ambortanately peroned by co-nt latal accich-nts For fow 1 Iran-mic-ion in mine

 artionl.

GERMAN TRADE AT HOME.-Talow from K'm

 fur Phanerei in Perlin, Gaslich rad a paper un thi- xuls

 ether indusios, but np to for present the darthy brom t cale fomm in Anhait, caxoby ami the Lamsitz disifiet
 crable state, amt the immasal expenw of catriame due
 firm try the cal atod then, in orver to prevent hoss in The -lage of du-t, and nomder the cral -simable for use
 mank, a cimblition the troth to she matare of tbre raw
 कlo-1 the ciलcubstances are Gavorable-t. .., when the
 the cal, havine been expucal to but -light proware by
 cual is pere-rally ingurguated to a depth of a souple ci rank with somd and culer matere forming drum and ash

The valow of cosmprosed soal aloc dejemale on the
 carrical ont in kilns, villect llat or cyliminal-the latter

 mymind io form she cool into a colnesive mase. Only

 flwy late, are constramed to kave a comparatively Tompround article at all
There is mo probloct or manutaelunal artiele exhibitio Inwencul, as cotupersaci coal, lowh as regarle yoalit aus guanity. There are sotere worls oforo onfy sat prowluced! in atheos, zaill, half sirfacy and half pit eos

 good prios, is mate The latter base 1locir uno frul

 that of making liouks do different size-sotue make houl-forticularly as mralere aluay- - Il ly manaler in s-at is by weight. The desire on the joart of comanerwill pay a bighor price, althongh itacse extermal ibutien

 errmbe to the eve, but to
primeatal detcrammen

A number of coat blocke examined in the balsoratory

per oont, of water, abuther 1900 fer cent, while ordinary qualities exhilited a content of $2+t 030$ per cent.

TRAP DOORS FOR FAN DRIFTS.-Work has it the Hoyt shaft of the Jemnoylvania Coal Cobupamy, and it is now in speration. The mine is quite gas. ondy and it was dovered advisable to crect the bew the old fan. The of ethergeney or in comjoct the gimbers in shat portioul whan the sir circulates ae it comeen from the mines being of inom, inlaid with lorick. The fan it enf is tuonly foed in diamen and it has a
 al fotures of tha onterest hy resson of the fact that thes are here siecial for the first time by the Pemnsslvania © ompany. There re two brick powign-mays thmogh which air is drawn frotn the shaft to the fan, ind at the entrance to esch of I lusce passages is a masive imon ilion. (hae i- 14x+ feet in size and the ocher alont $14 \mathrm{x}, \mathrm{h}$ There are me mon poright axles as to work antomatically it anything -hoald he injured, she old fan wromal he started and fle lange in the carrent of air wrall af if coll her sullicient oclose the iron doors leadiag to the sdle fan, and in imm, sinec it is the intention of the company to place a fat to oqurate cutomatically, lerer= running from the engine house will emable the engineer to noen or choee mosible so change frote using one fath to the other with
 barre shaft a somewhat similar arrange-ment iv powsing ery sati-factory, The new fan will 1s an imporiant addition to the equiptoent of lloyt shaf, and its operation is being watelecl with interest by the company's adscinls. The fan has bevil it operation for severni days has mad yet been comected wish the -lafi

THE ENGINEERING ASSOCIATION OF THE

 ings for stie reading of papers, diecussions on the ame, cte. holds informal mustings, when the eontents oteming technical publicutions are diecused by membere to certain of whom aru zerimmal a part icular jownal is an intornal meeting helat the en, 1906, the following issighments were made! Kaynwerrig Kovid, to Mr. Suhm: Engiverving. (Lopdon), to Prof. *chuerman Fing Sows, and Jowrwat of the Frmetion Sudetite to MIr. Kirkpatrick ; Raifrowd Gaseff, to Mr. W. N. MeIanald

 Prof. Magrader; Architectural Lateratnn, Lotapt. Emitha Reports of the Ameriean Sceirty of 'ivil Emgineetry, to Mr. I1. Melonald: Eogiurriny end Mowimy Jucomed, to Lucine I. Brown: The Liternerre of Ior Sngtish Ition and stoel Indastrive, to Mr. ivNge An imterering diso American society of Civil Engileys was opethed by the President. The paper was entilled "The Life of Iron Bridges." Amongother things, the anther af this paper book tie preition that the cactor of ketcly tom asual was tow bigh. The pereral opition of the menbors present, howrice, scatucd to be against this veew because of the slight advantages to be grined by at change, which were reduced to it minimum when conpared with the consequences of any accident that might follow such a change

A NEW SAFETY EXPLOSIVE, From the Hedence ntion to a new miming explocieve ulich is said to bo
 bext gollatine dynamite, atal in comocomence of the lame
 double that vielded to dymasmite- it has a werlging
 hally increared lall of lunpecal It ann be comprersed Withoat losing any of it- exploreise forve, and in
 mash weaker detobitor is rupurad to bring it to explasion, ant is is lefter able to withetamel the effects of stonger If poypety packeyl mo desompenstion can take
 Tharal of the state railways allow is to be carrical in any
 Chsice experiments are in prognco in the seyeral mining disities of the eosintry and whent there have been Cow natorv and properties of the bew explesive.

Foreign Orders for American Electric Plants.

That the proxtoct of the Westinghouse Flectric and Mannfactaring Comprany is of workd wide demand bas geain been detonstrated, ncently, by the cowpany reMan," the litthe islami near the masist of Ireland which las Inen masho fammas hy Mall Inise, the preat which hase been makie famasas by Hall (aine, the great (ander City of Coventry, Foglamel, snd a thint onder for
 south sfrica. The company 领 aloc about to -hap an Intia:

Easy Lessons on Mining.

Certificates of Competency as Mine Foremen, of to become Mine Superintendents.

MINING METHODS.

Accumulations of Gas-How to Approach Accumula -

 Fires - A Gob Fire in a Mine-Fires in Coal Heaps-The Breathing of a Gob.8o. Accumplations of Gas.-Emblen accumulations of get are often the results of cances that can be prod-
icated from known contitions, such is when gas is pent up in nita at a very high pressure in a thin vein that lied at a few feet above or beneath the working vais;
for lere it is taley to forecee that kudden intrisions of gas may be expected in the rooms, by tinding a pasage extraction of the exal, or the pent upgas may beexjuected to break the roof, or lift the flow, and thus find vent is a mocevoir of gae at a very bigh pressang, and erpecially on in virgin oal that is in eourse of being
tapped in new districts, for bere sadilen outbarsts of tapped in lu-w districss, for boer: subthen outbursts of during the couret of longwall working, the cotvering treks forming the moof often beak up into ocal pipes, outflow of large volomes of marsh ifae, yet thee cotrush but then are caser in mbinh sudden accomalations of tas are sofally unexpected, as when, daring the course of
wowking, the vein is foumi to be ent by a fanlt that pours ont a flood of marsh gat and sulphureted bydro-
 of not, but to remonce the danger by a correst mestuot in
the seatilation, and this coselusion brimgs us to the practionl point in the leswon, for eecing that we base
-hown the cances of the accamabainn, we ought now to be ather to femove the intruder and render the tube
localcy and sate, and in doing so the following dictum should le taken as our guide. "Advanoe to the point
of danger with the fresh air, bat bever go in tefore it." 8t. How to Approach Accumulations of Gas.-Topas-
sist in cotablishing this vonelosion Fg. 12 is introducod sist in entablishing this conelosion Fig. 12, Gs intriduced

Fis 123

 ventilation is perovided, and as thiscansot be done Lion of falleo rock is remored, it
would be unwio and unate to do
 that both the drifts, that
examples of ireatment for the same drif, and that from B to R. of from Fto I, the as was moving happelued, if the stoppung F is and, bas las frequently exply of fresh air, as in the case of the strife A, an expocton la eure to occur as the twent of two canser the- heat, and woond, the expansion by lieat of the air between the stopping at the imake end of the clrift and the stoppoing and the fire, is the heated state of the rock of the roof and floor and the coal of the sides of the approarb to the fire; and the immediate canse of the the gas tust it still further forcese the muxtury inte. the bire Whes the stopping at the potarn end of the drift ocror for two reasos- : firs-1, the air bet ueven the fire and K consists of the proslacts of combeotion that have
fecome entirely incrt. while the spoce in the drift betuexn the fire and the incotning end becomes filled by the loot coal, and the reall is, when the la-t woppong is built in, that is the one at the incobning end F, the
whole thift f- filled with gases that have excluded all frely air, and therefore an explo-ion cannot now occur,
 suppliss the oxygen for combustion, and that if R is
luaft in first, not only the R lont the F enit berome filled with gas fre from any admixtare nith ox gigen.
The arrow it B indicatos the cutfow of gas from the
watilation tefore any stongimge were baile inse of the 84. A Gob Fire in a Mine.-Siter these fact- and lal lame lown

\qquad outticient then that the gobs is -toppsil uff ut -1, If,
and D, berzuse the gob, nill then inhale and exhate

 inhalation and exhalation, bot the vume active principhe.

B5. Fires in Coal Heaps.-The uriter knew a very

 and drains wore made, and ga- atul water pipes were
lainl, the mass of usher and citubers was fontid to be on line and it continued to infy all athempse to
extimguish it, until she whole of the hoases and the

\qquad

 exhatation, to rekindle the lime at the perionl of infala-
tion; luat by the uxe of the appanathe shown in the imitated an to loave litle- to be desired. That Ercfore
explaining the action of she apporate-ket un lirst explain

 batmer of presoure and by the same nct the inrushing

with the reait that a large volume of the inert go- i- into lignith oil the bomont it- temperature is rodaved expethel as an exhalation, and the metwaining pertion betan 2th F at atmasplurie prossine, and it is for this

 exhatation, as seve by the errou, "e reatly the jutaz ut
 samere that tots on the fottom of the bokth, anit the phopphoriss is usel as frel brecatec it rekimike at a lou стыр"пи

Sow let ar E fallow chernagh a cyele or imo the proce-ser At inhatation anal exhalation. Fir-t, theen, frok air bat reaching the hot ploweplonse, shat milistance Imarsts int nitrogan is vxlablel, and after all the exy 2 en is barn of by the phaptheris, combastion cean-s as in B, amd
 of S; and erom, inlablation and exhalation oevar in con
 The botelo exp-rimedt formishos it gunt illowtretion it the breathing of a grob. bot we can hetter under-tand the twatter when me cors-ider the itamener bady of theain

I'melegrouad tins in eval mimes inlsale throwel fissures in the ronf and thoor rocks, and through crack.
 g.bly can be preventeal

CHEMISTRY OF MINING.

Oil and Gas Lights-Oil-Gas Flames-Ideal Safety Lamps-Improved Safety Lamps-The Stephenson Lamp-The Jack Lamp.
83. Oil and Gas Lights.- From a physical amd clector wal point of siew, the oil light is realfy a gis light ansl the wiwk is the gas generutor, of the analesue of a zainto vajur by the lieat of the tlames. In prome of this, a simple experatent mas le triesl zuith a staall pipets aboent 6 inclos- lomg, aroi leelal ly the hamel at an angle of abeas ti shagos of elesatioll, with its lower end inserted in the thane just aver the upper umb of the at ther upper end and thas prome that the oil so thot trirting a- a liguid, but an a gav
therefore, the rate-at which she val con somsal, amil hy the rapulity of the saprization of che oif ; and this la img sea, ave cun artion, anal iurther, while it prevents the noflow be it thickness, it ix an oil that burno languilly, and theres
 the requinal molume of gex- for a gonal thane: This
i- presed by the farta of cxperions, for when the wick in raied, the thate waly valanges jor at monent of tme,
 befers
The wiek thea furnishos it gemi grage of the valut
 fortane in relartion to the miner' - alfety lamps and,

B4. Oit-Gas Flames.-We Lanv how in wetion an wit
 the "pper eisfane of the oil in the tank, ami the Iwo an
 umel the morde of intives is its follomes. The. lout of th

 tlame
\mathbf{X} (ic.
Wee an then that -rome of thee legh of then flame i-

 in the extumen eifl lamp anal yed there ar- two very dis. amaherae of the u wh of an oil lamp lacones the u iek
 from the-n-ervuir to the thame-by promem. Ther so cone

itw ail lamp. The reservoir and gas pipe wowht have to Is- mannaimel at a ligh temperatume to retain the oi as
 is wantexl amal the se the very poit where the gas any baste of lecat, by radiation. From what has loeen shown on onv that if wr nish to improve the miner's
 ber primeighes of the pliveical and clemical action that babos plaw in borning ofl anal gas in a satety lamp.
कs. Ideal Safety Lamps.-This brings us directly int the teeth of the question. and therefore to belp to the teeth of the question. and therefore to help to
further elacidate the matter Fig 125 is intruduced, and to
 prevent coomplexnation one ideal
lamp F, consists simply of an oil ganze cylimber, $P^{\prime} C_{\text {e cte, censists }}$ of the oal fosin-
tain. ganze cyl. inder, and a bonnes, ot ehineta, or
close extimiseal shell. The $\begin{aligned} & \text { samp is of the }\end{aligned}$ original Davy
lype, and it liere, given as a what takes plate when the Davy is ex poeed to al draught, of atir with marsh gak In erech a vituathom the lamp is CVH to be filleal with flawe 5 , for the corment of air uctslike- It blast, and the quantity of air entering within the panme is cont of all popportion greater tham what
wonld cituply enter as a normal draught for fecd the
 the lever lialf of the ganze shell, while the burnt air is gon to be kaving by the apper half, bat in a swiftlymowng chment, when the atap is stationary, or when the lamp i- maned in the band -ay at six miles an boar,
 ar the mont of the swing of his arm, and When it
addition to this six miles the current is moving to hecorries's fase with a velosity of 15 feet per mecomil, the labup arlvancing again-t thie curn ut is sabject to a hlawl,
 flee ganas- anil leaves by the- ofler, with the reash that the grasze on the lece eide, of that on which the tlame iv
 Aame thmush," because the volume of tlame nithin the bamp, a- the result of the becach parviled by the metr
 Lup beine "a meal lefector of zas Is Inthe olue law Stip bect vil की

 86. Improved Safety Lamps. Tem
86. 1mproved Safety Lamps.-The safety of this from fime tamm is comocrern) and the onlv obloction in thes creamed lamp is that " it gives a bad Gybt." It nill be run that no mome: than the mormat volome of air

 thos the thell in the figun, ame further, the frual air enter- thecan, at the top, insteat of at the lontom, the realt is the cond air sinks down the outsode of the the cap within the ganke
87. The Stephenson Lamp.-Ktephenvon bad an exprrience that erreet bim nell in the imention and periecimg of has lanp: ams his, the of the first lampe, mas provichel with if glass slocll, shown by Fg, 12, in

 cols, whike fresh aif was ashinited themel small hais
 flamp, and the burnt air cotaped lov the eapof the panz
 a- the formequle of astion was conemonel, Imt in praction a- the- primeylo of artual was conecmed, Ime it practice tese one-: lecsuse the ganze evlimbler was of a molatively farge diancter to admit the glacs shell, ant the formit wa- with a luckken pla-s if ma- in principle a Day ait ix seve to enter by the rapillary heleos at ami abil to pass rat of the cap f is showe by the arrow 88. The Jack Lamp.-Fig 127 is an illustration of fle farther dexdopene tue , if the varly improvements if tow miner'r vafery lamp, Jack naw that in primciple in parviding a chased slofll as a peotectinat against the til providing a chased slofil as a pootection against the
riput inrash of an explceive mixture into thes lann and lee alos ua-awame of the slangers arising from the treaking of the imaile glas- cylimber. and therefore bis
 of the panze exlimber and plaring the glase she-ll on the

and keep the ganze and glass cylibders in poeition. Now looking at the varions phases of the safety lamp Petrospectivedy, it is very casy to diseern that the Clanny with the introblnction of the Thyy and the Stephanaon contained the evecntial principle of all the latest lamps,

namely, the short glass cylinder for the tranemie-ion of hght ; and the stepleneno and the .tack lamp omitained and other eseential clement of the tasi lompe lases the glass shell is roplaced with in the and unp, and is now called the bonnet. We may therefore conctule correctly, that the latost and beet lampo are acombination of the moat epaential fittneiples fatmat in the varliest xamples of mimer's safety lampa

MINING MACHINERY

Questions and Answers About Fans-The Dimensions of Centrifugal Fans-Velocities of Air Currents Into Depressions-The Areas of the Orifices of Intake and Discharge-Pressures Due to the Radial Columns-Quantities and Velocities of the Air Dis-charged-Calculations of the Working Effiencies
of Small and Large Fans-Calculations of the Useof Small and Large Fans-Calculations of the Useful Effect of Fans on the First and Second Motion. ros- The Dimensions of Centrifugal Fans.-This is the coarluding lexans on the principles of action of the cotrifngal wentilating fan, and it combets of ghestions and answers to clucinlate the snbjects that have been Cact on wor
Quex 1. What sbould be the diameter of a centrifogal ventilating fan tor obtain a quantity of 300,000 cubse teet of air fer minate?
Axs By the mole, divide the grantity by the conquotient, and the revalt will be the diameder of the me grimal fan infect, as $\sqrt[\begin{array}{c}20,000 \\ 200\end{array}]{21.62}$
Qess 2. Suppor the velocity ant wher things to be rould ver expect to notain winchen, What quantity diameter
Axa, By a proceos the comerge of that for finding
 mequired.
Quess in What slomblt be the diatneter of a first mofonn, centrifugal fan to obtain a quantity of k0, (000 cubic
foet of air Per minute? bet of air per minute
 Yロimy 200
Qers. 4. What quantity of air in cubic feet per minste shoulh I obeam with a tiral mothon fan sot feet in fiameler? The velocity and other thinge nemaining as 1)
 2LDS. 5. What slowlal to the dianeterof a fan on the
 air per mumate

$1=30$

puirel fan
What yumatity of air in entric foet pur min-
ate, conld be obtainerl nith a fon 25 foet in dameter?
The velecity and otber thitug remaining the same as in The relecity and oth
the former suest iom.

12t: 2x. 7. What slomid be the remial length of the , miek of a cebtrifugal fan, on the first monion, abst con-

Axs. By the rule given, there shonkt be 7 inchess in bue per square fowt, and an the proweres wary an the the radial leogth of the blades for every, pound per equare foot in the mine resistabce, then $2 \times 5.2 \times 7$ ti,07 ieet, the radial length of the blades nequirex. ${ }^{12}$
Qees. 8. The ratial length of the blaiks of a fan is th.07 feet. What shoold be the mise resistance in proundFer meane foot to ran a fan on the liret motion at a Alomespol
Ass. The answer required is the converse of the forner one, then $\frac{605}{50} 12$
Quex. 9. What should be the radial length of the blater of a fan on the first motion, when 5 incles is utthis cas is cqual to 22 inches of water gatge"

Ans. $\begin{gathered}2.2-5.2 \times 5 \\ 12\end{gathered} 4.76$ feet, the length of the blates required.
Qeves. 10. What shoukd be the mine nsisistane fir : Gan in which the rulial kength of the blades is 4.86 foci
and 5 inelus and 5 incher is allowat in thi length fire every pount of mine resistance?

Quac. 11. Tuo centrifugal rentilating fans on the first motion, are equal in diathetor, abt are intended to prolooe egual quantities of air in cuhie feet per minate,
hot ther radial honeth of the hlades in is such that bat the radial keegth of the hlates in A is such that there is an allowance of 7 incher in the nutial fength per poonat of mine meistance, whereas in $I f$ the allow. ance is only S incluss; and iaking the rneed of I at 1 .
what should be the speed of I, if A makes 20 mevolerWhat should be th
thans por minate?
Ass. As the penceures vary directly as the madial Avas. As the percemere vary directly as the madial the relocitics, let f, be the greatest ratal length, and I the least, and let r be the given welosity of A, and I the sought for velocity of B, then $\frac{L, 2}{l}$ IV or $\sqrt{L,,^{\prime}}$
 tions per minnte, to puraluce
cubic feet per minate as A.
Quas. 12. In two ians, 1 and f, the radial lengtheof the blades und other things are exoal, exeepe the diumeters and peripheral xporls: Nus, if 1 runs at sa nhat should be the speed of b to produce the same

 their diameters, then if A'speced is 80 recolutions $I 5$: slexel will be ${ }^{24}$
tain the same quantity of air in cubic fet per minnte an Oñ
Qubs. 12 What slould te the ama of the port or poits of entry, for a fan exhansting from a mine a quanity of 2 sh, , ore cubse feet of air per minate
Axx The bet revolto are obtained when the area is
found by diviling the quantity by the constant number,
 the pert or ports of entry required.
Qube 14. The arad of the ports of eniry of a fan is quat to symare cet, what then shomid to the maxicfect?
 cubic feet of aistant, then er ente, the quantity required.
Qubs 15. A ventilating fan admits air it both sides, and the diameter of cach prort of entry is 8 feet, what, then, is the joint area of the two ports"
An. The joint area of the two ports of entry will be
 Qebx. 16. As the throat of the fan elowht be equal in thomble be the length of the throat, or love oflth of the fan blackes?
Ass. The length of the conceivable -urface of the thruat cylinder, of what is the same, the breailth of the lan bladee, can be found by dividing the area of the ports of entry by the circumteremee of the lareat, as
$100532=4$ foet, the length of the throat, or breadth $\$ \times 2.216=4$ foect, the leng
of the fan bbuder required.
Qus. 17. What clould he the area of the port or portof discharge of a fan prodacing 150,000 cubic fect of air per minute?
Axk If the guantity required be 2 and the area reA C ar ${ }^{\prime}$? -4 , as 150,000
the port of divecharg. requimed, being hatf that of the port of entry, or Clor the port of entry being 1,300 , ,
 last queetion had been ;o instwal of 57.02 mpare fect, What inevaseed velocity uould be nquired by the fan, to
maintain the outfow of the -atme mantity, ivome: the maintain the ontfow of the same quantity, iscouk; the
mine rexistance being 10 poomin pr mpan font? mine rexistance being 10 pommis per eyqaie foot?

150,00
$58.69 .62 \quad 60=60.865$, and this would require a premure of $\frac{02.03 \vec{r}^{2} \times 2,120}{1,200,400}=\frac{4,855.3 \times 2120}{1,800,000}=5.75$ prounds press.
 per equane foot, the pressure reyuinal for the ralisal $\stackrel{\text { ara. }}{\text { Non }}$
 once deternibe the increztedl welwaty of the fan doe to the refuced ana of disclarge, for two whocities vary as the squase roots of the fressuces, then the velonity re-
maired io, if the former velocity was $1, \sqrt{31.25}, 1.4, \mathrm{of}$,
if the revolutions in the limed case wene 70 per minute, In the latter thry uould twe 1.4 . 70 ch revolutions per minute.
104. Velocities of Air Currents Into Depressions.
 oritice intor a drprossion, when the powere is 5 pmondfer syuare foot w-low that of the alowophens
Ave, As the deprextion in a fan dos not affect thisvaloe, we only hase the it prands to consiler, anat as
air is chastic, the exprossinen to $\sqrt{5}^{5}(2,1200,000$
\} requinel.
Quax 22 What is the velocity and manan quantity of

 are of the atmospheres
Asc. The veloxity per second of chatic air rushoThe into a depreceion ${ }^{20}$ pounds er muanc fons
 relocity per seovol, of 1200.7×61 7,582 feet pel minute Taking the rem montoron at , fie the grantigy por minate.
Quxa 21. What shoult be the area of an orition for ther atmimion of Tapore cubic fext of aur Per minute presure is ? pomals per mquer foot bolow the powsome of the atomesplime?
Axs. The velocity of the inflowing air fer revobl will

 The orifice in spoare fert will be cypual to this . .1. 62..an

Quts. P2. The smallest purt in an "shatesting fan, is that of discharge, and it is cymal to th: moleane fert. The Cokal preserare the to the mative colume is cymal fo it : The thin spare fine of section
foot of section. What than is the unatity of guan in cobie feet por minute paosing out of the lan?

mects the requinemants of the es

 obil, and taking the mon contructo at the the quabtity if air dsednanged hy the fan in ceber feyt per misute will be, ass, tiz (a) di2 45 112,15s cubie feet.
Qrex 27 The calculated total prosure, dos twan exhansting tan, is fonme to be is peabils per square foot at section th the meetre column; abif the bume resistanes is found to be 11 poomeds per square fool of rection, it the top of the uprust shaft; the smallest oritice is futhal to her the chroal of the fan, that is se spmare feet in ane What, then, is the quantity of air cexhasted by this fau in cubue We mill tale
Axs We will find the velocity of the air pa-mime through the throat of the fan in fert par xowomel, lyy the
 74. Ne fect The quantity per mimbe will therefore be if we take the wion conirrada at As
$74 \mathrm{kQ}, ~(10 \times, G 2 \times 62=1+, 7 \mathrm{H} .6$ cubic feet.
Qtas, 24. The calculated total prowne for a hbowing
 tive colomin, and the mine resistance an buramend wit: The water gauge is found to be 1.4 ineches The stanallest ofitice is the port of vatry, whose ment arm is 3 st syare text, what, then, is the quantity of air in cubic feet per minute, bionn into the mine with thie fan?
ANs. The following expression is ascol to find the relocity of the air in feet per sexonat through thersmall

(2120 7,28$)$ \ $2,1: 5,2 \alpha$
for, and the quantity of air in cubar fove per minnts blown into the mine with this fan will thonfore le, if
 $150,515.7$ colie feet.
Qces 25. The onitioc of stimelarge has a nmalher ana than the other ports of a blowing fan, and it is equal to 49 muare feet. The quantity the fan blows is equal to 150,000 cabic feet of air per minute, what, then, is the velocity of the air in fet per wecond ont of the orifice,
when the cond confremfo is taken at to?

A $\mathrm{x}=10,0000$
 the air in feet per second out of the orifice of dischange of a blowing lan.
Quex If If the orifice of diacharge in a blowing fan is the smallest, and has a mean area of $\$ 8$ spoare nubic font of air pur minules and las the mine naistano be croul to 1.8 inelves of valer gange. What, then, will be- the total pressure ander these cosuditions:
A xs . Let as first find the velocity in feot per mecond

81.15.

As the presmens vary as the squares of the velocities, it fallowe that the pressure blowing the air oot of the fan will be progrortionate to 81.15 , (21:30 (19.25) 6,iкi.3 2. 122 za

1, NS (0k01
7.897 pounds per syuare fool, and
the total pressure that "blous," and overeones the mine

 Quma 27
Eva 2, Thw ventilation due to an exhansting fan is cyear to rovk coluc leet of air per mimate; the area of the smallest port, is the oritice of diecharge, and it is equal to a mean area of al spuare fex. Now take the moun confromes at fie, and find the total prosamm the to the centritugal force proaluexd by the rotation of the fim.
Axs. First finit the selocity of the air out of the
 per second, and as the prvenures vary as the spoars of
 ng the air from the bin can te form is follaws
 pounds perssum get simare foed required for blowing ont;
 quare fout of section dae to the ceatrifugal foree prodaced by the motation of the fan.
gorse 2k. A centrifugal exhansting fan is 24 feet in diameter; the radial leogth of the blades is 8 feet. What, then, is the mon velocity of the radial air colums when the fas is ranning at sol revolution- fer mimbte?
Axx. Practirally, the radine of gyration is 8 feet in Hength : half the length of the blales being if feet and
 colume in feet per moxud, is as follows:

$8.2 \times 3.1+16.80=40.00$ fect

Quts. 2t. The diameter of a fan bs atient : the radial kength of the blakles is 8 feet. What, then, is the practical length of the radias of gyration ?
Axs. To find the prastical length of the radins of gymtion, sultnues the radial kengit of the blader from the diamseter of the fan, und half the difference is the leogth of the rallus of syration, as $\left.\left.(3)^{-}\right)^{x}\right) 11$ feet, or the length of the radian of gyration.
Q2ras. 2t The railial length of the blates of a fan is air, that is taken as 16 io naling fan coleulations?
Axs. The aterage weight of a coubie foot of air is atec, theo If Sititi 9 sivet of a poumd.
2usa 31. Find the value of 16 in four caser in which hle railat oftumens arn t, is is ant 7 fent in lengit, respetirdy?

Qees. 32. An exhansting fan is 21 feet in tlimemer thee rudat lenglh of the blakles is x feets the angular The sely is 7 rewolntions per minute What, then, is ar dic center of gusation in heot per secomet thers. The diameter of gyration is $-4-8-16 \mathrm{fent}$, and

yax 32. A blowing ian is 23 fiet in diameter; the ratial lemgth of the loakes is 6 foet : the angular velocit) is te revolutions per minute. What, then, is the velecity of the comerof gyration in fect per eacoml?
Axs The thane ter of gyration is 30 if -14 ieet, and therefore, the welocity of the exter of gyration in beet
 Quoss if. The velocity of the ewnter of gymation of the radial colnman of air in "t finn is alevet per secosd, the lesurth of the blalis is 7 fect . What then is the valne of the extirimgal fores, "xprobal as presure per ginare fool
Axc. The following eqpations exproser the value songlet for, and is known in there examples as T.
 T, the tufal pressure, that inclustex the mine resiotance and the deprossion produced in the fan, is equal to
 coltame.
號 of（i）hest per accembl？

Pirst timt ther Alamor of gration，ax 23 \＆ 16 ict，and is circumberomes am－it the satne proportion th apoint in the periphers of the fan，mum he to．that of the

 The omfiat tagit of the thates os foyt the amentar
 pastal－prosome per－quare fort of radasl mevive

 yuised．
 istame i－cyal to 3.2 ineloso of water qamper the angu－

 being the mmallest

 1

 tiry of an in catio feet per mimute thrown off by this

Ther diamester of getation will be equal the

or this will lue cyuat to 1 12．4－1．0nco．
1 erer
JGE．fiet per amonal．
The－quantity then of air tisehargal from the－fan in
 T1日者

 A＜The hameter of gyration will In mgal to
 fect per ewonal will be eqgal to

1 10，人 1 ，
 foroct ister the mane wibla a blowing fam．

 nt－velamatal loy the tab
Avk The dameter of gyration will be cyoal to $12-$－
fret．T，of the todal af the contritupal forme dere to the
有 146
 which mith that lirakee ant revering gear，will be operated by stanm
In the incline shafts at the fiagnon and stewart mines vages of skiper am usent．When hoistel to the surface they are itntomaticully dinmped inte the ore bins Xearlyall the irupurtant miner ate expapped with air

 daily becoming tance prevalent．

Wire Rope Transportation．

A nen and atractive sard of the Treaton Iron Co．， which appears in this column is worthy the attebtion of onr resucers．This company erioys at enviable reputa－

 naterialo
Mr．Abram \＆Hewitt，of mutinal repatation，is Posident of she company，and Mr．V：Cobbon spalle－ bary，an engiteer whose mane is fatwifiar of every echmical mant at obe of the kedoling etogenevis of the wofld，is Mandging Director of the company．The gomacebors of these gentecuse wols the company
grarantee of the quality of the goonds turned out
A eouple of years ago we called attentoon to a blue gany which sas tent fres do all mine owner this cont pany wos on appleatull Tue bow is are als
 amely itustatrd arst－elass illisthticd artieles on Wire Kope Tran－porta－

 －tbjecte it is more of a Gexf－homk than an absertisc－ beat．Any of whe readety whodid not recejre a expy 1 the last issine of this book will br higity gratitied if they send to the Irebt on Iran Cobijany，Trenton，N，IC
for a oopy of the new jomes．We have never yet called ottentions of at tamk of greater valtee in mine owners and mine managere．Besides manafacturing the materials， te．，we mocthion，the Trenton Iron foupany make a large number of specialties in win gooits，atu the evictence of number of spcialtics in witc goots，atut the cyiterme if heir supernur gnaity is in the nutamenorauara－athocd tiem it the Colamban F：xporstion，it thesges，when
 of lueat resisting wire for clectric lieaters whichiometing with great facur．Ohber equecialites ate the 1）atent Lack Wine Rope，Bletchert Katent Wire Rope Trabuaya，and a Ritent Rale Tre known to the irnde as the Ancluer Ties． Sobe of these specialties are not of spectial interest to
mine tmanagery anil mime uflicials，Init．the lumek we Imen－ ion is amf the thecriphon of wime fope tramuaye cable hoists and sotreyors，and the apqulication of wire rope to tuine haulage tre of such a mature that fie maning enguter or matio mamager who dowes not poesess a copy tmiesco a raluable pmblication from his pechnical hbrary

A Louisiana Sulphur Mine

 of winning the corious and valuafle sulphanr dejeneit in Gleaneu jarish，Lousiana
For thitty－five years exmpaty nfter conmany has ex－ merimented with this depnost of sulphar，which is prob－ ably the largest in the country，and is valued at from She silpu tion slom， and the statave lay an immensel fotioliasum，which could not be removed，exemated，of boved through． There seetaced to be bo way of wan raching the s＇il－ plour and gettimg it＂1k A venall town，Salplour City， the grown＂P：in the twightortroel of the mimes，at Which lived the soratives engagel in trying to motve Gre problem．As the exponeto nt thene venployse ham fow peveral companies onganized to buitue it went oft after another into bankruptey，witil the prowerty fell． a sliort time ugo，into the fands of the great stabiand Ti）Company．
in pring in party of limatere stambled on a petrotemm
 that side by sile with ior it，and whine baring discovered
 －ulphar wa－tho fox lielow the eurfiso and extended be－ how，wht fert finther．There was but shats of question about this，leat，anfortunati－ly，jut alvie the enlphent was in puichoand than foxt thiek．she effort after the other to reach the－aljour faiked diter several deaths the Smersan Rulpher thmpany gave up，the enterpixes． Then a Thelgiat ingineer atukertiok the work and en－ dhavired to mentatize the quickand ly frevaing it solid and twaing it through（ Poetsols peoress）and vreeted valaable refrigerating machimery for that purpese，but the queckatid would not stay frozselt and that oysteon of minitg had to Is alombloned
 fi the praperty，It set abwat minimy in a fathons the Nery oppinete to that of the Delgian enginecr．Instemd
 it is tring leat，superlocates water io forexd thromel
 The liguid sulphar water jr then gmoniol op i fitele
 almest pure sulphar．Th

Miscellaneous．

PHENOMENA OF THE HAIR．

 Theicicison of if

ニッヒニンぎミ

fram his tecal hail formes！ 1 foumb that，legimning with the tove of July 24，the hair has chamgel frome lorown to revhlish

 lest your
maloly．
of dange

\qquad

 Absvation．The partirle of hair arvon an tho day whe； to covasion a flaw in it，amt at the nowave gur apparently parts of
burndot－form uhom the thair，axymption，t
timl excmptitiesl in
vuchlen
oxsame－rifil，flow
explainer

 that is，makes it stami
The Enicrosofet thes momena；it slows，I
make the hair oppos
itsiress of aty strang
ithater matter．Acovilime to mo due to depweration of the piemoch
 question whecther the air ha alonittel frem outside or nletlect of the hair shaft of
Atsother vxpla

Thicash onir knowideloe of the haroencter qualitics of the

cxistem slimetly fromes

ELEPHANT WORKERS IN RANGOON：

AMERICAN COMFORT AND LUXURY

TREATMENT FOR ELECTRIC SHOCK．

WARM FEET

THE SEASON OF SHOOTING STARS

 poste to xpeak of thuz as shotiug tars: hot there io in.

 yiven wind. It was in 1 sas that the carth las pacool through

 corth dires mito it meteors by tesis of thensambs mith te vis

 that racherl this pla
coulley Sang., CXownid

CHANGE OF SCENE AT HOME,

THE MARVELLOUS NEW LIGHT

 coverige It lia beon awertainal that the liat from the towe chembinal tight thongh slamanam platos un ineb thich, sut they ment as steats throush as if the xnteditere fant hove plass. The sume wat the rave vith tur wets of Inole, inefulug many volumes: theos low phamed luewown wimben caec with dry phates, aint the roult was an complete photugraph of the compore as is promible All the ptofossne > experinsents lave been stecessfally repeator in Londun this week, and bany of them were shown at the merting of the Gamern Club on Thuralay. It Proves that the etrane meslimm which probluces images of is ogualls incurnct to sher rile it as electrixity. It is wame Soriv of inturne prolliced hy crove's mber whet excited gualitios as an onlinary Tirlht. The invioblote twe meolinen far- the the xathe qualition For indamos, it will mes peose trate char glass. It will peretrate groand plass, though smoe fedily than wool and oflee anganic batter. Alominow is Expmore tranopanent than gloss Even cupger is less of mpe than glass "xatool by all coclinary inshathen eall. a porree coutainisur cuime in whish nely tho roige ans the 	over las qualisy of casal, costing at least trike as motich per mersaits, to le a bish-pmosore, men-combervive cogine, and Whe exhaust steum hass to be thiocharzed ugainet cromeiterably mome than an atonophere of ponoure, lecatise it has to be A -tatsmary cozite, lowecker, may be mitle of any size. It may ler a compoumb conetenoivg, or a triple expunsion Hesting siriace in progertius to the coal matenmed, and the miay her copluynd In thi- mantues the cost of developeng a TO RIDE IN A CROWDED CAR. The following instructions in regard to how fo staml sac-ce-sully ina crombed streat car wene gives in Ther furriown Avoce fier the leterfit of women, but frons the pymnastic ex hihitivat we often we given by people of all ages and seses ther struth le thecresting to atl When the car starts, lesen slighetr in dinestion in which it is Theng When the cat is abosat to otop lean towand the Nor. car orer this imbibe curse, thes pefincing the strain to a minimom. Now-thoctane of this partiealar rale is the cause of ther frantic , latelorx aml incoluntary divplase of affiction The philhonshy of >efle rulos is as follows You lean toMarl the firnsins if she slarting cir, so that your looly, the formard mumocutum fioguifoll by the lowly while the car Mas in matinn. In roandiog is curve you lene toward the its- ate pattionlarly appliezale to sable rass, which ranely fail to start or step witha jefk When utizhting from the ene place the ket lasul on the In crise thase ruk perve lencticial the wormen masy thank

Two nhections are commonly bronght against the disinkect-

 un's rays. forinstame Kowlt has slawn that the germ of cuexumptran can withidami tin medar mas bew only it stort time. Chatera gormu

 ured artiollos of lomeshold use. like furniture, hy first im Evgrating them with zoras and afteroand exposine them th tue dirnet antivan of the sanlight. It is banal that whike the His's tuy lave in distime intion ypun the apser lagers of
 Ifictel.
Trovefigators report that diect solar light kills in from onc
 Impifying water. In fairly dene water the cflect las beel In batice of water expeeve to the raye if the som a mini
 the ax might have lewn experted, a maximatm of the same A stiely of the actiotiof aftifefial tight urnit aliseses bas re

 follet rays

 Monterfal resalts
off ull liorms of artificial lighe the archectric sevms to
 bys of the atm itsels
That the sundese exort at femperfant inflencera- a dion Rectant-ans this mot mocrely lexanee of it - warmith of drying

ELECTRICITY FOR HIGH-SPEED RAILROAD

 TRAINS.If we wish to coltain hagher ppezis on railroabls we mset
 tive, In onler thereatly ibcrease the power, it is messagy

 Inalk of an or-limaty locemosice. In nezarl to the question

 lanse numler of strom for an elevtrical raitrad? It eets

 victuctor only whife the traing factmally posing, the latter
 hail passerl. In this nammer thew woshill le vers tietle lose dasere of acridente whithl be axcuilel.
mimany to liwe the

 evere sdated, a bxatuative-ctcitie must be limited in sias.
 hosting varime it progetrime ta the coal onathmed: and the

TO RIDE IN A CROWDED CAR

 ovacs fier tle lemetit of women, but from the msmastic
 Ausys fue the sides of the onr. Weyer the font of reni
When the var starts, lesen slightle indinetion in which it is

 ar wee this imsible conces thas melonime the straing to a ming-
 rasi the tirstom, of she slarting cur, we that your Tooly. with the rar, shalf, of to spok, toot he len lethime. The

 When athehthey from the ene plose the ket hamb on the

New Invenions.

MINING REAMER

 it ogeratan, onlargine a etrillid bote, to make ajpkhet for pomber. Kis. : bs asotion through the rainet, straw it on it incg, g. The looly of the toot is tonde in lostres which ane omb cap is providsal witlenevenal ponet, ofs which the tramer fures when it sos. Tle mablle partition plate I_{i}, is firmis

warovl to beth haturs of the shell, and amaller slate- 2 and , are fasterez on wask sole of it. These plate- grovele fearhes for the foterum ritso t, "Wot Whict the twitcre ary

 4x showen in Fig

STEAM BOILER

 placof the fire-lorivg partition of whinh extembl- frown the
 the front rous of tolkes, then desombl among the nar mous ant theme ierent theselt the muthet hue 7 . Theflecting plates

tween the tube ends to a point sbove the water level. The focl-water estering thraght the bipe 11 on the left hand ifle
of the phale is proventel theroly from mingliras with tho
 decoebds throngh the rear rows in a less volent manner than
in the mam oinonit, from whimh it is cot off log the laffle-
 Thate, therchy gixing a mach lerter deposition of selisuent
 Water pusmes, whiti i cine cot circulation takes place betweit the battle-plate.

HEAT ENGINE

MINING MACHINE.

 iracytibstral ptug, lavime a puchet y, cut into one side ans
 coll ills the sfoes, aml as the talve moolces, the charse if piden oge putumer fop of the cyllomer. At that instant, the
 degree that its temperature has riecth above the larning pail

FIG 6

 trallat hy the attuibaion of air therought the valee of The
 pe-tom, inthoush the kemperature within the valimher actu-

 ments, water jaclects, ete. wre bavkel. The fatseve in tomp atare thomertiont corls otroke is very areat, amel it is daimsal therefores, that the ecomosay is ersoter than in ung ubec form
 sirkdol state in the whirhig gases, ary hwan out with them

CABLE GRIP.

 certaib anal sate

JIG BOX.

 patit the chler of the zuani plate N, to the aste F. This gate
 slate oner it thas jurmitting the jig fu work contimenty for
any longth of time.

COAL DRILL

 darzer seale; amithes is a crossovetion of the geed. The prowet air The estimeler, os cliskled by a gartition into

the top of stow poot i. The montur amt drilling meshantiste 14ent ulata tow jom

MINING MACHINE

CUTTER WHEELS FOR MINING MACHINES

cum-i-t mainly of a whev havihg a great masmber of emall

 whel, thace ramoing it for movire with grese nagulity The

 imit- their movement. The spent faste tsenge form the

Whed thropght the foper The gacis fionl by the clextry
 x an -lous.in in lis.

COAL DRIIL

 premol uir ur stram. It has tuo working chambers, vach of Whet,

 Eranoce inthe cibl bors 8. Thedrill and modore are fiel Eor-
 loy masas of the ratelet oforel U, ansl gawl X, which lears viluated vere it vach revolution of 1 , hy turatus of a small

The Colliery Engineer

IMFTAI IMIINFR.

vol. xvi--NO. 8.	SCRANTON, PA, MARCH, i8g6.	
The New PULSOMETER STEAM PUMP RECENT IMPORTANT IMPROVEMENTS.		
		SMINS

ANTHRACITE MINING

at the solth wilkes-barre colliery

Geological Features, Methods of Mining, Ventilating and Drainage, Etc., at an Anthracite Celliery of Large Capacity

Written hat Tife Collieny Exgreer akd Metal. Masen by W. W.

This colliery is located in the gonthern portion of the
city of Wilkes-Barre, Fa, and near the center of the uetern half of the Northern or Wyoming-Lackawanna
anthracite coal tield.
It is one of ten colliceries owned and operated by the Lehigh abd Wilker-Barre Coal Co, in the wyoming
megion, among which it ranks speond in point of pooduc region, among which it ranks second in point of produc-
tion-The Nottingham colliery at Plymoush, Pa, being
the soath Wilker-Rarre anticlimal immoeliately to the
south of this bosin, and the Puttonwood anticlimal to the
north of it. Fig 12 aleo shows the shaft-, gang ways and airway slopes, planes and tunnels, lout not the lmasts. The
gantwavs in the Baltimorn win are shown in ailid The and those of she Hillman wein in dotted lises. The average width of the sonth Wilkes-Barre basin in hat portion of it extebding eato of No 5 , chat is abom 1, 400 live while in its western portion it has a nidith of bout 3,000 feet. This basin extends westuard several miles, and into his and aloo into the basin lying morth of the Buttonood anticlinal the workinge of thiscolliery nill extend. The depelt of this basin at a point immediately to the

Pe as workable wine in this vicinity basy le entamed Them follows, coanmetring with the lowet and nataing ome $\mathrm{B}=1$ a
 Stanton, of ft.; X, Hillman, \& ft. 9 , Kidney, if it; 10 Abbot, 6 it ; Making a total of 76 ft . of coal. At a
 in addition to the above, zeveral kathor reins overlying hiese and aggregating aboat 25 ft . u hich will moot likely The Xo. 3 -haft ont the fofure
The No, 3 ehait cut the veins nearly on the creat of the Kasth Withe-Barre anticlimal, a hife the No, 5 shat ut thers on the morth dip of the rhallow havin lying between the two shafts. From both shafts gangways ure driven east and west ; those from Xo. I shaft being in the Hillman vein and those from So, bsait in the

 v the largest producing colliery of this company)-ant gives etuployment to, 000 men and hoys
The broker propars a superiar snule of ecal, und being situated as it is in the mopost of a thriving city of about 50,000 pove retail trude in addition to its regular line shipments
The surface openings consist of two The surface openings consist of two
hoisting shafte, yoe. 8 and 5 re-pectively, hoteling thatts,
and one aireshatt

$$
\begin{aligned}
& \text { and obe aireshaft } \\
& \text { Ne. } 5 \text { shaft, }
\end{aligned}
$$

corner of Parriah and High strects, was sunk in 188 s to the Balimore vein a depth of 1,030 feet. It is $12^{\prime} \mathrm{x} 5 \mathrm{E}$ ' in saze and is divided into S compartments tootet-waye each न!'x12', a man-way or pump-way 7hx12', and an upast airdown to solid rock, a distance of 21 feet. it is domble timbered. On the outside, next to the Wash, sets of 12 x 12% timber rhected ot the outside with 2 -inch plank. On the indide nest to the shait, sets of
10^{\prime} x $10^{\prime \prime}$ timber are placed "pkin to okin" from the surfuce live to solid rock and 5 feet between centers from there down to the bottom of the shaft. The cross buntons (A, Fig. 3) between compartments are of 8×10 timber. inver and outer oets of timbers ubich is filled with conerete from the solid roek to the narface
 Whaft and uas tirst sunk to the Hillman wein a depth of Th0 feet ami afterward extebikd to the Baltimore vein a landing in this shaft at the IIfllman vein, tont mome is the Baltimore veis, that portion of the shaft exterding below the Hillman reis being used only as an air-way ot scond opening for the Baltimore vein workings from 3 shaft is wallal with 5 .foet eorlise line the No. tasonry. Aeide from this it is timbered similar to Xo. shaft.
Each shaft is provided with electric eignaline bell.
 telephones
The topograplay of the coal beds in this region it marked by numeroas anticlinals and basins (See Fog, \%) direction, the tope of the anticlinales and the botoms of the basins descending more or lese toward the west The most prominent flexures detined by the working the Stantoa air-haft anticlinal (See Fig, IV Map),

The peoitione of theee weine in relation to each other, Thas tammel is now being extembed till it shall cat the as Well as alt the veins in the coal meastares, are shown Hilman rein again on the morth dip of the Buttonwool

 wood anticlinal.
From the Ko. it ehaft level east gangnay, a slope is being driven in the Kaltitmone vein going uestwand along The crest of the somth wallow-Rarte anticlinal on at dip
of $1 ?^{\circ}$. This will lee enntinaed to the bestom of the main South Wilker-Barre basin.

The No, 3 shaft wet, gangway after going east abous 300 feet struck an upthow ; after owne time spent in tannel 700 fext long was drixen eoath through the anticlinal, cutting the vein again in its asaal condlition. The gangway then continnef month too feet till it struek the rorth dip-of the Hollentack arr-haft anticlinal and contimed thence west ward along the morth dip 700 feet

Fig: : Mernot of LAvike Or Bezasts.

to the creat of the antielinal and thence eastward again 200 foct to a ba-in, and thence directly westwand s, bac feet along the burth dip of the Stanton air-shaft anticlimal, amd tben dowbles back esot nand again akong the eusib dip 2.000 bevt to the botiom of a hakin.
The wert ganeway from No. \& shaft weat mgolarly west ward along the morth dip till it mounded the crest of the stantun air-shast antichinal t, wool feet eest of the
shaft, and then donbled up on iteelf in praveing to the ehaft, and then donbled up on iterlf in praexing to the
morth dipuof the next anticlinal to the south.

Finmos the west Iftlltuat win gamuay, becasts ame
 those of the stanton evilliery. The breaste ate from 2 ar os 000 feet long on a dip of from 6^{2} to 15^{2}.
Froan the weat Saltimore syin gamquay, the wopkimes extemd by three lifto-the shaft level, the No. I plane
level, ami the No, 2 plane level-sill iliey vither reach
the tops of the anticlinale or the lorrier pillar above
referred to. The nidth of this barrier pillar is 50 feet in
the Ealtimun. be Baltimone and to feet in the Hillman vein.
From the dait levet uest gandway, at a point 900 fer
 drives in eral on a kollh ribe of t^{2} and gangways driven Kast and west. From this No, 1 plane west ganguay, vime of plame, mach feet long, was drives in coal on a soath rime of 6 , macbing the erest of the anticlinal. From this plane two gangwave wene driven, both going eastward.

Three thousind, five hamired feet mest of Nos is -laft. So. 1 tumbel, jowfect long, was driven north from the Ralthe north dip. In the Fevelos seins gangwave were drisen the north diph It these veins gangways uere driven. No. 2 tunrall Sio fect of this Aos. 1 tunnel, a accond or Su 2 tunnel, Soo feet long, uas driven borth from the Dorth dip and near the middle of the Kouth WilkesBarre basia. The lay of the vein compels it. On each center line is marked is ouree ank atoo its distance from a slation on the ganguay-the chi-tance to be measured in the gangIn trom the sation.
leetapurt whepari, ind in the Thatiosite veintoreet apart, except phits, whenet the top split are the thoe in pplit The we imurediately over thoe in the bottom split. The point at a hich the Baltimore xein divides is s,000 feet west of Na $\$$ slaff. From this point westward the vein is worked in two aplite
The gangways are made the main haulage nods; the
oal from the airways being brought to them through cat-offs driven at euitable distances apart. After each cut-off is driven the jprtion of the airway outside of it is The modive pomer cas at air couroc:
The motive power canployed in moving the cars along the ganguays is mules, but in the near future when TWo hundred feet mest of the finst or No. 1 tunnel a the workings at a distance from the shafts nill be sulfitrec plame tok foct long was driven on a norlis rise of ciently developed to require it, some system of rapid 1,600 feet nortbwest from the point where Xo. a twonel transit will be pot in uee
euts the Hillman vein the Xix 1 air-haft is Jocated. This There are three general methods of working breats in shaft is $12^{\prime} x 3^{\prime}$ in eize and was sunk to the Hillman ue at this colliery. These are:
vein, cutting it on the south dip at a depth of $6 \overline{4}+\mathrm{fect}$. (see Fig. 8oad breast, where the rein dips less than $10{ }^{\circ}$. From this it trial slope a south dip of seo to the level of the tuanels just enfermel to. An cutlet f. now being driven in the Hillman vein from the No. I tumel neet ganeway through the bowin to the bettons of the trial sloge from the airshaft. Hacse tabbels are all high above the rail. - Up to the time of the coupletion of No. 5 shaft is ines the workings mere confinest to the Hillman vein froan Na 3 chatt, and mainly to the neel gangway from this shaft. At this time the Workings comprised about 2,000 beet of gangWay driven in the solid and having airway, and wo feet of tannel in rock. When No. 5 shaft was completed the work of opening up the Baltimore wein u as imatnethately begun, and another gang-
way also was started in
 the Hillman vein from Nos 3 shaft. From thas time on to the present the workings have expanded rapidly, and expecially elnce the exmpletion of the breaker, prior to which the eval mined bete was taken to the Kanton breaker, nhere it was pregared for murket. the order to slaon the rapid growth of the collery since the completion of Ne. 5 soaft, the present extent od the
entire workings is shown, as follows:
Total length of ganguays driven in solid and having airways Total length of tunnels, ontlets, and slopes it Total number of breats inclading theee nork ing and these stopped
Tlwe betbod of working howe is the u-ual breas and pillar methol. GaneWuys, usually 12 foct winf by 7 foet high, are driven in a grade of $6^{\prime \prime}$ pur lok Ieet, each gangway
driven in the solid har driven in the solid hav-
ing un airmay of ali ing un airway of the same size driven parallet
with and wparated frim with and beporated thian it by a pillar of from 10 to 20 Yards, ifrough which headitge are sarde tor the purpose of ventilation.
Ereasts are Opener directly from the gang forme willh of 24 forl commencing with width of 14 ford at the kangway and wilonime (a) the fill limant nielil at 20 feet from the gangwav These ame alor con neeteal by a hestinzever tol to ay vanl- for venti. lation.
The breases are worlod toually in ponels of ten "waty each, leaving a macessive panela bla width of threx breatol as many parallel througlanat each panel na throughoat as bany panels in streczoint as tho dip of the wis will
abil the pillar in once vein is left imoneliately neer of By this methot the oxal from the mogking face pachees
 in acomlance with a previnasly pepanal plan. Soc form or apron at the gamgoy, from uhich it is shoveled Figs. 1 and 5. This plan has the eviter limes of the isto the car ; or, if the dip and thiekmess of the vein will

TuIs 3) FT. Githor Fos

 mon the car or, if the dip and thickness of the vein wil ebough to allow the cost to rum directly into the carplatform is built as near the height of the car as the conditions will allow in order to leseen as much as peeeible the labor of shoveling the coal from it into the car. From this platform the sheet-iron chute is continued up the breast as the working advanoes, and is kept within 10 or 15 feet of the fare.
Coal runs readily on sliext-iron laid on a dip of 18°. The sbute is therefore kept on this grade wherever the

conditions will admit. If the vein dips 18° or more-up to 30° the shate is laid on the bottom of the breast
and if the win dine as high as $39^{\circ} t 0+00^{\circ}$ the cral will run on the bottom withont the sheet-inon. But, if the vein dipe less than 18°, the shate is kope at the proper grade by grudually miseng it from the bottom as it ail vances op the pitrb, by builling it up letween tuo rums of jeoper net at the proper distancesapart. (See Fig. 11).

In a gord many breas- the sloute than geta too high to shovel che coal into it at the face, in which cave it is diecontimued and a scaffolting of wheeltarmow mon is extended from the shute into the face. Orer this the coal is thereafter wheceled from the working face and dumped into the shote. Whecling, however, is resorted to only for short distances.

Where several shute breasts in sucoestion reach an extended light dip they are stopped at that point til are again contimaed as ather road or shate brenet, come agan to the dip (see Fig s) Builing up lo shate ing onder
to run the cral down by uravity, the

The top eplit being 7 feet and the bottom 8 feet thick, Nearly all shate breasts in the Hilloan, and also in and also in the Hifman vein, which is 7 fere thick as the two splits of the Kaltimore vein, have a beanch or finst worked up-the bony bench of about 3 feet is siding laid in front of eacb, on which the car is placed

vein dije 18° or thore, the coal, of course, slinles down of 16 jeet. Where the Baltimore is worked in tuo splits lightocoe of the dip.

Working touarl the gampuay.
Thi-Thi- top teroch i- eft up to secure a gron roof under
which to work the breat up as the -late overlsing the which to work the breat op, as the slate overlying the
itfe maks: a lat mof. In the Hithuan vein the topor tony bepels is ala taken ont after the breast is finistecl. provided th
ensough peot coal in it to warrant the extra work.
 Pattimese kin, the Nose breast is thes sfforbled a vers casy grade an which to lay the branch into it, abd the firt platiormis toith, is reacbed
 Hilleman vein. the dip of the rein sudhenly changed froms ase or 25^{2} to 45° or muene after the becasts had ad vanced by the u-1al shate mechood about 125 feet fote tbe gangayy (see Fig. 18) From the point where
the luasy dip commences they wome worked full of by tbe "battery" method, as follows: A ron of heavs prope was -ut wearly perpenetivelar to the dip of the These wom-lagesl from theflom to mof and farmaxt the bevinning of the battery
A row if prope was thien exterbed up the heast from rach enat of this battern, leaving a spoer of 3 or 4 feet clear it the ribobl
and also as airazay.
Thesc nuns of piope wore laggol or plankel on the side mext to the lattery and were kept well op to the The cestl as it is minet is allowed to remain in this battery, only the sumplas nal net needed to kerp the

The manway- have lagenge placed across them on the buttom coeve + feet, to illiswer fure sepis by whieh to climb upor down
coter the besst has heyn the workol up to ite limit. The arrangement of tracko on Su. 1 plane is shown in Fig 14 , whiel is the furne of gravity plame in general ase in the eolleriks of thin company, A woaten lamped
 knockte or apex, to allon the bnuelies to be laid with "asy curces
Woe roper aiter being ovikel ured the drums, bas the ther reje which is extented down the pham ant the looer end attached to an ewpery car at the foot. The thas palling the comply far up, the speed at which thee mote on the plase being regulated by the brake on the drum.

 gradually inctequge to a dozne ur perhupe a litile toure an they ag orouch the peint h. The empty brancher at
 Trame of $G^{\prime \prime}$ INT 160 fert.
The looded trambls at thee foot has a down grade it abost one dearee from the fort of the plave tor the frog mith armighe clighty down grade whieh, as it at the frog?

 on the locolet lomach. The batons at F are oprateal

 if thin platme is th ant that of Ka בplane is F. Tru
 in the lime of the plame is beramse the vint lays very tlat at that peant, and by makiug the foot in the Inoltum
and the lowal in the top and the hearl in the top of the vein, stifieiont rover was
gained to arratge the bramber as they are shown in Fig, 14

along the gomguay to the slope. At the top and bottom
of she shaft it pares romme is ft. seaver met vertically atat along the gangway it is carried morlead os b palleve -n-I- mided from the noif. Beturen the shatt furas als talle, and at the print where it leaves the gangway to joik down the slope a 5 ft , sheave is placed on a suif to jak down the slope as 5 ft , cheave is placed on a sui-
Scrent slant to accosmmentate the piteh of the tope when

The head of this slope is arranged to land the car directly on the Joded buach by boveting them ower the गtex, which is the gemeral practice under this compant.

 is uperad the atom mas pasati is eloaed meshat on becringes hat those ne-xt the facse are closed. All bastings botween zangways and airways and all otber headings which are closed for the parpose witharatiog the difernent aplife of air are clowel and fome two to threc fied thisk. All tempurary stoppings betwexn places in ibe eame split, as well as all hrattices of any हैcat extent The 10 of batari-
The thathal arrangement of doure and bratices in venthating a prortion of morking-, con-isting of a pamel of In this cose the zanguay is the intake and the arway the relurn
fon orter to keep the air corrent against the faces of ing fo whery the sway at thoy salvance from one head phiced acroses the gangway jost patside the lat headine
 Fig. 15.1 From the otjpeite vonk of the doer at hattios is extembed along and aboht those for from the upper ib and keqt withis a few teet of the lace
In the airmay a brattioe is extended from a peant in he upper ribjust outside the last learling in the airway hos feet leturen the bratioce and upper ril
The air in gatng from the gangway on the airway is obliged to inavel in arommel the enkle of therer brattion Onf is thas carried direetly agulast the facco.
heslimblate a pane of breasts whels are cosumeted by hezding- a dow is placed ancose the mouth of each breas cxeept the firel and laed in the panel, and a done is alom placed acmas the gragway juar inside of the lirat liname and likenise one across the gangway jost outsale of the a-t stre
The air will then pase from the gangwiay up the fint
 the bext and down the last one, and at on in the ganc-
"It is geberally foumil necosary in ventilating a pancl

 vond the headings far enolugh to teg口time it, a door and brattice is placed in the first lireast of the pranel. (Rew E. Fig. 15) in the eame mabter ar in the fare of the gangway, white in the reat of them bratticxe obly arv u-ed anil arranged tike the ote in the face of the airway. This is assuming that the breasts are read hreasts that are workitg. If they are akandoned the doors are solstitnted
 k.ft in vach lonattice crossing a lovast, suthecient to accomBudate the shate ; over this opening and hanging down
into tlie sloute is placev a cortain of brattice cloth. and if theme breates are ahardubed the brattices are, of cuares. tmintertil
In wentilating a single beva-t of one with ho levatimge, temed from it up along the side of the loment (see blel from it up along the side of the loreast. (See Fig. 15
Thi-colliery is ventilated by a isit 2. Guital Gan, which fi. of air, withation- Per minute, exhanses $275,0 \mathrm{kO} \mathrm{cu}$ ft. of air, With a mater gange of 1.9 inehes. An ancrage
of oweral teats of the amonnt of explosive gas in the of sereral tests of the amiont of expiosive gas in the
wain retarn which were mad. mith the Slaw Gis Te-fer showest it to be of per cent Thith the slaw Gas

 quamesthis to be vers. shous the
 but En) sum
 to provide for maintainine a donmant and thinternoper ventilating cumbet, the fan is luilt in dupheste ; each Gan laing oparate and indepronent of the eflece, but buediate nese in the cawe of the vother fan being stoppel either for covtimary nepais of as the reate of acopitent. who.
Thes ga- in given off from the coal in the worlaing faces oome limasts, as wril as frota feeqkire whinh ame fowme in varions parts nf the mine, lont basably aloog the loetome ans1 lower rilkof airmays Thu- plago which give off Honst gas, bouever, are the working facor of gangwavand airways, and of thee the ones driven cast along ithehecavier dije gave off the meel. Geberally, as the bocosts ape operayd up along the pangways and the working
 ormet lighte in the lumade, and alea along the tuain Soshling int fine of 2! mater pipe and in some gamguay 1 lent on cen line, to to uecil in extinguiahing fircos lhat eneme times orvar in spite of the extretue precaucions takent provent them-all bla-ting in gassy places leving shome
 rigis ruke evforend in rygard to. the handling and use of gompto ans in the use of maked lights. Yet fires of

onnetimes vocur which require not only the onited atoo the chasing of reznlators on some splits in order to (urbish whlitional air to the men fighting thee fire.
Lt has bow notioel that ame compartment. of No E duft is an upea-t; this comotitutes the upant for the
 ntimen conty.
The air contering the mine throtagh Nos S shaft ventilates the Dalitmone vein or No. 5 shaft morkings and is divided into six splits. (seve Fig. 16.)

epresent the intakes itnd the thotted Bime the returne The figures at the puints of divergence of the eolin linee ine the slistances im feet of ciehdivision of the intake air tom the downes-1. On eacls line reppesentug a single pit is it a mame, which indicatos fo mone extent the terriory wheh it ventilates, while the nomberes at the ends of the solid lines ure simply the nomber given it in the Gble th jage lit which sluws the name of the split, of oumblor af men working in the rplit total mumanater ; feet of air in the moarm, and peroultage of gas in the The peitions of the overcasts or air-bridgey by which the elifferent splite ctres each other are marked thas it In the following description of the eplits of air, referDocs are minde to Figs. 12 and 161:
The air entering the mine through No is slaft is dividbite at E, 100 feet froth the downeast, ohe portion kangaay. Thanfatter nomainsax one cplit and ventilates All the workinger west of the shaft, goung in flomoh the
 The tutal length of this yetum airway is $5, \sqrt[000]{ }$ fect with a sertional :trea of NA sturare fect.
home ar going in the rast gamquay is divised at No. I down the slope frose the drw neakt, ste fortion gotig

where it ventilates all of No. 3 tunnel workings, after which it goes down to the slope west south dip gangway, ventilates thie gangway and airway-going in the paigway and ont the airway-and joins the refurn from the slopie at δ; pasees thenee up to the shaft level cosi uiruay thruzh which it rewches the main return at N.
The air poing down the elope is divided at the thore uret both dip ganguay 6, obe splat going in the eturn it L the other split continues down the mels

sloge to the Baltinome vein gangway, which it ventibles, aiter which it passes through a rock outlet to the Hillman vein again and ventilates the workings rast of the slope, aiter which it paeoss in thmogh the shaft
level east airway fo the lawe and metornos thonght the level east airway fo the lawe abl retorns throggh the
gangazy ami breart-, ventilating all the workings on the ghaft level east gangway and joins the main return at v.

The water from the upper or Hillman wein working- I nipe extemang down So. shaft fom the Jilloman to the Ealtimowe vein, and that from the slope worlings is collected in as samp driven in moll as the foot of the nock Alope, frome which is is looistod to the shaft level in a mater
The pumping plant consiets of ate Jeanesville corn pound duplex plunger pamp, mannfactured by Jeames: ville Iron Works, whish las the greatest wertical lit of any promp in the anthrocite region. The stoam cylin-
 with a da" stroke. The steam pepe is 6 diameter, the tail pipe 10^{\prime} diameter and 50 feet long, with a vertical
lift of 12 feet: the exhanat is $10^{\prime \prime}$ dianeter- the coltome lift of 12 feet ; the exhaun is $10^{\prime \prime}$ dianeter; the columa gife 16" diameter wibs a wotieal height if 1,040 foct throughout its entime lenath, whisel moduces the internal sliameter of the pipe to sy". The object of this lining in
 action of the water.
In orclee to acecombsulate the strength of the pipe fo the varving peosures doe to different depths, the metal is of different thicknetere, comowering with a thickbees of $1 \frac{1}{\prime \prime}_{\prime \prime}$ at the buttoan of ther shatt, and diminishing in thickiese reveral times as it exterds up the shaft
The capscity of the prompat its mormal rpeed of +0 strokes per minute is 84,000 gallon- per bour.
This pump ractily handleall the wator
This jump readily landle- all the water of the mine at peesent by ruming two 10 home shitte cach week.
The pamp is locuted wesir the food of No shaft in a brick arcloed pumprom (Ree S, Fig. 12), 37 feet kong, it
 placed an
The roont was first excavated out of the oxal in th pillar betwern the west sikle emply branch amil the sump, abil aftermard walled anil arebex with a 17 brics war shar
From the main prinp mom a lecading extends lack to 10 fors and lomul) his the tail pipe extmole into sиㅍ․

CTEUE MLSNT
The geremal armangenent of the surface plant is shown in Fig. 17. The Nu. 5 slaft engimes are a pair of "3 "xay' direct acting boosting engines, with cat fron growed
team plant consists if

Total

 (oxy canth utikeh ato met incholod in the alowe.
Leading to Xo, 3 engines is a line of 8 " steam pipe from the National boilers, amd to the No. 5 engimes and atoo to the fans, ane three imbependent lines from the differnt boilers. The of the limes locklige for the fans is placed undergromad. These differwnt linee ane 80 conOrcted at the fans und at the No. S engines that stean
can be smpplied to the fans and ulen to the Xo S engines frote serpoplied to the fans and also to the No. S engines frome either lime desined by opening and clowing the
 omsnents, 50 that khomid an accident happera beaking
 and ame aton the
In addition to these vexta steatu limes as precantionary beasums, three linss of water pijue, twan $4^{\text {P/ }}$ abl obe $8^{\prime \prime}$ in diameter, ure laid from a commonn valoe to the head of So 5 shaft, and two lines of $4^{\prime \prime}$ pipe, aloo from " vomben valve, to the liead to Xo. 3 -hafi. Thas bive treams of water sobsld at a mothent's botice he torned ate the downeast loy upening two valves, which aro vanveniently lowated, one pear the head of saels shatt, 0 that if from any cance both fan- were tliwabled, the abowe meanx cotald bx resorted to at onee to produce a entilating carrent that monld at least make it pocebble fot thoer inside the mine to get out befome an explecive mixtire would overr
The breaker, one of the larpes and beet equippeed in in the abilsracite rygion, is $11+$ feet by 180 feet in cize, frel Iti feet high. In the fungelation wall- ate EHEN and a half iect of lamber uas used in its onistraction The machinery is num by an $18^{\prime \prime} \times 30^{\prime \prime}$ Vuleun engine and the cages in the locaker hoistime chaft am operited is a pair of is' x 30" wared engines, vareat + fol to :
 also built by the Vulesan Iron Works. The principal machinery consiots of th paire of nolls as follows -

There are in all 1,451 feet of lelting frota $12^{\prime \prime}$ (o) 2f'
 The breater is frotect througfonat by, sfeam, All
 pipe or airway of from? ft . to +it ectional area. Thees enter a common airway Sit, by Git, in size. which ex-
 thence horizontally to is 20 ft stark located about 100 ft . cast of the brealoer thonagh which the current produced

The air entering the mine through $\operatorname{Na} 5$ chaft is dt-Idonble-coned drum $8!f 1$. vided first at the foot of the shait, one jurtinn goang in cmd diameter., 14 ft . mind the west gangway, the other in the east. This remmins dle diamocter and 19 ft .
as one -plit and rentilates all the workingo on the shaft long Vo. as one oplit and ventilates all the workingo on the shaft long, Xo, 3 shaff ergines, tevel eart gangway and a portion of the No. 1 plane eat are id" sedy' cylinders, and workings, going in through the gangway and breast- otherwise similar to No. S and returning throagh the airmay. The kength of this engines. Both are provid. return airway
00 is 5,300 feet with a sectional area of about 50 equare feet.
The air goving in the west gangway io divided at the font of Nn. 1 plane, 1 , one portion going up the plane, the other in the gangway. This is sublivided twice, first as C_{1} where a split enters the shaft level west top eplit workinge, a part of which it ventilates and then pesses up to No. 1 plane wes top split workinge, alt of
which it ventilates, after which it joins the retirn from which it ventilate
the plabes at H.
At H a plit pas ed with Zeluder's patent -team brake, in addition to the prdinary hand brake. The ropes rased on the drumas are lg" Hazand wire rope, No δ shaft requiring $2,800 \mathrm{ft}$ and No .3

At Da pplit paree in through No. 1 tunbel, ventilates the workings of Sces 1 and 2 tanoeld abd returns by roek outlets to the shaft level east top split airway anil thus joins the main return from the west side at K. The air poing in the ueat gavgway beyond No, 1 tunne (or the point Df remains as obe eplit and rentilates the
balance of the shaft level west top split workinge and returns throagh the miruay and joins the otber retura It $\frac{I}{\text { near the ppoast. The length of this return airway }}$ is $7,+\infty$ feet with a eectional area of 72 supare feet
divided at No. divided at No 2 plane B, one split going up No 2 plane part of No 1 plane workinim, after which it joins th part of ha. plane workings, after whech it joans the
returns from the planes at I; the ofleer split rentilate first all the workinge on No. 1 plane meel boftom split gangway, then down to the shaft level west bottom split workings, all of rhich it rentilates, exeept the first panel of ten breasts (comenting from shaft) which are rentilated by a portion of the air paseing in from I towarl. C, and then passes throagh a hole to a top >plit breast, through which it pames up to the plane west nirway and joine the return as H.
The water of this mine is eollected finally in a enmp (8oo X, Fig. 12), which wus driven in coal in the shallow basin just to the north of the No. 5 shyft; from this it is pamped directly to the surface. From the workings solid. Along theer, in ditehes made along the lower cide, it runs toward the shaft and into the smmp. shaft $2,500 \mathrm{it}$. The normal boisting eapacity of each engine with a steam press bre of 75 llb is 70 cars per boer from No, 5 shaft and وo cars per hour from No. shait.
The formdations of these bowsting engines are manees of stone work, each cover eng the entire area of the ID some 3 funt are buil up rome 30 feet above the origibal level of the surface. They sontain ove 1,000 cubse yards of mas 5 engine foundation is
 shown in Fig. Gs The details of the standard eages
in use are chown in Fir in Each fan is rum by a $3 V^{\prime \prime} x+x^{\prime \prime}$ direct acering end gime. The fans are priv

There are two eeporate steam plant-. The stirling boilere, located aboat 100 feet north of No 5 cagines,
conctitute one independent plant. The holance am docated along High strect about midway betmeen the of earh sloft to the fort of the foreaker shaft, where
each lowded car is run on whe of the two hot-ting cages and boisted to the top of the broker, then run by grav-
 is carrient by meate of a transter rye lind a trumsier track akumid the torake -toff ant athwet to etant hios

 transter tmick and the breaker staft to enable the empoty
 the place of the me x houbet ar that comer, ap on the ame side of the shat Ater sure car the athe fort of anewepe sar luiat niere it is luistadis. it -ufficient elevation to carry it lack fo either skaft to he skain burnd intatio- minos
 at top, and $t^{\prime} \mathbf{2}^{\prime \prime}$ wide at hottom, by $2^{\prime}{ }^{\prime} 1 /{ }^{\prime}$ ' high for ma irum bottom car, and 2' of" for a wood bottom car. The
 car. but as loaked in practice there are ahoust 1 cm . it of topping. ntich makes the total load 94 and $60 \mathrm{ct} . \mathrm{ft}$ rempertively:
The average local, taken frota a number of cars as they ootere from the shats, 6 6, $2: 37$ the. The average yield of werchantable- vial pry ear is $4,0 \mathrm{y}$ Ihs. The reftee loaded in ean and dirt masle in preparation is 1,415 the of $\because 3$ per cent. of the tntal.
The Ferontage of the hlifferent cizes of coal as w porent shipped inom the colliers are:-

1sing Brokis Eac
Fse blowe Sine
Thestrut

Ther tesal -hipotients for cach rear anal alsuther nomber of clay-worked -ime the evopiletion of the braker, an
us fodlows

102 106 104 105

The matis stoja in the pryparation of she cond ufter it caves the car at the dump shine are a- follows : It first pareac onto bars spoced s" apart, all paesing wer these esat- going to the lump coal slate; the lalance pareng onta lar--facel 2 P", when a part goos throagh, the balanoc gotag to a platform where it is poelocel, assl goes thence to the crublers, thebee to the main rulls, and

Telephones in the Mines.

Within the past year an interestimg departure has been made in the fowther of commumicating between hant the ont-ate norld
For a number of years experiments mere being made with telephomes especially constructed to inoct the requirements and while some were it at measure successfal, nothe were of a practical character. Tbe exparation of the Blake patent pave astditional impetus to she experimentation, and particular attention was given to improving and protecting the aitjustment.
White tbe expriments bave only been partally bacco-.inl, the resultobtained have contributed largely towarl ralvits the proberta of IIIderground telephomy. The Lehaigh ralley Coal co., has installesta notas ber of telephones in their mines and the results ane both sati-factory and grafiymp
The prineipa! difflenty encoantered arose from the corrosive action of the atmesphere of the mines upon the slelicate mechanism of the inutratsent The fliaphrabere meted quickly and lecatime ubther. Again the dampower caumed afternate warping and suelling to the boxex, throw. hef exervthing ouf of bue.
Col. D. P. Erown. Division Superintendent of the Lelotgh Company, has arrived at a taethod which visables bim 10 prevent the damp attoosplexe from reaching the instrument. His plan is to, locate the telephotie in ar itry a plake as poeable seneraily in the pumploma, or at a prant haze the imake. The ases Na 12 phosphor broaxe wire strung upour porcelain inenlators ecrenel to tire timkero in the tite. He eplite the air causing a current the eloeets enelosing the telephones. While it is improsible to prevent

thenee to the Nor, 1 so braken seceens from which come "ez" and "broken," "hich, after being picked, pass direct to the puckets. The halano frum Xo, I ecreeto "rles-1tat" and " "z2" come, and after twing perked fo difect to the proket- The lalanee imon main screen fors by war of clovaturs to the che-thut -creen- froms Thich cutaie "chestmat," "pa" and Xie 1 abit " Fuekwleat" and pows dinett to the prockets
That poing thomgh the 2! mary posens to the mut

 talame frota the mail -amens, that which is liver lan
 ovecas from which [oint it - cour-e is as has almeaty toven deseribed. That nhich is amaller than dowe if en
 ath" and "pra," which go direct to the preckets. All sizst mallef than "pra'" go thewe to a pentagon sereen, from which orbs, varty for the forkets, Sues, I and I brokwheat The balaner jacoer dimetly wrer at

 a platform, when it in purkil and gows theore to the
 Frome thi- point its coure has alnaly hern descritwel The cultu pile an locateul atvout it mile west of the breaker, the culta heing gunereyed to them in cars by an

Tennessee's Coal Production in 1895.

Mr. F. P, Clute, Conmi-sioner of Labor, Statistics and
 enal poraloction of that State in l-as

Amdereot	coumty	mont Tus 16ivil
Alaitsens		14.12\%
carsjecil	\%	251801
Grues)	*	46, iow
Patilion		twiowl
Sharioh	"	uese
Stornan	\#	(a) CL
Futman	"	7 F
theste	"	120)
Bhen	$\ddot{\square}$	13INS
Smit	*	12178
White	H	132354
Tout		2.38 .59

To which must be adeded $15,0 \mathrm{on}$ tone an the eotimated probltection of small mines a howe ont gat has noe beet

The varth's magnetiens, allongeh practically nowlesa is great pouer fof striving mille, hak onm of ito ucce in eteratimg is marinct's composes, whith, nese for thatum Mir, Was the monans of disemwring Ancriea. Thas illos of limbe servio for drivimg machomero, ves in ather
 Purrs.
entively the moin atmonhere from reaching the instruments, yot by this thechmal and with sogrenior transmiters strexed lias lawn at last attainel.
The great value of the tollophobe in mining operations uas chemobstrated at the fire which recently occorred at the lacker No. 4 colliery in the workings on the Sth lift. The fire bonke ont at night abt in a fer moments after its discovery, a connection was mask tos grounded circuit onsside and commumaration cstablislied Fet ween the
 Tinl a Jonnt within zol feet of the fire. The length of has his so eftecient
 pory war Mishaus Aity is mww lueing cquipkal nith
 communica Fires afforulle
 'acoeral sujw-rintendent Jathop at Wilkus-Iarne
 at the Prowkende colliers of the Thibodelohia and Reading (ooll \& Iron Co: the Williamstom:11 colliery of the sumbit Anunch Chal fin; the William Peon oolliery; the
 tions-the -velent is in succoesfol aperitiont is sucoess Thas been attamed and at an exthelwely ronsonable cost, the getwenl introutnetion of this methion of evmmunicar tion at all the crillie-ric> mas lo lowkel for in a hlurf time

PROSPECTING FOR GOLD.

goLd PLACERS ; HOW THEY ARE WORKED.

Theories of the Origin of Gold Sands and the History and Distritution of Gold Placer Iepesits Throughout the World.
 Arther lakes

Gold was known to exiat in Braxil in the beds of streame, atal Indians in carly days maike their fishhools of it. The gold placers were first di-covereal in
 River of Death, 6o mamed foom the blondy cpoonnters
between the gold hmatens, who it is said "mot and set upon each other like famisbed tigers, impelled by the
 dant evidenove of their extensive search for gold. The tanks ane everywhere furrowed and the vaketable mould bas been entirely removed. Sothing remains bot the

red dirt cut into squares by channels divided by narrow ridges. These channel- were weed for washing gravel and were cot on an inclined phabe, The mater was
introduced at the bead of them, the tlirt mat then throws in, und the lighter particles of clay were washed anay while the gold remainel behind. (The appearance of these furruwed banke remintr one of the
farrowed appearance on a larker seale of the Alma placet farrowed appearance on a larger ecale of the Alma placer
tanks as pietured in a formace issue of Tue Coblobas tanks as pietured in a forme
Evinsen Axp Meral Miver.)
The first placere were called "cata" The surface dirt which the "cascuilo" or cement gravel was reached. This was broken up by piekaxes, brought to the river and washed. The tirst inprovement mas (as in early days in California) to conduet the water to the ground and wa-b the gravel on the spos. Theee works wen: sailed lavras, and handreds of them were to be seen on the banks of the river. In some di-trictwater whecle were ueed to :i-ci-1 in the dratmage of the excavations but were kend to be so ammamage and negras mere etuplaral to lack abi negrae uere etuplored to jsck brads in small casks From inel to 1875 the mold poxtoction of Brazil amounted to 2981 510 poumals Tray Chil has solden sands and posits which do not appear to have posits whech do not appear to have
oren formed by the decomp of regular veins. They are found of megular veins. Thacy are found indecvaproeed granite and red clay uecar along the flanks of the AradesRecent attempls by Americalls to hydranlic the deposit- have bot been somecessfal-yield of mall ber

In Pery gold was gatbered by the Incas Under pad wisher the wark was pot mine to by a maxsacte by the Indians.
In Venezu-la lange placere have recently been dieco red. United States of Colomhia containel the famperEI Dorado visited by Sir Walter Raleigh in 1517 and by the betcaneers in the swentecnth century. It was
-atuated in the province of Castilla del Ores The Cana minec of this dietrict, worked by elaved, yieded langely in the seventeenth entury. The minaz of Choos west of Eouth America. They contain plutinum as uell as gold.
cortez sexploring partion in Mexioroblained gold from the leds of rivers several humimal mukes from the capi tal. Gole cust into hars of it dust uas a regilar export The gold from Mexico bow is mostly from quarts leselThe eamburince or מative proppetors, lowever, mash with the latea in lical plawere Eivere sappoced to carry bonanzas in their beds lave been turned from
their courses, but withont succos. I'rospectons obsain their course, but withont success. Irospectors obsain aonse gold
nith shatis.

Australia's mose important gold fiehds are in the colohies of Vietoria ami New south Wales Quecosland and Thel Sostralia aloo contain gold allovions.
The gold prodoct of Victoria is $1 \mathrm{ke0}$ was 38,129 bincy, 20,488 of which tame frota placers. Alibungh the ohd placens have luon morked cxtensively anal exbunsted in many cosen, new areas have been opened

Ararat district contains large deqoesits from the Upper Mlocebe of marime origin, bat mo zold is foam in these. The gold necurs in the Lomer Pliscene of iroah water ongin. We may mark luce that not single quartz vein occurs in this distriet from Which the gold conld have ken derived. The depth of de perits is so to 100 beet, tesitige upon grabite ame feet The load asing to He liverne ef eatoe water, is suppeonal to lo a depersion is on ald mer water, is supposed to be a depression in an old sea In the B
In the Ballarat fiehls are four clearly defined epochs of gold drift, known as obdeel, ofder, recent and mest frepbt. The "oldest" is a deponit made before the fime at which the channels were eroded to their present depthe. The "older" is the deporit intervening letnevn the lava llows. The "revol" are thore following immediately the uppermont lava floas. The "most reont" are those in revently tike the laras. (These lavateovered placers are very ane three graat lowl syoteme-the somblhern, Weatern and Eastorn. The socthern has been explorel extensively, the Western is looked on as the future bope of Eallarat, and the Festern is but little kurwn In Beechworth district the placer material is derived from silurian strata, pot frosn granite (in this N>p-ct resmifinling us of the Honeretake gold mimes in the Black Hills which are worked in (ambro xil. urian or Pottsdam conglomerate). Mining is by ground -luicing on a grand scale. The thiekneas of gravel is 20 to iof feet, moetly in eroeks and on the hanks. Fandlurst district was wopked sinco 1 k 23 on a ocment deposit of Pliocene. The gravel is shallow -the deepest shafts 35 to 55 feet. The gold-bearing dietricts of New south. Wakes are the richect and largoes in Australia. The fied-excend the leagth of in the interior ure still unppospectexL Up to 1871 placurs alome nere worked, gold quartz mining being tuen weor then at work, Fromin 1851 to 1831 the probluct was e96,457,1ea. The gold regions are hut two daye jonrney from the capital.
In evorral of the districts water is sarce, yet in places as at Temora, a large amoont of very cooree golel bas bxall found. The Slontreal placers are near then -ea coast, ocenrring in two terraces whicls have beon waslowl lock by the sea.
In 1N80, of $13,+20$ pold mibers in the colony of New ooth Wales, 11,408! wroe engaged in allavial mining At Darrington the golel depoeite rever anid steop range.

In tbe Tallawang field the gold occurs in one of the noed ancrent alluvaal depoeits in the world, belonging to the Tertary, and in conglomerates of the coal meannres gold has been fonnd. This suggesta that in tblorado and clsewhere we pay mome attention to the old consolidisted conglomerates of different past periods as well as o the modern allovial depoeits of more recent date. I At Clongh's Gially the conglomerate is worked, yieldIng irom it to 15 pennyweights per ton, and noggets of oqnces are occasionally found. (In this connection we may obecrve that gold in small amounts has been found in the tertiary kindstones and conglomerates near Colorado Springe.
The cololy
The colony of Gueensland has 3,100 -quare twiles of fold-bearing gravel worked in 1s76. The fields cecur on both sides of the dividing range, spparating the eastern and western waters, and on the spars of the range forming the waterslied to the Cinif of Carpentaria. Placers in similar relations th the Vront range recur in Colomida.
In sooth. Anstralia gold is found in every part of the
 drift 20 to 100 feet deep consists of quarte pebbles, boulders and rusty conglomerate, and the gold is water-
worn.
Gold was discovered in Xew Zealand in 1842 . The alluvial deprosits are chiefly in the south island, where of crations are carried on over in area of 20,000 equare miles. The detritus is in beds of rivers, on lange de-

along the nea shore. The Gtago drifts rest on the denoded surface of the parent rock, while in Westland they lie on tertiary mocks of marine origin. Two-thards of the gold returned from this country is obtained from allavial mining. The extent of the work nay te imazined from the fact that miners have constructed 5,000 miles of uater raves and tail races and dams, at a cost of cimocre independent of the government water nuces and dams, coseing E4ial, (on
Ground sluseing is practiced and hydranlie mining the latter with lecads of water anto bortert. The gos rmoneth bas a funne 11 by i feet 5,itt feet long, in couser of constrictiof, having alnasly tonits the apen sladgechannel, 8 miles long, at Naseby. Bewates these, peveral tunnels have been buits by private individuals In the river Clutha dredging ma chines ane need, and north of Charleston the sea beach sands oontaining gold are worked by Shetlanders. At Tinkus to slubce hemis with 4,70 feat of is, conducted throw to hydrantic the grape The depeh of deposit is so feet. In Tapir district grold is found in considerable quantities in docowpased soil as the slopss of the hills. It is usaally flaky and not at all waterworn. (This is very like the occurrence of told it so-
rallesd placyrs on Mineral Hill, near Cripple Creek, Colorado, where the gold neeurs in soil umi in a gravel of conall, angular pebbles to a depth of io feet on the hilleide. The depoetrer by water and the gold is flaky and not materworn. It was evidently derived from decompraition of that "te, very cloee to the deprosits mold is cought in the boown sand golone toutom glomerate lies In the placiai Irift extensire claima lave fown woelsi and large quantities of gold obtained $a z$ in Colorado). These deposit
 the placers in the Northweet of Asurica). Tbe cneck is gold is derivel from all kinds of erystalline pocks, pribeiuorked for gold, but the mater supgly is uncertain and palty granites, echists and parpliyries) in summer the creek ceases to flow. The Kiandra field The Fblark sand beaches '" on the eea cosast are comis on the table land of Maneeco, 5,000 feet above ses posed of crystals of magnetic iron nee (as in (alitormia), hevel, close to the higheat mountain of the colony, which are foumd disseminatesl through the chloritio hear Mt. Tabletop the alluvions have beon covened with schice. In places the ground is "spotted" and the gold basit and so far bat little exploited. The sluicing oper- unevenly distributed. gravel toward M1. Tabletop have been compared to the

The Colliery Engineer

Metal Miner.

WTH Which is combined the minivg herald.
Published monthly at Scranton. Pa

THE COLLIERY ENOINEER COMPANY, PUBLISHERS.

Desvin orrice tel Moloun hubline

TERMS

\qquad
\qquad

 Registered tetters.- TH a 3 Mome

MOTICE OF DISCONTINUANCE.

CHANGES OF ADDRESS

 \qquad

LONDON AGENTS.

FATmonest Hocs., CHabso Chens Bosts.

VOL. XVI.
MARCH, 1896.
NO. 8.
For Table of Contents see pace viil

THIS JOURNAL

A LARGER CIRCULATION
COAL and METAL
MINE OWNERS' AND MINE OFFICIALS

THE MINERAL RESOURCES OF VARIOUS NA. TIONS

II: hane befoge no the "First ammal Getheral leeprort upon the Minerat Indestry if the I'nikel Khegdon of tinat Sritain atel Inland.

The mineral resources of ather nations shoun in tablee in this repore trach lessons of great valoe. For example, wr learn that a high rivilization and good government and nece-kary for the develognient of the mineral resomeen any combtry, and therefore we lind the Chinere phe on the-earth, amel vet they do not decelop them.

Oh page ibe of the report we remb:
Tliw mineral weatith of China is cnornouss. In shlittion to important exat fleht-, it piomeses nemecrear workinge for metallie ones. The pervinex of Yunnan in the soath of the emplime seems to be specially favored with regand to metallifeneas wealth, for mines of gold, -ifen, eqper, Inon, leal and tin ane worked there whitst jaile aml precione stones are fonnal in the beels of fivers. Thine springs yichl sath, aul nataral gas diecocsenel in boring for salt is nowl in exaporating the liribe.

Tbe peninenla of cores has likeuise been vichly endowed with mineral- by nature, anal gold is worked in rations parts of the comntry, and thongh the method- of extruction solopted are primitive, the ontpat to by no sueans inconsiblerable; anthrocite and the ores of lemi and iron could be urought by an cnergetic population, to say nothing of the ether mineral-'
Tle-decline in the oupper mining of the Britioh I-keis the result of the ores of poos quality having to compete with thow of a ricler yiekt, and therefore Eritish capital is transerred to foreign mines so that bere we have entalitions in imbltatry and trate the opperite of those found in Chime. From the Bepoet we harn that the ontput of metallic copper from the British mines in
 tons: or in 34 years the outpat had fallen to 施th of it former value.
The phospbate industry of the British Isles is dying a lingering death. The plomphates of Florida are of theter quality, and for the price, the Eintiol barmer is finding them a terter paying incestment. Here, then, is a nation, reosly to compete with the world in the development of ber mesobares, beaten at home. while the Chines, laving the beat reoneres in the workt. are lacking in the enterpris to open them ent.
*praking of Arabiin, the report says:
"The Arab is mat a miner by nature, and there is little or no working for mitucrak on the great Arahian peninonla. In days gone by, arconting to Burton, हoll tuibes nere worked in the land of Midian.
Contrat this case ayain nith that of England: Here their primeipat supply is the Cleveland ore, that is an cariby cartonate, and only yiekling 30 per cent. of metallic imn, and in addition to which they bave the brown flemutite confimet to a netricted atea in Yorkehine amt Lanca-hive yiedting from zo to al per ont, of metallic irom; and the black kand imostobe of soculame that gives a monkerate yield both of ore und metal, and yes by enterprise this prepple accoerling to the report have to import lange muppliee of imon ore from atrosel, tor, saythe repert:

Alseria is rich in iron, and two-think of the value if its theat mineral ontpat anc the to the ores of thes mefal. The principal mine- are thene of the Moktaelbatist Company, uhich works tmagectie from one in the sefortment of Constantine, ated manganiferous nel lematite in the skpartment of 1 Trm. The whole of this ene is exported. Enelamt taking a far brger share than any oflecr country
Nor hation in Famope has smaller mineral moourcee than Italy, and, tonwithstaniling the fertility of her soil and the gnat infutery of her peopk, harring no coal to sobelf ber inob orea, that ane abombant, and develop mannfacteres, she dows not take rank as a cich nation. for the bs only an experter of xinc, mathle and entphur: Crat mines make nations richer tham do groht mines and the mation- that monet aptively vompete nith each olber ate thone that the velop their nal momeres most, as can te swen by the following ontpht in tons, taken from the requort umber con-icheration, atsh given in miffionx of mestric thans, for the yrar 1834
The following ts ther ecal protuction for 1×24, in milliente of mectric tons, of the most pouetfil natione of the earth; the names ane m - acoroling to the magnitoke of the 'antrens:
 The iron are peoturtione for 1×24, in millions of mastric tomk of the that powerfal natiots of tbe earit ise is fotlows, the names ure set accossing to the menttodks of the ontiputs

 to4 somen Tuly

he greatest mining and mannacturing nation on earth becance she fas the mineral meonmes and the energy and hizh degree of civilization meoneary for their utilixation.

ILLINOIS COAL INDUSTRY.

 Niat. Remet: A. seHILLINE, seemtary of the Sowan of Laber siatimstice of Illimeig, hak completed the compilation of the repirt of the ral inaluatry of that state fore 1895 . A stoly of the sumbary of Mr. Schilling's report, us given in the folbosigg table, nill prove of interest. The comparisons of the stati-tice for the ycare 1804 and 1205 ane very complete

STATE GEOLOGICAL SURVEYS.

USFORTUNATELY the vale of state goological surwye is realised by conparatisely lew citizens mos interestest in the developieent of the miberal remarces in their reopertive States. As a result such sureys ane acoombed either wory lakewarm eupport or very dexided opposition by many citizens and membere of legislative bodies. A number of the States of the Union have now in prognces ruch arveys and Pennaytvania (the ricluet mining sitate) has practically elvect here as fowishol. The value of a first-class, up-to-date, geological survey of a State to its material development cannot be retimated. Such a survey deferminc- the prosene or atrecher of minerals, and makes such fact- pmblic. If the mincrals ate present, the state is curiched by their developnent and utilization. If abont, the state is tene-lited by the saxing of the capital and labor of its citisent whot ane infarmeal of the futitity of -penting fine and money prospecting for an alow ot mineral.
A geologieal survey may be tither wery genenal in its haracter of may te very detaiked. The latter is the Fller, and ther monery expembed in procuring it will be Ixturnel, in an indirect manker, many time over. It is a grave mistake for any state to follow the example of Pomsoylvania in terminating its scologisal sarvey. White it is true that l'onosylrania's geolvgical survey har preity then mughly conered the Bate, it has nat completad the nork. In tart the work will never lwe completed until the has toin of mitieral availathe in the State has been mined. Thanks to consece-tioms wowk ith the part of the otbials of the sarsey and the ussistano of the mine owbyts and the mining vngibeers of the State, the osue lombired atot tacenty volumes of bembugal Nurvey lepports of lemisylvana ane in ex©llent hlapes up fot the fivt if iswer of esch. But in some
 nases instances pmoven that alomemal feature in the edrata, which could we be determined un the sarfase, bave changed ther conditionk on that the approximations of the sursey were inourcet. This bs in mo wiee an adretee eriticion of the work of the surver. Them ane filly at many intance- in whech the apponsimations fane beeb peoren nuarkahly exact. To nalew Penbevpvamia' sterey of promuent value and nes, The reoords anal a permatent goolegical survey forceshoald be maintaimed to insue an annal nport, ubich wooht mote all bewly disonveral genhugirat hatures and comed all misGake mode in puevions reports sach a fore woald not atail any grat expenseon the state. A stute Gieologit

would te force enongh to keep Pennoylvania' egoological surney reports up to date. In Irof Pecer Lestie the State has a citizen eminently qualifiod for the work, and abe to whom the Commonmealth owes a deht that it will be diffecult to pay. He was at the heat of the seoond Ginological sarvey and is familiar with erery detail of the aork. Desiles, his personal sacribicen of time and his own means, in the interet of the work, when ctate fomal- were not available, make it bat an wet , jostiex that the state of Tennsylvania shoold install him in sach an office. Every State now having a geologieal sariey in progreos, will be greatly benefited if it makes the otfice of State fienlogist it permanment one, and than keeps upasystebe of amnual reporto after the main work of surveys now in speration is completed.

Naturally, the appointment of it Nate Gevelogist monnot be given to a politician. The me-n qualified for melt peeitionas ane tat active in palitios. Therefore, the oftion stonald be an appuintive obe

Book Review

Smop Kisks axp Macange Siow Chas, A series of
over Five Hundeal Practical Paragraphs in familia languase, showing special uwys of doing work better, more cheap y und more rapudy than notal, By Eobert illu-tratione. Puhtixhod by Vorman W:. Henley \& Xew York. Price 约,50. This is Mr. Girimslaw's latest poodaction, and it is fally up to the practical standard
of his of her works It is written in that anthor'к well known and anique style, which pereent- technial factin sach language as to, amose a- well as imstrast the reader. In faes Mr. Grimashas naight be aptly called the Jlark Twain of technienl writers. Technical subjects as a rule are trated in a manter that mako. their
 treating abeh suhyeets makes them atrmetive and pleas: urahte The volume before us, with ite five hombrat every sbop baaager, foreman, tachinist and vngine driver. It is bot an exagreration to say that the mam serike at least ome iflat that will be worth many time its price to bim. It would pay the manager of every and aleo to present a copy to each of his forvomen. It don't take moch of a "kink" to save $\$ 2.50$ on bily oedinary jok.

 taing in iddation to the ollicial adklresed, reports, vte.,
 lama's Devp Water Harbor, by \&, I. Fitzhagle; Ala Mig Iron Market, Ifs Fxient and How to Mopabley; The Jamas Bowron; Valise of Eaw Materials in Iron Making by Proi. W. B. Phillips; Alabama's Fesources for the Manufacture of Portland Cement, by Eugene A. Smith.
 Ins of lows For the tuo years pading Jame in, Isic. the bupercision of, M1s, Jame A. Campla-1I, I-t District Mr. W, Mitler, tant 1hatrict, and Mr. Mangan (s Thoomas, Sot Thstrict. The reports fmraish bew butherimortality and injury arising from different and pres vailing causer in jercestagys, bo a- to coblrawt Jowa mining with thas of telertiates. We ketr, loweerer, that the outpat of coal for the year encling the zith of June, 1805 , was a little over three millions of tons, and that the massber of peronen etuphoged in the minss and on the eniface for that outpot wa- 10, tee
We lave by connting nat of a great nomber of emall artificial ventilation is pradoced as follows:
Steam jet, i; furnace, 218; fan, 18, Clan-ifying the pillar, 221; Jongaall, int
 Burcas, 1695, Part II. Thi- ie the forty-cighth volum. of the transactions of this great engineeribg entiety, and
it is edited by Mr. Benbett H. Trongh, secetary. It is an octavo nolume of his paper, buinisl in clofls, ind pab livhed for the Institute by F \& F N, gron, Lemplon ancl New York. Pceides a large nomber of valuable paper
by members of the Institute and discussions on the oy metabers of the Institute and discuxsicus on the the Home and Foreign Irosand Steel Industries," whicl
 and steel inctustey. These abistracts with rifferereces ty their soarce lave been made by Edwin. I. Eall. I'h. D. and the eecretary

 Dristol, Eng.; Bmphin, Mashall, Hamiltom, Kent \&\& C London: Hirchifed Eros., New York. Price, Skok. The writer very ably maintain- his theory of the canse if
exptotoms in what he calle mon-gaerous miocs, and be utributes to cool dast mave than to fire damps, the origin of nearly all the explosions in mines. Owe canmat rew
a pouse of thie book without being impressed with the
conviction that the writer is intensely in carcuest, and
therefore his bonk is worah reationtherefore his book is worsh reading fing, whether ne
can arcent the dietam or not, that fhen is or tall lue : eam of coal that in ouree of working gisen off su wo and the dust of whach when heated gixe off wowl of the chlory conchision of the writer that the heating
of the dows by flame mparates pure bovlrogen entirely

 if the Timstury mud Cancrton mimes imomediately afte

 espilasion in both these ant ather cuses that he mfersto the blasts uere of a multiple chameter: This cunclarinst molliphe character of exphosions has leen known for more thum halfa century. Br. Stoant fimds that ther uerw in hos thim is centres of exploexions located in the one of them the force liad acteal thetroctively in jppo. to iwhem to the paif and sides in the meriens of the het teot flateres He cosplade- wibl govil reaton that the gas goven of by the lecated slust mas in excose of the covyect limes the gis trareleil uith the suift curment until froal *upplion of oxygen quickened it at ortain points ister a
 cstablish, und whether his conelusions ane right of not, aleo the leed preeentation of the clatur of the coal dom theory se have sen.

 if Nowing, Wigam, Englamel. This little voloue ateatsol

 remered that like all other books of this chaneter, it nill prove an invalualiee aid to poeness, when in the

Ten Satieal l'mbearaiy of a Vexto.atima leait
 Wall \& sen-, Wigan, Eoglanal Thi- i- a small ireatithat aims at showing than former writere uve a rong in their mathernatical expressions for ealenhating the velveities of nir currents throngh the regulaturs in the
 is a young tran of staall expericter yet of comenherable ability, and for that reason he appars to rypuim a litt he Fegulating to currect hik ideas of nespeet for stoch writers a- Mr. l'anely. Why the latter gentleman shauht lo singled ont for attack ue are at a loes to ursheratawi. In
 practiocd by writers on mine ventilation, in making equation- for regulator relociticx, but Mr. Panely ap peate to be only one of the Bumber, and an he is a man
 modyy tor hisi. Coder these eframstanes the anthor
cannot womder if we nemind him of two thinge that oncern
Fisst
 page te of The Colloky Exarivekn axD Misw Hivh through rezulators, and that is the month in which Mr Hallaum printed the tratiec umber con-ideration

 that it wa-alowesther an error to calculate the velocitien oi air currents entering ventilating fan-, by taking fle equivalent prossure that balances the mine restatace, fimit the effective presonve for the fare's not the wion' as erat as that of the here is a coamon mistulse just Fegulator velocities and yet on jage th of Mr. Hal Fegulato veloeithes and ved on lage th of Mr. Ha
baum's treatise he says, "Amd, indeed, to refose togrant it- truth as an abetract statement woald be to call in
 applications of M. Jurgue's thenfy of the nginicalem rifices

Lidgerwood Cableways for the Panama Canal.

Epencer Miller, M. E., engineer of the elepartment if Manup and comeying machinery of the Lidgerwo. uent abroad in the interests of that comjeans, has-jum W. Pan to beravel on the Jomanal Ganal Thi Bhich has recontly been formed to comple te the great Tanama comal, and the sceve caldeways will Ia 0 as with all 1 er latest excavatiog. iovimling the paten

 on the Theago Main Mrainage ('anal, exeept that the
 order uas bot placed until after a nomet carcful anol ex temidel inveligation lad been made of the varion-
apparatu-avaifable for canal excavating porpoce Engi-
 De Tamama from Paris to examine the Lifterereome Cablemays and bther excavating machinery in uew at Lidgergation was a most tlattering report in faved of the
have resulted in the large onder seenred by Mr. Mille
 codintry fram abroad, and points fo a workd-n ide apponCiation of the merits of the Lidgerwool cableway thent fully justities the claims adranced by the mamineturen hat it i- the moet perfect, moet eqonkmical and eflicient apparatn- of the lamel ever thevised.

The Tennessee Centennial and Industrial Exposition.

Tenowsec praproses to eelebrate the 4he Hamindth it Na-hyille an bexpalmissang to the Enion by bobding vatinairg ITO day.
The Trnbesme Cintennial and Internaticenal Exposation has been orgamizal and will be carriexl oat on at grand seak ani in a manber Worthy mot ont wi the fate of Tembetce, beat of the whowe cromity Whice Tennessec, yot ue invitw and desire compertitiod fromall guarters. If uill ke a rare opportanity for these who may wiel to adoertime to the public nt large tbeir ores. kindred material, as well as makhimety atal applameen for mining, quarrving and timshing the kam Dochange sitl be made for space is any of the baild. boge of the Tennesener Centennial and International Ex position, hut exhobitors nill be roquired to make a -mall deprosit at the time their exhibits are acopted, as a plolge of good faith that the display will be rady for mepection September 1. Nonk If it is realy then, the depusit will he proapely returned. The above applies a those whos make exhibats for profit; mo-othere are reGuired to make sith deprosits.
We truat that wat will see fit to avail yours-lf of the Ipuriunity presented and supply os with is generous Xlishis
nod -tiries for additional information will be promply and cliverfully answered, if addrossed to Pan M. Jones Rerretars, Xa~hville. Tena

A Most Effective and Inexpensive Pump.

We dexire to cal fin attention of fill reakices

Canduzn sceam Jet lyamps (eee advertisernent in an Ather eolanin). These pampe are of aniegse simphe lesign, and so conseructed that when placed in position or regular dut y , they cannot motain water while not at Gern, amet le the cannus treede up in the cotelest weather cong of extremws it temperature, ant will ctara thain und will ut temperatum, anm wil aland greatey

 leam mil stop it. If ts loal for many different parpretss ; in wells, pits quarries, mines, river amo hake -hipe, toz- ferty locio, and on we bight name numer MEs uther nacz for this excellent pamp. As they oper av in conthfthity to the law of nature with steam a- 11 n setive agent, it is an abeotutely reliable pump at all Itwe I nited Nateo, lont in at least twelve forcign coanrise, Anstralia, Hawai, Japan, India, Eoneh Africa Suba, West Indies, and in Mexieo, and Cestral and sobth Anerican comatries, the every where they tove
foll and entire satistaction. The priee is so low, and the -tting up i- at angle that any one in need of a cimple
 liw etwaller size, up to $\$ 75$ for the largest size, which hom theat on hat gatton- of water pet
 over 100 fent twa purnps We can recomanebt these pumpe, ambl the mannlactur 5. the E. W. Vandozen Co. Gimcineati, ohlio will 1ab pheasure in senting prise and iltusdrated cataloghe free.

Proposals Wanted from Engineers.

Ecated propmsals will be received by the Conncil of

 biknont Burough, Pa, For the following uook:$1-1$. For a complete protile and grade plan of alt etrects abd alle-ys in the lomough.

Ent. Tr encet botmadary mon

king of each and every etreet,
fird. For a complete eewer plan of the entire Itarmagh giving timensions of swacrs and showing location of streets, inkcts and man-hules. Reparate bids must be
 entite work wilt Is accopted in addition. Bloe print of
Rornigly plan will lo furbished on application to. Bowaght Engiax
Alsur manst be in by April Ist, 18\%6. The Coancil coctres the relt to moct any or all bids, and aloo ne farte to different contractors if they see fit. For farthes nformation apply to Borough Engineer. Mail to Clerk Council, Raktiont, Pu
Feboruary 17, 106i.

Electric Pumps

"Ehverically Operated Pouer Pumpe" is the title of a hamisolow di-puge illustrated pamphiet recently isobed
by the Kwowler Nieam Pump Works, of Nex York. Boeston, Chisagy amt London. The compiler of this pamphlet say- Iu hi- preface that the pampllet "is com-
palad, not from desiges and data of types as yet largely on the drafting board, bat from knowledge of apparatus alrondy built ind thonaghly proven in actaal cervice." Phater for almos all claseer of sectice man ly electric powet am elearly illustrated and desentord This pam-
phet is sont free on request to every mine official.

A
C
A, B, C, all have sabo urea.

> ars, ete, Brign

Ventilation

Elifor rollory Fepliever ated Mrod Mimer Son:- Will you please publish the folloning in an-wer P. C. Theminion No. 1, C. R., Nora Seatia: pass $4,0 \times 0$ cubic feet of air per minute. How moh mose they be enlarged to reduce the prwer required me-hall?
In a certain mine there are 10,500 cabic fect of air per minute passing in an airway 5 feet by 6 feet and 2 mike long. Work nam continased onth the airuay mam 2) mike in length, when a cnepp cane on, which retucel
 to fees, or \& fect by $2 \frac{2}{}$ feet. What quantity of air should theet, or thet by $2 f$ fect.
then pars, the pouser remaining the satioe?
 through an airway is expressed by the following equation

Now, let, lemgth id one side of shafe after being alangevt.
Then $4,=$ perimeter
lunt aron

The value of ω in () | ir twice that of μ in \&2)
Hence, ${ }^{6 / 0 V^{\prime}} \quad k / 4, \eta^{2} \quad(3)$
Dixiding (\$) by $61{ }^{2}$ it liecomes

Clearing (4) of fractions, setotituting known valocand simplifying, is becven

 fect of air thenogh an airway 51 t . © 6 ift. anal 2 mile long. it minhll require

The velocity through the alterel airway will be in20 it ana, 2 and I w will be the veloritien throagh 15 und 2it. ana, "and
10 ft ate respetively.

The uerk meowary to pare the same quantity through
Where the methens a

Total

Thurwime, thinta units of work are spent in awe orning the frecton of the atir, throngh one mile of air nay $\overline{3} \quad 46$ in rectinn

The Fifth or Higher Roots

Elitur fishery Eugimer and Mctal Miarr:
Son:-The following rale for extracting the fifth of thgher routs without the aid of a table of logarithons, is of bore oniversal applieation than any of thiee recestly poppeser th vour correspombence colamn, and nay by the oth motet sumblers, whole or framtional
Rewt-Take b, wote number, whole er fractional whene th num is known, substitute for a and h heir value in the following equation

Fimel the value of k from equation (1) and enkentente for kand a their values in the following equation

Reduce and find the value of 2 . Moltiply the value of there found by the sth root of δ and the product - Ihey wth mot of o required.

Cid-The number 6 , slowid be awnoed with the vieu of making the froction " $"-6$ " as small ar porvible Slowla the fraction ${ }^{a-6}{ }_{6}$ te begative, change its sign and prococal as before, but place the second nember of equation (2) equal to, ${ }^{1}$, instead of x,
Eomepin-Find the fifth root of 9, (which is the peob letr given by Mr. Torey in your Jantary number. Here

 Molriplying this value of \times (1.03+5is +) by (the mth rom of b), we find that i g -1.351 s 4
which is correct to 5 or 6 deximal placer.
Febl. 3 ind, 1 sum.
Hiteman, Ioma.

The Fifth Root.

Eition Culingy Nompionr end Nroul Mien
Sin- - Thave real the explanation of the appoximate wole for the extraction of the fifth and culier moses by Ar. Thowas Hanmah with interest and phesure, hut as practical mathematicians praction a more simple and tane correct methest when a table of ligarithme is not to hatal, I heg to give the rule fiof the assimanoc and
 copgoe ue require the fifth row of the nomber 14:Now, Ry printing off five places it becomes
 letuew the mantere $2 f$ and 2 k , atol we then proceed to roluse the namber to the fourth power by dividing
twine the given pooner by the sam at the trial roots, as Twive the given power
14.5005
(20. 24$)=$ isi
 tiguablrate rows, extract the equare row of the equare
 multiplvise the ziven number by the smm of the tivat mode, uleen the pioduct nill te domble the eighth power مods, uten the perluat mill the square rout of the square weit, and the thind mand
 mot is fonmil like the fifit by revocing, that is retoee to the eighth promer
Take care that in all rases that one of the rowe is a litthe heos, und the vether a little groater than ibe megrimex

Otto-Hoffman Coke Ovens.

The plant of vixty OHtu-Hoffiman sole avens erected a John-torn, Pa, is mow in poctation. Mr, John Fulto furbishor us the following stata reqanling this plant
 cobskning plant with anmunia tactory, of 8, ces per
 cotimated coel of slac,061. This athlition slows the com
 larget will vxlutht a coet of \&R, ehi,ks pee oven, ibctuding by pinsloct saving applianecs. The extanting and cotmen-ing plant, with ambumia factory, has cout
S13t
 in hast, and for the 1200 propocel plant, $81,118.18$ per

PRIZE CONTEST

Prizes Given for the Best Answers to Questions

 Relating to Mining.For the lose answer to each of the following questions, the valoe of 51.00 in any of the books in our bock catalever, if six month- suliectiption to Tue Colstaty Evarvere ixp Mafil, Mexme.
For the seromil best answer to cach question, the falue of $\mathbf{3 0}$ evnts in any of the books in wur book catabegue of three months subscription to TuE CollaEny Escineze axp M1:TsL Jises.
Bhth pries fow answers to the mine ywhation will not be

Conditions.

Find-C'ompetitors moset be subecribers to The Cos-

ouse he sighel to
 of a separate poper.
Thind-Snswers
the poper anly
Finveth-"' (inujectition contect" mund be written on the enveloge in which the answere are ont to us.
Siph- Ob . pereon may cobapete in all ibe questions. shall be final.
Nornil-An-nere mat be mailed ne toat later that one month after Pmblication.
Eindth-The peablisation of the answers med names of persons to whoms the prives are awurded shall be conore red sufticient notification. Enccen-fol cotnpetitors dirpocal they wish to make of their priza

Competition Questions for March.

Q(Ex, 211-As ue are striving to tanke oar propered new eatety lamp the beet in the world, it certainly should be ad eotos service in testing for gas, and as we equire some alditional imformation to enable ous to make it six let us bond ourselves together for mutual belp and we are sare to succeed. Then let us know at once what make the gas cap tail up in a bloe stream above the ordinary flame of the satk ty lamp.
Quss. 212-W ben an explesion of tire damp occurs in a coal mine, immetwe volumes of gas and air rowh up and ons of the chafts, and at the same time the expanded air and gas malowinto and becotho comprowad in the gobs, so you think then that a correct sumple of the aiterlamp praduced by the explosion is proczrable, and if $s 0$, alere woakd voa expect to bod it? And while eo doing, will you explain the recoil, or back nu-h of air into the evels, roonss, ete., after the blast has expended itself? Bant (aal and Inon (on, and the principal dineter las Band Coal amd fron eo, ami the primcipal director has migeser ibe for real a paper betowe a maxting of the mime foremen of the distriet on the prineiples of coneacl as end as

 the font for mining I most ribler wrie thix per er
 an effort to help me. Then, please give tae the prineigal points required for a gond japer.
 bitnoniput- aval that is s feet thiek and to woek if of are going to sink shafts that will be sol feet deep. Refore, lowever, fixing on what should be the-sizs of the shaft sections, we wi-h to determine n hat hase to be the dimen-ione of the cars. The -pecific gravity of the ooal is $1: 27$, anal we want an tatpout of 1,1006 tone per day; will you, then, give us it sketch in clevation of the car our would revombernd, and be careful to give the dimenfons and capocity of the box, the sizes of the details of lae botion franic, ami the rase- of the wheelsand axler. Qub, 215 -In surveying aronnd the hottom of a odetermine thecomect timuce of a trity buevantal baee that was just toreloct by the nesteri side of an outerypling coxl seam. From the plat we foand the figare on loe practically that of an silifoc, with its major axis
 axin comrsing from cas to weat for 2,842 fevt. The mountain is 1,806 foet high. The swat seam is + feet biek, and is arerlaid with a strong sombetome. We exelled our trameit at a distance of bif fect east mard of Che ca-tern emil of the mineraxis, and with the center of Glev telecolper at an plevation of 4 feet I inch above the ablethated level of the fase, the fritose of the codel exam
 fance measumed it in strught line from the plamb point in the gramed fo the bettom of the coal mam was found or he liket ieet. Xom, I nish lo hom three thimgs that amsure von will calenlate for now

Fisst-- Mhat is the pitch of the seram:

7hind-What fermptage of thix wam onmbl be masonably eorked" show with a sheteh how yon find the pitch
 high and ! fovt wisle, anal farmerls a large volune of air

 in this niv-way to revlowe the quantity passiteg to oferhind of the former volumie, macecoty on wh whilatme fan has hewn etarteclat this mime, mod it is trehle the purer of the forther bhes sow I will Is= obliged if youl silt severmits for toe tive thinge:
Pirst- What is the lemgth nf the uit-way, taking the N-eflicient of Mesistance at . (riceom
rough the:ar-way 9 the ontiont quantity possing
Thiod, What is the difference af promere on the iwo sides of the rogulator now, and what was it tafoer the

Furth. - What is the beight of the uater guage now for the drift ? Fiff.-What is she quantity now passing throagh the
nezilator in cubse feqt per minute regtator is crabie fect per minute

Answers to Questions which Appeared in the January Issue and for whicb Prizes Have Been Awarded.
Qers. Ine-In the construction of nar meu safety lamp, ofo soe think ne -lowld adopt the principle of the tiray lamp. This lamp is peverral for gas teatimg becamse it oin detect a thin stratum of mas just undi-1 the

 ominelait the sapply above the glass cylinker, as in the ami aimit the supply above the glase velioner, as tio the
 Mind. - Why is the sapply of air from the poles cout of when the lamp is in ordinary uee?
Socoll-When the lamp is fed with air from the poles, if yon give it a quiek soiklen diny the light gors out. How is this
Thind, - When the lannp is carried in air chargexd nith
 with flame How is this
Axs Fins-Thesppply of air from the-1"p of the poles iscut off for ontinary bee for three reanoll lot. To pres vent the entry of gam that might fill the lamp with thame 2nd, if by any means the fany was rapoilly lifter it might tifi with flame; :tad. if the lamp was rapuilly
loweral uhen fed bo the poles it might beextingtished. Scomol-The air mioves down the pile- uith a velocity dae to the preoware ect up by the wotive columb, and when the downazral relecity of the lamp execedb the downward veloeity of the air in the puses the sapply of
air to the flame is cut off and the light is extimeuislied. air to the thame is cut off and the light is extingus-led.
TVind-When the lamp is sudendy liteet upmard the nuphly of gav ansl air to the flam- i- imereaced and the rebalt io the lamp fills with tlame. Jons Vensm,
Lacus, Jow
Sroud prisis Jans Jexkive Vingers, West Ka.

Qeta 200,-We are goong to pro-jwet for oxal, and at firel we will waly seanch for indications by examining the exprowal wocks, and therefowe we must int up in twed shape our paleontrlecy, in so far as the finsils that
 you shen assist us by batsing the examplese that we cught to kinow, wid give them umler four lumbs
Alich,-Negative examples, to of thet fanma of the Silurian aod Th-vouian -erice,
Arouif-lositige examples, as of tlee famsa of the Carbabifomons and Triasais formation
Thiod-Xegative "xamples, us of the thane of the Slurian and Ikvonian formation.
 Triussic amt Carbonifernas formations
Ax. Firsf-Vegative examples supplied from the Ih. zonian fanna, are intobites -tach as the Datonania and phatoge, atal the characterietic ganoid fivero-soch at the
 Tevonian brachoppod. The silurian fana that give imbeatione of cosil, are the grapotalites or peculiar sea [mis of the perieal.
plame of the eatulerpronts of mptiles on the heykdemg planes of the kibistom-s are first beet with in the rocles
 as the Solonomsu amoxiontondes are frequently fonnal Ins the Triatoic ruek the true cherinites, and fansiful In the Triacose rueks the true encrinites, ami mantifit abi now we thal roptilan life buwt alumbat and especially the tevth of labyrinthelont-
Third.-Very few examples of plants are wet with in the -ilurian rocko, and what are foumd are bowly ex-
 times, althoweh its negutive character mas bee exen in it- kower develeypment.
Furrih, - Kositive examples of the fimbonifoneus Elora are abmulant, stelt as Trepterio searopecrus, vigillaria, etigmaria. culamites, cte Feitiveexample- in the Triasthe jeculiar borectails and coniferous tmas

428 Tonti >t., La *alle, III

Quas. 301-In M. Murgae's theory of the equivaleat orifice, the following equation is given: $I=\frac{1 / 2}{}$, and I will he obliged if you will inform bee bow he getf for a constant. 1 know lee taker the row onotowte at of abd that is is the mquare fert in the equivalent oriber,
q is the quantity of air in thousami- of cubic feet per mis the quantiry and IV ℓ, is the oater gange-

Asx.-The " eqnicalent urifiee" thepends apon the law that the specd of flow is the velucity due to the height at colums of the flowing air, whiclio rep-remented by the gravity farmala,
$I=12 y k$.
The quantity possing through an oritice in a thin plate whole arifice: Hence, for the rens confofitr the formala becomes

$$
\begin{aligned}
& \mathrm{r}=062.1,2 \pi 6, \mathrm{or} \text {, } \\
& \begin{array}{l}
\text { ace } \sqrt{2 g h} \text { 数 }
\end{array}
\end{aligned}
$$

 uman, there is introlneed the factor if expoossing the relative thendite of water and air. Emplifymg thinequation for water gange as a-a ally taken in imefors, wemblerieg 2y lit, we have

Thee normal mlatise densitios of water and air being

In the atowe I' molutue in conbie fiet per seonel
 comes

Evoud Pois, Jowary Jums siveux Falls, south Deikota.

Qers, deg-We have as seam of coal with it sodt uet Aloir, ambl the immediute noof is is slate $\%$ for thick and it talls. Thu wam is + feet thiok, is at a topth of e1/2
 We have iried loguruall working amd it lase proved a
great failume, is the pucks sink into the flow. We have Foo acre arailatile pand the field is mearly square. The coal is valuable for cole making ami wo canowt give it ap, then will som erml is- a neat plue of low vor nomble the Eold, apd give as the sizes of your rombs, mal pollars, fany.
Ax- I wowkl mork thi- rean on the promand pallar Souble-cotry systom ami mombl if poseible drive sach cotry fors its login to draw the romm pillars ank chtry stump

Together as enon as thee romas mere up, starting ronne at the vill of the entry firet io this way me would thain tain goosl hasluays, drainage amb veitilation, with the gob fines, cte. The dimensions, the stras of the nom). pillars, ete., and conrese of the air ane given in the sketeh. Cibis. Kin Fivwos

Tracy City, Tenn
Somil pris, H. K. Monmac.r
West Nentori, Pis.

Qee se, The name coal wam io piteching leavy it obe region and in another it is lying quite lewh. The thickness and quality of the cosals are, fowerer, equal in
 which do you prefer asd why?
Axs. The amar and the gialitice of the cosal- bot being given. I will assume that the arvas ane cyoal, and that the qualities are firrt-clase Vstuminons, and moder suel
 loms
Fra-There is leoe jowhohility of the coal croppeng out is the level fiek than there is in the pitchiog oftefor the > The lexel regon furmi-ho- a chaow of location for the >hafts, anl better facilitios fer atrainages, butating and ventilation.

Thinf-The level coal can In mirked by aur syotem that will facur a reduced cost and low crinlecil and injured coal.
higher percentage of tho becol bee loel, or at amy rute a higher perceatage of the level soam can he overincel than
that of the pite that if the pitching one.
Aph-The tirot coes and mantemance of cors, ropes ami roank is much lese for a level -cam than for a piteh

Qubs 214. We hatw thme mime all uorking the same veis, abil we will call the mi, 1 , fam C . The cover, the flow and the depth and thickness of the coal are in boil wall arlvacine. Now the enperimtonkant at to not on the primetiple of haximg plenty if © pit momes of a working face far in exesesof that mejuired for immorstiate

 interident at f flas's pot betiex. in plass for fatwe werk-

 them your elose attention, and ka moe know at your
 compony, while the ether two ane a "thent " lass and to tarefil for xay which mine pays, ant sbow the reavons why it Anessen
Ave. I vite for the superintendent it A. For pillar and roon workings, no doabt Fis policy would be good. bat for fongevil yous cannot help haviag "plenty of pil In lomguall von bave mater and falls to proxide for, and if vou had not more face than that embsediately required, yous Would tot enuploy more than troothinds of your nien. I can, therefors, alvays be depembed on for a foll day's Work and an inerezard output at a moment's notion
Ifter longuall is opered up and setthel, it is vasily and fiser longuall is op
dowaply hepa orent.
luaply kept ofent
1 am therefone that B and f compt not by any bovans make their loogmall foy, for longuall cannot be warkel to pinfit when the dace is criwhed the coal:

tis Tonti st, La Salle, III.
 Forbushs. Apparbose Cy Iowa.

[A very mreat number of comopetitor- eent in anewere
 feen mom and pillar, no donis f was the man: hat is they mere longwall fi ant f muln lave hean workine with fast sides in bangmall paticle arat therefore chop pong ami pounding the coal into slack, with the towit
 a circular or consicimblar longwalf fars, and rostriet the length of the facy for the nequin me-nte of your wem, for if

 fisl fo raci the courcitions of the questions in futuec. -En.]

Examining Boards for Mine Inspectors.

Onimg to, the illowe and continmed abomery of Ilon Mason Weitman, Julge Eicletel, of Khaylkill county, pestpinkel action on the appointmente for tho eceperal

 in the mections of the appointers. Theos appointments foubld have heqs anmonnesi onf the firet Mobshay in Jansary Oratan, Blat Jonger Eechatel anhonnect the ollowing appointhent-
Buand to examsine applacant= for the offlese of mine n-pertor- for the -ixtb, Neventh and Eighth diocricts:
 Modtman, Polt-xille

The ouly chamen +n this boant was the sabstitution of

 digatile
To. 'xamere applicats for mine-forcmen's ecrtificates -hernathal Whe - Willian Stein, minc in-perctor, er ANom,
 Bromman, miner, Rest Malanoy towemhp,

 taiber, Avblathe!
 Mi. Dift-rille: Thomas Ihyle, -uperintemenet, I'ots-villes Thomas- Holahan, miser, Midilleport: Davis! Tueker, вінит, Mati=2ill.

The Lehigh Valley Coal Co. Absorbs the Interests of L. A. Riley \& Co.

For soum monthe gost nagotiations have been pernding which rulminatert Febs. 15th in the aboorption of the internat- of the firm of L. A. Kiley \&s Ca, by the Lehigh

The firm of L. A. kiley of 'in have hof a nomber of ears, leen the operators of the Centralia amil Logat olliv-ries, at Centraia. Pa., and boore recontly of the Hig Mine Atm colliery, mar A-hland, Mis. The firmalen controske the kase of what is known as the dermanrown thect. All of thece intervery will on March 1×1 joseinto the humds of the Lehigh Valley Conal (v, The colservic - ineluled in the trabsfer are limge oftes, producing

 ruct by the Letaigh Valley Coal Co, in all pootobility means the early developacent of it. Survess have already ben made and a jreliminary route laid out for a cailroal to thi- tract. The location adopted iv said to run irom a phint near the old Continental colliery nothWegt to the point of Laeqst twountain, thewe abong the Guextain -de toncling Byrnesville, theree into the tract, The immen-e slore at Centralia was not inchended it the doal, bat che burimes will be carried on by a erparate oomopany aith Mr. Thevelore F'. Riley as geberai Thi- mu
The mentrey con-iderntion involved in the tran-action has mut leen makle pablic.
wearing downat the CHer vilarian and Iteconian rockThe gevlogtenl survec in 1*V deterwined the exi-teres of goha-bearing alluvions over an arya of 10,000 -gnare
miles in Copebe and Xova sentia, also along the than-

 Frabet nover deproits paid soily to a limited extent and
 in shallow placers and river bars, beit at Cariboo there are clanmels beneath the bed of the peeent water
 The beol in the ancient strram when rached is fotlowest and worked by trifts. The expense of working owing

 liriti-l, I wlembia
To, the ulier gold placer ilepesits in North Aruerica We shalf devote a special article, after this zeremal sketeh of the distribation of golat theresits aver the Morki, for

MODERN STEAM PLANT FOR MINES.

An Economical High Pressure Water Tube Boiler Plant Erected by the Lehigh Valley Coal Co.
In mining as well is in every otber intuatre, the protit-depend tutirely on the thane of cevmons secored
 paring coat ane nif of "imens" unleswatcantage is taken parison of patterns.
 coulted in a marked improvemont at colliery stean

 poomls of steam, ant which culy for-ni-fod a distitut panily or engibe rapully loing agoranded hy impmored hikh porsore builers, which gemetare -team home centmenically whel whielt are capable of emplying steata fo dislant punt-at a mors- ctheient preant: Ohe of the-latest of there itmpored The Figure 1 and 2 thow the pon-
 in-tallet for the 1 hight Vathey cabal
 Haxktote, Tse The plan coterists of arrabzelt tuv ins lotery, wo conturt

 ant wator drame き inches in datneter ant 2it feet 3 incluy hong, proviting a stran di-mgaging -urfare and stean sorag capacity periectly in accoel work. The beykers ane desigtorl fors a working prewire of 175 peambe to the -quare imeto.
The boikers ane-uf special de ient, isaile
the short thaner ioriflent to the combustion of the fiels now beiggemally tarl thmugheat the anthreite dis trid, which toel- oublain as hegh as is per cent, ash, The fuel- neal at this plant churis of the chipponge and dirt finus the liveaker molls, converyd from the
breaker dirort fate ther toiler room, thins saving all bmilling of fuel-
There is pronitedt thereghlome the ebtime front of sle plant an ash-tranway sor, 1, Fi, 1). The ashe- from
 plater in the flow peovide a dump fow ashes when builers are being elvaned. The connetiog duce frow the inclimet ctome from the grate- to the alh car in chowal with a dampra, conbectod to the front of the loiker
An undengound air thet mosaing the ewtire length of Gie plant is shous at Fi, Fig. I. This dow is oonoreter birught the brilge wall with hollow blast boses con ou whiclithe mondaction of sir can bu meutiteal wems Of uhich the minntnction of air can be regnlated to shi Goe comitions of Emeniog the pant.
On plan vinw. Fir 2, is slam an a duplicate fan systom
 so prator, In combination with the blaw the exhane
 groumd dact in, Fg. 1), and takes the place of the ohd
svetom of utilizing five seam mater the prates
 clinkering The latter practice entails a ${ }^{10}$
le- Iban x per cent of the steam generated.
Ther plans as shown have been monlitien by the akotion id e single blast inn of lanser cumetl by the a-pantels or io Colention with an iotuce tewol sveten. The stark und in conneetion with the infueed draught is bat to feet high from the boiler nown flow and is povided with flampers hy which the fan ran be
 conder ther Entice Poth thes Eoment blate and the in docal drampht -vetem are of entlicient camarity to he ran ithlependent of the other. The foest water is fioned
 flow leading to the stack, thas ntilizing all the beat in 1he wate gave and pawing them at a very low temperature ont of the etark. The ceonomizervare which prohibits any ailection of biec lust of the surfies of the tobers. The uenking of the whole phant, both as to intuced Araught and forced ilrangbt, is antomatic. anal the spords of the fans are regnlated th sait the themands on the bailers.
The operition of the 1, ind hormpower is inelve buare sach. making an actoal savime in labor over past pactiee at this plant of Theren buasand dollars per vear.
 Sammel I. Warrier, Meclanieal Engimeer L-high Valkey Coal ta

Mine Equipment.

That ateam pumpo form a very important part in mibecguipment and peration is well
 farly appearing in Tas Columay Exolxat
 are uarshy of cariful mete by bione superin-tembent-ind-up-ratur-, for, i- beu arrangal. they -lown alowet if a glane the saliont charaeteristics of thosign id mearly all the

 necessity for moze cffective stam pewer at enginex and thing mose than an "illustrated hasitwos sant" if the

 solbe sexeral simes mpatel) they have revived from lame mining concorns. By meass of theere advertionNo. ht- mine - gerintempent- and operatoss will be bepe Mhirmed on "rnevit" pmop und it will be morth while to nute cach car inlly as they gpear, for coech one will slon a pmop wothally builf, whereit is in une, and malitisms ne sectios.
The Elnard P. Alli- Co., if Miluankee, Wis, is
 ryiponem, the lise of what the Slis Co, dees nut fuilat noult be far shorter than a catalagene of what they do pat cult. In their advertioctent they simply greap if all muler "Jlinive yachomery, imeluding in the evorything from pouer platet to spocial machionery for teatheetr of one of all clases.
In no chass of engibering are better measuring inetrufuenty reynired than in mine strvesing For this scocies ated tapes have very prupedy, saperseled the thaim. The number of makers of sted tapes fur engikin Itule tis, of Saginaw, E. S. Jich.. is Dle lanket in this vonstry malking thes eoorlo eselnoively if not in the wald Thes
 Rom 10 ond
 Fecial peciaties 131 tajue toeks and cares are tureets of conodvertieement of their gent-, and bemafer mill leeep
 eng fraternity, It will he nemsh the whik of ewn civil
 bor their catahum and infurm himaelf conoming these gonl-
In the line of marbinery for chevating and convering oal, (for at ather heave material the Bronn Hoisting or-
 prevalties knewn to mine manazors therozhot the
 catalogues of their machirere, and to loar lhem in mind when enecting new plants of remode-ling whl ones.
Aflequate seam promere at puns of atilization, econ-
 of the fonkr plant at every bink. A chesplmiter that ar chap ons in bind cont io expenaine in conery intance H-ine-stety Baike, whichare ableetiaed in this issmes ate fast gaming in faver for mine las. The manniacturifi guanalte their supering mexits.
The Fobter Enginecring Cin, of Kroark, N. J., ate manubactners of sup-rior typer of molocing vales, pmip Covenoss and in fact a larev nomber ot moet excellent
 er- if soels a nature that cors mine manager shatid knom all abant them. One of their catalvgikes should (x) is covery nime matnager's barnl-

Lamber is a mine anpuly that is in constant demand. Among the momber of other adxertisers making a speci-

 ppear- for the firat time in this beane

An Efficient Type of Boiler.

H. E. Collins of Co, Pitc-bury, Pa, sole vale'agents
 hio
 publie Iron Work-, Mith-burg (fourth orker $2 \mathbf{5} 0$ HL 1: M"mingal Electrac Liphting Plant, Lombon, Ohio, 250 II

THE PROGRESS IN MINING.

Ahstracts From the Proceedings of the Mining Societies

And Journals of Europe and America, Illustrating the More Medern Developments in all Branches of the Mining Industry.

WATER CARTRIDGES FOR BLASTING. The
 been the prodotainant inlext in the mimels of all conaccte uith the fechmology of explowive, to minimixe the dam-
per of Dlative operatione. They gonsidered sale providel the cariridgor fultil the follow ing requiements:-(0) Abolition of manipulation in igniting; (b) rejection of the prosent detorating mate-
 terial: (c) effective cooting of the gaeeons ppolacts of
 to produce ignition-: farther meed to atolich exi-ting netherds of tamping and employ inslead a naturally more refittant materinal. This may be accomplishoc, as experiments nith plaster, see, stances, ant if the fluid be emploged, not only as a crapung but aloo as the irniting agent to that in be neclected by the workinen, and will therefore berome availathle fot sitisfying the entelition?
The Jaroljwek mater curtridse is said to fulfit all the foregoing ryuirements, being dutomatic, ant rypairing sists of a cartrdjec of iynamites into which is imbedded
 Cent, the part fitting into the dymanite being boaldal nith an exploding charge of fulminate sufficient to pro-
dhee the mpuisine inital implo. The foer is formand duce the nquisite inital impulos. The lase is formed
by a curroidge of prosed quicklime covering the lowet end of the cap, ans when the cartritge is sorrounted by water the lime aleorber a portion of the lyoiki, bocoming
t|wereby hodrated and evolving rafficient lieat to fire the thereby hydrated and exclving aufficient lieat to fire the
inflammable cap, which thereapen igniteo the fulminate and initiates the explosios. The whole cartridece is sur roxmelel by a cover of cotton eloeti.
In order to ngulate the abocrption of water by the
lime, the line cantrilge ie coveref by a caponle of nuetal
 foif, the rate of aboorption depelding ob the surface left
exproed by the capsule. The lime cartridge is, for the garpose of inearing the unimpaired mainterame of itquality during starage and transport, provided abso with
it tight-Etting lid, to fo nomoved before the cartridge is atachted to the dynamite charge, and the cartridger are timed to prolace explosing at any desincl internal after insertion in the borehole, from 1 to 2$\}$ minutes and over,
The last-namesl figure repra-uta the minimun interval The last-named figane rejuce nts the minimam interval grarries and simitar casex.
-pecial conmitter on fire-lamp advises the following procedure for fixing and finigg the cartridge: In holes rlopheg dounwand the explosive charge is interted first and the water ponred in after adjusting the igniting eart-
ridge. Where the holes are horimotal, of with bat a ridge. Where the hoske are horimontal, of with bet a
gentle slope, it will te necersary to make a suall dan of clay is onder to mover the cartritles properly with uater. For hobro lealing in an upward direction, a small
spring is atfixed to the beftom of the cartrityo topowel spring is affixed to the bottom of the cartridge to ponent

slipping kaik, and in ruch caw a watercartridge mull be weed. This is made of a אaper cylinder about to | be used. Thas is make of a kaper cylinder about to |
| :--- |
| cm. | fon uill be enticient for this parpose) abd large enough the weight of the blasting chaspe. It should have a diameter stightty less than that of the torebole; so that position the conieal lase of the lime cartribse placed in contact with the water, this contact being insumed, and the -pilling of the zater provented by a wad of cotton inserted in the month of the water-cartridge This latlikeliliood of the water ereaping through fissums, of mav be replood by a tamping of mose saked in water

Tbe apparatus was subgected to a serres of teet- in May how far the timing of the lime cartridge (or cone could be relied on as accurate, In these tests, both uncovered porone material for raveloping the cartividge was onbwith different caps and carieties of dynamite-true and imitation-as wedl as blank cartrilges (caps only). From the tables of results furnished it is deduced that fione elapsing hetneen the application of the water and the firins of the shot is in inverse ratio to the amount of abeorbent surface expesed, and that, furthermore, the
texture of the cotton tivne in which the whole cartritlse texture of the cotton tiwne in which the whole cartridge
is enveloped exerts a sumilar effect, viz.. the cloeer and denser the eloth the longer the internal before the exTlasion enemer
The practical reule to be druwn fom the table are:
a) That shoss timed to at least one minule can be els (a) That shoss timed to at least one minute can be ob-
tained by the use of the small lime cones corem with cylindrical cotton wick, bnt sarrounded by a band of metal foil only oo far as their cylinilrical portion is
conecrped, the oone being unprotected. (6) Helable conecrned, the oone being unprotected. (6) Heliable

1 minute eam be produced by mean- of hime conere en-
celopeot in foil except on the face, and encased in a cylinaler of cotton tissme. In weither case were these any delayed shuse olecreal in these teres.
The examination war extended to the effect of unfaypable surroundinge on the efticieney of the cartrilge.
For instance, sucht as firing shots.
 blasting clarges under nater; to dielodge mi-fires by inserting a nen cartridge in the water tampeng ifi In
upward-sloping lotex. (o) In boke panting xerticatly
 oftained heating to the following conelusions :-Fins.

 Meale or wen merely troppd into nater. The shot will loselenter Hophes in " downwant direction to be fillet the simptes anf sateot uay, a print of particular imi-
pertanec in quarrying ans surface hbeting In submarine nork the cartridge chelosed in a lead pije bairely requiren lowering till it rests on the spot to be
bhashel. Scomily, Hast the angle at which an upmard Hole is inclined has tho wefer on the timing of the catt ridge. The diticuliy ot supplying the nater decrease
at the angle of molimation fals belous is degs, and nith the timing of ther thad, bat the nmoval of misfines it upuand moks requirs more care on the port of the
miner when water carriiges are used thas in the ca-e of truss tampuage.
The Fomir of the shei Cumplefoly Stiffol.-ix regards the Elavior of the cartriblec in fiey pits or air containimg cosldu-t, it is claimed that communication kefuren the igniting tlame atu the air is altegether exclubed by the Guass of lime surroumling the detobator. The lime fring
 water in the brechole is, as is well known, sullicient ! provent thame ancompanyiog a blown-out shos : and,
 bination it enters into nith the water, sumpemens to nill the borehole bofore the charge is explthed, and this, tio proster amount of secarity being affordeal loy the largey
 venting blawhoat -hot-, a matler of particular impur tance for upwand holes, which are monelly tamped nith The Wa-tin:
the ifniting charge is sarrounded, so far as cobocrainto the limesand into the porvar enwelope. Is for the temaining protions of the cortridges it is manifetly only
 the porou-coselors: The filling the ammalar spacs vor momding the cartridge with nater is a special feature o prow-d tightly into the bon- loole in the manur ibuall practiowl, a ponl dral of the security agaunst ignition of gas afhurled by this -ystem would, under unlavorable arcumpances, disappear, of cource, in upwarl hokes in mot not be forpotten that foles of this chargor owparatively rare, particularly in tivey minee, nhere
 tremely risky eases safety dybante or similar explewix evold be uod in place of the vedinary charga
 helm shaft ut Poln.-Abtrau, with a 08.8 rer orent nixtue of live daup and finely-pomdered coldhet hem in stant circulation in the chamber, the cartridges luring inserted is a hole bored in a large sted ingot ontal this barst, whereypon a block of cement nas uedt anal arrangol to give a blown-out shod. Various molifiesis well as water. In in came homecor, was two the chamber ignited. Similar realts mere abtainall to the Rowitx-Collaxan special committec, explosive mix tarce of fir-lamp nos becoming ignited, although ondi
 evported favorably on the cartritge, the first natent ctating that the Jaroljuek cartrifge is a contral-tire apparatus, and offers greater security agaimet the ignition of hiredamp than the electrical fuses in use, the "xpanesun of the lime eartrilge being very effective it increasing shots Only water or moss tamping is requined, and tho operation is clowaper and no moge complicated than
efocric fuse. For fiery mines it is partimplarly th momamended. The Fosseite committee state that it is mindor from thee realt of the teste that it is prosibil to adjust the lime cone to prevent the Gnition of the
detonating cap before a definitc tine. The fast that maker is necemary in oriker to make the cartridpe. 1 . plode forces the workman to use water tamping, thos obviating the danger occurring irom the employment of explosives in borcholes in fiery pits. Furthermone, the lime in the daroljuek catridge forms a scond tatuping
 craye of llames to that the committee conisider the

EXPERIMENTS WITH EXPLOSIVES.-From the Eximantinas of the Federated Instimtion of Miming

 exphosires mere recently maplo it the primemt-with station of the Ince Hall collicries near Wizan, Lancashire, Eoglanal. This station has been tilted with all the requesite appliances for testing explosives by the sonsists of a boiler 30 feet long and i for in in in diameter. Cbue cnd of the boiker is open, and provision has been made for forming when necessary a pas cham-Ger at the cloeed emb and this is clome by fixing in an air-tight partition eight fort from the coml. Ahag the vations neme the shots ate fired by electricity. Soch in xburt is the fit up that is callow the exporimental sation. The nxperimentasts mow umber notice wore Mossis. E: W: Thir kell, A. A Atkinoob and I. Hall.
and thes wis ermant were frical as strongth tosts the open, amit finmy if encevery the mortar outsote it chevation, and nsing a 8 poands projectik witha clarpe,
 It tetonatore ant di-reganting the onter in the sue the distaness it feet to wher final the following were throws by the eharger of the ditienent expliceisem:

All the shots uen tired without stewming to imitate

$\mathbf{F}^{\text {ATAL ACCIDENTS }}$ IN THE MINES AND

 QUARRIES OF GREAT BRITAIN IN 1 B05.- inat Pritain and Irelanil." (inclading thooe on private liranch railmaye ansl tramways, anil is waching and oking coal during the year iven.
The total number of fatal accoikents in umbl alout the


```
Expheimes of trohnop or cost there
```

Pulls od sate-
Fins of
toin
is werte.

(an trationt und cegtise plans
क) machamw

The clamitication of the canses is well done, and canant but be appreciated by practical nern

DAMPING COAL DUST IN MINES-The following

 Cimordoun, Atrangunents for damping eost dust in be Thbermia toltiery, Westohalia, are now extended to is a lowlye at the level of in ting the water sppply there cuparity of ine cubic metwe, of three tines the quantity necessary for a day's use. When the mime waternes Hecessary for a day's these when the mine water
beegmes insutfictent the reservour is filled luy two pemping engines, erected at the lewel of 610 m , (wow fathom-s, that work alternately, the water in cither case being tiltrel throngh a layer 2 m .16 ft . 6 in.) thick of The ootlet branely pipec in ithe crossecnts have a diameler of $52 \mathrm{~mm},(2 \mathrm{in}$.$) , and the piper lowling tran the$ batter to the working place, hatt that diameter, white yards). The pipen, nhich are in lengthe of fom (id It ire of wronght irobe calvanizal to protect flime frime mot, and jointed with lowe flanges and india rahter ysshere in order to permit of thoroughty damping all are introducevi, vach of which is fittell mith ange untons

IMPROVED MODES OF WORKING COAL-

 increase their entyat of cool, as the folloning extract Nast year, the collieries in the Itromemb superiur

 collective pranipatory oupat for the premt war a

SAFETY EXPLOSIVES.-A Paper keall Before the Kogionth of Thghand Intotut of Mingeam M Nechanical a paper contributed by Evergasessong Wink hawe on the

 all dirceted to the one end of redacing a- muchar peesble the temperature of the grases evolved on expluelon-
that in, the so-called tebiperature of de-tonation. It was songht to +ffert this in one way by mixing high explo-
sings, surh as tvalmite, nith sulamancer containing suser inch mevennival of chemith cobletanoc, cootaining racily-vaperizing sulotamers, ubose vapurtzatton and decompesition muk intemped to capture a part at least id
the hoat conlvel on explasion. Among the smbintances

 in varions poppartions with kieciguhr cometalikel the
 haking the "xplocives of such shli-tances an had of
themoshos a relatively low detonating tomperature
 exchert gropp, prownd is they werw be the eprongel

 of intimate mixtune of nitrate of atumonian with tbe

 nolurit, ucstialit, dahme-iit, dahtaenit A, jungressit, powder is table acomupamest the paper giving the

 Weaplalian Miners Provident Society,
The uriter then refersto the definition of a safety ex-
 downst to the propenies which mast chataterize any ion me exocedine 1,50 degs Gent 19,212 dow Fahe dez- Fahe, in wekimg stome: In arcondance with diate calculated from the varpus costation ot- of the explution and in unler to make that calculation jume ible the expho coeer an intication ut the charater and quantit

kider it puosible to express numerically ouch a tandan!

 galteries to pecteran ungewesimably high thgree of

 nbtained.

BURG. TRANSVAAL M Paper eblhe ahote mbly

 "neving ef the un-mburs if the Fecherated lotitution in the paper in to wetabli-b fonar conclusions, and his chaime alk angumentyare wi noxel and starkheg that your ur struk with tha larime of the mas that venturi. to time

The Ranket formation at the ened ar
 In theckioss, umd covered the whole in someh Mrici formation was of the nue of the old mol sanilocouse and leat the vournums-apply of detritus for the deposition of this thom and widely -furad tmass, mas derivel foman an imuense howbain -y-tem that is now subemergel flemions, but it is nos withut collateral evislence, bee
 the fankations and deporessions anol clevations in them shat accuast for hoth the portions of the wock
that retrain, anol theree that liave leen clenuded
scouel romfusmu. The werlapping of the strata and fie cobsmots threvtion of the line of forve by whiche the cirata has hern cromplecl, anel the dereftion of the plames
 amil theat the fobling of the Pamket series was the result
 focter- fommal in the. Ranbet rueks in 1he vicinity at

 and fansel- uctw etock in the elay amil filled with vari-
 the perons pot containing the clay was neext oet in an outer verod filled with water, absi this water was then
 ansl varinus inimeral- were artilicially peralacel within cimed the water fram the oustifle vesel to cirenlate
 mandy, that the artitictal thpocitman id mectal hy elec
 depritions- on a gransler male, aml this lie sumains in a Euneth way in ho-
Einsth mow insuin, by showing that the Alepeation of coarec prainel neks, otach is pebhly guarta or ounglon,
 and partings of stels roeks, that Hor soltions can comblate fini- that asa peromal rule. liat not an invariable one, The le-t depmeit-ame fonmel in the larger Tomblor conThe sabject is to the observing mimer, that loves his
evologieat sequemees, one of the most practical interest

MEASURING THE PRESSURE OF GAS IN COA AT LIEVIN COLLIERY. - Thu following is

 the beginning ad INKi somse experiment-wen uboteraken in So, I wat of norking, ami the ronles an- loer kb -w ledgec on the -abject, althomgh the number of ex-E-rimsul- is tow -light for fermanting any definite conI varmownt of finn

 the battob, while- its outer vad was put it connwetion
 teal wish damp clay, which con-tituted a -trong tamp-
 The- thra-t of the tamping was receival by a wrobgh itou cillar liraxed to the pipe a fow imblia roliter ring
 enghe heveth, ill acexum of its thexibility, whereas iro.

 of ransing diflicnlty if mqzaton -lumblatien fow drawing foe tamping, whicf laccours mox>sary if the lowle haitor be-heq-licd after an obectation.

be-" prepared, althocigh they were not used, because the
 feabing from the lioles bate mozasurest by a gas meter giving indications in mibie decions ires 11 cabic decimetre

Soforive of Morva for Eperrawnhe- A- all the seams in
 Whom in (4 al fathome), currant-shomevl finc-lamp contente moe sliffering gmaty日* inom atmother for ther -anm- - ale of the workings. It yas. hownews impertant to therctitier the po-ition of Ilae tself of vx|crimant with referemere ta the state of
 workizer loubt of the cool being hand and compoct, and the eevonl in whe whene the meabures were fimured by koghtaring wathonk
"What inflembers" ask> the anthor, " is exerted on the percsume and volume of gits by the depth of the tamping the bobe** SIl the exp-riments, be contimues slow hat prevere increare- with the depth, eo thas there Ir the maximam phonine whon the tamping reaches to mearly ther bextom of the hmbe; and in proportion as the ampang is for form tor borion. in prester is encounered so mach the hoss for an equal area of slisengige: ment, as she permeability is greater. The n-rult-attained in the Frederic mam warrant the comelusion that the coal there i- ma particularly permeable, and that the
 regards the volume of gas disengaged, it is, for a given pressure, proportional to the anes of the vacant space at The firsons hook
 So. 4 ; and a space of only 1 m . (3it. it. in.) was left beween the bottom of the looke and the tamping. This be influmece exetted by lbe pueition of the tamping in holes of equal depeh. Cither hbings being evpaal, arranging bee tamping : in. I 2, it.) iarther from the beetom of the

 ing, and Xo. 2 having been plugged for the same reason

Each Lole was provicled with a pressun gange; and lably ane-ryatome were mase monlarly up to Aprill 1s,
 wole, No. 4., shmoed iny considerable diminution of presoune, viz, 1.5 kilog- per muare centametre t21 thes. ba was allowal ta thon thmilh the meter frome the ith to the- 25th Mareh. Two vors afrer these aboctation:
 in any way moditiol. the following particulars were noted

Giranof Reswhy The maximun pressure ntwerved at
 maximatn in Fagland was fombil by Mr. Limelav Wood to le 31 hiloge. pro hinare centimetre $4+1$ Ihe, per equare mely and in the Comelant ive Mons, Thelganm, 42.0
 While at the Treasi Callurs, Saint-Fionnes, they were onnst to fre low- thanat Lie vin. The obscrcations made in the Frockeric and Alired vamo of that colliery show that fircelamp is but mgnlarly dietriboted throngh the buse of eoal. The jussare increscere with the depth of the boles, which is sellevident, and eontirmal by all the xproments; bat the N-sults obtanned at Laevitu do not sufticide aith thoer of Mr. Limbay Wood, נ": do they The lisadime in the. Fire
The lieatimg in the Firecteric -eam, only drained the presure was wily moluad by obs-shird at she outside. 1 would thervine appor that, for draining off fire lightly efticacmes, aud tho alouexplain- who the utility has so often beva ghestionset of hele for draming the vann of gres. Mallard constotovel that the volume

 in the - iffed
nastiviurleal.

Must Not Hold Public Office.

ANTHRACITE STATISTICS FOR 1895

From advaner shects of the Reports of the Inspectore of Xiaes of the cight anthracite district－of Penneyl－ rania，ue are cnabied to compile the following tables，
 the u－bal－tati－tical reports．For purposes of com－ parisun the statistics for sod are also given．This is the tind time the complete statistics for the anthacite die－ tricts have ever been publisbed in thisform，and eot won after the cove of the year．The crudte for the coen pilations fotsville，I／2，war special representative for the of Potesville， 1 IL,
want of doe care and regand for the interests of others was in the hathit of makimg taily inspuection of the rooit on the part of the operators，for which they are liable，by tapping it with the dall vod of the piek．Whether where it appeare that the work could have bevo acenen－abaily imopection was requireal，we do bot sketermibe of

 it is very exident that in conducting the uork they has ane only newi where they are thonght for be becesoary，

 Semell 5．Womlfolk S Supretae（ X．Y．\＆Kepmoter，327．
 Contract for the Manufacture of Mining Machinery－－tioner wa－injured thrugh hi－own negligenev in blast－

Table Sbowing Total Production，Shipments，the Increase in Production in 1895 Over That of t8g4，Number of Employes，Fatal and Non－Fatal Accidents，Kegs of Powder and Pounds of Dynamite Used，Number of Horses and Mules，Number of Steam Boilers in Use，Tons of Coal Mined

Per Life Lost and Per Non－Fatal Injury，in the Anthracite Collieries in 1895.

［msmat．	$\begin{aligned} & \text { Total } \\ & \text { Prollaction, } \\ & \text { Ty-as.1 } \end{aligned}$	Then） shifaretits ＇Tuns：	Proliaction Incroase 6ret 108I．Tutis	Protate Emplowes！	Fatal verislents	Sen－Fatal vectistonts	Kugyed posider	Nomblsed D）batrite	Numberal Burses aud Metrs．	Xemoler uf sterm forlorer	Life loll．	Tomaname IVer Sun－72til． Ittery．
First	6， 510,817	1，216，967	1403， 14.4	16，272	28	121	230 +6	－	1，42N	534	106， $1 / 44$	53，206
Second	$6,1 \times 9,496$	i，613，17．	314， 3	16，398	34	192	2195	－	－1，inis	\％200	1s－， 044	32，237
Thirel	6， $214, \mathrm{NH}$	6， 219,064	tisi， $\mathrm{N} \times \mathrm{y}$	17.418	（6）	1＋iz		E	1，450\％	725	＊$\times 1,07$ \％	：57，215
Fourth	\times ， 1686,412	$7.124,805$	1964， 4.51	24，5\％	34	211	212， 813	－	2, ixi	1，254	160，09\％	（3） 7000
Fifth	6，450，000	3， $2 \times<, 7 \mathrm{~L}$	45＊， 371	1x， 465	24	＊	1100.30	\square	1，271	1．4\％	131，151	T2，tox
Sixth	7，164，N05	1， $22 \times 14 \mathrm{Hi}$	824，2以	19，81t	36	人	157，＋61	［25，565	1，\％ 2	1，1eis	124，$\times 25$	47.254
Seventh	6，154，54：	3， $315,4 \% 0$	729，711	19，${ }^{\text {ant }}$	\％	114	130． 185	160，I1：	2． $1+16$	1，084	104，k－5	34.901
Eighth	5，123，02：	12，672，47：	3s3，00s	11，seni	a）	124	Sh． 127	315，177	1，474	72.1	112，17：	31.031
Totals	$31,207,007$	46， 268.443	S， 21516,005	H5， H 210	428	1.120	1，inatimi	\＄19，－\％1	15， 3 \％	7，506：	$\dagger 121,344$	

Comparative Table Showing Total Production and Shipments of Coal，Fatal and Non－Fatal Accidents，and Tonnage Per Life Lost and Injury in 489

En－тEIC	Toal Irosurtion Towel	Tukal shiptrent－ （Ton－）	Fital A	Sien－Fatal Mersbente	Tommex fer Life Lowl	Townage ber Som－Fital Tinery．
Firel	3， 1005 ， 231	5，tere， 6 ＋1	17		129，fiver	＋0，746
xecond	2，6i4，N39	5，196， 95	11	141	1：15，＋64	＋10， 345
Thirat	5，541，059	$5,217,164$	\％	1＋4	lemeris	27，415
Fomirth	7，162，mil	6，Kiel， 510	7	2ti		（30， 72
Fifth	$6,138,687$	5，1013，108	is	45	106， 2.53	4，4，854
Sixth		$5, \times 84,200$	it	54	－1，4is	6，＋is
Serenth	$5,404, \mathrm{x} 5$	4，975，255	\％	36	12，zx	71，116
Eighth	4，341，315	3，660， 514	210	16	167， 6 as	$80,4 \geq 5$
Total	45，706， 179	42，230，454	45	925	＋ 100,301	＋ 49.196

Table Showing Causes of Accidents，Number Attributable to Each，and Total Number of Fatal and Non－Fatal Accidents at Anthracite Collieries in t895． with a Comparative Table for 1894.

Cafer of accimext．	1995.																			
	1se Diverice		31 Pistrict．		at Pistrice		ath Pratrics．		Sth bistrict．		uh leatrect		Thit Pistriet．		shil Itotrict		Thalk		Precotages	
	Fatal	$\begin{aligned} & \text { Kon- } \\ & \text { hisi. } \end{aligned}$	Tuiat．	Nun－	Tatat．	Som－	Tutal	$\begin{aligned} & \text { Sour } \\ & \text { hotal } \end{aligned}$	Matal．	$\begin{aligned} & \text { Sun } \\ & \text { Votal: } \end{aligned}$	Futal	$\begin{gathered} \text { Nion } \\ \text { Fotal. } \end{gathered}$	Fatsi．	Now－	Fatal．	Nim．	Fatal．	Now－	Fatal	Nom－
Explusiones of gas	－	91	－	6	4	34	10	45	1	31	10	15	3	16	3	（1）	31	14．4	7，\％	
Fall－of rowi and coal	2	34	28	87	3	11	［ 5	65	24	3	24	4	25	40	12	＋1	191	374	＋5\％ 3	3， 3
Falling down shotes，shafte，ete．	－	－11	1	2	3	－	$?$	\square	\pm	$\stackrel{-}{-}$	$\stackrel{+}{4}$	\cdots	－	1	$\stackrel{\square}{\square}$	3	11	6	3．112	0.54
Explosions af powiler，blasts，ete． Craslied by mine wagons，machin．	7	18	4	29	6	23	13.	35	7	7	＊	11	4	10	7	＊	54	14.5	13.06	
ery ete	7	36	， 5	41	12		δ	21	12	$\because 8$	4	＊	14	31	6	31	14．	343	15.4	21.70
Miscellanewas underground Miscellancons an sarfave．	\％	15	12	20	$\frac{2}{2}$	114	7	蔀	3 4	5 n	19	11	8	11	5	3）	61	188	14.43	16．7\％
Totals	31	121	－ 34	112	（4）	16	24	롸1	3）	（im）	81	Nio	＊）	114	3	124	422	1.120	100008	100.00

Explosions of gas
Fatle of roof and coal
Falls of roof and coal
Falling down sloper，shafte，etce．
Explowine of prouter，blaze，et
Crushex by mibe wasuns machin－ Mive vetc．
Miscellameous undergroumd
Miecellamevas on entiace
Totals

LEGAL DECISIONS ON MINING QUESTIONS．

Dangerous Appliances－Blasting，－In an action by an employe for injurics cansed by a premature exploeion of dynamite ubile hlating，where it was slown that the compuny knew that the took furnished the voploye Were unsuitable and slangeroas，and ibe evidence to the employer will not be disharled by the comer on agr－ the cmployer will not tee dietarleed by the comer ob afr
peal． Ohis

Thio Valley Ry．Ch．Y．MeKinley（CL Apl Ky．）3t 8, W，Rep．180
Negligence in Blasting－Bhasting by＂bryate＂or mous of holes from if to 20 feet deep，elarged with
dynamite，and samaltaneously exploded，making blasts －0［owerfist that the sarrounding earth for a con－iderable distance was shaken，and logr placed on the blast were
thown 200 feet，and over the tops of houses，slows a
to be manufactured in accordance with special specitica－coapany in but properly caring for the roof，the issue tions，which nequire the formishing of special engibes should be left to the determination of the jury and pampe，connected by shafting specially fitted，the Jlorris v．Excelsiot Coal Co．4it X．W．Rejurter，1927， sperially manufactured parte of which would be of little value except in evanection with the plant，is bot within the statute of frambs，requiring eontracts to be in writ－ ang，vte，though the bulk of the plame was made up of articles parchased a8 merchandiae by the－rller from
afler parties． Puget soond Machibery Dopet v．Righy（Eupreme thart，Wakhington） 43 Pucific Reporter，is
Inspection of Roofs and Use of Props in Mines．－Ther oupretue Coust of Jowa reocently said：The evideber show beyonel all que－tion that there ure many places in the roois of mimes that do mot reguire prope vo supporte， beciuse of the moofs being compoeed of clate of clome， But there in evidence tenuling to show that soch places In the ront－，by lapee of tinse，may become dangeroas
and require props．It appar－lhat the mining company

Contracts as to Oil in Land．－A contract recited that the first party granted to the recond party＂all the ail and gna im and trider＂exftan pemiecs，＂trepther with the right to enter thereon at all times for porpoceco of lvilagand uperating for oil abit to ervet all production and lay all pepar neconary to the aicl prom and trabsportation of nol or pas laked from （ard premises．Exerpting and rexaving to，the Gred be delicered in the pipe line with which sevond party may conneet his mefl．．＂Firet party＂kave one acere anyubere out of this above described land for a test well， and if ciil or gas is fonmed，then seeobd parts has the bal－ ance of the afove land to drill it the sume royalty as the following conditions：If cas ondy is forme premises on the following comelitions：If sak only is fomm，firel party is

 Comatian oritiov.

Measure of Damages in Failing to Make Mining Operations. - Whre in cousideration of extension of time to pay purchase momes of mining popery, the ery, and ggeer with the enller that lee nill. thin the
 nhinh the welker culs has a camse of uttion, is the injury

Belanont Minitg and Milling Co, v, Cobligan (Kuprome
When a Court of Equity Will Not Interfere With Mining Proceeds.-Tertain partice entered into a omp-

 mo be used by the collapany in dereloping and working cash revment apot twe rosilloe ine sif the proeserls of
 bill in chancery proying for a tempurary injunction re to it for ure, exemp for the parpere of poring then the tonnont due sull for a decree making: the imjunction tuandatory, by mquiring the compary to pay yom the of the contract. The conrt beld that there were by any precific forme or an interet in any spxife fund

 the price of it wre, the prowelk were its wom. The hich. It was simply a pembion he dee company that. when it reveived the money, it ucimlat aphy it on the in the mones coukl fous to these parties. If it failed in the falfilloment of it- promioe their nomeds was at In other Womba, a promise to pry a thks nat of pinceed of ore ta be mincel is mot an equitable amignuent of anvernent.
Silent Friemi Mining fic v, Sbbott
Agent or Attorney May Locate Mining Claim.- An
 foct soof liscation, itocloaling the basking of the iaffalavi

Beporter, 509

Risk of Employment-Mining.- Th a trial in the Gir

 ohit foart of the E bitcd stater, it appeand that one- T. paration hacing lagge interests in varinat places underthe encral change of a -up rintentent, that T. han prwer to hime and diwharpe the wen, slirest their work toe mine and up-h ome orcabion, upan the coruplaint of
 There nat eviskote that F. bad complained to T. if the dangers from the [rojecting Lall- on the revolving sbait, and that T. Butel protuseel, afow dave Infore the aceident, to lave the roupling covered with a low for pou-
tection. The I Ercuit Court of Xpmals lieht that it was within the apparent ecope of $\mathrm{T}^{\prime \prime} \times$ authority to pfomise to make. the compling cofe, ant that F, dit not, by contheh pomise, assume the risks arisimy ferm the dimper-In- contition of the compling Also, that the rule that an cmptoyct is $\mathbf{\mu + 1}$ hocmil to replace an applatice, wheh ter obe, did bot apoly to relien the mining company frotu the lity if protevting the expmect compling as Hownotake Mining Io r. Fullertota, no Federal ReWho Cannot be Served as Official Representative of Mining Company,-The Mupreme Chart of south, Dakota

 papers as tay to nexpoary for that purpere, is not by toe manise of the statute of that stute it mation if

What is Included in Deed to Minerals. - The theat ing of the word- "mimral-" ansl "ore" in an deed can* to what was intemiled, to In cosemel by the deed

Thoogh the wond- minembls and ores it a dood, hamel
 miklings for machincty anel mher bedhling- mecorars and anall in mining anil raiking ans, they will loe lect
 orking ,rrin

Mng y Tato Tlumplain Granite

Questions of Negligence Must Be Determined by the Jury.Whem. in an metion for persutal injurios in Msimor, there uza evideme that the saperintemdent of

 fixe that he tobl the morknum of that ohe form Gis place was sate, hut the stone uiterwands Bell "peom anel the ctuplone want of can is for the jury in is aloo therguestion of ulvether the employe aceunicel the isl.
In
In - Ench an action it is not compesent to shem that nom Fichet ham :ver hapenal there hefore that.
Bargons v. Davi-sulphor One (h, (smprome Iuxtivial Contract of Conveyance of Mineral Rights.-An lamb, afler meviting if pobainal consorkeration, declamel that the grabtee ehould have full puwer to conves, amel the grantox stipalated that low would examine the lame and if he found valuable mimerals, would pay the grantor
 and one-half the bet punceds of tlec sale. The suprense court of Sonth darolima held that the rights of the
 failane for eight yoars, to open the mitox, and popare it right- in land in clefeated by the gramee's failure to perhe instroment itself athl whinh forne the be him is the instroment iseff, and which formo- the real omeidration for its excention, a re-eatry by the grantor is Hbincoury
Haw- v. Pepper, as s. E. Reporter, 434.
Sufficient Description of Premises for Mining Lien. Where the satne procons own Iwo bining claima onl one of which has impoovements on it and it appears working them, a notiee of lien neciting that it is for work dine mithin at theiznated period of three monthon a mining claim, with imporovemente, kerated in at particular mining district of a ceptais cosonty, owned be The petrons (maming thesn) who hal the nork dones sullavin inebits Ine claim with the improvements wif
 jelentify tbe mining claim to the vxelasom of any other jreminc. An ibcormect description in a notice monders Fermanden
Fermanilez v. Birkeon (Nopursme Ciori, Cal.) 42

Allison's Coupon Books

The aivantage of the coupen sy-tem for general -tores, and particnlarly when these stares are connected with mine- or of her indostrial establislunents, are such colvil the slowkepur and his ctetomers. These lemke am a beft tels lo the- -tone The enstomet who nses them has practicalls
 prosibility. The etorekesper is prototed againat low trom carcless of di-boneet cnatomere, and besides be has

The accompanving illnstrution shows a emponn tronk bres-fifths the actual xize, opened ut a page if ten cent compone. The coapros can tre made im any denomina hovpang cxact cont up, The usetmint of the the In
 is rapuired To rally appociate the Allison coopern
 woin. These cherctions ane nest complicated in the least tomen cab bermity umberstond ly any wao able to count diowing the sulvantages of the - every small pamplet any p-ran intcrerici, of application to the Allimen

Garlock High Pressure Packing.

It is bat a ferw yeary ago that steam at six atmesphan wasconsidereal is high promere and ua* about the limit

,
munts of the limes fane fonxlood a High Prossure Facking, masle of selected fithe nod netal, in combinaWhil with the ectelorated tiarlock packing compound,
 year.

This packing is eqpecially adopted to bigh prowure work of kocomotives, stationary and marine engines. Ple conetruction is withorat question designed to furme
The method of guarantexing thio packing is to ask cus. mens to try is and joige for themeelves
If you are in mant of a high prespure packing send s simple
Marle in quar

Electric Portable Hoists.

The application of the electric trintor to portable boists out dertick- is illustrated atmirably in the two boists which the Genernl Electric Company has lately forwith an important ekectrical inslallations. These hoiatare of the double drum and single drum type rerpective-

motor, the single drum loviet by otpe of 10 H. P. Each buctor is mosanted upan the satue bed plate as the hoist ambl is of a late am e eflicient type, resembling in eseneral apparance the well known G, E. som, so extensively cmployed in malway ervice. The parts of the motors are all modily acco-ible for examination and repair, but ans entimly covered in by the wootn casing anslare thas
fully protected agaimst dast, moisture and mechanical injou

The armatures are iron clad, tacls coat lying in a slot Thue tom enc cotirely below tise ontside shiface The The contwilhts are known as MI I. and emboty all the secilent fraturs of thercontmiler K 2 uncal in street The levery for the brukes, centrollers, vte., are so arampal that full control of the entine meschanism is hat

 erwond Compony: Then
and 21 inches lones.

Easy Lessons on Mining.

This Department contains articles to assist ambutious Miners to educate themselves, and obtain Certificates of Competency as Mine Foremen, or to become Mine Superintendents.

The articles are written to be understood by the unlearned and the learned alike. Plain language is possible.

Further: The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors, are printed and answered.
6. The Series of Articles "Geology of Coal," - Chemistry of Mining." "Mtining Methods" and "Mining Machinery" was cammesed in ine issy

CHEMISTRY OF MINING.

The Diffusion of the Light of a Safety Lamp-The Correct Elevation for the Light-The Correct Angle of Diffusion-The Diameter of the Glass Cytinder-The Lamps Miners Prefer-Refraction of Light-Good Light in Safety Lamps
B9. The Diffusion of the Light of a Safety LampThis is a matter of prime importance and there can be which the right angle for the diffurion of the light has been provided.
The wrifer hase ecen lamps that were fanlitess, in se far as the inealation of the flame and the simplicity of the details of construction were concermed, rejected by mins
foreonen ard saperintendent s after they hard irival them. and foand they "did not like them becane they gove a bad light
the qualities of she oat or the wick, bot to the angles of that no miner tikes a lamp ber far to raiow to the leve of his face to see him friewis cyes, and he aloays dose horrible lamp.
It is remarkable, that too little attention hav leeen
 many of the chetaile are wrongly proportionech, atel this is especially no in the case of the glass cylimeler, for we find thame withes it set at the uronge elevations If is trise the propertions are bedter in some malke of the lamp portions are milavorable to the pookection of a goon lamp give different bengthe ami thicknewe- fo the glase cylinder, absl it is interesting to motice how these varinand stranger still, is thee fact, that in the jouldrownt of the different lampe you invariably find practical men cotse to the right conclusion attbingh they merce assign irneciples " i or by their fruits yy shall know them." These nen carry a lamp one sfift, and they actually julge the lamp by it p patential, and by them the puten-
tial is masual by their feelinga, and if they say the lanp how not please them, rext assurexl it is not right, for they are seldom wrobg.
To prove this just examine vone of the Mar-aat banyrthey comlean, and yon will lind that the wiek pipe -sts the flame too high of too low, or the shell of the glass cylinder is ton thin, or tho short, or too large in diume-
ter, or else the frame of the lamp is made to pratrude en mach as to cut off a bigh percentage of the lighs, int to akenred sobuething, is urong if there men say they "d not like the lamp.
Let is then try to discuver how the diffasion of the light of a mafety lamp is affected under proper atsd
improper conslitions, ami forgin, let us comsider lirst 90. The Correct Elevation for the Ligbt.-We wil procecel with the assistance of Fig. ILN Hone is will be sented in two vatneme and vpposite proilions, in tas

case at A too high, and in the other at If too low, and the rewilt is the axis of the hean of light from A baker an amyle of depression, while the axix of the Fencil
from $I f$ makes an angle of , levation, ansl themton the lamp. A illumimates the tlons of the mime and haves the roof in tlarknes, whike B illmmines the roof and leasw foms, objectionahle, and ratber gageerl that the axis of the bram of lighes stooald be in a forizontal platies, but experivoce teaches that the light sbould be thrown notiexd that the term "rather move" in not caleulated to lead us to a reliable conclusion, and shomkl be qualitien

thortening of the glang cylimiter of a safety lawp. Pracwe said the same coursolves, 'Aive bue at Iovy lamp to

 mere mude, the better mas the- lamp adapted for imbuersons in a stratum of ghas Buating under the vouf of the Chamber, and the nesult was a stad lamp was said to be x mus uith imporovement- nuel! as ne tinal in the tiray bamp,
sratum of pas only nie incti in Sraturn of gas only one inch in deptham be detreted under the romf, an the air to fersl the tlame at the periosl of teetigg has to passalown tubalar poles ed amis Askown in Figureliz. This lamp is bunneted, and when used for obler than terting purpores, the poles is cat off, and the sapply of hir is then mintmitted near -tramge to xay, ar sern in the figeng, the ghas cylimber is lowe stowing the gas cap on the flame, lime as the only abject of thin *longation of tire glass conient glass is so fixed that it gennot increase the diffilion of ther light.
In fixing ulat phomld be the thinensions of the glass prisciples that shookl gaide us: and for the prevent, let ns noHee plass ethendi. Firsh, then, possitber, and the diamenger as -lont as pensible. fir the fength of the glae- chell sheonld foc 1) tatw- its diancter.
Haxing given aftention to the diameter and length of the glaes cylinder of the safery lamp, a principle of conan answer eyisal importance cont is this: What shald he the theknese of this glaus shefl?

is ue vanpot exale the

answer, and the wame the guciont, we mast provide an mower hiad the teader mand assist us with hiv foredearmee whice ne try to make interesting a problem that is
tomewhat involved, for we bave now to conkider the onfraction aml interference of light in rulation to the joractical nequinement-of the miner. However, "to patience and faith the prive is enre," amil with the belp of Fig. B) actannot fait to weure the solution of the problem: Laght, in comman with os lier modes of surtion, is most whe abeng the hine of leat re-i-latme in th jerm, 10.1 abuple, when light striker a plan glass surface obliquely. the ruy suddenly alters its evourse in pa-sing through the glaes, as in the case of the ray ab it now taker the owarly parallel to ita coume' at the montunt of incidence that is to say io is is parallel tow of. There is much that might ber vaid ahout nefraction, if ne were treating on physical science alone, but otar subkeow tor the gresent bow the refraction of light effects Tht sulyect.
The reader slombl, howvever, make bimeelf faniliar with the cffecter of mefraction, ruch as ane within his vach, to cmable him to befter momerstand this subject. For example, light cannot pass thruagh air without nesotaner, and therefore refmetion as form in the atmosphere where the smn's rays have to gase through stiffer"at depthe and towatice of the atmosplieme. Water, mowever, furnislere the moat convenicht illustration for here introbluced.

4. Refraction of Light--Mack actin, kay a comt of bickel, vo the bottom of a uater bowl, near to ooe cide; then place the bow in a table, alld keqping haxt yoa the top efta of the bowl jast eoncenls the coin. Wbile staming luwe, let an ax-istant geatly pour water into the bowl, and as the entiace of the inponired water rises, the coin will come more and more into view, antil the voin and the bottoin of the bout will appest to hase been upraised. Now we have bere an example of sat invizible buly faing rendenal xiable by the refrection of the reffected light from it image in passing through whter, and inked what here takes place is the amalogoe of the incrase in thee angle of diffiseion of the light of bee safety lamp. Havisg mode clear a hat we manan by effraction, of lave bom te consider the relationslip of

and therwfare we gev at a glatese that the thick glase fices as Erathy angle of sliffesion than the thin one, for
 wifi find that the suin +xpriment sustains the sanm
 greater skpth leings the cxin mome int..
 or the am dow to the thowl plass.
Wi tasas thon coneloche that the thich glaw is the wos before accepting this dietum, ket the notice, a bigh me raction is the wati iof a high revistance, ami a cotm-
 with a thim abo- if we relace the dateneter of the eylin-
 dachinge of the mext le-sun to furnioh ottur fari- that uns figure a- withexen oin the ital.
95. Good Light in Safety Lamps.-There ane oflow maftere of mopetative beside the thackocers of the plase is the gasatios of a motise column to liring live air te loe flame of toe latap, 3at we bune all aikut that uith loet dowe to nhtain a mentice coltom sombernevrate
 his, litshe or wo provi-ion has loces mate for the coss

find we cuntime to as there laspe will geve hom abyy as illostratav ly Fig lis, and here we fimel the ollames is furatabeal by clu

 "ycon air tow gatke diaphomgens for she feed ait te
coss throngh, then the canatle flame will pour off amd then Juts will mbonit that the naferl lights is herd
 overcouse sloe meistane
the air is solyject 10 in it patage to the tlane
This is exactly the came in the Mowecher lamp, the
 cylimire, and uiter that it
has to foree is gawag haskog the mes-lex of sho
phragen that -apports the funmel, imit the wank of thi 18. hon only is the glass cylimder lodily alafsed for the
cliffusion of the light, lent the comditions of comination

 at the luttom of the bang, after the original thea of steploenoses, bat in the sater of the Stoweser the feen air

rhe frat potentiat of

 lat ins Fras all the and

of the flam

MINING METHODS

Underground Fires Chemistry and Chemical Action

 Chemical Changes of Carbon-Extinguishing Un derground Fires-An Underground Fire in the Fires-37. Underground Fires.-These can only In kepl athier saljgetion and altimately extinguishod hy correct
 Fin is a manifectation of very active cleverical action, and as thir action is the rwaliant of well known forces it is capable of loway rocrained of remelewal passive by
 in a van ther fist is put nat if white a tiglitly clonde is burning after the expiration of a moment of I wo the flame of the samelle expratems of a moment or ivo the latue of the candie willifecat, or, in oelier uords, chemicaladiots will cease.

 the oxvevn lomros the fuel, and to ome whi. has net ctoctiedt the laws of che mieal combination ancla a stat вum will modembe be in confliet with lus proconocixed butions. Tofthe chemist it is as exrrect on say that it piece of paper burns the oxypon of the air, as it wosld
be to give the common renbering of the- "proration and say the ".xygen bomme the |ajer. Thes is proved by fiving a luacket and gas barner in at tank, and then
filling vee vessel with coxal gas. To, the barwer is fixey plationg wite, and this is pot in circuit with she gen-
 the pire and cot of the lustmer, the same tanoment the electrie curront is turned on, a been it lights the os veen jet at the gas burber, and we now witness nxygen gas or table flatuc in an atmephere of ceal gas, fhos- fally ens-

3s. Chemistry and Chemical Action.-That vatiety of chemient metion called fire is the rosult of certain ele hent- combining, while in at awoone etate, or in al clab in uhich they actively hevary each a Mor, and poralue koalor thas think that the writer cares thote for the

 serves is $x,-10$, and liefore we proceed furthor with the
 If we mis Imu garts of "xygern gas with one fart of cod
 Ilanie Es bagat into the mixtame, the zar- will meve Fight is intraluced, the gave in she tmaxtore oublime
 Well let us have another try, ami this time ue will tal a preve of cineler, coloe, clumeval or cartum, and we wil

 enath sloulde. Englaml amb at she interteretion of al

 fttee of the Cobmumbant and bere Wreve the remains of
 reve it perfect a-if the lire had junt died ant. The cat bus lad lain ous that hearih for g,000 year- nithont un promis if the Ifotant cimber were pat on a burnims fin and the-se raized to a foil houf they would bars or oxiding he hift hot it -mast quantity of tucombaretible ash, for in hik sa-e the heat wombl make the rarkob mesom. sitil eave amoller try so bumarth the right definitions. Well. all the chomigal stements ane pasitive amel negutive to ive, ast nill a mgative extubume: n ith a hegative, the in igh sleqree positice and regative to esath othore as heomght togetlac, they comblise on greadily, that the

 "me combore with oxygen that isalson megative, lom me

 89. Chemical Changes of Carbon,- Now, thes, Wr ser

 conbline savaghy with that gas This explanation is

 Gampe chormally active our wrocul, alal it i- for thic rest

beconse they are ny marnot that even ane containing
obly a trace of oxygen i- ouflicient on feed the greedy monster.
Noas that mo mbolerstand the tactics of the enemy, we may aseat him wath sucrown
38. Extinguishing Underground Fires.-Then let wh

and it has been decided to eat it off at its rery seat by a stopping at α and another at 6 , and let us wateb and see what will crevar
Fiod-The lest will camee -och a great expanston of he entall votume of confineal air, in stich a mestricted pawe, that by its great presame it will force its way
throngh the stoppinge, and joants in the rood, floor and sibles.
Arount-The leat will convert any mater in the roof hok, thoor toek, or the soal subes, into oteam at a very roek, the reos, floot amel eval siaks will be split and beoken, and thes it zeat numbler of vents will be make for the breathing of the fire.

Thind, Ther fire will at nowe spenad into the very beat of the pellar $/$ hecoubec the cat nill be cracked b- misal to 1. better momk of treatment the ahole mine will eron be bire:
 The following kest s mould have follamod:-
Firat -For it few davs the fire would hern forvely and Firat.-For a few days the tire would harn fieroly and St cowt,-Ther temuprature of the enelosed air would wey rise very high, mog wonld the grescure of the confilled air ever be much atove the mormal privenre of the

 wails wonld jresent an vormons sarface for the aboorbions of the losat.
Thived-Aitce the oxyzen, in the largo volame of air, that buite the five bum firfeely at first, was all consumed, the breathing of the fire woold be very -low, becan-e the potcoure womat he fom tom, anht the vatame of the ets-
 the stoppings were buile, bernce the vent-for exhalation woulit be of a very eonesticted character, it is theen gamifert from the examples |nfore us, amithey are the natoitue of the wrict evxprocner, llat is a damgerous experinsent to evastrict the-region of an underground
98. An Underground Fire is the Workings.-If a fire recurral in a rovim ax at F, Fig 1:2, ne mow know that is weatt to athogether as serime mistalec to stop it off

by stoppriags at a, b, and c, aml f in the cross cut, for are sunce the heat woold rewd and mashithe thin ribe and. In the xaine rownt, fo fix tho-stoppincsas at I ami B, and

 Soe lange sarface for the abongtion of the buat, and the prossan- monht be kepe lew by the-great space that would incotnaliza the comprewiou of the hot gasek
92. The Effect of High Pressure in Gob Fires.- Aacen ricary umierstabit that the damper that tends curiution in ther poronm of the eoutimed air in whith it Secs sumestimes anal fall- at wher times below the
 aitrgen will he coxpellal it the ration if comporowsin atul womon inhalat at the pertorl of depression, and the
 of then limesting, sual that iv, in st-lam in the region Thete are many can-s in which this would be rery tifturnlt formary ont, but whome it can In ilow, it secores
termine the lowight to which uater should to raised in the shate or eloper to bastaina pressure that uoulate above that of the atmosphwer, and if such a presam
conld he maintainevl for a sutficient persed the gob could not inhale, and the noult would be that the meqvosary

chemicalactixity. Such a care is illu-trateal by Fig. 131 Here dams have been fixed in the slopes as at 'and
 The fire to the extent of the differebec of the water leve is compreseed in thix ca-ce. Them is onty othe way lable, am that is to maintain the wator levels if tha curs at an evevition above that of the higheat pront it
the gob, and then slould any lrakare wever, or shenht the mater ased for flooling tint a downwant rent intet perenare cond mot be removed froun the fire, othorwise casse a depression at tlee wat of the fire and at the same
time prothee an intlow of fosh air that would mokitull. the bire, Safety then can only be secural by maintainimg the water levels in the shafts or slopes it the rognired

leight. It is ne vary matter to extinguinh a mine fire the whole problem in bowt with diflicultice that rygin arrest of the eneway.

Fh. Hoz furni-heo anotber moube of treatimg a mime os the crown of the fire rgyion, and a dam las- leen laite object of thix plan is to drown the fire, und no doabt -ome cates thir is the lecet moxle of proeveding thut conid be adopted, erperially where a copionar flow of uater and cheaply lifted again. The inflow of the water is course of the outhoming air is imaticated low the npuan arrow. There are many cace, howwer, shere thiis for thie reamen that me mast still continate our lessons on the sabject.

GEOLOGY OF COAL

```
The Life Indices of the Coal Period Geology a Reg-
``` istering Thermometer-The Pentagonal Charas 55. The Life Indices of the Coat Period-There cal be no doubt that life is real, abil with the successfal man like a giriken without a mose, and as the biner require. a b-fitment of technical knawloflge moch more compre. hersive than that of ten in many ofhici professfons, the of band stody, and at the satae time In plaviully in line with his daily parsuits Now we are happy to cay that this respect than loe, for geology provides him a mag. nificent play garden in which low may pather otone lities for his eahinet, just as a child mashere flouers for a picks them ous of the shingle on the ovean's shore. The tman's pleasure, howerer, may ousetrip that of the cbild,
becanee he has tope for his imagination to posive in
rgietering thomonowsere that leane at the vomb-uf th
 that has been the highest temperature of the day, to The lowest temperature of the night. Or, if yous on that time the indices slaw the loghona and lowst tem. peraturs of the whiml. prrionl, uni from this we may
ceve that if regiotering thermotmetere when placed at it
 eonld by this means cheteramine the mean temperiture
 the radinge of the tsol therowontery that tman cam
 simply dizinuse of natural ranges In the Falonenlecit points is divided into Iw ovpal parts calleot thozers amil in the Centigrable- theromometer the satue raugs- is tivided

 tion to the preecot, and we bay be nure, then-fore, thin cad woakt meft af the same towperature in farturnifer may with perfert faith take the figures that are the sath-
of ther becl- in which theo creaturen lived
\(\qquad\)
\(\qquad\)
\(\qquad\)

coral polyp is tever foesmi mow living in water at at temperatury of lese than QP \(^{2}\) F., and as we know that thes

 cancties of cont polyp that livesl in Ife Carlioniforous heniferous periol, became we know that the bws of inorganic and organic cloemiatry cannot chamges How. nhen it can In made at once a somere of photan anit ase tul knouledge.
```

57. The Pentagonal Characteristic of Animal Life.
```

:ammat- attached with rochts from whinh mien a tall arrying on ite top a tuft of tratacular lowking procyoves
 ofleer times the liead looked symmetrical, and at celie eimes if was so beantiful in she order and repetition of
its cumal parts that whon is is con mow be a meolorint is cotonal parts that whent is is sen now by a peologist

The erinoid is sonowhlat allical to the comals, hemee
 their develogenent that ecach ruccecting povigical age hate prodment its charmeteristic crimnath, and this was

 Shat the forionl was distimgnisleal abous all the parcodFig 12, Those star-like vrinoids are slown at i, fi f.

low, in a particular manmes, they mere related to all the hopher lite forms, for theer atome flourers of the -ea had hew Trentaguat plomes and patal, That is Chear rastisToan was in the order of tives, abst in the freper they fisho>hase sheir five ratys, and thenofore the pentagonal
 arlar. The hoart is on hematifat that in fook ing it it yout tive primeipl.

\section*{We we, llen, that ifre crimuits an to the miner genle}
 ight I appears mof to be in asternid, yet by closely
wowning at the betton of the toft, thece of the five mitheles of tentarke can low di-tinetly -een, In the caser
 orature is won folding its arms as a cuttle fish dess its.

\author{
MINING MACHINERY
}

Mine Dratnage-Correction of the Pump Balance-1s There Such a Principle as Suction? - The Hydrostatic Balance of Pumps-Diagrams of Water and Mercury Balance.

\section*{104. Mine Drainage. - Thiv ina subject of an buncls ins-}

 poricht tai pipe with indy of the lau- of gravitations. For the waler to thos
 one aboce the nater colmon in the piope: and the ecousd is, that the preseure of the atmocplare shall
 flatr: The case has leest modoeith corvetle stated, but tamling, abi we mathay therefons contimbe the sxplana-
 To the definition of the batance given let ue whe an illu-iration, and suppoe that the pieton of the pump has
 o one gunare foot, then if the piston has moned upuand frum the level of the intake mater, or from the sarface
level of the wator liftesl, 20 fees, it is chear that if ene cubic fowt of uater weigho dizs pouming 21 cubbe feet
 toe fine-zire of the atmomple re has lifted this-weight, it A cloar that for it mot to act, 1 , 2501 pounds prosure is-1 Gave fout has box-t romased ívan the top-ot the coloman if water under the pistofn, and therefore the resaaining promis jur enjuare fioh and this is exactly what is the ase, for the prossure ot the atmospleme in poanils per that in a vertical pipe to foet ligh and cloced at the top

 soner by this that :35sen feet of water colunn exactly bal. ances the lenssim of the atmexphere, and this laing sob
 popple prognerino that a uater cotumen of 20 fed aill be the propution of the whole atmoepheric prossane that is

or if zasks feet of nater coltasm talancer the proveres of the atmonelere, by a simple forgurtion ue can find n hat height mill talame 1,2:6t pounls, for
\[
2,115 ; 1,200: 3: 31 / \mathrm{kes} \text { : } 20 \text { foet. }
\]

Sous ue mated ith the legginning that if the uvight liteal max ablded to the grvenve lemeath the gamp fintene the stme woshd be rymat to the pressume of the

 there in an casy nay,

\section*{}

From this example we charly slizoner that the whole matter Nowlec- iserif intu a qtar>lion of a talance.
105. Correction of the Pump Balance,- Fometimem
 tiuns of the qualifying merit- of the ca-s. Then lef it
be umberstont that the equation gisen is purely thomeri-
 Fivs,-The pressume of the inflowing water bas to lift

constrictiotis due to the pert uay of the kalve
Avoul. Water thoving throngh pipas is subjet to ersistater arising foma the wave metionof the floid, ahieh is knewn as the friction of the moxing thoid
Therd, - The nows moffoufer introntreces at revi-tance al lie intake or juri of ewtry
Furton' on I
Furfler on 1 bere canco of retolance will Ine duly alloweif for, lut in the mean time let us uot lose sight of the tart that su far us suction is eobecroxel the presoure
of the ut moesphere remains conotant, and it may happen, at sometimes docs, where the valve nay is constricied or the tail or intake jefe io terinmall in diambeter in rebation fo the diameter of the piston, that noth a sle feet
lift the the the abomonal ressistames being equal to it, amel when this is the case we have the following singular equas-

106. Is There Such a Principle as Suction ?-There is anh a principle as noction in the action of pumpo and sher kiminal afylianeon, and the woerl in expresele of "hat take place ulen a tlual forls from a bigher to a
 expromion that wonlit mot be half - on explicit. Sume ay the inhalation of a parny take place by prownere
 mond staction refors for the andion of the somerthing that makes the deveresoion; if, therefore, we dimenctine the ore of the word nuction, uxe sumet insont anothor wand hat besime moltor
we grant that many pronans ase the wond suction in a mectuliar vital mation that is cumside of the primiplose of
 take for the sucking of ther young of mammala is the
 in the tumeth. Wateli the Movernent of the Jower jaw of the offspring voleking, of experiment on vosurelf, cme

 atmospleere inte, a deperssion. We will therefore wontibue to Hse this coernet und mued exprexeive word in lis and the future lemon-
107. The Hydrostatic Balance of Pumps.-With thw Ise-1p of the explanation alroaly given me- can now take
in hand Fige Im, and we lome the resader will cujoy the
incetigation. We are atome to typate the kalance of asight anel preverve thring the journey of iter je-ton of

 that the aimpospherie jresolire is eyoal tod the proment
 angular slagram is show 11 , and the objert of thes is fo
show that the amount of mexchanien wowh flome al raw step is ryoul Io the arra of the triangolar spoce below the lime of clevation ; and starting from the xem heright or bue ele cation at all, we will fimi that turimg the

 quarter of the stroky is propurtionate to the areas of the

frow. let us begh the upwand partwy of the pixton
 side of the pieden has rienn onecfourth of the stmike in
 we fimel the theoretical lalanery is

\section*{ \\ Weidh of \\ the Pivicel}

The work done will to equal to the weight of wate liffed maltiplied by the loeght of is- conter of gravily and a- the center of gravity of the collamon of \(u\) ater will oeent at laalf the beight, we have 3ith.2s
2.25: S12s font-panaly, or the mork dome in the firs guarter of the journey, is equal of 'ath of that dome during the fall strotec
Neest, let the pistom rime to \(C\), or to hali the height tocanestroke We now obtain an instrietive syontion, spableth meght of ualer hanging will be exactl

\section*{Presume of the Wizhtef Promire Eimites}

Amil the work tone for atme-hali stroleve will be equal

Now, let the piston aermel to the elevation al \(E\) amb
 25, \(5=1,595.75\) pounds.

\[
2155-150.5+331.25
\]
and the work done for therevfourths of the stroke will

Suw, to somplete the stralie, let the pirion rive to is and here the weight of a solimin of water obe sguan
fowe in the laze ansl it feet high will weirh 2125 poonds, and therefore the thevertical balanoce will

\section*{} 2125
The- work doter throughot the etroke will be 2133

\section*{=acigs foot poands.}

From the stampoint of the ealculated \(n\)-rults the diagram of nork cannai fait to In inteneding a- by it ne can -ee in a zraphic manter the reamon oly the anrk dotie in the different guarters is so divergent that it the first quarter it is only \({ }_{\text {INand }}\) and in the first half of The etroke 't: making the second goarter fo. the lir-t tone guartere are equal to the thon making the work entire work being tia, we timel the wofl done daring the last quarter strube was ho of the whole
108. Diagrams of Water and Mercury Balance.

Teet of water, it is only after doe consideration that the
 cons at \(13, .8\), and a colamn of 10 incture or 2.5 feet of uce fimithat
sel the work done by the atomephere in mising

 the work done in raising the natey

The work done however, in tabing water into a

done is 1 , of it is aquat in the anea of the triangle of of and the work skowe for the sutime beight is 4 thees that dothe at haif the lieghlt, as stown by the four friangles 1, 2. is, 4. Again, the spuame rout of \(508=707\), is equal to the beight, of \(\hat{0}\), if she whole lowight be taken at 1, and the arma of tioe triangle of \(\alpha\) 5, i- squal to the area of the :xay foow in raising the exdamn of water.
109 The Velocity of Water Entering a Pump.So was slawan at first, the relecily of tbe uater enter-

mach less than the theoretical velocity. Now, in Fig. 42, the vedinates to the beft laani diagram repeent the therpetient volocitite at different hemghts, that
 glantisy = thenofore, this cut-a - tion of the diagnam as

 we jore abother bargin off the edugran and the ordimaker of the relative velucities are mow redneed from
 ", und from \(\hat{C}\) oto \(N\)-ami >o on. hip of the ihomitical and purtioal resulte.

\section*{Large Electric Locomotives.}

The Weotingloame Electrie und Mannfuctaring Company hav meepived the firat clectric lochmative manufae-

 Lecolontive Xorks of Thiladitphas, In apreatance the aml it alon Nlaw \(\times\) radical doplartumas in oullaw ion five, and it aloo kuwn rasisal deparimes in comatraction fom
 Sus locomelice lave I
 maly of the car nil suly contann the controthon appat
 haces as are usualy carrive hy ath
Buse of the charameriatie feature of the lo

 dianoter. Than will his four mators of on h. pe cach
 im weipht of the locomatise will the placed shan the (re weight of the lowanctive will tee placed uphon the
 rer) melvantagerons one over caloy lowonotives, where anly a shall p-revitage of the weight is available for adlewions.
The locomotive armpletely aptipitnal will weigh 160,000

 poot or the loowmotive. It is and atoal that white the elere
 the Halfwin-We-tinghosee lisconeative will co-t lems than orn-iliord of that amomit, ant vet it will he able to acecontiche the same work. The Haldwin-Weotinglbutee

 "ngiee, rates at 1,100 b. p, capocity. Thes theren will be
 bave oix driving whede and the shlateractare will com--t of a sluet iroa sah. The wwitelang hustonative wilt
 manafuctand locotomices for tannel work, suhistan trattic and ralk forcomotives, as wall as for clevated railmaik.
It in "'spectevt that nithin a few alaye the: seomil loco-

 one will be of the elevatex nulrominfer, noil is an rowe of Sew York.

 Vedimglowse-Bahlwin bocourdive will In equipued with aw-haker, which will be coverated in the usaal
 Tht which will be 4 rivell hy ith electree motor
 loxigneal on a* in he milized with ans medbod of elecrie Irattion. They can he newi wilh ilw trolley system,

 sugniries tam copme from alt ory the motht for sueti machimes, imelisutimg the uobtherfil demard there is for such engims when thoy are mannfactured by such well known firmas as the Jaffor in Lecomotire Works and the
 \(x_{1}\)

\section*{Miscellaneous.}

\section*{THE GREAT EMERGENCY MAN}

\section*{FIRING A BIG NAVAL GUN.}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
There will take placr in a cery sburt tiene a lest whirls will \\

\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)

THE ORDINARY EARTHWORM.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
 "have playcel a moove important part in thee bistory of the
 croture las chasued the texe of mature We uill limet con

 turn ranmL
The burrow s ane formacl jarily by pushing away the conth The harrows are formox jarily by pushing away the onth,
hut chietly by the earth beang awallowed larpe guantitic

 coreral by the Worm when haried in earth, in preference to
 to driw thens in by, This is remarkible in oo lowly veran
izol an animal, feing a degrew of intelligenie pod jueseser

 sorms in an acce of ordinary land suitable for them to live
in is 53,000 , we can imagioe the great effect which thes manst have on the wol.
They on, in fin
They ane, in fiet, continually ploughing the lami, At one
gart of the alimentary canal of the gorm is a glearal, or hari fart af the alimentarg canal of the \(\quad\) orm is a piazard, of ham

\section*{ENGINEERING BY A MOUSE}

HOW THE GOVERNMENT BORROWS MONEY

\begin{tabular}{|c|}
\hline \multirow[t]{21}{*}{\begin{tabular}{l}
th ilerife Them ate -ryotal was A prizate contrat mas \\
 \\
 to impor, lant whish are not dearikal in the bend- fleme \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
Nox gorectamest may, liomecer, diopebse ehtirely qith the \\
 \\
 Tooly, and in larar or suall amounts. This is a "pernolar \\
 tunity fie all who wo theine to invest semery in the loonels. Fouth' Cimpersium
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{Ther has lope twele in the luast af the Estomers, wo the}

 avtit are emplogel as sloplust, ami in ontomes thay live fur

 Kilos Valley are relacot to a bou imbicitamk

 most amel devent slelter their thanolats wonld prabluall)
 The fint that the twarla drak monts at a jartivelar minera

\section*{ODD PRODUCTS OF UTAH'S MINES}

\section*{EXPERT LONDON DRIVERS}

\section*{FATIGUE.}

Fintigne io the mutural result of Lakor, siol as sucti is a It ix one uf the lan - of oreanir lificthat serive of olavation
 ir regooe for about one-thint of the thes coflabinat by vach

 times a minute: the cibrations of the mapiratory organs

 Abeormal fatizue, ustate appoce hing eshuastion, oreurwhen obe attempas to ibiter nature's rivthen: whernthe hours
 Irimen to further exettions
Fatigue of a kimi kown as nvertrainime esolto, in the rase

 i" paraly-i-
While cxowsine fotiete is is itself unwive, one of the chief

 great exertiom. The apslication of twat fo flew surface is

A MYSTERIOUS CRATER.

\section*{The Telegrapher's Ear}

New Inventions.

STEAM BLOWER

 be tone withont stopprine the blaker.

AUTOMATIC COAL BIN
 before and ufter the bucket has-leva fillat, and Vis. 2 stums
 calat be kept in the cellar or busctient. Vach fleor or ternant

\footnotetext{
is providel with a heobeting apcaratiss abl bueket, whiol
} takvocal from a oritain comportment of a geteral cxal tion 2. Vach chate is prowlitel with is rowline frames A? which
 shown in Fis. 2 by sneans of the leser \(A_{\text {, ral }} f\) and arm II
 forfo, the zates are rovereed as shown in INe. I. The puatiry cach filliter, mal is limitoll to the amount whith is cayigh

 frame The chan runs thimesh the thiniar fraber bars

 MINING MACHINE
\(\qquad\)

 dimen by meate of the problet wherl fe st the nar. Thy

\section*{Weng rxtong as thesimel, hy mand} tisg team tomp- to furm thes vals

 tempratute Whon the oor is fithel with stemen, ther mapheta

ORE CRUSHER

mak is growet in dameenn- quantitios by means of electrivity,

 C- the roment pases, the cot of the wiek inquickly wamol. The lamp is then bifeding, amb as the carboer wrorate, the
 HOISTING AND DUMPING DRUM BLASTING CARTRIDGE,

biston. The friston will fly forwarl ami strike the trill har X, and in so doing, will close the exhanse pert E, ust inlet

 dastimg to be ferformeat in the presenoe of imflambable gas
sithat isniting it

 anlmettol that shet the onter ehell A Comproseal air is

 a flamerstimenthong sulefanv in flaw fiem uf a try formber,

 T1m at onter laver of elay

\title{
The Colliery Engineer x \\ \\ MMFTAI IVIINFR,
} \\ \\ MMFTAI IVIINFR,
}

PROSPECTING FOR GOLD.
the placers of yorth america.
The Lacation of Placer Deposits in Different Parts of Nerth America and a Deseription of Their Peculiarities and the Metheds by Which They Are Worked

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\begin{abstract}
-tram, but whem this is much oontracted, the force of
\end{abstract} its wislth is imereatel. Miol of the slates are retten and crambling to, a connulerahle dotsth, anst in clearing uy

 the grester part iff the gold is foamd lying direetly on cont in the gravel a few feet above it
The -ide granimi is worked up from the clamusl it -accosise broasts parallel to at. Tlue average yivhl when Dawson visited it wam 3 , bunce to wach ort if timbers, the set bucoverimg alome 3isquan- fove if betl nek with
 worn, which mas have swem shown froen the hillegles
 venty gomat, though sill mixet with elay. Itwing to
 timbler are only it feu incher aqart, and workinge are linad nith cuapitete baging. The timber is mascive, I to feet thick, of
dolisenal at mine.
In many farts water ximater from time moif like :
 -urfac: by towket nye with friment gearing siel water fowne. The whole
of the seep workose ane anoualls fillen with water ar the time of quriog bond- anal it is late in sumbury if
 mastery. Thic account of Ihaseats gives an onlmiralble bleas of at 1 ypieal mige of thi- kimel mes suenele for the
 -imilarls situatol it cozinane far athe:

 Farev 'gantits of the water amel the in-
 The lowerg part of the chamen ludil.
 "gaally the ' gay" was talentinthes placer- fran the hottoms of the deyp

 carly day- mach was left that womld cyen bow jay lambotudy, lust cantret lo foand in Nocherd in iscousht
 groumd tilhal with okl titaloring anil
 of pold sill remaining in Nilliang

 phlack Te, thenty tivh, hom Hptomining
 If fereat the placers have abeutseal the laloir of the sumer. The Kowsemas
 greater |xirt of the gold range epreater lant of toward the worth is
 tation, grat atx-tacles to the prom
 babels furtler north are workeel at eformumedi-ablrantage ow wing for loving

 the suriace ons the stasly atho. of the valleys, with is -lourt sca-wh doring which the water cemoses are liable to.
 preits, however, -liow the continnity
 the whele covaree of the river irre Pective of the firmations mor uhich
the river man row In Vancomen

 proce, inom puatz vins Iraveringe which the allacial
 amblistribation of then - lat x aman is mongrian The

 mecomblary origit in the sithe There slates are prets

 tosether with flakero of gold. In som many cases it is me
 wak fommi n lo re the afon-and -blec erveert the river

 mek - or At rean tail a coarev couplone rate in-leat of

A correspondent of the sam Franciven Colf writes from
 empgoniex in fimehing ap, their masen's Wowk ivporteal
 minase On the Wavorley claim kedroek lass just beeon struck after is vears of quict steady working by poor mincre. lich placers ane reperied on the Yukon river The langat mugget taken ont law ecaeon in Alakk mate on Gilacier creek. It was morth itㄹ.t. The principal jingle on the store cunntore aml tanc is gold that.
 Cug is the high carmival ami falancing the wales witi evels for that amount anal the eblowle buser, bume broke mimyt- and all fill 旷, the Net- ontil thin anment rums ont, when anaflere bather with a long kack stepe "p 10 the har and lave tomen his shos for another sappls ef tickets and thas the long wibter lomars of tarkmoss an sty-nt.

Thie latera ami nonst comperbensioe shetelo of the min.
 by a friems, Mr. A. L. Proston, who has juet roturnal from a p-lueral -arcey and gropecting trip wer Lhalom

 of the rivere

The hanks are low and thes are working long lars

In lititish
Inden
In Stritish Columbata it is clameal gold can loe formal in

 gear the I'miterl siates boundary line pest of ther Ifock-
 funge aml gonssouth 201 mils. The lir-t gold uorked
 ervory Alreatn from the eas virle entains placer mold as

 hurbat toe the last ior \& seass. The alituele of Chitm
 athl are still uveking atisl grimling down nok be and gotel The bast pay has becul deaten late in the seasosit at the foot of these zlacione. The-side streame as well as the

Itwe thonl- have rom off amil befon the land freexing of Actober. This high water is saused by melting of -bur- by warns weathee. Rain asaally lowers the watel the the strams hecanse it makers the mowntains so water is darimg elear, brishat lou moather. Thas the stuw rather than the ram is the cane of rise or fall

Ther gole is fanty cocorse and fromil mostly on bedicok

 In Tast Chance plaser worked four geare digging doun on butheck, xixty fovi, will a hyer of water to evontend with, only a fow thenthe in spring and fall available for Worhtug. The Wothe ilouwned ont in smmoner and frozed if it minter. The prepectors mam. their owit womken wheck and pampes, packel everything over a rough anai 75 miles on males. They has to make bridges acroes stoman which neve liablile to be specelily washed away aqain. For rapplies they would ranke tuo or bove tryge in the snminer swash. They drifted the first casom in bestrack, hosting the dirt to the surface and washing it in a common sluice bux. In the brief wason bey tosk ont \(\$ 7,00\) and the folloning year 810,000 and
 iske of the folumbia an attempt was turde at hydrualicing with canva- licer anal an cild fashioneal brass mozele like a firv lowe ami fifty fect head of water paner.

They are working, however, on a
mewh mot a well defined chanmel and leench 1 iot a well delined chanmel ami
the material is all glacial strift fall of
inmewe bualdets.
 are cxideneses of remaine of quite ex-
tenave groand sluicing done in the tife and they base uorked upatmost tanker the procent glarters Shespert-
ing done lure darims the last few ing show lure during the last fen
vars has given fairly gond returns, bust mo work of any imprortances "Out-tit-" of Z or 4 pariwe are working
 sman trying to get down to fedruck and putting a little pay as they placcer wotk ir lecing dome. Mr. Preaton mest a party of forir who liad been on
 partevl -wall prempets and norliggenge. The country lotween selkirk range monntain natiges. The strike is me-1 of lorth and manis mutheast paralle1 with the ISokien, The formation is Bike that of cun Rocky Monnitains
 Thw Hewntainn an-stecp; the lomer Ayאs are covend with heary timber, tamunaek, fir, ete: Wash and slides ane characteristic. The tires glaciens
 stoke, nurrow mecks of ice lewding up glacions is 400 foxt deep. The veins iil thim rgyinn have not bevn much trobecient There are a few rich and carrying gold. There ane in large
minise fhere. Farther houk on the sellirk range, 20 miles vat of Columbial river, areenical pyrite ane fontul carryint gald and sifver, principally (Enkl, ami it miles on the weet eide focar the top of the rampe we find galewu and silver orex
Kontenai conntry lies east of the Banifir miluar and the lomamary at the evil of the Sellirk ramge fialema and wiver une ate primeloally found borth od >polane coantry. The mgion is stop and rogged. It is a great rgion tor showsloks. A mumber of
large mimes ane being worked here rich in -ilver averaging from 500 to

Giml ounces siluer to the ton.
At Mot bay on the Krotenai lake is a eswelter, and amother at Xetron and a thind at Trail landing on the \(u v-1\) side of the Chlumbia. Trail eroek disiract rans uvat ten mikes und borkers on the stute of Wishbingtion and extencte morth ias far is it has been proepected for :th miloz The camp of Ikowland is the evoter of thim Trail

 come vilver. Y'inas of shes now wear in the granite and the core is foumi frowen onto the ualls. There is no gongev or gamgat ;and no dietiont line Ixdween one and conistry rock. Only Iwo wine are opencel ppeast and west along low ridges noeth and soath of Trail crock. In the morth sole the De Roy mine and War Fagle, the Jow anis is \(K\) betuecen them, are shipping 20 tons daily pritwipally of zoht ore about 2 concees of pold or \(\$ 00\) per tos. Womindary crovk, th miles weot, reporis a number of proppects similar to this Trail Croek di-trict. This min-"raile-te extends sueathinto Washingtonand Idahos The bew camps are bring poslosi aboul. Proopecting is fand work. The comatry is heavily and cloocly timEred with mach umblertirash and fullen timber. The proepiectur has to, pack his tools on his lack and cut his unble lexation lie makes hi- sunfral camp tinds a favrum, that fin makce his cerimal camp and uorks from that. famme is rot plentifn! In the veins they
find a "cap rock" masy withoxidiond imon broken over
and eagping these rans; this cap is two to foor foet
deep. Then the rock pusses into hard ntoxidized pyrites. Prospecting is hard and slow, for you lave to blact from grass
foated with deph.
The Fraser ant Cariboes districts lie west of this region. At obst ciuribon up to the Freser this last meason plants, sme on the Quesmal, the beler in the sonth fork of the Horse fly, pusting forty or fifty miles of sliteh on erech plant, aton severnil thousant feet of ste-l pipe and
 mpeist gravel lanke iboto the feet dexpand gravel ranging St cents to \(\$ 2.00\) per yanl. The ditliculty outside of the
short season is from the immener gfacial boolders short seasom is from the immense gfacial bomiders
Farther tonth in the Framer river Indians, white thens and Chimee are washong lare vovy fall and ppring at
 A Ean Franciovy compung have gome on the. Midele
Fraeer norls of Yake and have put in inclging plants at

in sluexts
thisk

\begin{abstract}
inme aniform and rognlar, the riches shects or belts is far
\end{abstract} gith it patelowe mans or live remede amd
 allorial wetion. In the veins on the hills from which The grawos are derived gold is often so cipericionaly atni ourking in some favored opol may coenpen-ate ther simer for months of sumpotitable woek in pooke
 In: Lawer kilurian moks. In theseq mater quartz veine
 veits are very mamerons, hat getmozally very small. A
 afl its layers withont slowwing any well mairhest lange vein. This is elaracteristic of wins and reimbets it catter thenghots, the quarts laving a tentency state formsti
fitert fixsure. tinesl fissure
In adilition

 the weariog down of this suft oxidixed materiat thobleleox a lange prypurtion of the placer gold is derived. On
Lasel prevt a langon maze of theec quartx veined slates
 tion of the valley, leaving the Deavy pold by a natural

 be formel. ysxrmis
Giold is framblatong the Saskatehewan river and goold is foumd -cattercd wer the surface fram Lake Manitoha

\author{

}

Giohd has been found in the- Cartemiferon- conglenser
 ing in consondidated lvabies of pebbles or conglomerateof a far clder date than the velinary placer beds, A these Prebbes were originally derived frum the grantio flated placer. Alfurial deposats of gold lave alow lexel forand in the crantion of Central New 1Brunswick ulaicl show that the ghol in derived from quarte woins juenc-
trating the neeks of the diatriet as alout shown by the trating the neks of the
character of the pebbles.
fend goarte weine ame fombl in serpentine in the Lower Kilurian rows, and where but erepentine exi-t sit is
now neve to look for ore. Nerpentime, be it said, ik nonally a grases green our purplish nek of magnosian cillicate de

 veins. So far we the mot lume he externsice plane

In Noxa sextiat there has been as yet hat hille flace mining, altbungh there are large arcas of drift and a Ereat number of gotd tearing loslos to which aftemtion The noks are pribcipally Loner ©ilorian. It in a carima tact that lewe pold sceurs in spots and trowhes ap 10
 the man and veqcetable matter amb in the umber chas small round gold nugerts.

\section*{}

The principal points to bote for gractical une in this B>1. That in Xlaska, and gencrally thongh the- noethwest rigoon, talevee and charitic ir greenish and darh lets of quarte together with igrown. dvkes of enpetive diorite of greenotome. These mockaseemin to be the kive
 with a view to thoee depreits.
2nd. Tich deposits of gokd nere foumd in Slaska at the foot of a waterfall. Singularly enough this is by bu
 arat Prompectots going to Alaska will have to en-
counter imoen suile and ait Aretic climate bat their laber may be rewarded by the riclumeme of the moilk They aJfocar there to sometimes tarn the coniree of the ereck by wing dams one sezonn to work the thed of the ercek the following one Black grats and mosquitces the to be expected.
all along it- riverambia semems to be very rich in placera drawback. If you fime craree gold in phacers in this as well as in other megones you are likely to be wot far Itron the origimal golet vein imed shoulal lonk for it. Anuthoz ditficulty to the jerspector is the thenee jonests overlying what lie is lociking for.
A V-ahaped sharpcanyon he-bally hasa rapid stream in
it which does bot deprosit moch materal; thio forather to be looked for when the sanyon widens out into the I shape. Shallow placers will finst attract the prospectar,
but it will lue woll when ber has vxhansed these to dig don it and look for deeper chammels and not let rij till he thas mosled besfruek where he may expect towest gold; eide gramel may le rich as well as contral chanbel The vxataple
tanly ame fill
Yoen may expect to be trosbled with uater and meed

Is, mit stop at beytack, lent dig stown imto it; it may be tive of six fect dopp till yon fimd mo gold. Experithe gold is carriel down into the chinks und ereviexs \(\rightarrow\) vecially in -lale-
 if af fow fiect and may pay to take out boslily and werhain at levolire:

 panping oat very vear. Woek nat your placer thomaghly and rarefully whilet val ame at it. It is very dangervias us well us difliente
 ble than in virgin granow At the same time it may pay to go wrer in old placer that was mastefolly anal Ciond pay and placers may sometiones le formot at the The season for work is wofy short, bat lige sames may be made nt times in a slout serson or by kerping at it Pru-pecting in Fritiol sulumbial
Probpecting in liritish folumbia is evidently " no
 as loge booklers, the latter are always an oternction. The salue and importamee of these placers of the North. exet is -lewn ly the equrmens dithles and plants that are in perparation at \(>0\) ghat expernee
 -r|ention

 give 日p We mat not vepect a placer groumd to be contimanas. UE to carry tlw same amount or even any gold at all, thoughont its extent, Placere are often long, lonticular othere korren ansl velocrs a mistore of bodh. fiodd quarix resiss in slates ane apt to be small and bitich meatewal
hations of gome.
Early puegectoirs pencrally fay mos attuntion of ptact depeits amilaker, to velns if plate In Nova Finally it would appuar ilat the Noriloweed is the paraklise of placer depusite. The rasen of thi- in to be Sue trat ice slect of the placial epuch as woll as the

 west yiung man.

\section*{Watt Mine Car Wheels}

The Wate Minimg Car whocl the of Barnesvilse, 0
have un sulvertisement in this issme of our paper to
This firm lelieve it Intier fo do one thing und do that rght than (t. be engagel in is vancey of mork Setind in that prineiple they decided ther was a grow opuning or a wide-awake firm to engag- it she mannfactire of sining cars and cat wheels. They sherefore oqzanixed a company for thin expers properee and the ir ploenomonal receus shows they uery right, as thay today dor Thore business in that line than any veler firm in the Wnited Ktatex
The Girn is compered of the foor Watt Bros of Barnes ville, ix, and Bey W. K. Puelleton of Florida. The
Watt thos, an all practical tmen, having been brought up in the foumbry and machine busiossos, and iwe of them are insenture of many valuable articles that the firm an num manufacturing, all Pertaining to their metf-
oiling e bevel amd their cars. They do all their own oiling ebevd and their cars. They do all their own
traveling and watels the interests of their fethans wers
 fommory department and giver his umbivided attention.
 chene ure
 cife rgionk. Thas thele they have never eanvassed, but
they are well prepared to do anything for this field and

\section*{Steam Boilers.}

The repurts we meeive fron Mcsass. II. E. Ebllins \& Cr, of Pitteburg. Pa, wole sales agents for Calaall Ver and Tater Tuln Regiots, manufactured ly the Anltwan two thinge First iset thoy leas at exivptionall efficient boiler, and revond, ithat Messrs. Foblios \& E B ane "hustlers"
Their latest mpant state> that the following ealey uen effected within the last few day
Cone thoussind H. P. for the Pittsbury Plate falase fo.

 the Pitssbary Plate Gilam (\%, ane of the standand direct firel type; those for Jones d. Jaughlins will be equipped
with the chain grate otoker, and that for linoun d of the wavte beat type.

IXGENIOLS MINIXG CONTRIVANCES

ion, then-by delonging ventilation and perwenting the

 the vertical dowe, 10 , by a nim mot.

 is over the dinss ean be chectot by is Io Norotits the ventilation, If uill
 The ar hovilye 1 万upe-iv-lemnat
 al lientloer withangle-itans, io-lemin

 Givald be frum I' ti. I" thick, the litidue

Replacing Mine Cars on Track.

\footnotetext{

 anto top

 anemin wim

}

a loril will "inunt the rail at and the other uill monn the black. A- the liock is \(\frac{1}{2} \mathrm{in}\). higher on the out-ithe, vprosite whesf, the car will pall on the haonase track maloss bu difference which sible of the track the de taked rat is, the rosalt will tre the same. In tail rope hanage, fabls empey ears going in and bomed cars going out can on mplaced on the rail, by laving the pieces
of timber wedgecolapal at buth conk, and mahing the interior rails usslown in Fig of The
T-rail.

\section*{ELECTRIC MINE HAULAGE}

That the most economical mouthon of hringing ocal from the working foce in a mine to the breakeror tipple is by mesats of some type of mechavical hanlage, bas long tren reagrized. The first system employed for the parpose was the \(n\) team mine locomotive, which was only
applicable. in suelt thine ar were fre from zas and which noed the main hanlage rowd as a return airway the vendera or tail-rope typ. Therse wish calpher of tir honetantive and electric locomotives, are now in Has, Weducing the rost of mine haulage very materially.
motives daring the past vear, baving cquipped in all
 bas also umler construction locramotsys her a nomber of coines in Srizona Thase licomatives inc and ore

\section*{Personals.}

Xleares. E. F. © Deott, Perey L. Fearnand Iiabert Fevle, have opetsel otlices as consthlimg mining and metal silver mining are their -pecialtice
队 and If C and I fha, and superintembent of the- Silver toal and fuhe. Got bow superintendent of The Peerkess

 mine. Mr. Ficketorl, it is said, was examiniug the prop ryy prior to mporting on it
Mr. Chas. C. Jones, B, K, hate reagneal at gemeral manager of she Coeborn Colliery fis at Lotus, Va, and located for spane moutlis Mr Jouse wemenes the
 feld Mis remenal to Nom Grlemen was ine trith noment death of his father. Prof. Joesph Jones, I1 IN, if Talane

\section*{Mining Machinery Ordered.}

The Rohunson Machine Ch, of Monompaliela. Pia., inform as that their shope are boser than they have lavel at any time for the part three rats Among the late

 c. Pittolsuret Ro
 ing Frank Armatrong. Fithshargh. Pa, being meonid

VALUABLE STEAM APPLIANCES.
Types of Valves, Which Antomatically Control Steam Delivery.

from the end of the lever to any desired peint or pmints: tuppuge of eat of ary aectbebt mymiring tmanedate stean ilsongh the main line, it is only necesary to pall The corl or chain; this opens the value 7 , which mpleses shuts off the sleam. The cleck valve 4 is uesd to pow an kock prosure from the main time \(B\), from entering
 , Tom lares skath ue re it al park of tow comiry Tow value by orde ring tuos" zalves to be made thinuglout of Cuotlert compusitiontion fur use on the bstthethp Reros.
 preanese systenes. Ouing to the rapill intraluction figh preware builers for mining work, which in man
 prewave plant, sume appliauce
is nesssary to eqpalize ifle prose ure from twe two sets of boilem The Nelief Valke torated on a
pipe conmeting the high mat fow pressare systems, allous any ure beiler to. enter the hon
 frum the high presure boikers
acte on a diaphragm. simibr to that in the vatety stop Valve.
ubich tendes to apon the valve ubich tends to open the valve
ugainst n spring. which cun be adjusted thany goint desined by
the nuts K, Fi. 2, FIR, 2 showe a sectional view of an Automatic
Relice Valve
The Fiofer Prowner Templatar so Fig. f, applicilava panpzosgovernanor of the pump When
nsal as a pump gosernor it is applied to the strang pipe hoding discharge is rgulated by the nut This iuljustoment is mo made (has uben the maximmm disclarge porvare is rached the
pamp uill sop This enenree -afely top valve in nee at the Lykens Valley foal Cimin

1 is closed, and the gate ralke 6 oponed. The main Alcam salve, \(H\), is then held open by the steam pasing lipe 5 is connected to the the diaphmam chamber. Uesired point, of to a branch frow the main lime. In ceec of rapture of the pipe, Es, of of any of itsennectionis instantly relieyed thromgh the pipes 2 and 5 , thereby Pipe 5 is spring to instantly enoe the main valve, \(H\). Pipe 3 is provided with an auxilary lover gate valve,
, which is properly located pear the autcmatic etop , which is properly located near the automatie stop

the panop. This is a great advantare, especially at mine-

alliery

Fart colliery vie I" pump governor and tro 2" pmop ithe alove ino companier, flealio yery lighty of the

 The rasquefanma Tisat Che, has in une at No. 1 slaft.
 buer premure of fom tio to so prouds per mpare inels. Foll detaik of theo reveciatioc ane given in the suta:

The Northwest Mining Association.

\section*{}
 Biter an ablower of welrome by Maxor II. X Jolt, the evolary stateat the abjests of the mextimg amel the Prosterent ontlimed in an ahbe imblowe the plame, pur-

 sem yet offered to the mimers of this evelion. In the
 t Spokabe, followed with the sulyect "How Can Wi
 midros of A. F. Parker, of cirangoville, Idahe William
 Cogrove, of Fommon, Wa-h., vpoke at some length on

 Indge Ilevhura, of isolsorn, Idabor: II \& Waltorn Libory, Munt.; F. A. Wela-r, of Lakerien, Jdahe, ame fion of detail work, and in the evening the citizens of poskane tomberel a lomjoet fo the viestors which uaThe rext momal meeting of the Asorciation will never Oetober ind, next, and will be of threw or foer dayg

 It is stated that the vitixens of Butte, Mont, perpere lat city at an carly dates.

Personal.
Mr. Daniel Weleter, for tifteen years assaciateal uith
 lase for the last twetve yoars becn the practical head of Rabcock \& Wilcox for, ame has made thany of tong friends among the larpe cteam u-ere and manniacturers throughast the I bitcel stater, whm will alt be pleased with the suanfanturere of the fahaill boiler, the mate

 thing lat a horikontal water tube boiler. Thev have therefors, deciched to immesliately ergage in the numb-
 department. Sultman \& Taylor expect to lo ready to bezin tolivering Ilse If \& 1

\section*{Hepair Time.}

The appotech of setthel watber lowinge with it ubat is kown to all mine owners as "Hippair Time," and as the repairs atone all buidinge inclade painting, we are
 Therefore, wo would saggest the bse of an up-tordate paint, viz: that which will not only beantify the strucwell a- the action of fires. Soch a paint is macke, as is Eire-Lsosisting Bant (oin This company numbars its patrons sume of the lezeling mining emomanies therefore it stands to mason that the urem of these paints wonte not be experimenting with a new articte pony mato lam
 A caril to the Jamionon Fire-Ps-sisting
aork fly, a-king for garliculare wil
Wanted-Second-Hand Machinery
 of frepuent cerorrenee, lint a lange tisplay ax vertio-

 Mablinery (ib, is a very reliable and ebteryitiong wob-

 2-2006

\author{
Fritar chilling A Geometrical Problem \\
 haik of a med The the will juat reath the equmbice lank .of the river Filk > 1ve: \\ leymodasoilt, Is \\ \\ Ste - In my antwer to. Ami-tant simperintembent, Xel-

}

\section*{}
ses - Will selue of pour able maket, kimily atower

 Hend the wathe is t itions, with a water zangwo fom an inch, and an amgolar ior nill be protheet" What pur exne of the rtichers

\section*{A Fan Problem}

Ehaur colury fingiu.i. nuil Nowid Miem
 fuernal, as to whis then slomatd he an ficmiawl quan
 Theot Acentiog to the umprowe the riva no new rum that is that then has tevn an cularpournat of the ir towater- that in fact, 1he new tum har toon wowhing The equikolkot merition urition

the ne-w fan is Worlang onf an urition of atse 421
T. 51 myame fevt.
 rented in a bigher water gamed, nhiol, with the larger

Time manowetriasal velicienurs of beah ndel anal me \(u\) fan

 low that mone cxplanastont flombl lee gixen of it

Plan for Laying Out a Curve.

 fout mainy reakro I was tallot on tol lay tal a rurve

the curne as follows? Then ! angle being the 24 ',

 a right angled triangle the hase of n hivh is the radias of a cimb-lament to the the lime of interections, that is.

berd dk-ired, that will pae- thangh ' 'amd lit to the interserted lines it an apex dintance if in the right amehol itrangle thins frornsel.

 Then, (I) HS:

 , tom 5 I. seake ,

 tho tuedual gill ta- fuand to ta wow ausenient The

 hase never fambalit in priat. It lring sev comsurnient I

\section*{Ventilation}

Sill:-Will soot plotar ineart the following in nply to 1. Tren hlafte, fi it in Nova Noxtia

Fimbice if of ir in trow

 guantity varie al- cole tome of pomer: thendian

 ats given. Sint the gow-tiom sall- for the same grantity, of ta, ond cti. It Now, if ancon ea. It. posees in place

> therket
\[
\begin{aligned}
& \text { gaxe } 1 \text { IIX matariw worimber }
\end{aligned}
\]

 1 1.118 8 1.114
is 47.1378 -4. 8

\section*{}

her airuay inarea for 1 mile to 15 foct, or 5 ft . by 3 it. own for a farther dostane of oflce to an aroa of tir me of tir by - fors for puwer rembining the satme

I'rnatur and power namaining the sabw, the quantity saricy als the syitare fucs of the lengeh of the aisway, aroa laving same in buth csas"
 \(114: 10, \mathrm{kk}: 1102.7 ; 9,385 \mathrm{~cm}\) if We nombt have th, iss ent. it. passing in the 2 ? mile airway orfore thos. If
 girwas of ther following slimenaions s, an fi ion
 Pheved to find the units of work in ewh girnay and
 the forminta

13, sakt is, airway, \(p\)

2, ita it. .

'ritent wowk \(\quad \beta\)
\begin{tabular}{|c|c|c|c|}
\hline & 9, \(2 \times\) \% & N1, 13: & units \\
\hline \(\pm 1\) & 14, \({ }^{\text {a }}\), & & \\
\hline 721: & 14,25 & 284, 2 F & \\
\hline 7,8 & 9, \(\times\) \% & 汤, ext & \\
\hline & & 304, +ix & \\
\hline
\end{tabular}

Now, quatity carnes as conte foot of units or power.

Your-, yte.,
Vietoria Mines, C: If, N. \(<\)

\section*{PRIZE CONTEST}

Prizes Given for the Best Answers to Questions Relating to Mining.
Fur the leres an-wer to earls of the follon ing questions, the value of s1.00 in amy of the bowk in our took catas. logese, "q six monthes sulecription to Tus Cobsker Ekavive ivi, Mervi, M1epes.
Firt the eventhl thot anower to panh question, the

\section*{Conditions.}

Fint-Cotupetitare must loe subsvibers to TuE CoL-

 ma mparato jajer

founth-"Cimpedition contest" motet ber written an

 thall (x- fimal
simoth-inswors bust lew suaike as fout later than the month after pablication.
Sgent-Tlow publication of the an-uer- atel name-

 disprabl they mish tor tathe of thecir prizes

\section*{Competition Questions for April.}
 rebase lncu makimg with a Maceoler latep, with the

保
 finnel livereghetlonf an inch the lamp is nod sofe in an exploteve mixture W: will thenfore feel ubtiand if
 bith the stabll diameter anel ahoolutely uncale with the
 arni the quantily of fench ate entering per minnte is

 wish to ktame nhat will to the valume maname jer
 III the mpeast shaft, whern the temp-rature of the de-

 hatrl stm strits, lomf tre have a filloming of I fort of -late that we coumet koy up. The shats whon somk

ceatuge of lange coal，and yet be able to keep the nowls and rooms in siffe condition without the lues of much timber．
Qum 2n－We have a ventibting fan cxhansting from mor mitue firt，tew cabie teet of air per minute uith a nuty gang of 8 inch，and we wish to re 罧 another feet．Wer will therefore le obliged io voe if yon mill forni－h now with the following values for the bew fans，so that ue．may secure the bert resulte．

Thinf－The number of revolutions
Fourth－The rellat leogeth of the toluk－
Fou－The area of the oritice of entry．
Airth－The anse of the thmat：
Amwh－The anca of the oritice of diselatge
Bybh－The effective hoore power of the fan，taking \(r\) instent of \(M\) for the pressum per mpare foot
Quba tel－In looking ower a toperaphical map amb the test of the motes of the survey， 1 oberned thew
hills，and their apiess were letteral \＆Tank ？The apices of \(S\) and \(T\) were shown to lie in a line that waw

 from the fort of the slope at A，wis ter is ，anel the mean angle of ele vation nusannel at \(n\) at the fue of the
 and heights of the bifls wime clevation of ther nper 1 Q，maxured from the level of the ppex of \(T\), uax bo \(^{2} 25\)
 phased to receive from gou a sketch，with the nocresary foand tho shan ing the pones by which god have foamit the distance in a xtrught lite imon d，at the thone
of the soulbwest slop of S to \(f\) ，at the foot of the of the moulbwed sho
cmatleat slope if
 iron kettle fill of nater was buisted inmis she fottom at a mean whocity of 6 foet per seomel．The leetle wis crlindrical in shape ant 3.5 feet in diateter abt as reet deep，and by mon unk mown canee a rumber lowt haw been cos through the bollota，and is had a man thane the sump in the shait bottom fall of water and arrivel at the top of the slaft emply，and hy coincileme the
 nachert the sartare Now，I will to ubligel if yom wil deduce for tue，out of these farts，the depth to whieh the sinking has advaneed．

\section*{Answers to Questions which Appeared in the February} 1ssue，and for which Prizes Have Been Awarded．
Qrax 26．－As we are determinel to leame be stabe unturned nntil wo secure all the necemary fact－for con－
 a safety lamp is rectuced in its passuge shoush the glas evlinder that surrounds it？Bias your calculationis on the following thicknemers：inch，｜iarh，imeh． Avs－The lust and diypmable light of the differem glasses will tee as follows

\section*{}
8
inch
inch
5 inch
inch

\section*{}

Thoos \＆Asker
Dysart，P：O，Cambria Cas，Ia
とowil Pros，Heon Crisse Eleo，Washington CL．Pa
Qum 30k．－We are constrocting boilens for rationg team by the burning of bituminous coal in the state of Temneree，and as me are poing to mannfacture fibe
 and sont given off by the barning col ；will you，there－
fore tell us how this objectimable mater combl low con－
 is uzoting it by allowing this comblutible matter to ＂scape？We to but want any phass or sections for
the conatruetion of a furnaic，as ue san do them ar －elves when yom supply us with the principle ropuind for the borning of this waste carbon．
Ass，－For cotoplete combustion and the prexemtion nf sumote，no mone than a sufticient supply of air moth be aduitted．Nom the needfal supply camot all enter up through the grating and the fire，even nith the help of

 axygen to burn the volatice matter of the coal mast
be orer the fire，and provision mast te made to maintain Twe right temperature of the buixed air and gaser for the ombartion of the carben particles of the enowke．The procisions riquired for the complete coml
the smoke bay be noticed umber three beals．
First－For the adtuission of the right sapply of air， 1 nee a sloke door hung by top hinges and mate to turn in fides ans almays close to the sides is party opened it－ the side entry of air is pmevented，while fomyision has been maske for the door to open inward under the cons－ trol of a nack，and by this means only admit a thin ohect of air under the battom edge of the dow．The catering air is therefore projected in a sbect immediately obto the tire．
Scond－Admit the correct supply of airs for too their combastion，and too little nir directly imetent－ cobuptete combuetion，and，therefore，carbonic oxide COO is not barned into \(C O_{n}\) with the conseppent waste Again，the necessary supply of air mutt not take place
（o）morly of 100 late，and to scoum the best mesalts Movale a peep hole for an attendant to abserwe the thame
tinue：
Thiof－To seare the mquient tompatame for the herning of the carhon particles abd the uther volatil matter，I line the xides and front of the fin－box nith
 gaters，and perents such a multipleat inctuhereat sut Gave to the air ambl gesus that eomplete combustinn urbs thow：The principles hete explaineal can be applied to aby sayk od loiken．

 os low，the win is temeter ant ue make 40 por cent tack．Wi，hare a good markes for housetndet coats ane have recommernkel the nanagor of the eompony th naske the slack into briquettes，and hee nepliest，＂If roit cait furnish me－uith a sacosof（t）plan for doing me， will alyiar the company to mise wour uxise sill a will acol－t me bo－mply ying the folloming fout
Aire－whect of the following materials uill mak
 briguettes Thy：bydrantir lime，Porland crowet arphaltime，prited

\section*{He beriguettor} \(t\) torth atcanage

\section*{gue the brigactiea}

Sioh－How are the briquetlee mabs，and where an any liriguette prosses with their mixing apphanno－bo he er win ther sates
Sor－Pitelh maker ther beth hinder，being sticky when Trated and it will harden when ifry amb will alow barn nith the cal，hat has the objection that it maker a
gwat thal of smake during combastion．It is now unal gnot dral of of
 athe from the fart that it represeats ju－t ．．．meth adi ated deat weight in the hisquetces
The lost shupe for briquettes destimest ifer demeratie purpooc－is oroblal and about the size of at grose chg；fo． In the mamufactum of of all sizes are employed
In the manufacture of briguatiec the coal is first
 one of which is deseribet as having wotating loltom
and fitted with stirress to mix the cral；the coeat is thent and fitted with stirrers to mix the coal；the coal ios then
mixed with frota 5 to 7 per cent．of partly medtal pitch
 zrator or eceen which telitese it to the briguett machine；this machine is compered eser ntially of a monh Plate and thes which exoppress the coal on several eicle－ wibl rome is whin forcing ont the poste which is cut up into entions of the poper heogth by a kmife of nim，as in lurick－making： ibe liviputtos ane then endel．

Chas．Em．Ahmmov，
Tracy City，Temn．
Aioned fris，Hean Csupreze，
Tracy City, Tenn.
，bowne Mlines，Cape Enton，\(\lambda\) ．
fill timente of North or Nouth Ameriea：What ane the elaracturistics of ito phy－ical and gtologival environ－
ment that is to sav，is it forma in pansur in solations in uils？Has it any coanection with salt laker？Wasit－ oripin vital or chemecal？And farther，to what grownal use is it applied？And what is its chemical compeot tion？
Axs－Asphaltum is fouml in North America，as far Earth ar the ohio river，it 18 foumd in lireckimidpo © 6 ， which breaks with a polifh．When pure is burns with ont having any aeloe：the products of combustion emit
a strong smelf of pitch；it
found in a linnid state on a strong smell of pitelf it it found in a lignid state on
the surfuce of the Dead Sea；it is foond in many pari－nt Thia，Farape and soath America．（har meathat wairo oris，bamope and sonth America．Thar geatrel wairch
 114 ackes．Trinisul is fart of the mainland，it－flon narmuts that，so I considered this Suath America．The lake is owoerl by the Island of Trinidad and is nomer keare of क5 years to the Trimidad Asphattum（is．This the governument is \(\$ 150,000\) per yoar．The lake inevontily falling froma year to yoar，but the vopply will mod give out in our generation．Test holes bave beven put flimen In the lake to a depth of 10 foc and did but find lot tom．Ssoming that it is po deeper anal none moded． ithe supply will last tuot yeare

The consitency of the lake is abont the sature al checes．Thi－apphaltum cones from disp wares．ami no duabl had ite origio from vegetable matter．Carbuth It hydrogen enter foto it－comprition．
Th olden times applatem was used for emhalming Itw Srahia for solind asphaltum is employed in Nersaa am phalmum lamp black and turpentime mukes a durable hack raint．It is naet for noifing purpowes，colvining bridese ete it is very dumblo in air and not polle trable by water．A comproition of asphaltum ant gravel is extenaively used for pasing seriets．

W．Eras．
 QuFs． \(2 m\)－By cloely watching fivar men at nork
 dyye：a and do could fill 44 toas in 4 days 6 and ectale fifl lis lon－in 9 dlave；\(x\) and \(d\) could fill in tons in days；and that c and \(d\) could till 75 tons in 6 days．Will men，that is，\(a, b\) ，

Aso－First find the wrights the pair－would fill in nue day，as
d and 4＝ \(5=1.3\) tons

4 atml－Kt 12 ton－
a anial at it 11 tom

6 und do \(\begin{gathered}\text { t？} \\ 3\end{gathered} 14\) tolles
，an＋1 त 2

 Monenzah，Marium for，West Yis
 Q 2 c． 210 －X－haft fot a moal mine has heens anok arm ater
 herech
 quat ti． 140 square hew，and I will to oblizel if you mill mak－a diagram to razle，showing by the corlinates the reloriticg of the inflowing sater at ciele cymally Aistant puints is the clevution，and white yow ame bexy， phater calculate fur mee the time mymime for the fociler ．＂till the－haft to a height of 7ow foet．
Ans，－The beat of the focher mant wgal the－lowight The water rine in the shaft，since
We now the wril known firmulu
Bieclarge Vitherity Awa of Cronconction． Them ane 2.181 I．R pallonn in a cubac font and in Hiosharge in cubaie feel

sponds，
\(140-\mathrm{t} . \mathrm{dil5}\)
1.9 days．

Alemper the curw u bea orclinatesare reporented by the whocities is a paralmbe．

\section*{Iron and Steel Roofing，Steel Buildings，Ete．}
 Mira．Moser tow Garry Iron and Steel liowing Co，of Calling an，begin the publicatom of all surertisemen正
 Irrad thature har all purnorn in the mineng trale salkiting

 foples slaftheud fouses，eveine boiler and fan house ete．They also malse paints for such structures to mees the requiretnente of service．
This ecmpany isenes a cataboge known as＂No．111，＂ in which there is a great dial of uscial information per． Gimig to roofing and arehitectanal shert mietal wor operators and eaperintendents on application therefor．

\section*{The Colliery Engineer}

\author{
Metal Miner.
}

With which is combined the mining herald.

THE COLLIERY ENGINEER CONPANY, PUBLISHERS

\section*{CHAMGES OF RDDRESS}

\section*{ \\ }

\section*{
}
VOL XVI. APRIL, 1896 NO. 9

\section*{THIS JOURNAL}

A LARGER CIRCULATION COAL and METAL
mine owners and mine officials
\begin{tabular}{|c|c|c|}
\hline Alatama, & Iowe & Noeth Dako \\
\hline Almike: & Kansar & Nown scotia \\
\hline Aticons & Kentekt. & Onio, \\
\hline Arkask & Nuprland. & \(\underset{\substack{\text { Oregoen } \\ \text { Penney }}}{ }\) \\
\hline & \({ }^{\text {Namazhusete }}\) & Pennytvaniz, \\
\hline Cando. & Mexichigan, & South Datote: \\
\hline Colerata & Nionetots. & Tennesser. \\
\hline & Sistouri & Tomas, \\
\hline 年wars & Nentara, & Utab, \\
\hline Fturida, & Nerode. & Vetrmont \\
\hline Geors: & New Homptha & Viveinio, \\
\hline tasio, & New & Wratin \\
\hline & Now & West \({ }^{\text {W }}\) \\
\hline Sian Ty & North caro & wromies \\
\hline
\end{tabular}

\section*{CORRECTION}

|

\section*{MINE FATALITIES}

Athe reportenf the xarious inapectors of mines for INE are baale poblic, ver attention is again forcihidy drawn to the enormons percentage of mine futalities and serious injuries des to falls of row or coal. It is mot only in Anerica that this is the cas. The same relative percentagrs nocur in Extopean mining countrin- Filly to sof all the theaths and serious injuries in coal mines ane due to falls of roof or coal. Whose fonit is this?" "What is the remesly" "" ane tuo) questions that are pertinemt to every mine owner, mine otficial and miner.
The fante dimetly lien with the miner, and the miner at fuolt is almont invariably the victim. Neghect to properly supperi or pull down dangerotes piecer of coal or rock, mutil another wagon is locoled, until anslues hole is drilled, or until some other piece of work that coald to delayed nith safety is accomplished, has resulted in more fatal accident- in coal mines than all explosions of gas, secidents from cars, expliviona of pouster and breaking of hoisting ropes combined. It is conly when the record of fatalities for a year or a term of vears is taken that the aufut consequences of reklesstixss on the part of miners, in "desthes from falla of rows and coal," ean be appreciated. As a rule such acribentonly kill or maim one of two men at a titm, and the peablec, made callons to sumb/y accilents, keepse no note of thentr iriquency. An explosion of gas of coal dast in which a large nomber of men are killed at once excites the borna of ubole mations, and the breaking of a hoisting rope by which from six to ten men may be killed dore not pars unuotiest. Bat a then or foar line item in a faily paper stating that "John Emith, a miner at Blank colliery, near Blanktown, uas kiplled by a fall of coal this nowning' is forgetten almot as sonn as nasl. That the miners themelowe do not attach the importanee to such matters that they should, is evideneed by the-fact that moet miners, ubo would not think of opening a safoty lamp in a prohibited part of a mime, will bot besitate to work onder a piece of coat or rock which they know to be lowes, but nhich they thint will "hold op" "nntil atnother bole is drillex, another uagoon loankel, or anaber rail laid. They will mod hesitate to retarn to the working face immediately after firing a chot, not withstanting the norking- an fill of smoke, ant cum- ir mon sense and experience teaclus them that crery shot divturtas and loosens morr or lexs coal and reck above their head- A- prope are furni-hed free of "xpmoe to minets, abt they know the danger of neglecting to set a prop or to paill down dangeroas pieces, it is but just to directly blane the bineer for the accident that either kills or maimis him.
Now for the nemedy. In tometing on this portion of the salject it will be seets that the mine foreman of moperibtendent is isubiontly responsible for many aceidents due to fills of cral and roek
Sutarally it is imperible for a minn forcman to -tand over every miner with a clab and fore him to lowk after hiv-awn allety. Fut there is another way. It is by the tee of striet discipline amt the enforement of rational rokes. If a mine forewan mouhd instantly discharge cery man lee canght working under a dangenmer pieer of cosel or wek, and continne dowing on for a conple of monthe, tow would ston give his etuplayes salatary objeet lewens that wombl resald in a marked diminution of arridonts from this camse. While a mim- foreman en mot lexp hiz eyes on the minere at all times, be does and can colve on them at unexpected timex If when
tor diae thix he fimds them neplecting theit onn salety, In - stumbt enforve the rule with greatest rigor and areeps
 will soon leam that the lowe mexans buvines, and that if they disolny his onlere by meglecting to eat necessary propos or pult down a hoose pirme of slate, they hee Alteir guts- This daty struald tre imporend on the foreman by the superintembent or awner, and the foreman shooht instrout hix amintante, if lee lias any, to enforioe the role as rigidly as he doa himself. To make the role effective, thore monse tr- mo appeal from the dischargs gereen by the formans. His therlarge for a violutian of the mole slould be linal, Nux-h artonn may ment larsh, but in reality it is reat. It is calenatateal to work for the goosl of the miner. The mine forcman or superintement who din> mol apply somu- soch mole as this is not doing his dente.

\section*{STATE GEOLOGICAL SURVEYS.}

()
12 mamarks lias month on the desinubility of making Nate Cimolotical Kurveye of permanent valae, amel in kovping them up to date, by the employment of ants, has met with considentable fievor in Tenneylvania Il.werer, there is sone opposition to such a plan from influential men, who appreciate the value of such neports
as wonld natorally be iesued. This opposition is due to a misumdernanding regarding the operations of the Second Geological Survey. It is claimed that the Recond Seological survey discriminatat in favor of the anthracite coal fiekds, and against the bitmminoas fields of Westem Penneylvania. This statement is haoel on the fact that tonore reports were isuld baring on the antbracite fields than on the bitumimoas fields, whieh

\section*{over a far greater area}

Let us calmly look into this charge and see vigg such was the ease. In the first place, the large anthracite emmpanies, and muny of the individual operatoss hat competent corps of mining engiveers who had been for years, and wem at the time of the Gieological survey, actually making geoldgical surveys. The cross-ections, maps and notes of these surveys were generonsly placed at the disposal of the State. The resule was the State employees had ready made for them accurate and comprehenave survey- which needed only connections and intelligent compilations to make them available for reports. While sone of the bitaminous mining cont panies were equally generons to the officers of the -arvey, they did not have the elaborate syetem of surveys in fore that were peculiar to the anthracite regions, and therefore a certain amonat of work pat on a bitnminous fiek by the state did not supply one-fourth as much information as the same amount of work pat on an antloracite fiek
Again, the pecnliar zenlogical features of the anthracite fields made necessary mow detailed reports than would have been required by the bituminoas fiehts, even if the bituminows mine ownery hat bees able to give the otficers of the survey the moot conupethensise mapss, etc. In fact it was the pecentiar geological features of the sehuylkill and Lehigh regions that made becomary geological surveys on the part of the mining companiex.
It can be stated as an abeolute fact that the tribe owners and mine officials of the anthracite regions furnishod fully seventy-fise pee cent, of the infurmation in the reports and atlases periaining to these regions, This statenent is nos intendeal as a reflection on the officers of the parvey. They were berght, intelligent men, and appeciated the value of the surveys.ete., so rreely dowated to them. In fact, moot of the otlicere of the Gieolegical Surrey lial prevint-ly helpal make some of the surveys donatexl
The work of a Ntate Gievolegist and his uevistants, in the futoce, world be more in the lime of emmpleting the mpurts of ather sections of the state than in doing any wragk in the authracite ngions. The unthracite regions are well surneyed and the gevological foatures are mell known to all inteneled Ax moch cantuat be rait of all our bituminons fields. Bessides, there are other mineral d-pesits in I'vnnsylvania besides ool, that neod attention. We therefore repeat that a pernament Rtate
Geokgiat for Penn-vlvania will plawe a mermanent ralue Seokogist for Pebnsylvania will place a permanent value ith the work of the Eecond tesological sarsey, ato will make forever namecessary a complete Nanryey of the tate. Other states of the Union, now laving poological surveys in operution, will be greatly benefitted by providing for a contimuanee of their surveys on a rational male after the general and mone expensise mork has been done:

\section*{MINE EQUIPMENT CATALOGUES}

IV- Mis
 "
Exery enterprising malaer of mining sowaly, as of atbers, is constantly making changes and imporements sugnoted by his expreriebe and ohservation; and wellprepervel trate catakgone mecumal at interval- form an vecelleat meane of kerping inforned on what such mannfarturers an- doing. Amd boxidis the rataloghe kature perper, not a few conecrns put ont pablications for gratuitone diastrilution to men intencoted as nocro of their goents, which ane of decided mert amb ronwenience as hooks of mefewne.
It involver bengrat experise ir trouble on the fart of ny mining cobprany tor make suitable rexpleackes for filing and reworling vech pmblications atal ober done and its inguent mplenishowent properly attowded in, is fornes a veritable ebeychopactia of mining applanoer. This, in cine of secident or emergeney might prove incatuate
Many mambecturen, with pont rowne, are chary
 them, as too often they point", waste-baskets unopered and umeal, though they contain matter wally valuable to the recipients. But those same manafacturers will withoat exception be more than glat to acol their publications to any interested partier who will ark for gech. The utvertising puge of TuE Comany Exormeme AxD

equipment，but from the nature of the case the siver－ tiecments cannot go into such detail as well－prepaned catalugues．The ufvertisements print the direction in which to look for the loet catalogues，ani，we may say for the beot machinery．
In this monanction we will suggest to makera of min－ ing goobs that in future ellitions of catalogues dec．they abogt what ban cone to be knoun as＂stamdand＂size－ for sach publications．We reontly saw in a mining en gineer＇s oftice just such is collertint of ratalictove as It
 variety in sizes anst style of bondings uned wan emoght
 souse objoctive．Tro often a catalogue，the real vilue of which is recognizesl by the recipient，is ullowed to go is waste simply lexame its shape or manner of bimblage makes its prearvation altunet an impuosibility．Goul paper abil typugraphy are appreciated by alt，bat we fear sotere of these latfer－day＂morks of art＂in trale cata－ logoes ate bot，and the reate fall－leavity wh the men who pay the printer＇s hills．
In elosing me desire to again emplasion the neal at better appreciation by mine tmangere of catalogres and other trade pmblications，and，on the part of mannfae tawes，mofe carcful regand for the convenience and patience of mining men when tonding vat printed

\title{
LIFE OF THE WYOMING ANTHRACITE COAL
} FIELDS

THE－eries of articles on anthracie coal，prepareal ho Mr．Wra，Grittith，E：M．，if thir city，for The Bomi Pivanl，of Xew York City，are not obly very inter esting，lout of great valne，especially to thome fimancially intere－ted it abthracite bining or anthracite stocks Hi－tirat inetalment，which appanal in the February sumier，was of an historical nature．Tli－mocolit insiatt
 primarily etati－tical，bat at the same time is accom tics．The most important pertion of the article \(a\) fan publi－leel，from an economical standyovint，is the talmba－ ted evtimate howing the approximate future rupply on coal tonnage frota lands owned of euntrolled by the varions railmad－laxing aceses to the Wyonning region Thamalyring thin table it in neovesary to lave an tur devalabling of the term＂Fowt Aeres＂used by Mr． Giriftith．This term manss that there are on many aeres of cral nate fout thick．In ether monl－，ICO acter of land containing a +ft ．ecam of cond，Would twean +001 ft ．acres In his estimates Mr．Griffith didl not inelable auy eal under \(f \mathrm{ft}\) ．in thicknew．An analysis of Mr．（iritith＇ comprolesovive table furnishee the following nummary ：

 Thartet－phave pemeratore rabsing at, 2 Ln altequatom－ mater whects，amit two ito looseypower multipeslur ge－n mators will be operated as exciter，While thi－thi－
 Gotaprany will lave a momber of sobls－tations af the dif

 K．W．jo，man 22 ）rules step－doun tran－formere Tle

 plane in the morbl The Wertingheme dompans wil
 wilh the platut

\section*{Death of Mr．Nat．W．Pratt}

It is uith simem Negthe that mo amonerew the that Mr．Xit．W．Prate，persident of the Dalecock of Wiloox Pramky．V V．
Mr．Fratt wa－leim in Dallimen in 108 The was at
 arly sutters of Plynomeli connty．Mas．，bats branches If the Gamis laving ortheet there in lota His mechan cal taete uere intwrited，hi－father，Willam Prats，has

Mr．Pratt entered the employ of the firm of Babeock 8．Wibcox when quite a young man in 1570 His energy
 when the Paboock \＆Wilcos Cic was organized as a cog－ poration，he was made treasorer and manomer of the

 pescident．
Foblumg enginesting lanowledge and inventive g．th
 by the Babecols a Wileox berler thonglout the civilizal As an illustration of lise versatility，we would simply mention that in Isst lee becance consulting engiber to the Dymatule dinn Ch Vieder his dexigns and patents

 Furt Lafayetos．
Mr．Prate lraves an agod father and mother and alow wise atul thro chithen．Ife wa－a beember of the
 oxan Institute of Mining Engineers，of the America Saval Institute，amb it member of the Enginevers ftot of New York Cily，Hi－early death in the prime of life
 the mechanical world at larg．Ify hie extraowlinars sugacity and soami basiness jodgorint the busincse that begimuing to the enortnese and world wide bysiness of
were due to accblents with cars，ete；one from injurios ecevived from a circular saw；one from＂injories ef－
ceived in sines，\({ }^{4}\) and one from a nataral sudelen death． The bumber of ang－fatal accident－was 13，the same as In the proorling vear．－ix ot the accalk nis were salsed by falls of brest eosal and ino by balle of top Thane meme feive were causer by cars．
 atisl Sho，tist tonn INT tach non－fatal accioknt．There per 1，©00 etaploves

\section*{Montana Mining Statistics．}

Captain C．Showmater，Nate Mine Inepector of Montamu，has compbeted his report for the year 1N：5，but wing to lack of available funds，the repoert will tout 1 k ． printed antil next year．The following extraets frum
the repors we clip from the Hrabes Miong Whed of The repart ne clip
Dhite，Moatana：
＂It is znatifying to note that an the bining indusiry in－ （rease－thriaghort the state，mordern improvements are introduced，wark is made eatier，greater facilitics are wanlily fortheobing，the cood of extracting ones is re－
 kematized that pect
wirked profitably．

More cate for itwe salefy of the mimer－is now being oxerrised，as trotioed in the greater momber of precan－ rionary beasares alopted；also in the canefal imstrac－ fions given to employes and in the mates pdopecd in many mimez

The improyment in ventilation throughoat the tate is noticeahle and managere genetally are looking after the localth of their undergromad vimployes，and firnishing them with fresh air sofiar as can be consist－ ently dobe

There are humired of good silver mines in Montana itrady＂Fencol which would be worked at onec，and tomblreds of othene olsich would be＂pockel and worked
 heing work many gold properties ond small minew arv heing morket now od god mumes that have lan bile－
or beenalcindened for years are now lieing developerland many of thoin with goal results Iro－pectors during the fast vear have made many ne \(W\) dicenverise and their acarel for the yellow wetal will eontims．While Eomis and Clarke coanty is a good gohd prodocer，Jefferron diecorered in every county in the state in brith placer aul golsl formation．
wonld recommend that all mines morking behom the vorfoot level should have not less than two exits． I comelder that is valuation cannet bee vet upon the lives －apoly that work at ruch depth．Two or more exit． w＇ape． moseler is fairly well complied with．With obe single exception I have fonnd no camev for ecomplaint on far as it material ciolation of the law is concerned．
＂I woold rccommend the use of chas imdicatore in all hosists．Their great value und use can hardly to ceti－ These chair imblicators will show the engincor at \(w /\) at －tation the chairs are in or when the shaft isclear for the po－kage of cige．
＂I lierewith give a table of arcidents which have ocenred since my incumbene V
manleonits．

\section*{A Great Electrical Mining Plant．}

When the Westinghonse Electric and Manafaetaring Company installel an alternating current electrical
 the operation，berause it was the first plant of it－hind
that fad ever been installed in this conntry．The ap－ paratus had been oriered by the san Miguel Con－ solidated Gold Mining Company，a enporation owning a rast area of mold－mining territory in the ciatorad． procticable to operate these mines，becouse the exeesoive Oet of fuel and power at an altitule of 3,00 feet abrve
the sea hevel made it prohititive It was then that clectric power was sugsestel，which protnioed to over－ come the difticulty，especially siner the ompany onneel a materfall is the san Mizuel valley，which contained a
sallicient amonnt of water power to operate all their sutficient amount of water power t，
mines，if it could le made available
It was then that it was sugpe－ted to Mr．Ximm，the Teneral manaere of the cotopany，to invostigute the Tela julyplase cy－tem of electrical power transtui－sion， tered into and the Westingtoms－Electric and Manutai－ turing Company adked to install a 160 horaypower A．©
generator and a 100 hore－power mutor，with the neces． Meneratur and a nected with a Pelton water wheel and the curront was
carrial for thre mile－wo the monntains to the Guht
 was matalished from the first．The ow oere of the Sin
 of this fact that they recently contracted for an extensive

12,74
.46 .235
：

\begin{tabular}{|c|c|c|c|}
\hline \％ & 1608， & Latist & 3，yium \\
\hline 湤相 & （1） & & \\
\hline 1t，mom & simemer & Preat & \\
\hline 114＊＊ & \％ 4 ¢ & & is \\
\hline \％am & 1380 & 414989 & 8 \\
\hline ＋2．） & 10．jumito & i，\％em & 嗗 \\
\hline & & & \\
\hline
\end{tabular}
\(1,75,10050\)
\(20,000,0 \% 7\)
the Rabouck \＆Witcox Ce Thit－enormoms beainess amd the morkd wide reputation of the Ralocock \＆Wilcox toiker form the best monumeat that he could leave be Hind him．Mr．Pruet was noted not only for his sonned hi－gencosoty and kiminese of lowart Forn hi－luzain．．． oppoments aduired bim for hus singular aggrobivenes．a－ applied to business，and he was univerally lowed and astmired by all nith，whom he cane in contaict both in a ratial and a busineer may．

\section*{Maryland Coal Statistics．}

We ane in reeipe of the reports of the Inspector of ginee for Allaghany and fameft cometess．Maryland，fof The years embine Dee 31，1224，sud tec．31．1883．
 the mines naw \(4,1+\) ？During the wear there were sevel fatal sccidente，three of which were caused by falls of rood cond，one by fall of rock，one by fall of earth，one
by fall of treast coal，and obe by cars．Doring the vear there were 13 noa－fatal accidhents，the causes of which ate not ratexl
143 analysi of thee figure－－low．that then wen
 mined per esch employe and l，oss fatalities per cach aromployes
lharing the ywar 1805 the output \(4 a s 3,459,400,15\) tons an incrase of \(3: 7,517,15\) tons oner the produrtion of
1N：H．The namber of meall and lowx poplonal was TN：H The number of mell and hoys employed was Stel，a decrease of 2sa－compand with the preceling only of which was doe to fall of mof ead．Five diaflis

Whike the avenige fatal is 25 and non－fatal 17 for 180624 ，tbe yoar 1565 shows an increare of 19 fatal und the tron－fatal vere the two prweeding rate This is acconsteal for by the incwased number of mines in qeration in 1 Sht

Furing my incumbency the number of mines in－ fureter and mina

＂Of thi－number of mines inspected，then were in 1806！in Silver \(B o w\) comnty 28 ，in other coantice 29 ；in （x＋4，Silvur How 30；others at；in 1805，silver Bow 4s． ＂The coal mines in operation during theee years were a－follow－：
 inines uas as follows：

I will udd to the total number of men engoged in tepry toming．1，2t2，who are working momectace wh are clased as miners．This gives a gramil tatal of po．ama In－N，I consider this number sufficiently large，as my estimate is made from actual obsersation and general in formation gathered in the mining districte．

\section*{Removal}

The Boston Beliting Ca，whose boene oflice is at asit－ 2ik－yan Devonahire strect，Boston，botify uk that on Apait lot，owing to incerasing busimex demamin theif sew York othoe will be moved to the large ane cornmodious store at 100 and 102 Reade street．They nill ocopy the ground floor，losemment and sab－bate－ abit they vxpect to bave ope of the hamaleamest mechan ienl rubber goods stores in New York．

\section*{THE PROGRESS IN MINING.}

\section*{Abstracts From the Proceedings of the Mining Sacieties}

Aod Journals of Eurnos and America, Illustratins the More Malers Ikevelopments in all Branches of the Minin: Indust?

\section*{M} amite Mre use and abuse of dyn

 if the wurknow stoployed. In the natasiacture of

 wirhun the range if possilibity and exurted an intherec apors sombern pivilization, whech entitle it to take rank With the application of efoth powe probluct whish eat lo tratepurtex atul lmadled wit

 4at per cent. powiler," weenoting to percentige of nitn

\section*{}
 proveste cam le hamile with greater impanity flam

 The cont in alymanit- to the \(\quad\) ononmey has lnven

\section*{} acerta
the In
joamil cin tor had for low morney, lant the proment of this

 mot

An exphesion is nsmally futal, and numberless cseapes in

 From a quick application of dry beat, peuzler io liable to san le lach in the bami with latle incomvenietoc: and this degrev of leat is som racled whers placed amder

That from
nickly apptimal inamie is liahbe to explode from heat
 fact, moed arcibents arr due If yus have heated pewder
 tuake the
\(\qquad\)
 forthase mom matm water, pmit solur sharp Mocks if the
 mo lightexl ">onif:" alvint an ineh hong ithler the big ans, thwow an we soek wer the Whole, and it at slous
 Gor tivk lnets incurred. With slow leat thus 口pplici
 It is untit for Hsc. If it expunhes at all is mill slo prom
 Ke cnomblering of decompositg, and the dropping in :

 ganig chatze and hading will uncoid "missid holes.

 ate cillord from sppposed miseal holes than from actal A-rasil, -harpe mock macy be tamped into at poce of fux

 gon follows To folly demwnstrate this, pat come I - maped clamprs on "p piece of fuse amel sev low long is aH
 binss tire abat huve for be paclacel oat. In thesegreat cars
 Trom cap, the \(n\) rolicot with another chames, and, instom of neing a -mall picze of pouder, thee plenty. A leavy
 pharze, lat it will explade it amel zat rial of a hanl jobs
If the collar of shoc lomle is simply hlown of amel the

 thps an-charsed wish finlminate of mercury, now of clemically aml may explale fome the slighatot

 [mok ler will mas exploke from ans of the jat- icca-ioney homind leyt upon reck taight explate, hat mporat

the and ignif, kave the mber Inax closel. The Ixive

SAFETY LAMPS AND SHOT FIRING IN MINES

 Gorengh the grave ami lignie the exploesz mixtorn, of

pecuniary loec to the apratore, for in many instances ofter an exploeinn wo have a mime fire on our hands, ontailing lwasy low With theze facts on plainly -ot efore ne, we tinat lonk for a mouedy whereby the cane
 ve bunst bilmit that the garmze
\(\qquad\)
\(\qquad\) gime ollicial varv matorially in their opvinions, mid only if Ngand to the various typucs of fins in use, but also as

 itwetace and ank r all ciremontamers. With largest anil
 dainon amenequal ulocrever pokille, with the coll iction that wo an a- powveren to stop the flow of Wxisa- perer from the sirata as we are to prevent the Gley ram fom the hearees, athd, mgirateos of expensec quamtity of air as will tlilute and nender harmbere that bilesthe conesy of the miner. Their rewand hav leen

 atel it the emplenger wushlal carry wet the instractions leit sifnTiors, shos, is it robe are men of a bigh onleq f intelligenes, lime of life from the suave wonld be
 has luen devoted tovencilation in the fast, the appal(The fatalitier renthing
 - (hee uvtknew will take the featharty rieke whech they
 port of the se sime the for crimital carcteotms on the on matning ta the working face lafore the -nome from -lont ha- jomed away: Neglect indresing off the bowee

 larzo anmount of yarlages. The object io gained, but cetamally the minee of faturet paye the penaity aith Josh Fillings oner suid " Fousler in itself is harnaless
 lighteal cigar in his moath? Xotee yom, >ay. Y'et it is erfanising the number of thens aloo will sit in at pillar
 rin a naked lamp in rhuis lwozl and very nifen a

 When elost- hasw feen charged with fore the moet cavtal that blast will fail to explothe. Vaster bo cimeamtances return to the face umbler twenty-fone hoors' time nd uarn othery to keep awa
Where slont - are clanged with the mecelle and limet by kutent efpilis, tix equib is provided with a match of enfctouel the mine ; it hehted with "tusch" paper, but never by a lamp or tamuer

 this class of acciblents is to colter the mine, prownal at atmation of your own particular lancilezs ami on ecasing, guart jour-vif :gain-t twosing racs, take time in petting on or off car- or casor, nlecy to the letter the tants, and yon will materially aill in revluctivg the

COLLIERY EXPLOSIONS AND COAL DUST,-

 The progogation of each explowions, anal thw way in fall have sames information whielo, when pravically

 and acrumganawl thee laci-with wnch ormal raizoning

 In enth in the following parugraphs mast bot lo thonghe

 that the ceclosed gases are netained with zarying the greatly aroctorated and the thermometer rapally fose to grees of firmoess, aloo that the lighter kaws, such ut maril gas and hydresen, are the most reatily removed. tine, allows af the realy diffusion of its lighter gatertime, ame thas form the chief combustible constitment of the frest deprestevt dase on the rxaluays. He has time diffuse into the air and are replaced by condernen oxygen (e). Thus ne find that ne have at the ontset thiet dangernos mixtion consising first of ofal thast of the mine, abat suppurted by the bonyancy of the gatally difinemg, untit at keugth it timbs a resting place on the tup of the timbering of on the toughoe-ots no the estimating the quantity of gas- thas contimally proent lamps xay, one berning hydregen gas as it testing flame it is at once swen that the preseboc of this duat maker the thase lumituse, and therefore viliates any tee of timedamp This fact alone show stas that the thoating cost dast ix of a very inflammable mature, and it mill be
 way- three lacers of +5wl dust containing geters tiftising and diftnsed, thins, of the bertom, condensen of all, tho lighter zas- (e), fimally difforag fom the Haviny now diemered uhat exphesive ingmalents lie hidien in crat dast, we next need to ascertain what in
 Bedown tell- an that the greater pontion are given off at moot emplatically true with regard to the lighter pioces. Iie has also called our attention to it reeent demman-ira

 sion was led to conclude from the experisuent- thoy bumbe that the en-n-itivenes. of du-ts incresers with the pergertion of easily-intlammable hytrocarbones
cially mith the and with the drymess of the dust. With respect to this guestiots of strymes, if is to be otirervect that the Prus-
 Weath in the couse of their experiment--vik, that the
Irior oots- of dast gave the slogtent flame. As to which
 Langemas, Profersur Berleng says that that which by
 lead to riokest and explosive combersion. Them if anather point to pote her-viz., that if the smailest
perecndage of fire-dany if preesh with coal that, the
 kowning what gases are oecloded in varivas gouns Haring forma donstrated
Having foamet that gas is reablily given , iff from woa
 fesent Redonn as our antbority, and wotne of she opper

 Dines, as onr catmple, atol which ath analysis wis foomil
and also contained 1.8 Fer cent, of solphor, we find
 Bedson't analy-1. nay alo. in added from the same buok, as they inot only throw further light on the quer-
tion of smodstame, bat are abtaimed frota dan collected only thirty-threc days aiter the Csworth colliery exploion and from the field of that colliory explos

 colkel. Further and pore detailed infonmation witl ngard to the ignution bat of cuat dust will be foume in
 chanieal Ensioevers uppwintel to inguire intos a mysteri

 of ten experiments with 10 oz of cout dhas, ignition tionk \(21^{\circ}\) to 320 F. In mone of the cares did the time from which the dust uas plarsal in the bath to the mownent if
ignition exeed one bour. It was observed in every caee in which ienition of the dust took place that imone diately after the thormometer immoraed is the dust tregan to rise, a pecoliar odor, like "gob stink," was
noted, son followed by a rapid rise of temperature and a commencement of the barming of the coal was noticed

\begin{abstract}
with the rive in temperuture in the coal, then procecsling
wilh such rapidity that in a fen minntex-f wo se thone
\end{abstract} with ench rapidity
-h he coal thek firs.

\title{
It was slown that with an easily oxidixable material
} whe eosal dust, it is only necespary to accelente the sidation by hecatimg the Alnst in contact rith ait to
 bout the ghattod of the duct. TWratxpermstots ued makle sith coal slust under air prosoure, and
 that a bighor temperature uas reached than whonex perimu-nting with uir usley ordinary porssure.
Principal Garne-15, in reference to this veplosion, sail that theme ua* obsc point he thogght morth mentioning and that was the inena-ing inteneity of she expliciona-
 Emation" as di-tingeni-hal frow explesion. The espleProbluced a suithonntly high tompristame to canse the concratons of combasthbe matter in the fulpers This

 the tempenatres, and nas capable of peoklacins the sta

 within the scope of this article, what gasks anv, prenhemy be mixtures of coal dust and air in the galleries of at
 factor has, so far as the writer howw. bevn taken amd
 phecated with a -tamling fins it canomit te accopted os genaine sample of aftr-lamp, Tle sanple on analy-i-
 atul mitryen 7 .w. With reference to this atalysis mat slow wo salety lamp until the molatne excents if percent. The scoxthenk comperithon of after-lamplive ant deteratas geses as carbon thoxiche amil bitre gin hat hais kong heron kmon that this slatement ground
 the boties of the mon and animats hilled in the Ty Jor-

That there are ofler geve- whele have an impertant ghow for in-tance it is well ktom+11 that io alat certais Gink, for in-tance, it bs wril kbomen thas +xplot or-atfe
 throst, were ofion therciled as strysess. The writer
 ammania was only formed in wetanal colliery explosionsby toing di-tillet from the vosl, as in the mannfactm of occluary gas, amd that the cmarting was ponbably duw lecturv ion "Coblirry Explosions," ho satil' 'explonions i

 the uorkitg atter an explowion for it aypears that
though the oxvgen anal nitrogen of the air unite directly
 tanconsly wish the combention of certain butios in the air. Thins, if I loma rome taggnerium in this glass 3 hrillant light, and forms magrasia, luat at how satoe Time a small pottion of the oxygens ami nitrogen of the bized by its smell, we better hos digumg in the ve.o.t

 that the nome salstance mas In posluccel durage th doe reat er mach to che cetral explosion an to sathecatici pobsons action of the carbonic usithe-for the meluri of the actual explosion ansl she vetorn if the fire to any portictar josat the atomophere itwre nith confail eon time nill have clajesd for it to promere it pmasonous celfer
 leve tahuluted, will make it quile chear that the amolal

 du-t io vitlier diffusing explobine gas ior is changevl wit

 Raleon'e experiments, that compryotos of thom air tom
 but that it will actually ivnite il com coal det with the
 motion by a hown-out -lout or veler calloce the instan tancous nature of the destrection of linman life and prop.
soblen prodaction of satheient vocrgy at the puint of initiation to produce a heat wase of high air compers.
sion, say is or tonae puend- per ergare inch, and that

 explesions, and as pooved in one imsance by Mr. A. L.
ecesten-an, who e-tomated that the buehamical force
 apuare inets.

\section*{APPARATUS FOR EXPERIMENTING WITH}

Dand twan chandoy fow hding-For the parpese of tamp on the safety lamp thans, ther mining enginects of
 is conmruction bsing fo extablish the conditions actnally Fhe tmatin hady
ondeit of strong iron plate fixed against a wall and oppronter by a coupse of braclacts chanmed on to the Whe ca-e, which has at totallength of atome t mo.

 internally about \(40 \quad 46 \mathrm{~cm}\). Dhe emil of the apparatas in left upens, and into the other is incerted a jet for the-alwi-ation of stram to imdices a everent of air throeaght the case from the "qea vout, the inteneity of the draught being, of coarse, eobstrollable by reghlating the jereatare \(f\) the \(\qquad\)
 ant inte, the jrojecting collar from this is fitted a shomberal cylimder about 6 com, "f emb. devp, forming recoptasle tor the lamp. Asmall rectangular hode is lon the gor of the case of obor ining thiek. Tisdozken valaramm and formin alastir couloion whereby the glass is cnabled to stanal the slioek explotions which mouht otheraise shatter it, a frame
 plating. Two other egrare openings, ftted with covers
ane alen situated mar the lamp and are intemded toract ane aler vituated twar the lamp ane are intended to act gnited. They are bilaneed by connterpois \(>\), and the foint ane make tipht by a layer of cantehone; in this ganner the aptaratu- is prowervel from the risk of
 be ope 1 ethl the come the opets end of the cuse, passec throogh a plate of thin
copper, Incrforated by Imenty holes of exactly equal sizw
 elmittel into the appontos. The fins curtent of air tuecel through a pipe bited with a regulator coek, This Sipe dorninatige at dietance of about 1.50 m . from the my the poiple of loples oin the inDir side and perced by oppor proc passing thmegh the wains of the apparatoperced lis a great number of operinge, thrubgh which foy strams in. Fisfore nathing the box the gas is inse to puss through an arrangoment to venable the eecfately determined. This is effected by interposing Kaween tuo joint - a wodalic plate pierced with holes of

In onder that the experiment may be cobelusive, it tuixad hy the time they varly the lamp. Forsthe pot pose the mixton is made to pase a series of baftes of arious kinds which have the effec of thally making I lomagereooss In the first place there is a erpper sectional space. Thits is followed by erveral cete of ally lay three plates of wire gauke of very time wash placed clowe fergether athi which complete the operation. Thu regularity of the tusxture has leen demonatrated by Gaking a number of samples, all of nhich showed the same perventage cosppoition. Another fabefion pert tark of mimenne explocied bs the lamop

 and the other to imblicuse the prrssume of the bre-damps dir, atul the bilter conaneted at beth etuls with the pipe convering the gas te the te-ling aggaratbs Bots Worl our in relation to that of the atmopplece and the ather tand with shat existing in the mine, this latter treine Wirkive exactly alifer, a descriputum of wate of theoe gaugre nill -affice for beth, if the Henlitication- in the mon of 'MPN, praslatenl in millimetres, of triangular
 bected by a revew to regulate their distance form

 way or the wher the rownern can to fixell at any desimol ve eeparation prevelleal by a setm-cimular -pring The

\begin{abstract}
ims leatle fiteal yith a cernier shideng wert the groter

 into iter mering : The tude of working the ppouratu- i- -imples Whai-1

\end{abstract}

\section*{LEGAL DECISIONS ON DINING QUESTIONS}

Mining: The Right of Support -Whern Ifw nitur

 implication.

 ptufit- of the hesitiess of the firm, the secemil parts
 partmer-lip

Unsafe Place so Work in Mine.-In an action by an

 Mining Claims.-In an werion to sketruibe the right 'procerl in the Twind Satc- laml ulfice for palent an
 farmi, the obe shacd maty give in evidence decisions of the
 patent to the firet franc, cancelligg the mociph for fratel
 What Constitutes a Mining Lease. - A contrant nevit
 that such othcs parts shall have the right of way wer percentage of the pofity thal. from minime the minar

Slewamhah Lami \& Antheseite Cwal the v. Ifiss

When Lien Will Not Attach to Mining Property, condusively uphary from the novoni that cweth was

 ing jomand

Conclusiveness of Surveys. -The otfinial sartey murle of a Dexisah lamd grant, after the gnant lus beve con-
 tbe claiming unsler the gram lamb- bimy within the
 bartey was finomed and that a comred sorvey Woeld

Pneumatic Drilling Tools-Patentable Invention-Tate-utable invelsion wak imolead in bringing together
 Arilhog tont, whish may In lich in, mal quived he the

Vistor) Imwnan I'rewnatic Tand
Sufficiency of Proof of Mining Partnership-Whem- it

 ship azreenowt mat- leef, ant the betimutis nefalive to It war vagme and matefinite i amithat it waw me -houn

Hazardous Employment -In 311 scyion In reoser

 his buctuan, nathonf lecing enstractedi or quostioned us
 cricat in gumpoucler blatimg, hot dist not know that the
 It, it was explabink. The robar howh that meghig nee was chargeable- to. Slev foreman, lun lowt the party loringing

Coal Mining in Indiana: Weighing Product-Art umht couttart proviling for poyment ly precilicitquanuevighe conclitel to the miser, provided shat the payment For imparitico loodel withor momong tho sual shall mat therchey lo compellet; ection 7 porvides the proalty The xipme lue Comirf of thas -tate Johle that, it comviction

 with sher melgh uithont giving lim enclit for the im-

Mining Partnership - Where teannts in comunen in at ithe form a partuer-hip for the eqg-ration of the mine Witwent the minisy propery beibg lorought intor the
 eletss becume partiorshpe poypoty, as bet uevi a pur clave of ane parsher's interest in itw mime aml the ry
 teatoid be the partacr-hip prour to the time at which le is linitn

 hayomg reapeal tho Iervalit of the employmest pirt

Liability of Director of Mining Corporation-Tl law of iblifornia declanes it the daty of the mine apper

 be lepe in the attice of the componv, "pern to imppection of the -tocklomher It further proviale-that in caso of the fablume of the dinector-tis have the repurt-and ancounte madeanit jootool as procieled, they shall be laahle to an ation by any stocklolder, whos on proot of the failure, slall miover jodzomen for \(\$ 1,00\)) lignidated damages.

 Iy him, though they mere full, true amil corced, and thro was bu now vithin many miles of the mime who condd administer watho, atod the slitectore acted in govel faith, and had lned advised by cranse-1 that it war me
 plied from it vindation

\section*{}

Pollution of Suream by Mining Company,-The- Court
 a bill by a riparian peprictor tor retrain a mining comb-

 maintenases camme be legatizesl by the legi-latun-
 anel when the right is ctear, and the facts undi-puited, \#
 fripery of another upon terois of paving sach compen sition, frotn tame to lome as a jure may allow when

 promal imumetion

Spur Veins and Measure of Damages - Where party is wljulgol sho numer of is vein, having its upex unhler the lecarimen of amedher compony, whichs lav merth

 If I
 pons was bus a wilin! in-pacen, in the valow of tho wom

\section*{What Constitutes a Mining Partnership- X cuntrue} mocidng Itsat the otw- party deomht have a certain mi
atid shomht lear a proportiopate share of the expensers in extracting the satue, the oflier parties to have the re-

 rating ami tontal of the mill to be divibeal among the parties, momer-them jarthers in the extraction of the

 concentraticl, to la paid inom the prowerde of she ore,
 R-, due- bat jovem tor garties thsm leimg fort mer. Sher the formation to a maning jartbership, at agrev-等 cmicr the, revolue the pocecils, and pay ont the momey wh. be the mine, tow mot aftect their mation- an part mereifer Iteporter, bits.
Negligence of Vice-Principal in Mining Operations.The suprome thatt of fiblormbly, in comentering the quostive of neqpotioiblity of a compony for the act- of lesld the mastar liablet for any art- dome by the viese irimejpal, " latin+ they uete such as relate gemerally to the stuting nhich shee mastor ouves to his mrnants, or Whether the acts Is nexcly on a level with thoee of a clum sencant: but, the better rule, as we extrict it froen

 gem-ral thuy to his ervant- the- master is liable; while
 and ane on a hevel with the acto of the fellow ponploge,execpt atsel acts as are ohne by the vice-pfibejal aganast the reaserabile objection of the imporve secyant, the
 clative rank of the servants.

\section*{likquter, 210}

Location of Mining Claims. - A party dasemened in

 carch side of H, babning it the "It. J. Liale " and alou -laining the raght to fase iv daye in Wharh to coanjalete.
 me-mises to mark the beandaries, lat was preventeal by sickoess, but within 20, bavs be ligreat with threw ofler peranas forive them halt the clamif tio'y would com-
 beobt- at the fotners atal on the lifies, and pesting a isatom bentice deacribeng it, in which the clain was atkol the " B. J. Amd, silver amil Xirkel Cquarte Mining Clain". The Inited states Circuit fiourt of Mynale bedd that the foration satele by the axametates was a comphition of the clam mande foy the-first pars, notwibstampligg the ablifion of skecriptive terme to the
 Slat the fir-t party ham a right to, tramser by pand an
 and his dong \(\quad=\) amb jurmitting them to complete the

Ame, that the diseovery of a mineral vein should
 fis locations, the length of time depersling on the nature of the groum, the meame of barking it, anm the ahility
 the voin levies sitmatex of a ponsh momntain visle, the dipent oxpresial and I, orifiet of the sain cowernd Ins-x. Waterlow Mining C i. Jo Federal Kepneter, 4 B
Safe Place for Employe to Work In-Evidence that Sa'k foll fram a place wherea parsy hasl beco blaseing.
 orbsent exathitaton wablif have detected the damger. shows a farlure of the dits ent the emplover fo provide

 gay lue le haved the injury had Inen tetached som loweomed by a

 et to worl. The bemawing position of the stone was sase if diecovery, Traler sliee rabes she emplozer was

 bight In fars, maligenee mas lew naid to Io want of orr-ight. The circumatance- that make men liable for to - that ix, whetlow the cimenstames ondor which In art is comuitiod are suthicient foc sistain is charge of
 Hoce of mankimi. Ther cam shoch the lan skemant- of
 plove whol has sustainsil injurs los mason of it s boteper-

 fut may a-coner that the ewplover has performed his

位:

TEMPERATURES AT GREAT DEPTHS

\section*{At What Depth and Temperature Can Miners} Work?
Mr. Agasoik sayy, for several years past he has, with the assistume of the engineer of the coupany. Mr
Preston C. F. Weot, heen naking nok temprature ab-

 lexel of the sea, 1,2\% it.; as that of ther deepest part of

 preceling oft, the sozjest pint at whers tomperamos they had reacbed their final the phi, tiknt it. to take an they madional nek tengerature, and to then publi-h in fall the detaile of their ubacreations.
In the meansime thes thooght it might be interesting to give the realt- a-thes btokt. The hiphe-t nulktery perature ohtainovl at the depth of t, iva nf. na* only 7e

 feet. "This," suys Mr. Agassiz, "is very ditfen- it from any mecurded observations, Lond Kelrim, if 1 nm thot
 ratione of the it, Gethasd Tunnel, gave for an imename latter ofoervations gave an approximate thelasss id the crast of the carib. in one care of about sor miles, in the other of 34. Taking nur obennations, the crose womlet tre wever 40 mike, and the thicknow of the cron-t at the eritical temperatore of water would be over 31 mile- instead of about \(\overline{0}\) and 8.5 miles as by the other and older ration With the ratio oberred here, the Temperatire Falor, a vers differne tempratime fom that blitariol by the older matios in over 2,000 dezs. Fahe.

The holes in which we placcal skow-regastering Yegretti and Zambra thermemeter- mere drilled, slightly
inclined upuarnl, to a depils of 10 if. from the face of the roct ami plogged with mond and clay. In flees hobes thie therbustueters were left from one in thm months. The average annal temperatare of the air is IS tees. Falor, the tewperature of the air at the button If the -haft wae 72 dege Fabr
Mr. Fivarillill, in line wor
Mr. Fsluard Ilull, in lise work on "The Coal Fielst al fivat Britain." mate an emquiry into the ploysical limit to decp coal mining, and lwe shates that in laris, at an
arterian well sunk fo ino yard, the gebernl mosals in chalk was foand to loc I degy. Faler, inereare for every ta
 an imenave of 1 deg Falir, for every is ft. Near (icneva an arteoian loring gave 1 deg. Fahr, for every 35 ft At
Mondori, say> Mr. Mull, an artesian loring gave I teg Mondori, says Mr. Hull, an arresian lowing gave I deg
Falur. for every or it., atid be gives details as followe-

\section*{Lius
Kraper
YIunlel Mumbelkalk (i). 1 whl samblatow}

\section*{}

In the Trearcan mines in Corawall, Mr. Hull gow on

 aboest I deg for every Gift. At the Thkintield cosliery daring the coaree of einkinge, the thermatmeter was ins erted in a dry bere-hole abn remosed as far as possibhe trom the entheace of the air in the what, asm left in it-
bed for a lesugh of time, varyang fom lalf an lear to bed for atesirth ot times, varyang from haif an hour to
tuv houre. The sinkings went down at that time to 2.0is f. Then wery al-o otercations mabe in the open
uorkinges at 120 yard- from the shaft, and at is slepth of y, 151 ft . The first of these shecrvations gave 51 dege a
 Wearly maitorm at is 0 ; anil the increate from the sur

 the whale eeriex of atwerations gives an inctease of 1 deg. har ecerc 8 and it
Mr. Honll anlans
departare variation at a depth of is ft . under-mami-ami them abling I deg. for every 20 if. begond the fir-t fifty, und
 eral thepthe uxulal be fommi as follows
\begin{tabular}{|c|c|c|c|}
\hline & fincreaw in & Inereamer id & \\
\hline Tepeth & tempeniture & tuangerature & \\
\hline in. & diter tir & dae to & Hesmiting \\
\hline fiet. & diepth, & Alen-sts of air & tebiopersture \\
\hline 1.304 & 21.12 & So & Sist! \\
\hline 2,004 & 25 & & 4.Ni \\
\hline 2,000 & 25. 5 & S.) & \(94 \%\) \\
\hline 3,4081 & 4214 & 08 & Fel 17 \\
\hline 3,2081 & 4. \(2 \times\) & 1164 & 111.4 \\
\hline 4,000 & 5i. 42 & 1314 & 127) \\
\hline
\end{tabular}

Mr. Hall did not conside- our minere comlel uork at a higher temperatare than that of is depe-almot that of the tripice But be thought it wonld be peosible to
rednce the heat ven of a mine \(t, 00 \mathrm{ft}\). in depth to a

\section*{FOUNDATIONS}

The Importance of Good Foundations for Machinery and How to Secure Them.

The inupgtance of a mund and onyichting foundation for madhinery pr oflace erections has long lew realizal,

 Ing a that reyuine to bare a fommation pacviansly por-
 swening plant aft mquire fomblathas In the proemt article the oubject will be death with ouly so far as il
 ac fotemblod th

A frumblation in its ximplest form comsinss of an ex aration in the grasmil of owch form and dimensions as uill give a firm lam for fle kapnetdructame such a structures, but subject to staklen and worere stratis. ibn for meet structures about at eolliery sach a foumbation is quite inadeguate, amd the escavation is partially of coon-
phetely filled with sutue material which will form if firm and sedicl lose. In many cases, as for example in tho cuse of a pulley frame, the ana iff the beve of the stractume is small in cotuparisoll with the meight upon
it, and the premure per unit arca is consegtuently groat, greater often than emple earib foxmbations cais resist Po reduce the pressure Jef onit area it is entomary th to fill it with come solisl material as masomy, brickwork, or concerte, through whels the presoure is instnbited to any deximal extent Refore procceding with the cym stroction of fommations, the firet thing for Ine a-ex

 The direstion of the proseme munt aleo bo taken inion a- bestly as poesible at right anglos to the direqtion uh presure upesi it A sa peneral rolk als, the lise of the n-ultanf proverne on a foundation should pass throngh the center of grarity of the foumbation, or as meior thereto as prossifile
In xorse fex cases a firm und sulficient foumlation is Nomlily obtainahbe on pock, in ohieh case all that is
 of dress the slirface of the rock io sait fhe form ame grevore of the strueturi to be crexted. When the -brmollown in it with manobry or conerete. It is costemary In engitucrring practioe to allow for stobe structurns is tions on roek the prosoure should mod exceed, at ans
 lave inota time tosime lax m made by varions engines. If eminenee, the average results of coum of which are
given in the athjoimel table--

Where the rock ourface is nut weerssible for forturg

 In lirm carth, voch us harl clay, clean >harp samb, i. Sirm iry pravel, the greateot provolre in penemal cogibevering practice is from ? 200 to 3,500 poumile for sypure it-al heary, of that has to support a leovy loail, of that i- liable to were otrain, the iommdation bowe tumse Io
 bwer comers of podinary tammars or liricknork, is if
 egoal to sow-and-a-loalf times the thickness of the braly
of 1 bse wall whon lusit vo cotupact gravel, of of twice hat thickness nhen boils on -amil or stiff clay
P-fore betilifing on sof? earth, alhtitionat jinceantion-

 thooe alrealy referted to as applicable to firm cimb with this difference, that the braee monet he further in steared to reduce the pressume pry onit ana when
owdee earth, as peat moss, suft allivial clay of silt, with, in scone cases, a natural slope of not vertical to ctight of

The unthal usnally alopict, lowever, for securing a good formatation insery mot groumal is be piling Diles

 piles they an plased as these tenether as practicable
 fonndation, the enter cimait of piles shooakl almays be
 peribul, or simply by a laget of conecete. Tle moest esitable timater for making piles is vine. It semeral
 when the piles ame triven ill thes nach firn gromad, of so puanal- jer aquare-ibelt of lusal area whets the fric
 waly sup-it, In all ca-co when timber is thas com-
 and to keyp it set, otheraine it sill sometheay Eugime foumbatione, os a rule, rybive to to raieed
 other purposes, as ialse, on form a euthcient weight to which to tix she engime Engins: fommatione bay be con-trimed of timiker, brackwork, toasoury, of onucrete, ecomacombel, as thev are latale to varlx deens, tome foe tebpronary winding io pompong emgine at a sinking

 purposis
Thoe furm of etagine foumbation, wou almost obsplete,

 wakev a very guol fommation, but it in evotly and is bow

Etrickwork tmit with Fortlani crownt mortar ie it rey mbenal faver, ami forms-an sxocllent foumdation. ing a quarter of an imels in thickorsont and bot execest-

 engitue fomblation is com-nkerably le-cthan oan of ashlar For segine foombations, amd, indeed, for all sorts of

 and is hoss cretly than either arblar masonry of torick-
 mortar, u-nally of Prothand cetment and sand of tibe
 upply of sabdatone o- ractily obdaimable, especially
 twal in the manufactare of conervte A quantity of or fomi is to ? imblu- liamoter. This is mixel wili

 saployed. For unliman foombations the popantions are geqeralls alowat four parts, by measake of lowken

 uater arbed tormake the ulowe a plastic man, which is
forliwith tran-formel to. the excacation or oflor recyparle juction-ly providial for it At the same time, a numbet of large-stomex tuas with absantage bee thromn Th, cure being taken that thev are thommetily bedded in

 breaking the stovix : 1 quantity of sami ie praslocel. unloss namily s-timate n ledler thene is if sutthent quantity of
 blay furmary slag. limestyme anel ofler material- are froybuity meat for making comerite It stumbl te instod that the concrefo vecajpios onf abont two-thinds

Whet comexe febidations hase (10 Ik rated atove

 plaserl. Atery it has-sitlievbily -ut to permait of the easing beang talken atay, this sloubh beatabe

 TVis will coatan abont to coblac samo or say शe cabic rank in the ises ane the totat com nill be approximaterl as follows.

\section*{ \\ \\ \section*{Contractors' Methods.}}
 Arammge Camal, zodelition, is the sthe of an incerol-
 illu-trate anal describx \(\rightarrow\) the varians appliamese uect on The canal, by means of ohich the stupe-mloas mork is lowng rapally accoapslisbel A ovpy of this pauphlet

\section*{EXPLOSIVES}

\section*{FOR FIERY AXD DLSTY MINES}

The Report of the Flamelen Explosises Committee of the Sorth of Englant Institute of Mining and Mechanical Fingineers.

The rextit of the latene of thas combutter are of groat
 periments
Ther report begine with a -tatetoent that the- experis
 cal lowiler, that mas is siect in diametor and 40 fert long
 coer ami set inelvic hong. Thave trays of frames were tid iof a liventrl equal for the wiblth if the thise at the ir fuel she nar cmil of the first tras or the evpeo nust th omath of slec cangon or -loet horle was 15 inefor- aml itfront enad wav 1" inctur- above the botcom of the thbe; ant the that- if the ather tray- in maressuth ucre at wal din-t was equitered in the air of the tobe, ame the not uas lant of there trave. The roar ent of the firel the mar emble of the eveond and thind trase new at dis. tance of 12 incher from the front vmis of the tirst and -rond tracs. The tuls: was fitted mith escape ralves and wimbiss and an exlansting fon for removing fonl air, and pipes and cylinters for injecting masared volThes of thime pave ircto the aljanent Hebbarn cilliery consiotel if in for cent. of marsh gak The material ued for stowning or tamping was poddled clay. The coal dast was uetghod betore it uas
The following is \(\rightarrow\) sumbary of the tine eccupied in makitg one of ilmen experiment-

\section*{ \\ }

\section*{Total tian}

It in almont neotlese to say that these experitument reve cobductal with intelliginee ami carc, and are,
 tee have arricesl it, ansl heme ame notime of them

In the experiments witls cosil duet it -1t-| Nusion, it uac difticult to acortain the atomant of dust nhich wa bot wis finel
hectaly a soall propartion of the coal thet placeal in lieavier ganticles fall betame the shat is fimd. These e.
 weight of dust being in sits, and the lighter and man inflammable pertion- being in oreperaion.
 the bestots, sides, rous, timber, vec., and a smaller weight of fine lust is flocting in the in

The commitice fell jumifiesl in adopeing thie methen

 semburd shos forer of the xafety explowises failed to withotand the teat
 mixtomert sit atio fot za- it will be -een that mone of
 P-riments with stemberd shets and mixtares of air am
 to s-centam ulather tow skition of cuat shot ou an ex of iquition.

The Anstrian firclamp combit-sion fonmd, after makite a larave bumber of expriments, that a -mall armas

 experiments with dymanise) was bat wholly sustaimet by the expriment-af this crimmittee mank with safets explomive-

 bubsemsary to test the ather sofft extrafors को her gos or poit gas anit coal dose at whe time or abatleer dur-
 genited ath mixtures, esthe

In this werie~ of esputimeth- tolarite ignifed a mix

\section*{} (Wu) exteritic-lits, and Hothe even in the other experimest

 in me the cantam,
 vpurrituche

 hefowatol, sporks nere ektoveved iil five experiments anit flame in ino experinents In one vxpributat puthing vac zove, and the pharge uas fommel to hase l. ew itcompletely thetonatel.

Helled clay The ooal dust was not ignited in ans the exp-rimem-
fillik. - Tlw re were zeven experiment- with Indlite sulonimy taon-xperimente zhen fow charge wa- incom Phetely thetomatoi, abol beither flame bat spark wer
"Averik. -Thine experimests were mable with secour Ite, anci a- The charse in cach case uas imcompletely xperime-tits uat dixconsimest
dwanifs-Thewe were treve experimemts mad. hatnomonite, inclonding eace experiment in which the
 if to jeथt wa- roombel in tuo experitannts, and at 1: fevt in one experiment, atal in the therexperiment ilber thatur not sparks were abeervel.
Rubatere-Tlecte wew thiriext experiments witl vinarite, including these experiments in which the
 the -fork- werchernel in any of the exprimebts bunite, withent tlame or sparlas being seent in any of th experiments
 olxat cex।

" Rolevite-The experiments made with raturite numbered fifty-there in all, and in no in-tance na- the
 of phatig she ceal that, and the doration of the rannimg exproments Gal dust fiom Hehtorn, sevhain and

 of the exp-riments. In obe experiment, imelnded in the-w walts, thew was incornptete detonation of the chursu
"Eivhonite-tho experiment only ras make with carlanite, nenlting it ignitson of the swal dual Tev

 Nio 1, 2 amit ploge bere fones from theis jueitiod, amit the camon recoil was consideralale. Then wav an appeciable intercal of time-lvetween the firing of the slont and the ínition of the 'ost thet : molling one tlames u*re idevervel for al lemeth of ti foel ifatio the
 froter the camelt

Arofof Fowlor-There uew thiriy-threvexperiment-
 meetbeal of placing the dnat, and the pervisf of the rom

 fitire the oval dus1. Vo flamex ir spark- wew oblenct durige there expriment-

Hispfulic_Fifteven experiments meve manke with noslalit, ant in nu cas- did it ignite the coul-dust. A
 ar necd in the experimente, ami the tow thes is placing atient Tus experiments wore tualy with eval dhet

The-conmittee further remark: "The re-ult- of the

 that all are capable of ignitioge gaveme or cont inet mix
". Very inturasting mpults lave Ievn obtatual during

 hof monde from the cambonb Wathogt grmitions of the vplontry Aull Tofl of gas manco

Kwowlodgo of thi- extensive sabject-expfisises

 sinise atmoplow ric air info a chamby contaning zat or cost duat micturese, Mlans variefink of eond daet hom

 might be makle, and mucht neefnl law lolge gaired

\section*{ivitta}
A. Thprly series of experiments, Whech have ovciise March, 1 N:

1-Tlu- high explusives (ammonite, ardeer porder
- 1lite, carbonite, milorite, secorite, and wetfalit) os - llite, earbonite, nilorite, secur
stowathe jumherploeiver asy Hable to ignite cither inthambathle mixtaren of airami fire-danp, or air and coal dint; of air, firculamp, and coal last, and therefore cat
 in places nhere sthelt mixture are povent.

K-The high exploviver are lex- liahle than blasting powber to ignite mflamamabe mixtures of air and tim-
damp, air amd coxal dus, and nir, firedamp and coot damal
du-1
-The expriments have shoun that ignitione of mix mers of air abl cral dust, with or withant the presence
 buels smaller quantit vo ooal dast than las been previcusly mppro-ed to in incerkary
cof - 1 l enential that similar examinatione of the notking placen and procantions which are in force in giters wher blastiog powder is eoco, khemb

 Nloonld not be forgeston that the risk nd exploston is onty cevene: and not abrikher by its the
-In vien of the chamges from time fo sime toade in the prognartions atul exmstituents of ligh exploeives, it is

 ent - teen in the manaladture of the explasive atorld the printed on the cate of exarb porket of cartrifles. printed on the sase of carts packet of cartridger

 condition.
The Xurth of England Ins-itute of Mining and Mehanical Enginever deerves the praise of all the minerbithe *hgincers, and coal operators Disomghout the that for they have donee a gual work, shee benefits of Theh will not only be folt in the raving of life ani oroperts, lust in dineting the mimbs of those interested aloug the correct lines of forther prognes.

\section*{An Ignition of Coal Dust.}

We have gathered the follonity iacts concerning on Ignition of cocalifast that wecorred in the No. 7 Eureka

There can lre we, dumbt if the came of this ifnition, is Ire foslerwing barration of the particulars will show- It ppease that a frowen dynanite-slot was first fired in a tule at the botton of a top bench of coal lying inmeditely on a parting bame of somee, the cobpert ot the sher

 aftermard supplien the foet for the ignition under noticeThe firet elont tuentioner was drilled ith the eqai on FIf rate of hading and close to the kit sate rib anis in进 F chire
 fynamite lxige at oe near a frobers temperature, it was of insuthiciont guner for the wowk interisted and did not ven bovak the frout of coal, which reanlted in a dall , combing sloot and aconfinimg of the gave given off from dymanite in the loack of the lowles fogether with the palTrized cosal from the wfect of ther mons.
The aceompanying -hetch show- the point ot which the ignition chevired. When the swomil shod went off the ciferevo the lexat of ignition, am! the neechanica effert- of the -ucy of the swifty ma-hing air were fe-
 eide- and crack in the timbere, and the coarse duat Iring an slow lves of the conl wall and that lving on the tip timbers was all charred, while the duet an the floon

 of yhine culne fect os ant per mimbte, and >trampe to say
 of ignitions by ther - ohat

\section*{Fatal Mine Explosion.}

Foar mu-n were kilkal and fobr fatally injured it an Marelo 20

\section*{BLASTING IN FIERY MINES}

\section*{Methods of Reducing the Danger in Austrian Mines.}

\section*{In view of the dangers contantly attending blasting oprations in mines whee tire-damp is present, attenplements io replace explosives, as well an to seth mosk fications of usual blasting methode as shall minimiza the risk in question. latiorly the mernent it Karuin has given a itesh impeths to the endeavors in poperem in this dirvection, and led to resulte calcolated to lesesh
 hlan geting charge its lf. As regard- the former, thore are now several reliable systeme of centrat-Gite cartridgos in
existence, such as the electrical thass l hight tension, of existence, such as the electrical fuses (hight tension, of
quantity
 detomator, which, out of to0,000 abots, only gave \(0: 2\) pel
cent. of mise-fines; the improved laner triction fuse eent of miew-fines; the improved
and the Jaroljmek water-cartridgo. \\ Mach mose difficalt is the solutian of the ereond problem-the ignition of gas by the explovive; atibugh
moch has alon been done here fowarla the attainment moch has alos been dune here towands the attainment of the desied ethd the mazim hamtore hy whech The onitability of the explosive to. the work it hav to perform; (2 the thameter if the botelules (13) the wrap-
ping of the clarge; 41 the thenght of the detonator; the moule of tampshg; (6) the couprosition of the
charge. In treating the above in order. it is, in the first charge, In treating the above in order. it is, in the thed
place, manifest that when all the lieat ewolved on the praition of an explovive is ueed up as mechanizal disruptove enengy, there will be lese danger of at explosist of
of fire-damp, than in the onverse event; wherefors. kodly arranged dorings should not be charged, but onghi to be ahandoned. In the cocmul intaines, a cartritige freely suspended in tiery air is more dancerous than a blonin-rot shot, the anmunt of surface exprosed being greater, and for the same reasim slie dacer forelule. The one shots varies as the damester pocking the charge, and particnlarly the kinel of paper employed to cover the cartridge, serimely affect the safefy of the shot under all cometitions. On played in their experimentex a nuiform, u rapker of cellecose parchment paper in order that the neothe otemse cevesim hak shown itself ckeciall dungerous; ustarlom paper of paper impregnat
selier hanal, belases nell. \\ Ton lamer's esperiments go to powe that the disump tive power and theretore the damper of an explesive is has been fivand with the Trauzt methol due volume of qus evolved from 15 \\ }

The decrease of security reabling from the are of Garee detonaturs may be zathered trom the fact that 2

 grammescap nuder similar conditiotse did. It is, there"xplesives, is only relative
The eftert of scmataing is to decmase the danger of exploding firevamp by converting the evolved beat inte. energy, and in thi- repert water, sami, and moss tamp-
ingr- Taive pooved particalarly eflicacions, tat it nas not inge hare pooved partichlarly etticacions, bat it nas no
antil the recently published rescarches of sierch on the photographic poicture given by varioms blasting rasaterithe Hinh explioded, that the relative value of theer tion of the author, photogriphos were talect of the flash from 100 grummers of dynatnite Xo. 1, firel an a blownont shot in a mortar 3t mon. in dianeeter, it com from in crider to cnsure the correctness of the olsservation the tests were repeatel ten times, when the reoult that the turowas found to make owh an effectual setuming that cuasion fuss, has heen made compulsory in the mines of the Arehduke Friedrich at Karuin.
 "or bery, pis, satey exploztes, with the exception of oscha), mosily consist of ammonium nitrate inp to to per (benzol, naphthalin, anilin) or their nitro-compounde, recins or fats, and can otily be firel by powertal dedomas tors, their safety depending on the suallosess of the flame produced. Thest subetances are completely harmless in themselres, being proof against shock, or tame,
and can te handlat with mothot inol tonge or expoed to the flate of the oxyhydrugen blow-pape withont ex ploting, merely fosing and barning with it small thme,
and ceaving to burn when removed from the fire Thee and cearing to burn when remored from the fire Theen properties are valuable for mining purpues, as pone of these preparations gire dettagratiog ebot- "Wecter"
dvnamite will deflagnate if the cietonator is insufficiently dynamite will deflagnate if the detonator is insutbecently
powerful, but the others under consideration simply relose to explates under vienilar conditione, amb they fare the turther advastage over dynanite of mot trexing except at very fow temperatares-seldom, therefore, re, quiring to be thawed out. In fact, they can ouly be fired by means of very powerfal capo and the cloeer
they ave compreseed the stronger wifl the cap bave to they aie compressed the stronger wif the cap bave to
be. When of a density of 1.6 to 1.5 , 12 -gramme eap or
dynamite foe is fotutficient. The moot convenient density is 0,5 . The dispersive power increases, und the security decteases with the propertion of hydmearbun comprumpe and uith the othength of detonator vom bromine and suline dimini-h the eflicielkey, but heizhtet the satety of these explosives ons the colver fame
 their hivgruseopic powes, wl
The only meliable peetle
 by the photographic examnation of the Hlamp poelowat
 ing points, imere ale, to be solved, vix: Tlue con-tancy
 fame alome afford-a auticiens imbleatsons of the degme ercases mith the dianeter of the bortholes it will alow a-xied in thetrmining the limit of safety-s mazank nught of charge of a bown-wat siow, the maxi mum charge tlat can bo usd without prowlucing in
 the folluning expectiment- with peegerent," a pecpara-
 Epramme cap when lying free in a mixtore nobaining

 ent. of gas and F kiloz of coal durt were explialed by a 1-2umue cap, but Giled to genie the mexture in any

 cot. of gas and 3 kilos. of coal dust and fired mith 32 rumme cap dal mot prolunc ignition.
The means at prownt at di-prial for combating the danger of exploling fimdamp in blasting ane briefly
Tbe contrul-fire cartridge; mons semoming zood quality paper for covering the cartridges: sfely :xplo-ive in coal du-t by spraying; and finaly, the cotrustimg of the

\section*{prrations to il skilled workman.}

\section*{A Disastrous Explosion.}

An explosion of gas at the Berwind-White-Coal Mining ,'s mue at Ihmbis, Pa., on the 2hd alt., resulted in the death of thirteen unen. The mine is a nen ont \(u\) bich the company has Inen apening op for come time Ha the borning of the accident eightect men vatemi the mine. Fonr of them nent into the south beatimg
 shook, and being foinod by the mine Joreman they started for the noth heading to investigate the canse of the shock amt remeler lelp it noxessary. The mem on The surfice were notitiod of the exphosion by the shock somboned from the berighboring E.fl, Lewi- and Yate mine and by noen the uork of reoche was well undes way. The first attempt of a relief party to enter the mine was a failure, ouing to. larac quantites of "after damp." However, this failure did not deter the resenets and a scond attemp was made, and the mine fore man and four obler surtivors, whow had started into the south lisading, uere broaght out alive but suffering from the effects of the gas they had inlaled. Successive decent- into the mine were made, and the boblice of the deal were bonught to the curface. The interiur af the mine on the nofth side is wry leally wrevied, fimbere stiashed and mils tuisted. The victims all met therit death from the explosion. The cause of the explosion
 it is tif be lopged that the canse of the disaster will be disemered It was the firse serious explosion in the Dobions regoti.

\section*{Graphite Paint}

There is on exhibition in the atfice of the Contum Eveivean cnp Metal. Miseba pieeo of irom out inum a pentectell by an appliation of the graphite paime mail bedected by as apphation of the graphe paint maine should tee of interest to mine pqurators. This staw as shown by the pars impowible to noch at the time of the painting referred to was very masy when paintel, aboat outlived its usefulpess
Aiter painting an above referred to, it served three yeare uichout further attention or requir, and \(u \pm s i\) heoll only taken down to be replaesd by a larger one necesplant.
This paint hasal-o proved it-elf of value in preventing iecd-water. In an experiment made in which a fra tubes and a part of the inside surface of the -hell of expumal smifase boin were pabsed, \(\alpha \geq s\) fomed to have hat a wonkerfully benefleial effecs. The sdidress of the makers of this paint, whoer

\section*{Feed-Water Heating and Purifying Apparatus.}

The above caption is the title of a pamplaled imened by
 mine cqperntour and soperintendent. In no implotry are more s-rions probletos encountered in kexping bodkes in pond condition than in mining, and in mone is then Ereater importanee of economy in the use of fuel, as
tr This pauphlet, while pat out in the intenes of "Bar-
apwanath" applimees, coutains much matter northy dac what eomomier can be effected by the nee if imponed and apposed plant over that of lewe molerio find line of fecel-nater beaters, line steam parifiets, power Their "Water Jacket Coblenser" is slown in their ad rtisement

Modern Methods of Mining and Handling Coal and Ore.
"3lolern Metheds of Mining and Haunling Coal, Mimeralk, Ete" is the tith of the Lank-Bell Machinery
 makhmery, their clevating and vonveying appl. suces, tipples, erewns, tete, cte. It is a fine piees of There of aft coal and ore mines. The apparatus and mathitery desenthed is afl of the latest and most approwed

 scoat Ave, Chicego, III.

\section*{Steam Specialties.}

Sio induatry affords a larger and mowe protitable and prohably po specialtics than the mining basiness, ably kmon fo neers than the International sperialty Co of Ietrist, Mich. The repmsation of this firm las been milt up on the Ponkerthy injector, bat they make a groeral line of steam "luass gools" ion wearly all por-
posex The ratticular specialty they head thir

 that nsepa of slech ands provide themertver in th this tirns: catalogor, and kewp it
goorls of this class are neesied

\section*{Air Compressors, Steam Pumps.}

The Hall steam Pump Co, of Pittoluarg. 12., Ixgin gith thas wow of the Colum Exasmen Axi Mresi Thes ansaverimenemf of tue machimery tain by then The cotplany in akbthn to a full line of seam pumpO an comprespors of any desired capneity, the bathet
 it the mining indastry, the Haft Co, hopee for a whare os the patromage of our readers.

\section*{Air Compressors.}

Mr. Roweri Laidlaw, president of the Laidlaw-Dunn-
 Tifany is datig quite a large basiness in air com-
 Broun Moning Ca, of Cardiff. Tenn.; and a pair ot
 Brablock, Pa, coke plant.

\section*{Wages Advanced.}

The fothouing notioe las been peoted on the tribs fipelers of all the mimes in the Clearfiekt, Weech ervek atmisia and Gallitxin coal region: Wo and after April
 ame rates as when this price for mining tarnerly prevaited" The above notice means an whance to the miners of 5 cents per ton, or 125 per cent, over the wages
that bave prerailed in the ahome named regione for the past two yeare

\section*{Two Dead in a Mine.}

Fire broke oat in the Strian No. 1 mine at R-laney Eothuson county, fise mes entered to locate the fire and wrie oterobere, bot were rexued unconscionas A ress eving party waw onsamised and Charles Laurenee, a Mr. Iabineon and the other men nill recover. Thi. mine Esowned by the Rochester and Rittolurg Coal and Iron Cotapany

\section*{Remarkable Escape of Eight Men.}

Eight men narrowly escapect death at the main slaft If the Chucago and 3tronk Coal and The Norke at Minonk, III, on the morning of the 131b ath, through the breaking of a hobsting mope. The eage in wheli and the other swen were badly broised. How they praped instunt death is a myestery.

Mine Explosion Kills Two Men
An explosion of fire damp oocurrel in the Ohio and Pennsylvania Coal mines at Port Royal, Pa., March 23 Killing Alexamber McIDmald, the tire loos, aged 35 , and Willian Davis, aged 15 . The mine is about 200 foet deep, and the explosion shook the earth around the
mouth of the mine. It was caused by the tire boce mouth of the mine of was caused
carrying a lamp into an unveed part.

\section*{A Disastrous Explosion in a German Mine.}

A cablegram from Berlin under date of the the uit. fate that an explecion, followed by fire cecurred at Cleophas mine at Kattonitx, Irassiain Galicia, on that
day, vhich resolted in the death of 60 miners

\section*{BITUMINOUS STATISTICS FOR 1895.}

\section*{In betr last menth＇s isote ne publislacel at summary of} lle statistics from the alvunce sherets of the reports of the inspertors of mituc for the anthracite district－of Pronsy frasia．The ancombensing table fot the bitum－

 owance Nopots of the inspertors by onr seccial repre－ entative，Mr．Itaind Ilalberstadt，mining engineer，Potte－ cille，I＇a．
and ion better lowation for as loreaker coalat be desircel．be built on the mar of this ronal．A very handeone Thow is ample rown fod calm，ami good location for all map rase of polished wak for blue prints and traciogs

 with all the lated coal cloaning appliances fois ex－light well aforil－ample light to ithe interior rootme The
 anys，and will be the means of gratly imerasing ish－wish combinedelectioc and gas chandeliers．The arrange－

Table Showing Total Production．Shipments，the Increase in Production in 1895 Over That of r894．The Total Prodaction of Coke in t8g5 and the Increase in Production Over That of \(18 g 4\) ．Number of Employes，Fatal and Non－Fatal Accidents，Kegs of Powder Used，Number of Horses and Mules，Number of Steam Boilers，Tons of Coal Mined per Life Lost and per Non－Fatal Injury in the Bituminous Collieries of Pennsylvania in 1805 ．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Divtent＊ & Twallym dur isill．Sita－ shinit & Tutal－hip－ mesist－tum－ stlonet & Imensey in Inolurthon 10ef 104． & Brovhartines ut I able Thtre & Itr＊ese is J＇veliotima if Cob＋407\％104 & Vombler nt Emponte & Sumble：of Yata Avrsbent． & Numilicene Snat Fatal arcetent． & Fers of Fourle 1＊＊e！ & Number of Horseranal shuser & & \[
\begin{aligned}
& \text { Tunnase } \\
& \text { Her Live } \\
& \text { Livet. }
\end{aligned}
\] & Towasem per Nom－Vatal Trijury． \\
\hline First & \％， 20.465 & Sazhats & 95\％ 20 & 3 & － & 11 （6） & 2. & Qi & 14，205 & 倞） & 131 & 22，\％ed & 83．973 \\
\hline Scoual & 413，75 & S146，141 & 2．504．1．4 & 2．420，03 & WE1，＜－4 & 11，400 & 3 & 合 & 371 & 1013 & 211 & 20，274 & 16．56\％ \\
\hline Thinl & 3．24．47 & 3， 86.14 .3 & 613， 275 & & 3．4＊＊ & 4，211 & 7 & 21 & 10．24 & the & （3） & Hister & 141．519 \\
\hline Fuarth & 5 214,65 & 4 10，\％ion & & inst，1：16 & 46， 3 － & 人sis & 14 & 38 & 20，94 & 7 t & \％ & 67，16\％ & 16．165 \\
\hline Fithl & & Wanis． & 2，515， 146 & A， & 1.4 mm & －ika & 13 & 211 & 6，150 & 710 & 1 ce & 144，654 & 91， 2 L \\
\hline －ixth & 1 lik & 7， 104.77 & & 1：31，6\％ & \％，\％an & 7， 1 lal & 4 & 117 & 21，4\％ & （c） & \(\cdots\) & （2a）\(\times 14\) & 231，84 \\
\hline Fecenth & 1，285，ike & 1 may & AH．tci & S，00\％ & 1，100 & Pexty & 14 & 去 & 1，3t\％ & & 142 & 32074 & 大5，5и \\
\hline Eielith & ＋Fiestes & ＋1ake\％ & 1 \(2 \mathrm{wi} \times 4\) & 24.100 & 10，＜is & 8017 & 13 & 4 & 15，54 & 又 81 & 104 & ，iniz，ice & 175s ent \\
\hline Vinth & Scky & 2120， 11 i & matioct & 1．thiani & 511，28 & 8．45 & 21 & \＃1 & 13，204 & 483 & 183 & －2， 041 & 14， 31 \\
\hline Tenth & 281625 & & －2，71 & 122：21 & 4，46 & Sirek & A & 3 & 17，40； & ＋1 & 4 & 201，054 & 10¢0．31 \\
\hline Tutals & 21．x13．112 & 35．125．390 & 12012．0．0 & 8，＋2ater & 2，280，6\％ & 84.004 & is & 419 & 14：20\％ & Ginel & 1217 & ＋121．2er & ＋13， \\
\hline
\end{tabular}

Comparative Table For 1894 ．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TH－76．7． & Tratitur thastinh．tos． abirt： & Total chint Howte torls－ （stiurt．） & 10inaze in I＇rindurtion Hy世 ter！ & \[
\begin{aligned}
& \text { Yotluntion } \\
& \text { oftiker } \\
& \text { (Tone) }
\end{aligned}
\] & \begin{tabular}{l}
18．mavein \\
Imolestion of \\
（colv（trer）3cen
\end{tabular} & Numberat Kwjolyes & \[
\begin{aligned}
& \text { Sumber of } \\
& \text { Yutal } \\
& \text { Acitents. }
\end{aligned}
\] & \begin{tabular}{l}
Susilezof \\
Sula Fistal \\
tathene．
\end{tabular} & \[
\begin{aligned}
& \text { Kepsuif } \\
& \text { Musder } \\
& \text { Keol. }
\end{aligned}
\] & Sutolecr uf Haressall｜ Mulen & \[
\begin{aligned}
& \text { Sumber } \\
& \text { if ther } \\
& \text { poller }
\end{aligned}
\] & Termage for lilie feet & Thnmage zaz Sum－Fatal Jinjury． \\
\hline First & a， \(3 \times 2 \times 1 \times 1\) & 5， 253.34 & W60．1 & ， & & 11．17\％ & 3 & \(\cdots\) & 16， \(2 \times 3\) & 5 Lz & 112 & 211，2\％ & 27， \(2 \times 8\) \\
\hline Sevoral & 64346ts & \(4,0 \times 0.7 \%\) & gevait． & 10.6848 & 463 & 12．160 & is & 2） & 314 & 1.665 & ＊ & 2mict & 10．4，24 \\
\hline Thinl & 9141 193 & 2tityla & & 3 a＊＊ & － & 4：294 & 4 & 12 & 16．4．t & 1 ms & 64 & 3＊5，15＊ & \(\pm 21,005\) \\
\hline Fimerla & 4，2wi．iv： & 7， 84.25 & ＂is．iov & \(252-111\) & & y & 11 & 9） & \＄8， 141 & 2：10： & Mi & 3xian & प14．806 \\
\hline Finh， & 3100036 & 120\％，－ & － & 2．24， 0 I & 171．970 & Ficts & 13 & 17 & 3 k 析 & dis & \(1 \times 3\) & 3x05\％ & －\(\times 1.104\) \\
\hline rixth & \(4,401 \mathrm{cos}\) & 2，itioner & 1.20 .166 & 11，408 & fif． \(6 \times 4\) & 6，\({ }^{\text {a }}\) & 13 & 17 & 12，2i\％ & Smi & is & ＋20．34 & 175 six \\
\hline －evently & 3， \(56 \times 3\) & ＋，02S3 & 19世⿺⿻⿻一㇂㇒丶幺小） & Gixal & 200\％ & & \＃ & 17 & ，＜ 867 & \％ 4 & 12 & 4 F & ＊ 4 ，1／20 \\
\hline Eiehth & 3.4 .465 & & t．icetis） & 1：have & （3，．58 & ＜ 3100 & 11 & 11 & 12，4：3 & ＊ 15 & 1001 & 314， 6 & 4,245 \\
\hline Siuts & 5，12001－11 & 20， & 12 Eat & 1．5．ke & \(2 i 5 \times 1 \times\) & 4．50 & 11 & \＃10 & 11，115 & 26 & 132 & E3i． 35 & 117．250 \\
\hline Tenth & 1 Na （\％ay & 1，\(-1 \times 1 \times 17\) & H20，ins & 57，-1 & 17日边 & 4207 & \(!\) & 17 & 10125 & 4．4．1 & S & 441．26 & 130，就 \\
\hline Tueats & \(2 \times 4 \times 10\) & 20，60xcoul & 310161．008 & 5， 2 en， 2 H & 18.147 & 86，17\％ & \(1 *\) & 48） & H6．28 & 6,80 & 1，1231 & ＋ 321,211 & ＋104， 1020 \\
\hline
\end{tabular}

Table Showing Causes of Accidents，Number Attributable to Each，and Total Number of Fatal and Non－Fatal Accidents at the Bituminous Collieries of Pennsylvania in \(\mathbf{5 8 9 5}\) With a Comparative Table for 1894

Opening a New Coal Tract． 4 nderartor Eolward iskiza，of Mt．Carmel，with at force
 Coal Comgany，ansl llw uoth will lon tm－lerl alwas ia

 writ very far，av alout the time thery land the work tuc－
 of the exal trayt to．the Lafogh Vitley fual Chumany bergan．The thal na－completerl a for wevk－age a＝wis

The ：＂gimex－bave Ingut work and hare sun the
 line conmerions will lee make，fo the site of ther ne－u byaker．It will take a werh is 1 wo lo gomplefe the literg tor de，which therwork of survey nill le jublowl ab can mith all－nvol，a－it will be mexessary to．＂pand of

\section*{New Engineering 0ffices．}

\section*{Packing．}

We－ure in receipt of a commentication from the farlock
 fonte a large imereaes in their lonsimess furiag the past
 factories over titus，and as the denamel for tbeir proaluet

 thualat．

The tirand totate akked for poposals for the constrace Tum if a lanse reervoir upon its lands，on Locust moun－
 dI．I．Quinn，Lowis firant．Thes If Iacker，Chas．E． king and P．Mc）Janns．

\section*{Easy Lessons on Mining.} Certificates of Competency as Mine Foremen, or to become Mine Superintendents:

The articles are written to be understood by the unlearned and the tearned alike. Plain language is used, no obscure terms are employed, and each subject treated, is made as clear and easy to understand as possible.

Further: The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors, are printed and answered.

Qd. The Series of Articles "Geolacy of Coal," "Chemistry of Mining," " Mining Metheds" and "Mining Machinery" was \(\$ 8.00\) for twelve sopies.

\section*{GEOLOGY OF COAL}

Ruptures in the Earth's Crust-The Effects of Eruptive Dykes.
S8. Ruptures in the Earth's Crust.-I inat fimenry are sumetimes met with in mining that are kuwn in lis

Incated and pla-tic interior
Thees great cracke are filled witle a hurd flints etom

 dykex, lava dykes and clvan cuatres. They ane ouf completely ent off the contact of the same ruperacd teds These dykes whloth dislorate the levele of- the fractured rocks and 2 F they are always foumd passing regione, where thei elrati have mu4 only heere upleastal bat broken and diejointed with great facti-
Many is these extrandinary lava dyked were injoctad dunng the periods of the depusition of the Carbonifer pa-xing thomgh the lower ir older meries, and omplaid with the newer or later everice of the same formationk Hese acyoaintance nith ther port those introuling ignowos rocks have played, in placing within the reach of man have been accosible, we introbluce Figune 94 and thiwill give the right cike tow understanit the character of The great plames of frocture, ind are mou finw is

and partly in vertical sections, and it is intembed to mep

 downinto the carti \(\quad\) crand

 ous fields.
We canned for twe nemont think of the cmortimel straing which when it chuchenl crast of the earl has bat

 probluced, accompanied with comsiderable slifing thal
 time, besiling streams of water. We can ere then that the forcen that have broken the carth's crust, and filked many of the thepp pebetrating and yawning crucks nith
 metals, and yet as a general rule the ove are fot offen foomed in the lara dykes, but in the veins in their vicinity, for we now kow that the boiling streams to which
wer have jut mfernal were the carriere of the metaland ether mincrals into the timenres that are now known nether fires inemased the solvent pouer of the water, and hence it acteal eelectively in provilating thonght the
 ing which many of the lava dykes mere-formexl are uell known, and interd they cannot be mistaken, for the
tome of many of shem are fustat to terminate in rowke of he Carboniferons abit Pernaian ages, as has leen notiovel The Permian period was ofe of great voleanie action but the perionl of the lower eral measures was mave extendykes, but it overthowed exteneise areas of the gea ficer, and wide spresaling amos of dry lami 土n lavat olivet-it
"uhin sills," au1 in sume cases the menten stony thial hax been egeted nith foree sulficient to life the worlying strata and inerert iteff betwern the telding plater:
 ing shelvys are shown it I imel I ubere they ame seen to have crasled amb broken a ted of slate \(A\), \(S\), but itmene-
 beve deperited at /., L. Xon what the mines manst be carefof to matioc is this, the eruptive dyloes are the conGant ar'companimat of weine whectlact pos-lactive iox that the ejoced hod water canmet [x+colate thougl

\section*{}

which they ane shepoited. Figure 96 is an illestration
 fout such is conclusion is a mastake, leransee in wome con fiveld- thwor dy kes not only cat thronsh the coll turaz are- ami complotely marate vore portion of the fiek Irom the other, bat they have injured the enal by coling thomgh. Again, in the vicinity of the dyhe. Ine umot extioce interrugtions in the coill sams recor, with all fri consequent diticulty and expense in mining, ant
 foumd, for it has only bren prexermal by eradual sab. "urrgence in water when it waceovend up with some
 Ni lykek if me a cance, are at any rate onke if ther re-ulte of

 masle thetw acevenible fot minimg. The great sanyome of

Golorablo ate like greal liz-urcs amil really mesemble them, lint are now axhimited to te the work of enesion by nater. Figure \(15^{2}\) is a view of a eanyon cut in marble, and it is a (o) forni-h, to the nomer at idea of and of them lange rack. The dyker are it many cases us wide as the. Colorady river, althomeh sum ane only six feet thick.

\section*{Recapitulation Questions.}

 reures, lava dykas, priphyntic th hes, ami dykes Levs. 2 . Th dykes aluay> dislenate the rerke ther

 Axs Dylar are always foumi in region- that have

 LEES + Chn w. in ons fiese dykes of natue the Intionl- in which they wen
 aroug which they we
 Whine their toppe are corveri nith the upper newhbers
 ferickl- of the dejumition of the Dekk in which they ane

 ty kem have denc gond -w evice to man, for sevell bow then

 gection of het water and stean into the collateral enek
 LeEs, in Ilas the onithow in gonemornek fram doked As- Ther cuttow of igheals mek from i) lies has fa
 that lase intrumed totuest the siratitied rocke and
 exatuples of okk maiross fir ime
 the moet likely resplacle- for Itw injected now durimg
 ghomerateg, locrcias sami gritty gambetomes, were highly
 an combined is to ler solahle in the loat watets circulating thragh the interstices of these. pownths ruelos.
Cerse \(\times\) in the an-trarite regions of the United states the wat- of porphyntic dykes and trapur lavit *Devis
Ava
 hul imber Colorade, are the nots of purpherritie dyless nuksure iound in all the protucieve onelnaring regions geb- is What efferts have the intrusions of igrowhs dy kes has on the coal wams, when the dykes uene
 saal wame, the cal is burned into ash at the junction, miariki from the dyke the bitumimets cosis are esams are dislonated with groat fanlts. Q(ax 10. Tave fanls beval favorable or muiavonable

Ass. Eanls have-Inen Eavorable to the proservation
of the coul somos, and we tind, thentom, that the coul mesonre strata that have remaimed mmatfected by the ugomios of bostruction and uaste, have been possirval
 if the deprowed >cele id grat tanli.

\section*{CHEMISTRY OF MINING} Different Forms of Safety Lamp Glasses -The Dimen. sions of Lamp Glasses-The Surfaces of Glasses. Effects of Hot Glass on Light-Recapotulation of Facts
96. Different Forms of Safety Lamp Glasses Mans sivgular -haper have lne"t givem lo the glaress of valety
 the first faronite. Whien Mr. Eilas Leveroftemed a ri-
 patent oflioz of all the groat mining evoutries of the of the mesel imventiotis of a mighty lobe of etherwise clever thens, anal yed this great maltitnde have since settled down in vifonce \(\pi\) ithout even so much as havine seemed an undi-puted claim to abe bew dejarture in lampeon-trictow, and the reonlt is, the satety latnp inot improved, nor will it cher be, by emply trying tu
nform the lamp as it is. What we requite, then, is but को bucts the promer of mechanical resourex as the pouet
 tivn and ountrive a bew one from the teaching of
knowleslge, salenlation and experience. Wi- are tuif rging in this lesen to determime what houlil be the finatity of eomstraction for any of the parte of at safery
lamp, lan to show the lime along whief we must travel lamp, bur to show the line along which we manat travel

\[
146
\]
all |xen trial as successtal vinaly of the cylindrical shape, and get the latter entores for reasoner Itsat will

 refrection dav to the- splierieal fuerm is so small that it
 better, beat wores, as a framomither and diffoser of light, for be it ehterevent that ulum the area of the -urface of

 the satue for the -pherical as for the cylinalrical alass, the sane for the phorieal io for the cylmetral ghass, as the eotater of the flame in \(f\) from the vertiozl line clanors an- vyusl, that is, 14 is trgual to ,oi amel, it "Hual to \(g h\), ther angle- of diffucion are alsurequal. That cases an vqual to I T. Fmon all this mo learn iwo
 the form and limentions larmonixe with the ropuinc

 97.

The Dimenssons of Lamp Glasses. - It is ifw casy

 doccul Howe img in the chetsx
 of ryizal jutertial. pouer, sher lighat
p-mittal frome itw glave ghlobe sy enghot fol than that given

n-ixlabor, therefore the illommating power nf two expaat
 shefls of bhovani splezes, will tre fof the large shefl Non. a- the uand pateratial may bere perplex ami not

 the lonsol, or intensity, of the lightt. For "xamipte, onplowe the ghole \(\theta\) in the figure to be a volume of Hame, of mather in a state of incandexcenes, and the staall glober of to be the -atme, then to maker the potentials of the iwo light- syaal, lhas sk, their pewer to fill syoal spaces with cyial light, the tonsion our intensity of the light of wobld have to bo \& times that of fi, twe
canm the volume of \(\theta\) is 8 times that of \(q\),
Let the large tolame egual \(I\), amol the ornall now equal Sand the ligh tension equal \(\gamma\) atal the low equal apeat f, then in this ease ther eypal petentiale woalel anive in this way, 1' , Fi,ofs I 1 \& . We as Ahen, that the pentential of a lighet is the peraluet of its colane into it- intensity, All have motievd that a very

Fic. the
lange obe, that is tos say, it staill lizht fills a leses spoo than a larke one when their inten-itics are eqpal, and the inten-isies of the canclle light- are noprosed to be Gual, ior if the molnme of the large lightion vight times that of the small whe, then the brge noe wiff fill with lizht at space cight times as large
Again. suppurct the large volume of lizht to colle from a suace of red-the iross, anicl the ensall volune of light to cone froth tlie flane nf a hernowe lamp, and tet the in-
 Ste intensity of the light of the lamp be 2,080 and the yotane of the lont inon be 20 and that in the lamp thane be: 1, then the light from the red-lug iron will only have an illuminating potential of the one-humbentif
 sev the importance of the mostning ame relative caloe of the terma zolune: Ien-ion and fotential. Next let ue evolider the relative ret-tanev- that hghts awe anbject

98. The Surfaces of Glasses.- Wimald any onve whe
 nituse of the glass slarll that veneleses at light-giving Alame wonld affect the poinnitial of the light \(m\) buch?
 uthin the glaw cylinder- 1, and of tol toc| the effect of wocmated recietancy of the light bas-ing thtwagh the barge estimder if. It will to swen that if is domble itm dianseter of \(g\) bat there is anocher qualifieation it the thosensions of thoce eylimbers that reguins elose atten

 proation of the thame in of is such that the layateal tex-r ascoul nt atice ont of it, while the cold air in theswolimg cont- the etberwine expocel gla-x armand the flame

 putestial- if the lighto will vary imeotely an the
 shashow of the tral fi, cast on the lock excen at " " is

 How datuetwre of the cyltukers and thendige the resist
 Net 1 -tand for the revistane and pion pete-ntial, and It
 for the lange vylimber, and "f peforthe largevelimber or far theremall ey limeter of of and \(\frac{\mathrm{fr}}{\mathrm{f}}\)
98. Effects of Hot Glass on Light.-If 1 mo kewosme

 that ineroves the volowe of the light, ther visallos ligh
would far exoced in poteratial the langer ones. Thes
acts can low shown by the contrated shadow- as in Fig. 12\%. Heve the exal glase that vochore the light I

than shat of 6.6 , from the bot glase that enclones the large tlame \(E\). We ve then how bumervan the matter bol shat anh
 thepglane ampl inftur, we cammon con yot devide of waiting to tixe shoir widepere whish shall ts taken in

 glase." that tont leew the sifferent limensions Che plasses mould ffect she tramemizion and differ sion of light, and strange to kay the glake cylinderof the woukem langre am atter all otaly copione of the

 asonding arrous within the glass that son iat as conoling Was cobecemed the proviston had been masio ir was 1 hroug h ilus insolyes at the lower enil of the zanze folbe, this air could not dexemel without receving erme luat by radiation.
Ther Clanny lampe boucver, is the parent of all hat haverebling lations with a glass cytinder and Gitike innprowal
Facts. Recapitulation of Pacts.-čcras. I. onk shaped glase give better menilt- In difforing the hght of a xatety-lamp hana at eylintrical one-s pherical glacein:a-afetv himp doe not increan bre angle of diffurion sheb the rojenid thattom Tr. the same the leogths eylinatrical alam
QuEx ? 1×ther ffors.
 frome halging wiac. cqual to that froma a cylindrival new ?
 of a bulging glaw in gnotey than that of a eylindrical
 ander as thee of the bulging ons, flew epherical glase intraduces a grater noistancye to the gowape of the light mid therefore redners the forqiow putential. Qers, What pribejplos stambl guide you in skerbining the correct form und dimmosinas of iloc glass of a -itety-latur.
 ower, the Form and dimen-tor- of ther glaw should barmanios with the requirement- of the lawe of light:
Qers. What arn the factor- or takere of the potential of light
Avx. The perer
Avy. The pouser or patential of light is the product of is tu . lactors, natuely the volume of the light, and Tow internity of the light; for the volune of a light may

 -ities are eqpal the large velume will illaminate a large
-rame while the small ot will illmomate a matisols

 cother volnmes when the inten-itice of the lights are equal. Th: make the poletatials of the tuo lights equal, of the lange one. as the lange sulume is reater than the of the luge ur at ank than high inteneity, and , the low one, imed It the large

fit thumbh glass?
tharw. Ih hen plass she-1bs ame \(\times 4\) over illuminating hammothe bot glaw mediuni imanaloces a greater resist ancelman a rolatroly cold wow and therefofe the poten Grobin a hat alo.
(fice from nator am example of a large

\begin{abstract}
Axs. The volume of the light of the fult moxus is sufficient to illuminate hali the gariace of the earth.
while its inteneity is sol low that if a pencil of its rays are admitted inta a dark room throngh a hole about the size of a ramtle flame, the light giving power of the res stricted beom is so small that it does not geve rufticient light to errable ome man to ece another.

\author{
is at oneegreat in volume and high in inteneity?
Ass. The light in nature that is great in vofume and high in intenaity is the sum.
}
\end{abstract}

\section*{MINING MACHINERY.}
Pump Movements and Resistances-The Sizes of
Pump Valves-The " Tail" or Suction-Pipes of

pipe of athe area of the 1 rassevere eection of the enction forsth of that of the gistos. The panapand the faneet antfow, for ue can lengilen tom amy extent the heme of flow, which means that we can increare the length of
flow motive column to obeain prosemren of mome atmor pleces than vae, but we cannot oblain mone than a

 of 34 foet to balanee the proverne of the atmeophore, ami

 of injection will \(\mathrm{xe}^{(H-h)} \frac{(I}{}, 12 \mathrm{~g}=\mathrm{m}\) and to give the butter a realistic character let as suppeect that the
momp pietom is 146 fect above the intalte water, then

\(\qquad\)
\(\qquad\) pump Again, let us obecrve that the moure of the vacuasi, when propelled in doing oo by the premare of the atmepphere, is 2,190 ; then the velocity of the water,
in feet per recomd, ru-hing into slie piston chamber,

these enclusions that if the coggon or the pomp pis-
ton was run as cone-fourih of the Howl of tivi foxt

thew would raver

\section*{woald In -abject wot}

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Axs Thu proseane regairad to \(\times 4\) flaids in motion

\(\qquad\)

 \({ }^{\text {ar }}\) The welecitios cars as the square noote of the restat-

 many tows prabsis of Work woold be thome, and if hes. it- awyomed whesty ? Ate awyurnal swlisat3

 abal the linal veloncty of the base Woult tw 1 it \#g foct our 1 it, the the thin, the velencity myairev in

 it, the lenght in the vertical eolumin thin halanovis the

 "fletise pixasure, and 2les io the prosoure of the as

 Axs As slow lethers have alnomly lewn explained, w

 in the right dimensions we -hembl give to the water

 mageitieat croof," sach as making the area of the smetion

 it- apocite in cxeess, that is, by making the water-way
ut a valve too large, aisl the diameter of the tail-pijer tow

\section*{MINING METHODS}

\section*{What is Coal Dust}

93 What Is Coal Dust ?- We wosur by tlu woral dent A rnowel of minnte |article- of sulid butcer that are

 anmanocal, or a canse is indicatiol that will firmalece it ver, we reveite in huwa a great hleal buce- ahont it. amd ruative sarfiwe ancas of the particlex anel the law

 The noly ela-ifieration at present recegrized is "The

 appliente value and shorefore we we rempulled it
 Homeder minut- the particle- in a dunt chend may to

 "the weizht- of the partioles.
 fint thi- law is very muelo aucelifies of hen it ivelv fall- it

last for have an imenasing retardation per encembl, an the
 of casy thetermination ubent the weight of the lomely and
 dimown by a scomoth bore gan beet- mitha greater n -i-tance from the air, on aceome of How Large ama of is. encl": than a cxlintrical shof from is ritle cantion with A suall "ens " area. If a cube or spleen of inan ami
 fr-fore the gleve, abi if the shaft is wry deeph, the shifere

 will cease to accelerate obhile falling. Then, let the
 atoce the to the air in wherh thi- cube is falling can lie

 2tmopllere, \(k 1.25=\) the weight in pranot- of the cobe That that fall-
 falling in it is A bely catss in acco-trate when fall-
 that \(V\) \(\qquad\)
That is to say the n-ri-datoce sary as the spuare: .

 fret fer seoubd, it cannet farther aneolerate, inul if the timae to fall at that ariform selecits forever. In onr

 sluas clenel ean be inamel, atal to aid the deseription, snitable figums will te intrubued, hat in the manatimes
 then charts bublerstaml that the whonts at inhich a

 fort of ceal, we can mow ti-p enoe nith the bumber

 sloc- fall ilat, it iv clocar that the moan onf the- w-okit?

 surface It wowh be imgumble haneve, for the stal artually lave the sabu velecily of su-p =1sion is the conimivale, lecanse for half she wevght, it now has onily

 whecity ut susp-nsion as lufore, Wi have ibulicated at
 the countraction amil uen of an instrument of import ant in the dost invinigation. This ippanatus b. hare of is the hest we cogld seleqt for simple explame

 which iv filled bure-ty with time bilsrum conton woml
 The nir is n-4 in motbon ami mowean-1 by a mater ait placoment which protode ak follewns it ther heron-
this can ler run off through the faveet fame not through the hose pipe 12 . Sow Let ns noppore it is required that the weight of eoal thast in a entioe fous of air shoould to known, and let us mproier that the tank \(T\) is fult, and bat its capocity io three cubie feet. If mow the fmocet \(F\) is upened, the uater will flow ost through the boee Of asid make a depresefobs, and now the air will preer
 llow throngh the pipe /ancl whter the top of the fank at

 fore, the fulk is mous disonmertal foom the jige \(f\) and curvfully weighol, ami if it is foumi tuta fifter 1 mains foracier than it thas hufon the filtration luzan ore
 fine coal da-t in mispernion lufore it was-te-ted.

\section*{Mine Harness.}

 lited wihtiolnulg ami well arramgel littirgeAteither -pecialy mannfoctomil hy the Pith-hary Harwos capply Cg, i- at thalle thonat hair haved mime collar
 comberlanal Coal Co, and many utlere. This collar is berw it in the ammexel cy

 are lnase if Western If-nusylvanis, and, while having
 tock of bugery, coach and conge harness, as well as a

 tive of this cumpany are sorh, that noter-for atpplies are and export trade sone loy the cumpany makime it beres. fars for thom to carry the lagost stock in the city of Pitixtors. In tamt, the lam- in the cimintry cirry lapter-torks. Thrit illostrated catahogue will be cheer-

\section*{Miscellaneous.}

A NATURAL BEAR TRAP
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{31}{*}{}} \\
\hline & \\
\hline
\end{tabular}

\section*{HAWAII'S BURNING MOUNT \\ }

\section*{}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{islamels of Mans and Hawail. Meains I peole I owang , ahoust until Jocr pown jonitol to the} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\(\qquad\)

\section*{CHINESE TELEGRAPHY}

\(\qquad\)

 Withia tweaty-four logate it had riven to the fope of the shaf

 Now wown wow

\section*{COLORS ACCORDING TO LATITUDES}

Sti: \(n \times \rightarrow=\)Ave Mand mow

The fierman- make a -ingular dexluction frums the pasboum

for other thrimge that leace the menhomlen and tight with

 luatums or it oxay slart flown chlliggtivy, amb tash thromel

 the shrimper witurn their oroy
1sut it mizhot le that a lit)
 the firse dash bev parsoise the shirimpe tutil, if thes lasel mot

\section*{CRIME AMONG ANIMALS.}

 It is a still mose curbin- fies that thenc emensie bo lan ant
 tiopose=1 anal irritable affer a showl contre of it amt how all ittack and ptanaler the well-shrplied hives.

 tere w the Bork which, at the time of mikration, sither refieve

 A dixtimgui-heol veferinary vernevm cay- that in every regi-
 ither tor bath or to their companions In shatine with them.

AFRICA'S WHITE NATIVES.

 it> mighleofs, ant Was surgivel tor find that tlere wak an ac-

 diveres of the slosers to the licedility of the u like trile.

 Intart matele, uwing to the fart that the monkeine of the

CABLE LINE TO BIG VOLCANO
\begin{tabular}{|c|}
\hline \multirow{16}{*}{} \\
\hline \\
\hline
\end{tabular}

\section*{New Inventions.}

保

 From emi be end, upum its interine sarfaee. The piston is a eglmder 1 , haviag a similar sipiral grove uguon its exterive

phalt. This matorial ev lornaght to the beoleng ywist, at -nit
 an! the artirks afe dipart mal allowet to romain thowin a seonint olles to fosetrate very deoply. The surfars of the

BREAKER TOOTH.

tator The towh hem -lowws has a luvly ami -hank, at aps is mank wyramblat tovgit thes sylenf the bouly. I. Tho

DRILLING STONE

COAL HANDLING APPARATUS lefome the croppletions of the lon ire andes In other wotile

 the chicite torts the veriter, casily, amil the nuter torrel tillot with, whth uatur, we. that ther meturn -troket in tmak

 its the hower thumer inflantly raite the main valte and

\section*{STEAM ORE STAMP}
 fowntof han ham, Fros same 6 are octions of the jumary yalve shamber. Hes, It is the primary valve, amb fige 9 io a The main vatoe Ji- Horatel by means of it jrimary value th which is areratol in one direction ly the main piston rod. las if plunger relint cow-h cind, the onw at the lop having

\(\qquad\)
\(\qquad\)

\section*{The Colliery Engineer \\ AND}

\section*{MMFTAT IMIINFR_}

PLACER MINING.
A GENERAL AND SPECIFIC ACCOUNT

Of Placers, Their Formation, Distribetion and the Com struction aad Derelopment of the Dilferent Ma chinery and Devices Lsol in Werking Them.

stramsand rivers, and to be carried ont and distritatem for oxer the plane us mil for the farmer ene evan to form beaches and wes bettomes to be bphesak lowraffer to form futare contiment- and future mome fin-. If all the gold that has been sprad far aned nith in bumbe grains by those mocda comild be coslected, if arold far exesed all that is of exel will be oblained bo We puny eftors at rein or placer mining. wer the world and Connt twore or hos in tearly tram, is derivet exclusitely from distinet fobl-tuant fissure weins tout rather foen the mexeat bimating en
lombia, Iclahos, ant Wabinzten territory, in all the-

Thongh placer deposits an- ge-rexHy concelied to bave been laid down swams in lacon incolvent lamk yet thereare esherand farolder forma tions, sot dornerally inctubded undey
 ant are withat pott-tearing. Wedt phaters of hart eonghan rate wverlain byaposective capof onsewhat revent

Deaches examblidated by time, hoat ant presoure into hard rock and thrown up nearly to vertical The Itotnestake mine in the. Elack Ilills derisuse gold from a hard consolidated placer of Cambrian age and we lelieve and even know that igold may be foam lookend bor, and in casex the v might tre puritable if the

 conld be worled wholevale by socu-chasp prewas. heta filling upevery imeipurnt ravien of ralling valley

the piotioer mibers on a brousl and literal scale, after 4ea. strata, occusionaliy boken by stuperidous chafis, ther re-
 thookt sev bere and there on sarh lime of fault livel eprings and geysers of the Yellowstone Par theen peyecre might still perhapes be in action as is coade, and uthors in actual poceses of formations Xia

\(\qquad\) lave to burrow decp
lows inte the coen-lait-of theret yrings regions worsla po bere amd there, permps, but and geres mommils potteel over the dreary landsape
on lines of buried of tioes of buried bave been the aspect
 moroubd country let the glacien le set to work. See
 rings of strata of which it is composed, and the spring formed veins-as we eat off the top of a water melon and expere its rings of fruit-like growth aud eved- The ice
\(\qquad\)
\(\qquad\)
 shaped swaths dowit the sades of the hills abi by forn inte tatters, and its mountains eloven through and mighty canyons expose the ribs and anatomy of the through by modern and ancient glaciers, and by a nettain. The delhris of this planing is dietributed in אo down the Pacifice Cro-t fo xoathern Galifornia, along windrome on the gides of the camyons and bettome of the

\begin{abstract}

\end{abstract}

\(d\)

rimerannie

 mind haik atomit an onneco of govid and soon att the mill hami- wom meking for the powisar botal tanest ivited Coldeta and moltal to try the ehpreets alum

Ereve till onf tie cereinn of Cahforna in 1sts to the

\footnotetext{

}

 ftiker minug in Californias

cavion a pint of gravel producal a pound of pold. In 103 thew was a rush to the Constock. Bydanlic

Califormia is divislest into four parallel lfoes of there great belt- con-isting of the Kierras, Atvat Evatral Yal Toy of California, and the Cosset ranges. The Kierran ly gramite atul jgivous roek are the main somice of the otid faile of rivent and allovial placer depmesite fordd weins nevar mostly in slaten, both in Kierras and Coast manges. The country coneral by lava flow e is in Trimity, Plomanand Butte, with Lassebs and Mhasta Pealis. stream floued from the lafter oner Norfli California and "reegon and covered uy, sume of the placy deporite of glacie atul river. The ertelana is limited morth, wot by thit ming ont of clepoeits, bat hy thekemige of tavis
The whl rivere erombel the slatew with thin gold quarts veise and shersitest the debris in hed. irom as few imebee to arofect dive lasa weveral hondred feet deep cot

hephant remain-, and even the bobes and impleenents f peathiturie wan, are juenth, as in the case of the celeTiratol Pliwoiks shilt of t'Alavera- comnty, place it New Knlly as givea in Bowie's manalal of place inaticking

led rytury thet juin
twet cenump thant jem
canamblondor

The greater peri of the pold is tonant hame, as eloce asociatesl with magretite of hlack mant and erame

 5 ntreaks of rementerl grasel, but if this is of fibe clay is liahike to be barren. Kume gohl is oreasionally foom at groes route, jay gravel may vectr high iblure had-

 placer doposits an evelefimes cosered with lava but phacet dejoelts ant entik-
tately sin it other rogions.
blyenerxy kixia
Shallotw plawers are de pusito it few foot deep a- dotimel from thep placere swerit lumalovi foct devp. Hill

pinats 0 plains and flats. "Bar claims" anv lare of grivet on sbfer of strcalos alvive water level. Thesh
 the Eike Ity uathing war procticesl by Mexicane wher water nas seame an! deperits rich. Ster pal. voung atha tiry thg the remest they worked it in al korent low or thatea. The evarthy portionk, by cires whels was extrated ly wintorning firmand sluicing
consists in treating the gravel expasated by phek and opened from that point. As bonks are washed away
sbovel by washang it in trenches cut in bedrock, the bod nock cuts are driven towands the face of the work
 damming up a streats perhapes ut a high level or forming are used, throwing strams from oppoeite sbos forming

 this bootning in the san Jwan district. Incepectors hail

 it came At the top of this mountain was a small laky lives ane cmongerod. Danke wer lín feet high shoukd lake bill if was fall then they cut throught the dam and ing deloriahefore it and quickly out a channelt tolesitroeh In dowp mining for degp placer lewls there are twe
In methos, "drifing" and hydrusticking In initing the \(\cdots\)-pecially where thee thepwite are covered by lava and (20)
 firmiy cermentid, is
crashed in stamj
Hydrambicking is the
operated. Banks of solid untonelord gravel are preterahi for upper and \(6 s^{\circ}\) for lower lank-. Woanlen flumes an
 and a charge of quichsilver pat into the upper 200 or 3 ane
feet of olnies. I small quantity is di-iribated ahong
 Undercurrente wre eharged at the same times, and a little during the run in leosening quantities, the object being to kozp the mercury unconered and clear at the top of
the riftles. so the etanree is nevlatev by atuont exposed to view. At North Bloombeld, Cal, the main sluice i- cleaned up every twelve days. Eighteen Itak-
 avoid splashing the queckilver, as it divides itself into minute particles which are carried off by it swift stream
or thoat off in clear water. So loboyant is quickeilver that it has been taken from the surfice, containing par-
theles of gold, 21 miles betow where it was thinun in.
At Komene we fiomml plenty of quichsilver thet thal cone-

\section*{} grommd and to give greatest permire seeond, abundant summer supply
third, water courses on line of ditel gate, at intermale nut givater chan hatil a mike; fiith, diteloee prefernd t
flumes, down from the stamp mills of Central, 20 bilee di-tant.
 Necomber, 188, issoe of the Cobsum Evosion son size of ditelo is regulated by its regairements The forl
 whoee excellest work on bydraulicking we are indebted districts narrow deep ditehes with texp grade ar
for monel of the materiat in these artieles- The first preforable. In Californis ditehes with eal cabic feet work is started bear the hesad of the slaice and the mine capacity per second and grades of 20 feet per mile ar
 that point frobu which stuices rumning in a given grade
 thalal he as manh as perible in stmight limes. Wher virses orcur the witer side of the box sbusla be wightly ther rittles. With frequen
 Movement of graved dermembon grade of slaices Ciarse
\(\qquad\)
\(\qquad\) Gomertimat materials and convey them to the shaces full of gravy hefore tarning off the water. The lengil

 Where them io mach water and gnomud, the chean u1]
of first l,tox fect paved with roekn is every fornight
 foumd -yread over their ends In cleaning op, bed
\(k k\) and cont-are piped clean, then only a small head

\section*{51}

\section*{ente planks they ane saweil partially through in places} phlashing, vte, the onter side is raisel in accordane
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(Fig. 14)
Ifon piperserossing latze thequessinns ure called inverted siphons. A stpyly pipe enbreys water frum perain

 are box, mamk telow the level of the llames, arranged to
 wough to berps the lawat of the pipe entering it under water with seasly prossame A grating of bors catches lizhtrot iman usel. The train pipe khould levermil in as Hirent is lime an pumble 6 the digeings. At all angles wish saw whast in slip joants. Draneh pipes ane emaller

\section*{Tunucls ane nsed to of*" gravel claims, where open} ing nawbesl material A bssnel should be trive wel
 and alonat \(3 \times 3\) feet wide Klasts are the lee-t nay for

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) -nest ritlle rittles minowed, and reithe
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
 six and a
meroded.
By theing to. much water, massers of Wack samd ane and by the ervitying prosenre to pook the rilles, challom

 beavy ecmient gravel, wore material can be trameported by a proper propiriom of light and luavy gravel mixel.

 I! jer cent grate for liwn inclise is ixtem! the elinive

 with suft pige torghe imerted hottom atel sidhes are

 with >kntes.

Ititle date back to the earliest days of gobl-uashing. Blankets, hiches nith hair uppermeot, hedk and era:
 with tmoly black sumd or py rites cseaper rittles for loug

 pine welfece driven betueen blocks and sides of shise.
 side an usil for sicle lising. At Nlma, Kush Jark,

 क them is comeiterable, Howk rilles after wowh ose
 rittle. After vacly num ilw hbecks are tarned and m placevt in the -luice: In mpairing with ohd blocks the
 and roeks afe maketime weyl together on altermate cimetimes bevtrosk itself is a satticie nt ritle. In dinmpinge, the "turs on " rather than the "tars in' slaieve is "toct when the datuging ground is limited.

To relive slnices of tiney material and aid in vavimg

 -luic- are bromd -luices oet on beary gnasle at selve of ated below the main sluier. Whem is drop-off ean be
 acrovilig to nize of midercurrent, ure jhlacel selkewt-1 called a grizaly. It is set

 apain in -loices it a loued
 -4 at right anglon for the

 of the main sloies. The Loltom is of clewn and half

 lack to the main -luire,
Fsmerne skn ie ins
Thilings are the refore froen ', wariz drit, by-trantae

digions, It is estibuatent that between I \(\times\) whand IN8I, in ohe year, there were diseloarged into. the streams and
 frow gravel matocs and elamp tuill. The tailong- fram
 zatw entess porites carrying zothe fine gold. That from panv ami gravel washage os of all formos, kinds abd cawily carrieyl foruanl by runbimg water, while roske
 Whalied remains cotmporntively buar the ebols of the slaions in the canyons until removed by heavy freslests.
 thers anst lightose matorial, stoch a- the tailioge from stamp mills, that is held in saspension until the velocit the water carrying it is greatly rextaced
The depo-iting of this material on lamls overflowed during bigh uater was ome of the origimal canses of the dispuita liet mon placer tminer- abol farmer- that, Isonghat before ther law conars, las stopped placer bibing it Californial for so many posis wars.
This is a very important onsideration in hyelmulio misung. When thas-atusls of euber sards of eravel are
 deposited. A larger sisperticial ana is required than want of ctown mota is recosdied in sonse easocs by dise elarging into a tuxantan tomont an in the firet jit at ragid strams. To shou thevevi, howevor, of dumpong
 whe-h ua- worloal in 1873, manl up to Jume 25, 1851, ham discharzed \(7,50,1\) ev) culbe yanl- of gravel into sloe stream;

 claim was tilled up sluses run out of grasle, river bed - boakel on all vike, abl the water of a formerly rapid troam strageled beve the socomulated dehrin

Whan zonall amment of tanling is tischangel int narmow and -l"ep canyone an, for mestames, Clear free mavis, Colorable, whitet rain- atal spring fre-hete sullice年 mining in then loselities bltimately ceave sometime the want of shmp romer isibviated by a tannel, by

\section*{Iron and Steel Roofing and Siding}

We have meviceal from the Ciarry Irom and Steet
 vatabugae of their protuct The corverated inno and wizal in masy

\section*{P \& B." Paint}

It seritus alemest nseless for mention the ohd neliahbe I: \& E" foint to miber owners and wine managers as Ilowever, thern an mane mize ownore and min Gamaper- who. have bever land amy experienex ofth it
 pmovince of suelt a joumal as this to leecp its reakers in
 ". I'\& 15 ," paint has for ils laser a mineral proboenoxd
 the porgalled firevernoif point- Seveleer salt mod fres) niter, allalime ir aczil whlntinn- of any kital make any
 and oclow uedals irom rast, aum whon applied to cleat surfuss completely urrasts nxidizatios, Chow of its cham intry, Thi- liquail evapuraler immectiatels after the ap plocation of the gent and canmex the mimeral to prok
 and the ondinary cracking and bovaking of oflore coat
 "pon to stand floctoatsons in temperaturs. It akentutely

 "imes

 vanage Tloc later will last mand, lompo if cicolel witl

 Material, will alenty mointure if mot voled with new

will resalt in wry materially lengthoning their life at This paint is manufactural by the standand Pant

 and ebcrewfol use of this jaint by many mithe manager
 ricle.

THE DAYTON, TENN., DISASTER
Full Particulars and Descriptions of the Mine Previons and Subsequent to the Explosion.

The buaniug of her sul, af of the terrible disaster on weat perated by Lle Irayton Coal and Iron Co, Ltd, and in cated ons the eatern -icle of Wahlen' IKidge, about If Finge to the- lower eval mea-ares, is of a dry and gaseous

 some time in the retavele ager the main bealy of the has eartern side inte so sies of risles ue terraves ond the

 of inclination fome the horimontal tothe vertioal. Theen isfocs of terraces fun maty parallel with the sumatain and vary in height from 5 fect to 125 feet
4)werationk were first commenced in the full of INow
 be detelogeal torritary up fo perent date anmenting to

For mone time percions to the disaster, the daily ont onf naw aboat ste tons, and the bunber of employes inmave the snime amounted to l:2e. The svstem of morking stail, Jat, under the poculiar sombitions, muethoul is asi of the conestion, and imalifications to ant the Alfferent irçnnstances are freynent.

\section*{There so thow abtram \\ ventry E.} The bisa nameal has an
 of Davtos stambl, and it is the pyin whets the tost tante. Throught it all the coal ivilelivened to the tipple, which is lorated clese to the entratere
 freif altathley alowe sal level being set feet and ool at present for ventilating, traveling and pamping Purpers.
Tle min
if
 bave beet at work for the past kew vears. Tive cosl is brouzht from the working plaeres by menles for the main icle track in esoch of these districts, and from there bken to the ant-ide by mot= hambager. The kongrst pitl or trom Nox 30 sub-4tack, a ditatanee of a,50w feet, the

 branch haniway kown as Eatry '1, there is for a dies-

 Thee current for Acos, 1 dmi -dhetricts sther- at the
 Twoshifts uveremplesed in the mine-the first en-
 shiff, however, only comprising a fors inen abd ronfined Fur the past weven sears carefol inspections have teen

 Gow boodn tarh day after shat firmg-this latter per hwed to fire theirnwn shosts twied cach difi, Imit wom limited to a vertain how rach time, vorope in efocial
Nahasl light- weme uetal exclavively, with the excep-
 Soat sljoined sathe oht uorking- Hoat weme ditliente to
 Alon' by a depmy fine beenamed Tom Ilawkitus, whose daty it was to attemi to a trap thener at his atation and to

 honev the above pucemations.
 foumel mothimg momatal imwhe the bine to anaw their ra-piciuns of ins lorking danger. Tha ;ir curmotsuere
 Vree I, t atal ive off Eistes frev frum tirv-lamp In vash of thowe lee foamit a vers spall 'quantity of limellang on emall. in fave, that he

 to the outside to make hor ngart in the boole lepet foe
that parposes. While doing mo, information came to the mine bass that an explocion had ocearred in or bear No 10 district, and thi- was 8 mon contrmed by the rush "If This wos alani - 210 un
A searel party was imtoediately organimed and weut in to imextigate, but they uere unable to got heyobt Nu. -ide-track on the man ebtry ob secount of the after

 brniosel convicterably.
Oh the writer'y atrical tua other parties were argan
 The Dixon slope cotratioc; This -nevel parly did wis entry, but a thind joity, which uax organizel in the ib tervai, by fallowing the intake corment of No. F anel No
 in maching the lody of Tom Ilan kin- (No. 7 on plan)
 enthle of his station, on Entry D
This was the first boily nuwnered on this sithe of the mine. There were bit ogne of harak on his proms of clothes bot a large mash on the tett seike of hive hewi shoned that be hat feen kow aay make an easy victim fo th. atteramal several miter passed him uhile be was stil conscions, hut be matle no rey quest for belp, and they. ik heving he nontal follow themi nent on. Ab emply sar stomel in the dormay at his station. and the mule lay dosod inome diately in from of it
The Dixon slope garty soc cocted in waching the forlies of the men mumbered \(1,2,2,4\) 5 and 6, on plun, in the noove fo the case of Entry K, aboun 1.3. a. m., and mons afterwardhad them nsoved to the culs side Thuse men had wiokent chatervored to mach Entry K out being in the stark ami tomenten exciced, they hecan lessly around asti
 as will te men from the plan almuel sawcocted is wachin Havesired pant
Heavy falsprevented forther
 ove that day and all atrmpl fatile by the after-lamp, wntil stont 3 ion m . whenthichinit of Wa-llumen max nawlu-1. र. Fon plan Xo. 9 111 11 1. 14 and is uere alea romblat a bew buars later, and by carly mank ing Xor if was fomal Thers in the then twents furn them time fifteon turlies hail twem ravoseral and rameseat tis the motrictes
Nous \(x 9,10,11\) and 12 uven fruves, and their mate- uer othe chase tetheir lasises, Min or wite track for thiz liotion
 that these trivers wem on the ere of starting oat on their dave moutibe.
Sereral wery heacy falle wen K Lutnerol in Entries I. am K metneen Entry © atal tion mon-iderable quartity if the delotri- las to lee nemoved Is fore sures of the budies centh: be rerovered, also hefore far thet alvanes coold be mandAlf these Imalion uere newo of less barned abil braizel-
Early mext morning a syath party enceceded in crom at the cathaner of No 2 new foumt the boily of Henry Will
 nally acmes the eritry, his fane and beal erowidembly brensed. Continuing itwir explorations. they vom after
 plan) Iying vide by side In the former's pocket wa- a watch, the hame if mhich primited to i年h, ctilenty the time at nhich the cexplosion Necurnil. A litthe
later the budy of trapper Mongan (No. 13 om plan) gan later the bouly of traper Mongan (No 19 om plam) man
found near his station or thoor. An athoupe nax then

 turnex and hasd the berlie- remosed to the ont-ich
 at the main ebtranee abit the other at thxon Whive
 k-tween fues tuw ebtraner
 moned the lowico (Xox 20,21 and 22 on plant. All that night a erow Worked on the falls on Enery L, and mext ant the other tmo on the dave followind

All energies were now directest to the removal of the large accomentation of fic-ibmpon the uext side of Eutry
 in number, carle in charge of a competent forman amil

 taineal a conotheable guantity of catbonice seat gak
 and the exploners weme able to sakanes The loolion
 vanced slage of taxompoition Farls was lying face dounwant hexd togard Fantry h, pel their fares showed signs of havime then molejectell to intene hoat. The first u-s partially raion waking a timal cifort for lifie The knols of thee mente trivell ho him uas fonmet at the form No. © romen, Ivins is iront of ther rear cmel of the whpity car. the tail ehmin
 Geg that the drive hat nached then jus th- the explosimat trourtod. The cap of obe od the wher victank nat-
 and dinner lowe kete ar their "lows" or reating place, a

fouliex id thav there athacked, amo after a hifter fopht the

du-1 on the elabling poopre and loaded care in this anst mifoinitg rooms, aff pins to this conclusion. The wal
 eseral of the prope hasd "thick cukng of chared dust

 arimenther pint-d mangune in diverict Tlo. Holose simbuls

 curcol, alons Entry I., and tle hantway to No. Io vide trow and up the bravel, haulwas to Fairy 1).
A varog man, manuel Chear Hawkins, wher was passny thi- Feint on Bintry 15 just at the time nith his ant atal car, was blown ont in the latter by the fore of Cur hasi, and conssicmbly
 fistaner and poine in ther same-direction, waw alow blown rrua the car it which tor was seated, weer and lexomb

 fith du-d, reenobline a thich, black mallinz choud The hostroctast af the-latitione uavery cranplete, e-therially in Entry 1f, where it waw dificult to timel a piete of plank langer than \(6^{\prime \prime}\) xle". This, of
 aned the > pace rery limited.
Th"m an bidtcallourof tbere having bexn hat little. llame at ans folnt in thr-ritandivitict Fowey of paper and brattien floth wem forend wer squecled cren within a very shoft distance of the paint of origin, into kens of jowader ; anid all the physicians in their do. grostomse matad they uece indiend to I w-lence that the burns of the ciectur wew the reant of tioner lisat othy. The loc lied is mereghlicoed by the fart Gate hew of their clethes were cTent scomeltiol.
(tom thonex haw lmen iotrationt as to the catere of the "xplation, Lat the obly fensthle one fo the writer's mind is that at uax lime reanit of sothe thecwosing the danger mark, in Xo and setting fire to the shall ar-
 which comannicated uith the dace, cansing ile fearful carnageretemel the This opineas is sharcal be all the otheriak of the wite also by state Mine Ior exctor Cloter, whor was oth the grontat shisivg die rexaw wow and makk a thunough inketigatian imtan che casse atal omigin ci) tise disaster.

An , wolinary mineix lamp, with Shlimes bame cat on the fiis, nas funel in this foum, athent bifteen feyt frow hive body and this, Hesther with the Io. pittous of has bualy, makero us
 This rowan ua* Remicetry and Willaw regular uorking مowro Tuo ather new hat Nowked in is mith maked lightuithin tnenty fert or mod the fax: on the previous shiff, On the tim The the turaning of the dix-
 tivitutal a- foll max isicituited as bellow.

These lant nameel belongeit to, (od plan) wen fouml and renowed ua the night of Jan

 forex afor whe their bocks and int right anglo- towntiather The liem of No, 2k wak cru-hedl that by a large nek wrighing lim as 200 prones- which houl fatlen insur the rou. The
 Wamse Than that fome the four bount the wok pervises. This was rather murprising to the nowe party, whor an
 ypugke, catuphor and carmoctercid
In addition tos the falls altrouly refermel te, there ner Everal very bravy cusc on Kitiy K, hetnoen Xie. \(Z\) an Af nomse alow in Soe 3, 10 and 11 nemus. There ren Serod the uonk of the merye pastiv-cstovely perilomes, and it was ooly by the exercice of the greatest pussilhe care that secidents nere avoidel. Slight fall-were fre Twently met nith in ather ecetion- of the di-triet
com and
 blown out brattines, doors and sulas, thed collections of few dave atternards

of hyp and pers.
10, 100 (1)w die
 ther - 2, tokt (iximer-Thinge equal to ther same thing are cynal to earh notber.
lal int

Jeanerville, I's.
Wr. MuTreatier.
I beg to subsuit the following rule : spuare the luigh of the trey fow the pratoct, sobthet the spuare of the tree. Tle quotient willbe thy lagice the haght of the locight, frome the grombl, at wher of the tree triangle or the
 Aloe total lemgth of tree minomsoice hank of the rixer
 beight at which the tree molst to ent \(130=1 \times 1\) feet, we

Dombar, Pa, April mis, 1sem.

\section*{Ventilation}

Smt-Ta maing aver my eopies of Tine Cobaray Ev

14.

She Gater given hy one of your staff of writer
"It you haid lechor cts, it, of air parsing per minote
 A Thent the mert air it motion at the thouth of the shaft. Then let o volanity is feet jer secoml anki

Aow it is tuanifert that there is stmocthing redically 1/a, man cy , it , if the following nasanigg is comect

 ecrual. The heas slae to sach velocity experemes in

 lowing in reply to Mr. Sistre impuin in the. Man-h ioent
 wise rofe worked with an engime of the litehfield pat-

 telision abret, and on to the in-jile. The shaft, whect
 within four mobathe Whas wosld can-e the hrakage the variations in the kroover of thee dram makle by the
 last caner ihe liezah
 thus rase only denes away wilh hali the erate of ther
drames It momhlo letter if then mus aterther Walker

If the drems mive from wn ther shaft and made riabit
 lie drums would -top amel have the engitice in motion:
 Suntiouke, Ita. April 4, INem.

\section*{Answer to Geometrical Problem.}

\section*{}

 ther anglows at ther bate it it right arogke, we have thy

\footnotetext{

}

surprising that the pownere to peraluce the velocity is negherted. The calculations are made vasier by each i liay.
I have not lnew rexy particular in extamelime tay liginn's or in using precizaly the satue valase in the dit.

 atht answer uv timet that Mr. Hardie is correet, dult that
 plaming the docitmal point incorrectlv, and making 0. 1201 Wai s. 61701 , and the whlor in faifing to multigly she
 Bu*) 1

\section*{PRIZE CONTEST}

\section*{Prizes Given for the Best Answers to Questions} Relating to Mining.
For the beal answer to early af the following questions,

For the seconal leot atuswer to vach question, the
 logat of thine bonths zulecription to THE Colakay

\section*{Conditions.}

Forr-Competiture, mast to sulecriters to Tur: Col

Ansun-Ther mane-and seldrexs in full of the contestant bust be signed to xacle answer, and cach ansuer mast bs a sepanite [xjer
Thiml-Aisporn
the- foper conly. fiv fajer onfy
doe envelope it "psiting contes " man-1 be written on figh Con- Foran may con-wers are ent to tus
Foth- bow pereom may couppete in all the gue-lions slall le limal. Smofl-herners mast be mailesl as not later than Sinche-The. publication.
of promers to whon theprizes of ane anots amel manxes sidend salliciont metigrizes ame awariked shall lo con-
 dix|kNil they nixh to twake of their primes.

\section*{Competition Questions for May.}
 clane that would give the. lwe 4 moults in gemerating the flame in ofar mea >iffety lamp, 1 hase fallen serom the
 afrand that any further attempts to selve the ridelle would
drive the finditactin, I wil drive the it distraction, I will lev chbliged to yoa if you Willstow in bue bum it occar- Hat when tna volames of jurm bydroges evombine with she velane of oxygen. more locat is given off than when othe volume of matels fas combline with twa columet of nxygnt, the thing I have maivel that may help gon to tind an answer, and that is, the herroger and nxyben probluce mater that is lispisl water und aternament zas atal oxyben prodsee Mrad watc
 If less locat than ' '/f and ail- sueh as ane burbed in ampes, give if lews lesat [w-1 unit of weight chan any of be gars muker sutioc, ind yet ue know that a langeper-
 lyyen-carlonis, bat it is not given of as beat, but I have Tin thasld you
the tacetery.
Qers. \(24 .-\) MII the plante in the wegetable kingelom of life ane grouped umber fome dietimes divisions, as

 divisian that tourished during the Carboniferons feriod
 afe ficing bon in suar state of coontry ?

 in thestion? Sgam, ulile som are leasy, vad mights
 straight" lite "d sight, and the londer that line ik, the

 mevarac

 coesible thration of the scam doses net barrant the tomk-

 mabe to In theap in constralion and utlicient in action,

 -hrwab of hagh poweral water in projecteyt obto maction
imsteal of simple deflecton, Now, to make sare that w all minderatand the explanation given, will youl still further asoist us by answering two questions
Fird-What are the eurves that are given to the insid. Siond-Show by a ekotch and the necessary explana taon, that with toeal meflection more power is obtainet
than comld the scoured with a deflection of oo from the plame of the wherl's motation.

Answers to Questions which Appeared in the March Issue and for which Prizes Have Been Awarded.
 flembd be of sotur serviex in trating for save anol as \(w\)
 belp and we are sure fo smeecel. Then ket ins know at
 above the owdinary thame of the safety lamp
\(\mathrm{A} x\) - The blae cap is a blue lambent flate characteristic of carlon monoxide burning into carbon dioxide. Its presence on the thame of the safety lamp is due to impurfect combusefons, fow as little as s per cent, of mar-l
gas in air produers this, fiect. The marsh gas on com tacting with the bottonn of the flame berne oif whuch oxygen that the remainder in the air is not sntivient to
folly burn the caslon of the cill into carlon dioxide, and. therefore, when itbecartmos motosisle rearthe stw highee
 blue cap

Elloce, Itabdolph Cos

 air and gas ru-lies into and teconses compressed in the gobe, so yoat think then that a comect campleof the after damp pectacet by the explocion is procunthle, atel if owill you explain the recuil, of toek rash of air into the levels, rowthe etc, after the hlate hatexpemied itoelf?
 expansion, as proved by the outrueh, ind what momains ha- been diluted by the lack mah, therefore the best
 dang. The back rash is tansel by the partal vacunu resalting from the cooling of the atterdamp.

\section*{Sicom/ I'ris, Jous Fterciening the}
 Dant Casal ami Inan thy, an! the pribegal director ha-
 struction and the rousle of action of the clevtric mofor such are in ueel for mine basbage, It. says the descrip

 to the frent for mining, I must either write this pape or loes my prition, and I do think you nill thervore
make an cftont to loelp tas. Then, phece-t give nee the principal points repuind for ag goobl paper
 by the-Gienent Electric Ch, and follow the current from

 the contraller (the carnat being a slirect one), zhich
 wheck. The controller hasat reversible herer whelsallowe

 remainder going to the rhecestats, of whirh thene are
 foar moteles thmow mit the third, and the fifth notel throne them all out. The rherotats ary beile up, of
sheet inon ribbon pocked in asbestos and monnted in fire brick, so as to be aberlately Ein-proof. This is to take up in resistance the rarplus enrent, not allowing
the whole current to be exerted on the matore. When the controller is thrown wide open, the current gack direet to the motord, fort of the curment goes to the tiest
or magnetic justes, to excite the lield magnets and the remuinder goes to the comomatator to le changed to posi-
 under tive bru-hes. The armatare is compused of a mamber of flat eute of copter wire placed on
their edge againat the core, cmil itrolated from cach ther; abe end of cuth of tiver crils is conhected aith. a eegrient of the cotmmatator, and the ofler coni ts fasimentator, and then each sprement of the comen the e connected to the une on the ngposite side by sloort in enlated wires. The direct current ean bo changed to an atternate one by pa-eing throbglo a commutatod to a trion. The eurrent thous in thruggh the brush to an suc armature, back to the next section of the commantator and is returned throagh the other brush to the n a havels and themes to the raile, which are again connected with the zenerntor, thus completing a grount circuit. When the field magnets are excited and a current tome throngh a coil of the armature, the magnet attracts this coil tiff it is directly under the magnet; then the mext one is at-
tracted, thus cagsag revolution of the armature, which
is geared by pinions to the driving whects. The motor pieces is the bipolar water proof, with only one spool
H. K. Masken, Weat Newton, Pa. Qurs. 21t-We are atout to open cat a finc sem . bitulainons cest hat is tow timek, ami to work if we are going to sink shafts that will be 830 fect sheop. The
 chaf rectione, we wi-h fodetermine what have lo te the
dimensions of the cars. The spocitle gravity of the coxt dimedsions of the cars. The erecitc gravity nf the coal will you then. give us is sketel in elevation of the car you ucomid recommemb, and be cancul togive the dinenthe lostom capacity of the hos, the rizot of the thetails of

 Alf of the strands are very lonee and fluffy, so that
lioy will remdily soak up oil and bohd it, and the braiding of the wive being quite o[k-11 permits the of to flow roalty from the fitar and amy atomg \(x\) ith it the graphite to the pieton ruid when beated. Besides serving to
loold the soft flutiy materab- together, the wire adds to the lazting quatities of the packing, loth by iot own rexintance to wear whe-n properly lubricated and by season
of itspudection of the fibers from teing blown out of then satting box by -tean or water pexcore.
This parking is meed in the same way as conmons fibnois packinge, and necils to poxcial hamiling or care. The viluc of ecmilnonze packing has been fnify proved In awtash pration in haril sevvies It has ziven entime qualitios amb the lizight appearanos of the piston roals. Jost of the piston jow kinge on the barket are toade uthont a full bnowlevgeg of the rexgirements. The
 piot ap in ruelve foet lengil-, each longth ion mporate box, Labeled, and eelle at a popalar prive Two brands firculars and further information will be furni-hevt bar readers upoon appliration to she N. J. far saring of

\section*{Compressed Air}

Componoci, fir j- the title of a Beat litile menthly publieation elifed atol publisheel by Mr. W. L. Soumelers, is tofore us and we talse plea-nre in tetifving to its inter-
 as a very brief and comprehonsive statement of the character of the pablication
"The arf rarance of this liethe magazine, pablishox for The purpase of disemitating imformation reganding this

 liare, exoay, or articleo in trable papers lawe laven the

loss leem stan somated from of literature on this subject
 the mlateve qualities of the gampactuer's gos stuct.

\section*{as a umedul prover, temands attom} tions. Its regue of us-fultumber is vach day widening, and
 thand lexile chectricity amel other zreat selentific amsil
 "We belioge that the devebtoment of the reveroce of compinesed air has sufferal for want of publicity. Thiskmoleties of the sulyove an! pain! the way to hares
 pasest Air secks to bring about.

\section*{An Important Change}

Thind-What is the shfference of prevelire on the twat vider of she regulatod now, and n last uas it Ixfore the hew fan wav-taried?
Fownth-What is the lecight of the water gauge now
F the dnft 7 is the quantity now pawing throught ibs
Fint What is ezulatur in cubic feet per muintie
 essame it to be 1,000 feet per minute anal on hhis basis
 wrat-The lengith of the air-way?
 ubic feet per mingte.
Thim- Diff thif
fionth-The height of the water grage new wifle the in-

Sovow? frisc-Jous Viceven, Lacas, Lowa.
The aggregute increase in the popolation of Eurupe 60 lol

Thi- is the name given to a new high grale packing for engitw and pumps, mambactured Fiy N. J. Car
spring \& Babler Company, Jerey fity, N, J. The core, which is the foundution of the packing, is a Inbricator reservoir, and is composed if foosely spen
a-low-tom thomeghly saturated with high grasle cylinder
 bohated graphote. The cocering monsi-ts of aliermate atrands of hemp and asbostos, locisely pian, each braided

UII of the strands are very lonee and fluffy, so that
 slown in Itw side view, whieh are bolted swio- to ciel plank and to the draw-tar Pras-bar as sompn niti
 betaken down abenit scut, more evolid lx-put on baking

 that was ju-t tobelocel by the western side of ath outto lue pactasally that of an , ellipe with it - twajog axis cotrsing form reath to north bolz lewt and the bumer
 Chirk, ;iml i- Merlaid will a stmong samdstotice We
 fue themoye at in elecation of + ient I inch alone thes

 Pros-What i- 1 he pitelo of the wan

Thial-What ir the anea of flee mam
ably worked? Show with a the-cean coulel la masm pith

 In this air-wuy to roluev the guantit praving to oniey lating fan has luen wtarted of this mines, and it is trelis An power of the former one Suw I will be abliged is roin will defermine for the five thingr:
Noat What is the
Sopr-What is the leogth of the air-way, takiug the sinow-What was the original quantity possing tought the air-way?

An exent of no little interest to mise managere in the hi mern Wpitation for its mining anat of her excellent teid mine The facilitics of the exmpany a ill Io geteatly eblargnd
 of larger buildinge, and the votablishment of new degorthuconts. These imptovements are being made of once, pen buarket for all kinds of machinery ant fucte ia the Large enginesfor electric light plants, howing engines und forghine of all -ixas will to made slociaftion is the same time the mamofacturing of first class hoisting, Gumage, rentilating and heraker machinery will be given clome attention. Rriess will be as low an is cont-
si-tent with firet class work, and "up to date" me-tholmill prevai. The bew nablagement is composed of wen thices names ate familiar an encceoffol business men abil engibers in all parts at the tronmery foth the adxantages poss'sact by this eompany in
 abonne grealer probitence than ever before, aral be-
comse an impurtant factor in the manufacture of heavy The prevent organization is as follows Prestedent H. Thnder, formerly Prexident of the Jackson d Woodin Mig Co, Berwick; Eechetary and Treasurer,
L. F. Bower, formerly General Managr and Trasorer it Carlisle Mig. Cix; (ieneral Manager; IN Courey Jay for many vears with the I. P. Morris Co., and recontly Ningara Falls

\footnotetext{
\footnotetext{
號
}
}

\section*{The Colliery Engineer}

Metal Miner.
With which is combined the mining herald.
PUELISHED MONTHLY AT SCRANTON, PA

\section*{}

THE COLLIERY ENGINEER COMPANY. PUBLISHERS.

Faov. Sithmil Lakes,
rox, 12 Sorri- Habline

\section*{TERMS.}

\section*{THIS JOURNAL}

\section*{A LARGER CIRCULATION}

COAL ano METAL
mine owners and mine officials
\begin{tabular}{|c|c|c|}
\hline Aldtame, & Iowa. & North Dakata. \\
\hline Alasta. & Kansas. & Nova Sisotia, \\
\hline Arizora, & Kentacky, & Ohto, \\
\hline Arkanas & Maryland, & Oregom, \\
\hline Californis. & Massmhuselts. & Pennsylyania, \\
\hline British Columba. & Mexice, & South Carolina, \\
\hline Coriada, & Sichigan, & South Dikata, \\
\hline Colorado & Ninnesats, & Terineswer, \\
\hline Connecticol. & Nissouri, & Texas. \\
\hline Delarare. & Mceraba, & Ueab, \\
\hline Florisa, & Nevada, & Vermont, \\
\hline Georgia, & Ne= Hampstirc, & Vireima, \\
\hline tasho, & New Jeney, & Washington. \\
\hline minois, & New Mento, & West Virginia, \\
\hline Indiana, & New York. & Wimsaskin, \\
\hline Indian ty. & North Carolina, & Wyomine. \\
\hline
\end{tabular}

COMPRESSED AIR AS A MOTIVE POWER

T, -monemen cossity. While electricity the-4* the want in muns stances, there are, andenhtedly, of timar objectione to it

 to atipted in any farticular in-tances, but rather to gice
 presocel air plants atel the ngenious of mine mamager thonaghly cosmerrant with their prantical oss-
In anotber pertion of this towa ne print a detailed occount of the comprosed alr hantape phant the the Nol
 That this installatian bas prowen surexsoful, is evibe-teet

 tailed descriptioan of the esaporsed air pobaping plant at the Wheigh and Wilkes-Barne Coxal 'ix's Nottinghan oullien st Plymuth, 13. This ptast, whiels is the larevt comprowel air patmping plant in theo wothe, hat kion nuat exo-llent vatiflactions.
The we of cotuporsed air as a towshe pouer her exal
 the past fen yours, and has powen beth econemieal and and safe,
The comporal air hanlage plant at cilen Lawn, while
 thente is the details if itstallationt that ingecially cons mexis it. It is the perfiection of these details that in a
 a datit
compereyt ar as a paner for rech drills in -haft zink img. tunueling, and in ono mining getorally has largly

The moc of comprosel air in Chew. Bretan and Xoy ceitia cosal mines to ahly diecomed by throe pominem To. Shetritate

 of water in the werkings-ane of several million gallun-

 quatity, at a fixtabm of 1,70 if . from the fins as Enenbation, and 15\% it. hefow it. Cobponesel air
 Ingormill-wrreani, Clane A, draight lines pistom ink-4 manhine: The stomm refimker is 14 it diameter, air cy linker Hit in dianueter, anol stome 1 sin . It is enertad

 forexit in. diameter, havipe is talno, varls it im. diameter. A stel air resioct, if it. longex in dianeter is phaced ont chel ontside of the conpmone
 pipe 31 in. Alanerter
The water >upply for the laiker atal comphestor is co

 purmar lomse; Where a amall daphex Blake pmope

 nextow aum if it. high. The air is that strou foms:
 anil rnusk

 sait il. of 4 in lofe, from the air rewnier eth the shrfare

 feet from the stane of motive power, works at to
 minntio fan an chevatima of 155 feet thangh 1,70 fret of 21 inch thlivery piee to pump. No. I, ubich forces it to the elaft listhom. Hevides soing the pumping, air from He comporsar is usell to ran a swall pair of bositing "ngites war the Workhington purng, ant two coal min-
 (rome the Wortheston petaps. The air for the mimigg marfhins is conveged to them throngh is inch pipe.
In comsuebting ow thi- plant, Mr. Brown saye:
It has then offen elated that campresed air is a
 or he the cas with one plant. I have not had time to mak- any calculation of the hors-power applied, ansl (lue- "exint horse-pawer oblained in our came 1 only know that our compremor is a -nall affar, bet dive a big mosent of work, comenterimg Ihe great distaness hetween

"In the matter of air used, I Nlewhl like to xay that or Nu. 1 pump nses 2 culsic feet of finv air per minote;

 1- the Ingermill calalugen only chaims that vear con-

 Vong In maiblained, lat it can be thpereded on for a "anat' ulwndesarable

 ou H
 and pactisally wo the at No, 2 poump, f,149 fect distant … With is temprature of \(\mathrm{a}^{\circ}\) Fab., at the intake on arface, at in the air at pit bottome and \(31^{\circ}\) at Xis 1 tuap, we fint the vxhan-t trous that patmp to be \(300^{\circ}\) at Che tiolabe of 12 inclec- from its cesil, and \(z^{2}\) below xero - inclu* frum the exit
"1 ture wht that the cotssamption of foel by the
 lick oul per hasar aorken!.
In combidering the question of compressell itir for propping. Mr. II. X. Forde, of Mellartoll. Xova Rodia, a-ks the quertions, "I- fall allyantage taken of the coneninceat air as at preent pewrably applied?" ated re-phiex- "Julging fron my on in experienoc, I dumbld say, far firom it." 'ontiming. Mr. Dorde, julging by the
 eatiolion that Itw majority of nsers of sier, in Novi Rootiu.
 cration of the quaction canuol hat be trexe-lictal." He thendure offer- the following live paints fios the considration of emgiowtrs:

It i- evink int that the clearanee in the cylinders of

It is sery prowilite the porte abow ane unneyxssarily
If may to that ulare the mine uater has a temcrator alove cal Fah., as it sewp coal pits, a water and mone the fenele-tex to make ios in the eylinder and ןamk

Thin if the air celinder and the uater planger be

 moleos ile- shmetling is thon at such a dietance from the fanp that the comprosel air call meover innm the sat:

 how II hate set fo -eq oslle chat dows show flow inlet akingair atherwiat than from the satupetane loomee. and vet an the air in the lonise is aluays warner, and

 cent. of the coal cumampetims, while the actual differ.

 the inve dot d
3r. Thas. Fengie of Weas illes N, N, it Mating his

.Thie buhbergennet pumpe at this colliery until quite
 hang an encline favimg a pitch of th dezeeve and sonk: t, eme it it bengib

In conerymeres, benecy, of the hoss of pawer in

 "I2 1". Cetherome of leat nith the ventilating corrents, and the amary other satrow in tromblh doe to the tave of steam

Mr. Fergie's experience at first was rather unsatis. factory, but to making ortain changor lie- has luen able

mond mine is a duplex \(14^{\prime \prime} \times 22^{\prime \prime}\) Rand with steam ex-
pansivecut off. Halsey's positive air ralve motion, and punstre eut off. Halsey's positive air rake motion, and
the cylinders are uater jacketed. The hoiler prossure is 110 the and steam is cut off in the eylinder at f strolice The nir supplied to the compressons is taken femm ontsite the compresoor house.
The comprefoor- were parchaset with a grarantee to drive tuo separate pamps at the same time, and cach capable of throwing 40,00 gals. in a shiff of eight hours. one againes an wertical heat of bee ft., ant the other dgainst a bead of \(3 \times 1 \mathrm{ft}\). There promps mowe the steam poups already in nus. Obe, known as Sos 9 pamp, is a duplex compound straight line pmenp, with cylindem 8 ant \(18 \mathrm{in} \times 14 \mathrm{in}\). strake: clearane ! in, at each end: phangers 4] in. This pomp has the rion ft. head to fores againes. The otber, known as Yoi, 11 pump, is a single seraight line planger pump, it ith. cylinder by 12 in . stroke; clesrance \(\delta\) in., and plungers is in. This pump works again-t a head of 2 ft . The air was conveywal
throught the obd stean mains, which were i in diametet for one-fourth the distance, and + ith. for the remainder
The first trial of the air nas masle on the No, 8,0 compound pump, using the low pressure eylinder only With an atr presume of 25 Hos, and a piston spocd Coft. per minnte, the pump thid ise nork satieflacturily to the water ends at that presoure, the air had to he wim drawn
The ofler fromp was then stantel up to work at the same time as the Sa. 1, but a sufficient coneed to theon the stipulated quantity of water conld not be maintained, and the presoure fell from s 5 lbs , to \(\mathrm{Th}_{\mathrm{h}} \mathrm{Jks}\), at this pump, and to fo the at Xo, 9 pump. The presate at the sarface fell to 40 lbs., the spext of the compressors remaining at \(\times 5\) revolutions.
The two pamps were run together for three of four days, thit the mofk was far from sati-factory, as it took 16 hours, instead of 8 hoars, to pamp ont the water, and considerable difficulty with firezing was experienect. To overbotae the freezing, receiver were placed, obe cloee to each promp Thes reshtect in entniderable fterNo. 9 pamp was then run alone, with a stesdy prossure at the surface of si lles, but uirellawing the air at a point akont thas of. showe the rentive, with a view of allowing the moisture to drop before reaching the poump This prevented the freexing. Indiestor diagrams showed that the eompreseor engines developed 128.49 H. T., as against 16.45 II. P. at the Imurp, a useful effect of only \(12!\) per cent
A vimilar test with No, 11 promp ruming alone showed an indicated H. P. at the compre-sar engines of Sx.13, und at the pamp 10.25 , a noefol stions of 13.11 per cent. Haxing got over the differty of freezing, attention was then tarned tw the more evonomic problem of find-
ing ous by what means the tmo permpe conld toe rin it the same time and the water taken ont in the stipulated eight lowre, and without making any change in the cylinders of the pumpe, which are oat of all propur. tion to their work when using air, having been bevilt for low premure stean. To do this it was decided to try composiding with the No. 9 punip. This, homever, was not niccestul as a dewly prewerre of 35 lbw , with on revalutions of compressors could not be maintained, and
indicator card- -howed that thongh there mas an average pressure of 68 lbe , in the high pressure cylinder, after release it fell to an average of 0.5 llow in the low prewane. The effect of introduring "tive" air into the exhan-t chamber connecting the high and low pressure cylinuless, wis then tried and provad successful, notnithotanding that by so doing considerable back press"re was throm on the high presmere eylinders. This also gave a more uniform stroke of the pomps
Indicator diagrams were then taken both at the compresors and pumper, and showed that the nseful effect by the above cliange had been increawed from 127 fN cent to 25.86 per cent.
Combienting on his figures, Mr. Fergie makes the following obeervations

There is mo quection that thi- uectul effect can be considerably further incressed by making use of pumps properly proportioned to their \#ork and expresely designed The exhaset port- shonhed be lange and as straight
typ. The as possible and the air shoold be exhanoted above and

An
ir into the exthangt fore observed by admitting - live air into the exhaust passuges, as mentioned, is that all
traces of fros anound the exhanst parages disappear. Thase is no doult the to the exponding air taking up This is no doult due to the expan
beat from this 'live' air introduod.
foned lakg of frespe hav a moet beneficial ay bet in theced that glyeeribe bas a most beneficial effeet in its phesention.
"The greal
and
o in the large ammiont of clease of straight line pumpe is in the large amount of clearance to be foond in the cylindery; aloo that such a pump shiom makes tro make use of any expansive toree there may be in the air and cut-ofi before the end of the stroke. In the No. 9
pump aluere referred to the length of the stroke varice
ath the way from 16 ischer to 15 inches, aecording tothe thrse imperfext conditions it is uorking. Coneidering prreptage of ussfut effect is foomet in mine pames soes nir
The question may be nsked: Is air as ceonomical awas stean, conividering that only 2al |er cent, of the at the patups? ' In this partienlar case it extainly is atel a- a matter of fact 1 tons smt . less coul is now heip chamed in 24 hours than was the cars with secam to d. proisely the same work

Then is also the be beticiat effect of introducing cont ir into the mine and the saving of expense in mpars The -ube lime is mot nearly so costly to maintain is with team, fund an much akain ent into the mine mean- . much extra water to be pmomecil.

Soother important alvuatuge grimod at the 'Drumvolum of air cirnalating flimoght the mine thas lowen This by 16, 80 cubic feet per nimbec

This inenase is but dae to the anount of air deiverod by the compressors, bat from the fact that when a-ing steath the Su, Z-sope combt not lie nsed as an intake u bervas bou toth Soc. 1 and 2 -kpo- are ibtake-

THE UTILIZATION OF SMALL SIZES OF AN THRACITE

TIIE rapid increase in the utilization of the samall vien of anthracite daring the past few years has and af Demarkato In his shtual report to the Heber \& Thompoon, engimeer of thie Girand catate analyees the shipmento from collieries on the Gimart
 Lables furnislies the fallowing intereoting data
From lasi to 1 Miti inclasive, the smallest size of anforacte cal eent ti. market aase cherstnit, and the perc-

 per cent, of the total, and the perectutage of clestmut col hhiped noe to 12.15 per cent. Io the eleven years
 ent, of the total, and the perecentape fos 1 sit stoul al 19. In the sanw years the sbipments of clostment coal ranged from 11.19 to 14.31 jer cent. of the total, anal tood at 13.6 s per onent. for 1 stz
The shipment of buckwbeat coal conmenced in 1s7s when the tons or 0.67 per cent. of the total shipment. won- sent to market. In the satue year the shipments of chesthnt coal wem 12.32 jer cent. of the thtal. From 1878 to 104 inclusive no sizes smaller than pea coal aere thipped. Daring this term tho shipmwente of chestani coal con-tituted from \(9++\) to \(2 \times 15\) per cent. of the shipments, the statler peromtage being chipped in 1Ne and the larger in 1894 . Daring the same period the percentages of sbipments cnedited to pea cal rangeil irsm 9. H to 20.15, the buwed percentage bring ewodited to the year 1812 and the higheat to the year INR
During the same perind the shipment- of Inckn heat oval ranged from 0.0 f per cent. to. 15.13 per exot. Frian 18at to 1884 , ineln-ive, there uas practically no guin in the shipments of bockwheat ool, which for these five years averaged 5.26 per oent of the total shipments jomped from \(5.6 \overline{7}\) per cent. to lo 13 per cent. of the total In \(1896,30.64\) per cxat. if the shipment- nere of conl larger than chestnat, 30.31 per cent. wan chestnus, that per cent. was buckn heat, and 1 per cent. was riee oonl Phering the perical from 1865 to 1805 the shipments of coal larger than elostant dropped trom jersetically 00 per tent. to solt per cent. of the tatal. In 1 exs the percentages of the various simes were as fillows

In commenting on these figues Mr. Thompeon says:
Thw wmarkable decrease in the percentages of large sixes and increase it the percentages of -anall sisco of coal ebown by these tablen is the resolt of two canses operating together, vie, first, the change by formaces iron mills and stean rescels, formerly uxing lump and steamboat sizes of anthracite, to the use of bitominous coal, the breaking of these large sizes of untlracite into stove and ocher suall -izes for domeatic wee and the in civental production thereby of the very small sizee of bockwheat and riee coal; and, second, the increased favor with which the u-e of the sumallest sizes of anthra cite is regarded, following improrements in mechanical facilities for tbeir handling and use in base burning quyes and by automatic stokers."

Of the total production of the elewen collicriex on the. Bitard e-tate in 1595, 100,296 tons, of an amoant equivaLent to 18.18 per ceet, of the shipme-nts, were conameed in operating the collieries. This coat uat nowsty of rice and buckubeat sixes, and some of the lager sibes known an "slate picker stuff." "hich is "bony" coal and coal atrabed with -late, mattractive in appearaner, beit not inferina foe practical nes. The elecen collierics on the Airand catutean repmentative ones, then-fore the propritions given a- to tbe shipment of stanll sizes to narket ane practicalty the same-as the proportions for the whoke region would be, if the same clate of tigures

THE NEW PRESIDENT OF THE L. C. \& N. CO.
 Calvin P'anlee, nher re-igued on an to ilevote mant of his time to personal intervets, is a momarkably goul one Mr. Fikey is by profession a mining engineer and lie is thorougbly familiar with the managoment of anthracite
 becatue a momber of Mewrs, Harrio Dione' engineer corps at Pottsville, he has been dineetly combected with the anthracite exal industry, cither as a mining ongineet an antator. Coupher uith him phacteal expeneme it mining, lo proseseses fine executive ability and gool masincos jodgment. These qualiticatione eminently fit him for the pesition of exesutive lhend of one of the lim on the honor of hie selextion and aloo the directore of the company on their wise chasies

\section*{Personals}

Mr. 1. W. Bind has been appinted superintemben of Imlian T:

Mr. Mex. Dick, manager of the Joggine mines, Xown
 Con Co, and Xewton Coal Mining Co. af l'itston, Is.
The Johnsan Coal Coo of Erabton, Pa., has placed an wher with Mr. Jos, R. Whan, Metnal Life Bldz. Pha, for a too H. P. Chmax Bniler for the utilizaMr. Wra. Maeon, manager of the Scranton station of the Atlantic Retining Ca, has been transfersed to at extembed Beld in Xew York state. Mr. L. W. Charmanager of the Wilker- Rarre station, has asenomed tbe -
Mr. Wm. H. Booth, nho on several occasions, contriboted valuable artieles to our columas has resigned his posation of managing enginocr for the Le Grand and Sutcliff Artesian Co, and has taken ottices at Picalilly land He will in the future do a general enginecrimg onsiniest, and make rpeciative of steran enginecring muter supply and efectrical tranmosesus of power, paying special attention to artesian work, questons of hion of goond American patents to manufacturers and Amancies it great Britath. He will be glat to roveive all Awerican catakegres and is desimons of taking up the
representation of good American house, his piflowe representation
being oentral.
3fr. \(\&\) W, Donglass, mining engineer, of Ashland, PIL, alo has las trenty-five yeare mocerif experience in omining engine ering and prospecting with diamome drills. annownese that he is prepared to do surface tracing ami pou-jecting with diansum drils for conal, phasphate, imon and ofter minerals, and to prepare accurate tajes, mc-
 ta done sati-factors work in drilting survesing, ete or the following prominent cancerns; Lehigh Valles Goal Co; The ranta Fe R. R. Co; Panama Canal Co. Nown Aquodoct; Locust Mt. Coal Co. Philadelphia o Ctewling Coal \& Iron Cox: Virginia Mining Ca, and many others. We can heartily commend Mr. Duaglas. To any of cor readers requiring him eervices, is a
thoroughly competcot cngineer and propector, our thorougbly competent chgineer and propector, onr
aequaintaioce with him having been of an intimate nafure and of over twenty years duration.
Trif Justus Mitchell silliman, M. E., of Lafayett Colnge, died at his botue on the college campus at
 eerved thine years in the United states arnay doring th fielellion and from 1565 to 1570 uas a teacher at the Troy i. I. A Academy, at the same tame taking a cours it Rensseluer Polytechnic Institute. In 1 sil he uen o lafayette Collese us an instruetor, and for a quarter gineering any bela the chair of propenor of mining en gineering and graphics. He ua- a fellow in the AneriWha Aspecation ior the Adrancement of selience, and Profewor silliman, thongh strict and exacting in the facc-rwom, realting in a high groule of mork among hicolleze life pleasint He mate on ant conduced to make oflize life pleasant He encoaraged atheties by hit oolle=e -tadents in this line. He frequently eonducted xpeditione of his- studente into the cosal belds for the parpuse of giving them practical work in mining engicering, and at all times shomed himself nurmiy inter and a much alemed cilizen. He is cursined by has nite and two sule
compressed air hallage．
Description of the Plant at the Susquehanna Coal Co＇s．So． 6 Colliery．

Some Sovel Features Pecular to This Plant Which Succossfally Meet Cuaditions Existing in Many Coal Mines．
 some נenaths uro we pablished a brief deseription of The compressed air loconstive at the susprothamsimat scription，owiag to the fact that the haulage plate lad juet leeninetaliod，was ratber inconplete，and here were seteral statenents in it that were somewhat misleating． Throngh the courtesy of Mr．J．H．Bowileb，Chief En－ zineer of the su－muelianna Coal Compaby，under whose super i－ion the plant ua－intalled，and whoee fiteas

Copper tukes，through which cold water is constantly mee of the pape itself as a rocrooir is a novel featare of circulating．In this intercouler the air parts with the the plant，dispensing with large and costly receivera heat attanad by the find compression．It then passes unde rgoumd，and ndmitting of as many efarging sta－ to the surond compresing cylimder，＂3！＂diameter，in tions as may be desincl and their location at any point which it is further cotoppoted，eent on throngh a along the main．The sto of the pipe mas naturally de－
 final prewere of too poands Fer square inch，in a thind reervir capacity．Extensions can be made with mbeh cylimher，5＂dameter，from which it is delivered to the gmaller pipe drawing from the lage pepe as a reservoir， line pipe，whach forms ar receiver， \(5^{\prime \prime}\) diameter，and The pipe need nas purchased from the American Tube

 lesign，forgel in obe ptexe to prevent any part working allow cankig with kaw or coper if desirabe guscile of ho mahin隹

 are conntertured＋＂doep and 7＂diameter to metain the A．the atmonphere in the vicinity of collierice is gasket－which are of lead or＂Vulcanized Fibre，＂

incorporated in some portions of the plant materially increased its efficiency，we are able to give our readers is detailed decription of the plant and \(\Rightarrow\) recond of what it －accompli－hing
The Conguehanna Coal Company＇s Xo， 6 colliery is located at Glen Lyon，Luzerne county，Iu．It is one of the largest collieries in the Wyoming region．The mine openinge con－i－t of a chaft，a slope，and a nater level
tumnel．The outpmt of the thmenening w wich is pre tunnel．The output of the three openings，which is pre－ pared in one brvaker，amonnts to about \(\mathrm{J}_{\mathrm{k}}^{\mathrm{k}, 000}\) tons manlly．
The compreseed air locomotive is usel in the shaft workinge．Fig．I showe a plan of the air pape line and haulage road，tractlee with a protile of the hanlage roan．Hy referring to Fig．1，tbe outside artangoment of the buildings can be understood by the following reference lefters：-1 ，is the shaft ；\(D\) ，the compressor house；\(C\) ，the carpenter and emith ehop；D，the boiler
howes，and \(P\) the timber plane engine home．Theair houee，and E the timber plane engine houre．The air华品 \(10^{\prime \prime}\) long ；the length of pipe in the shaft is ？ ？＂and the lenge lh of pipe frum the foot of the shaft ＂，and the length of pipe from the foot of the shaft to the etod of the pipe line is 3，3is，making a total Fig 1，thres charging stations relerting to the plan， Fig 1，three charging stations marked Fis and \(/ f\) will be seen along the haulape road．The first of these charring statione \(F\) ，is 112 yards from the foot fit yands and 1,116 it yaris from the foom of the shaft The pipe line cnds at the third charging station \(/ /\) The pupe inse chids at the third charging station fl ，
but the eni of run for the loeomotive is 217
vard further in the gangway，at \(f\) ．
The track ove which the locomotive rane is sloown by solid lines in the gangway，（sec plan．Fig 1），and is \(3^{\prime}\) gavge．Shout 400 fect from the shait it makes a turn of a half circle through a tumel by two right angle curses of 23 feet and 35 feet radii，respectively， aith a 70 foot tangent between．The lalance of the track is companatively straight，and all the curver are of eaky rudius．
By refernce to the profile of the track，it will te eecn that there is an average grade of 1.075 ，anil a maximum grate of 2.8 in fasor of the load．The legianing at the foot of the shaft ：

The air comprosen used（s）won in in Fig ？）is a three tage conuprosor built by the Xorwalk Iross Worky， ＊inth Vorsalk，fonts．The air is irawn into an fitukic cylimeler 12！＂diamuter with＂4＂inch stroke，shown mear the center of the machine，where it iv compressed a．a conpraratively light presanfe and delivered bot into one of the intercoolent，sbwwn on top of the ma－
chine，conristing of in in＝il casing billet with thin

\begin{abstract}
asually clarged with a consilderable ataount of dust，the
\end{abstract} air is supplied to the compressor throngh a washer
de－igned by Mr．J．H．Soseden，by means of which all de－igned by Mr．J．H．Eowden，by means of which all dust and grit are removed from it before compression． This nosulte in a great saving of wear on the valves， cylinders and other rubbing surfaces of both the com－ pressor and locomotive，and prevents enlargement of preneure necd，cute like a sand blan－t．
The capacity of the compreseor is 275 cuhie feet of tree air per minute compressed to bou pounds per square

 average speed of only aboat to revolutions per minate，ther juwsetre in the main from eav to abont 570 poonds．
 valre，which allows a－pexd ju－t rullicient to maintain blevere valve，\(I 3\) ，which is used to exlsaust the com－ the reguired pecssure im the air main．As mentioned preesed air from the conpling pipe aftep charging and
 wrouplit imon pipe \(t, 32\) feet long．Attachacd to thes phe line at the font of the daft is i beary cast tes．with ceveral iset of pipe In low it to collect inny condensest moisture ；the botheno of she segarator than formed being proviled with a uater waste value At each of the thive Changing tations aloug the gangway，them of a gate valve in the main pipe，which enables any section ti．Is Nat off in care of sectilent，amil the bie can be blown de the entire main and comseque－nt mecorpaty of blowing off the entire main and consognent eloppage of work，and raves the time－required for pomping ap the entime nain
to bow poomls． The pormuls．
The．proserman hav a capacity of Sel co．ft．of air at ear

The charging connections as shown in Fig． 5 consist of cast tee on the main pipe with \(1 \frac{1}{\prime \prime}\) opening on which is placed a heavy gate valve 1 ，aud a right angle Alexible coopling \(E_{\text {，with a sutficient length of extra }}\) heavy \(1^{\prime \prime}\) pipe ending in a halt serew coapling \(C\) ， to rewh the charging jipe of the lncotnotive．The latter contains two thexible joints，\(b\) and \(E\) ，and with the other halt of the screw oompling the whole is por thexible that a considerable lasitude is permis－ sible in stopping the locotnotive in position to connect necomotive－hown in side and end views in Figs．E， 7
 motive with the boiler replacsl by air－torage reeer－ voen．It is \(\epsilon_{2}\) in．wide，ai in，high，and \(\left.17^{\prime} G\right]^{\prime}\) long ver the bumpers，and weighs is， \(\mathbf{\text { bo poumsls．The port }}\) openinge in the cylinders were specinlly designed for the bee of compreseal air，being moch larger than the standard for sleam hecomedive practios，with the reant That there is practically ou back prewore in the cylin－ Gers，and no trouble has been experienced from irevaing in the exhanst．The air for prope－lling the motor is elaral in two large steel tanks，focated between the

00 poonds per *ouare inch, and were teeted to bydraulic preseure of t,oou pounds betore being placed in service, and made ahoolately tight monder this pressine. Convex
heads are placed at both ends of the stomge tank-, the heads are placed at both ends of the storage tanke, the
front beanls being fursished nith large manlolefront beabls being fursished with large manlooke
reinforced with steef castings, and all connectionsecrewed into the tanks are reinforced with cast steel tlanges, A1 parts farrying pressare were tested to from 3510.5 p p

Fig. I Heaty Wbargur Isos Joant cur putso
cent above working presoure, and are aboctutely tight at stich presoure
The tank- are conetracted with a large factor of catety ant are eo dkeignex as to insare aboolute satety at a much histare working pressare than they are designed to carry through eonbections to an ausiliary reservoir of mach reduced diameter, placed below and between them. The [recoure in thi auxilary tank can be regulated any where from 20 up to \(1+4\) or 150 pounds, as required, the air being reduced from the main stonge tanks by in specially designed reducing valve, which can be regulated to any presoure at a momente notice, and when

\section*{FDg 1, CAET Ibos FLANGE COMPLINS:}
once set maintains a constant fixed preceure in the ansaliary reservoir, thereby preventing any ondue waste of air by injodicions handling, ete. In case only light
losuds are to be bandled, the pressure can be materially losis are to be handled, the pressure can be materially
reduced on the anxiliary reservoir, tbereloy securing it reduced on the anxiliary reservoir, th
decided gain in the economical uee of the air; or, on the other hand, in emergencies almost any pressure can be at a moment's notice utilized, and this without any undue leating or lose. In the anxiliary reserwoir the air is cmiroted by a specially de tigned differential throttle, admitting the air to the cylinders.
The mofor at preeent in aee has a capacity for hanling a trip of 16 empty cars from the foot of the track, 3, 200 If loaded gars fack to the foos of the shaft will one charge of air starting with a posaure of so pounds in the witha presoure of \(\mathbf{5 1 5}\) pounds in the over 100 prouds remaining in them, the havieat work of comret taibg in hanling in the cmpsy trip up grade. Tbe weight of ewoch empey trip of 16 cars, including the locomotive, is about 00,000 prounde, and of the loonled irip, including the locomotive, is 16E. H00, pounds. ing the bocomotive, is 16t. uiles prousts. The locomotive will make from 25 to 60 the time reguired for making up tripe
The cost of opration of this oplant
vary from one to obe and obe-half conte been found to
 The depreciation on the locomotive is vory han, there not de-irable, and they have in-talled a number of olacbeing not boilez to mear out, and the tanks, having both- ovsful plants. Comprosed air velwecially comamemb ing to cornode them, should, if kept well painted, last itwolf ob accont of coobuas, perievt safety, simplacity almost an indefinite time. In this case the condition of in operation, comvenience in banding, and freedom from the car wheels owing to -pragging is bad, chere beang delays tow to break-down-, ete. The light repairs re-

隼

many flat spoits caused by oliding, and the frictional re quired, cost of maintenance and frecdoan from fire of eistabce per ton on the track is excesoive, but these cars aby character. specially commend compressed air for
 brakes, similar to those in nse at the Nantiocole col- encomitered.
Tieries, which wheels gixe good lubrication and low frie Its economy is determined by the cose of inslallation, tional resistance, while the brakes bescides being much cost of operating, mileage and toanage: The cost of more easily hamdlex than sprage, give abootute immanity maintenance of the locomotive, isclabling depreviation from that wheele. When this change, which mas commeneer only a few monthe before thi- haslage plant the coet of haulage by this system will be still furthet reduced.
Compresped nif hanlage, of which thio is the fir-1 example in the anthracice regons has mich to recommend it, being cheaper than wire rope hanlage except perhape under the most favorable conditions for the lattor, and wery wuch more flexible, as the Iocomotive has a conselerable radine of operation beyond the charging stations and can run anywhere on the track without previous preparation, provided only that there is sufficient room for it. Extensions of the pige line are easily and cheaply makle, und its absolute frecdotn irom fire puts it beyond compariern with electric haulage or steam locomotives in paseous mines, abd inoexd anywhere Where avoidance of datiger from fire is of importance
The suspuehanna Coal Company intemil very shoftly to put abother peobuatic lienamitive ill eervioe in this collsery, lastig the present conjurestor, abd the bincly pige line as a reservoir and extent.
 ing a three inch line about t,0k0 fext with floree
As will be seen by reference to Fig. 1, the comperesor apperar rather low, bat when it is considered that the is located on the surface, and reccives its steam supply only parts reguiring mplacing ane a fex wearing surfrom boilere which were previoully inetalled for operat- faces, wheh as nol amit driving box brawes, link motion, ing other engines. The compreseor hows and theengine bouse for operating the timber plane are cloce together and one engineer operutes both the hossting engine for being controlled by the presure ruglator it regnion wery little attention.
tanks and all emblactions, if sequire replacemest. The cionally ah contactiohs, if given a enat of paint occasposy, shockl last an inde-inite perima, as they are not are sut owhe commeive action of water and fire, and to. splofected to cob-tant expansion, contraction. ete., which is alway- the cate with steam boilere

Fig. T. Stich Vtew of Lamonotirs.

Compreeted air hanlage is being recognized more and more as a racoreful competitor for public facor, both as 5 means of tranemitting pouer and operating mat
 cated the now of compresed air meters for mine hame

Pefore this plant was installed Mr. Dowden, in company with Mr finance T Morgan, alp-rintemilent of the pany with Mr. Gieonge T. Morgan, superintemdent of the Ca's locamotive works at Fittsburg \(P_{1}\) and one af F. H. Rrown's *ons' bituminots mines in the Monong of ta valley at whicl a'A Puter"' oomprumed sir loonga-

\section*{tive, using thot tor pretrure, uas in thec Then, wish tow aerotance of Mr. F. I: Lead, opperintembent for II. chace the atmone artiote as- Written, ue are imformand
 \\ }

\author{
METAL MINING.
}
artifichal means of vextlation.
Special Conditions in Metal Mines as Distinguished From Colleries-Different Hevices Used-Foreign and Obsalete Methols-Water Blowers, Tromps, Furnaces, Exc-Compressors as Auxiliary Venti-lators-Blowers-The Conditions for Cse of Different Styles.

\author{

}

Where nutual dnat ausited by ther simple dowicem
 lasses of mincs, the means employed are different, of the appliances still moentionsed in text-honks as ased It metal bimes are cobsolete, dangeroas and wholly out

ciple, water falling in a pipe or celinder carrying with ir \(i=0\) on wall \(a=\) i. 1 xe inn-iznificant unless a large quan-

- compamem

Thee ane memtioned here, althongh mecer beed for

 itw ind

 ins nut Lom tow

 burin will lite
\(\qquad\)
and 2ation

 "pan mime of min Ontrener beme that rextiome inot c. E.ileme ind uniz
 amibr duty an dir
 urect by mime man. men in mives. aned depame cmaine pmentiaze Ander whine man 4.5

 chent cheper funs 1. comparam with thamise ctiomers,ii -is clation tor the ther tume min friar equaty \%mily in mixithther amy tum turequil nownell thar liey have nom melveren

 artiond chase

 .

\footnotetext{

}

either top, bottom or side. By reversing the mation the intake and dischange openings interchange, thas, like many other ventilating machines, working by plenum or exhaust, as desired suitable wrought iron air pipes are connected. The speed of ordinary sizes is from thain steam pipe line, by sepante engine, cither detaclied or by engine of electric motor mounted on the sitne bed plate
The essential feature of rotary blowers of this elass is the shape of the impellers. The latter are move or less of dumb-bell rection, but there are two style of Rood impeller sextion am of acorn shape; in the other the surfaces are ares of trae circles.
 which it othernise closely resembles, is in the shape of the impeller scetions. In this case the curves are

\section*{FLDOR}

BKREK Dotsat Buon
cyclodial and not arex of circles. 9n this head controversy is very warm, and a just exposition of the theoretical considerations cannot be given withim rabosumb -gave Thooe merested shomh colsult we cataloghe Two styles are made; in one, the vertical, the impeller are over each other; in the otber, the lorizontal, they separate engine or by engines of electric nators on the same bed plate.
The Eaker roforg forcod Lhad Bkom,-Thi- hbwe Etaind between Comer-vile and the reciprocating piston bow, the it takes and delivers a messurable volume of air at each remplation, while the blarles on the wais tlruas look sonewhat like fan vanek. The action, how ever, is different, being preitive and not depentent on entifruga irn. It has nointernal friction and is drige by one belt and without gear wheel- Inside the casing turbed and balaticed to ensure steadibess The upper drum, to which the pulley or direct actime engine of electrie mator is attached, does all the worl of blowing or exbausting (according to direction of prevent the air froma vecaping or returaing. It can is drives at bigh speed, delivering or exhausting large

 pump will handle in gabins of water For
minute againet a humd minute agaitist a hutal steam jwessare. The arms and valve gearing arme abit valve geciring of steel, and all part-
are interchangeable. The mannfacturers of this pamp, the Hughes steam Pump Co, of Cleveland Ohin, will hereafter kezp their
tanamactures promituanufactures promin
bebtly lafore the min ing fraternity thrwigh Tueir Conlvotisument it A×b Metul Mreeze. This concerin is already too special introdaction they are prepared chibery for any serviay and up to any demand
pressure consequently on the sinesl and interior ati
pace The rule usually followest in eompating b ipdy the number of cabic feet delivened per minute bo
 the quotient nill give the net boomepower. This rule, that adopted by the makers of the Fitker blower, does tot inctabe porier for running belte, blower, ete, or for overconning friction and rebistance of air in paphe, for
 jouser consumed an merely rommeng the bisomer and belts,
this is small, at the beot puary blowers ron very light

\section*{A Good Steam Pump} The Hunt coupling is made pmaller in diameter than
the rope with which is is to lue usev, in otder that it may not toweh the grooves of the pulkeys, exen when Tlie rols of the \(\qquad\) nected its, os spliced into the compling, ami as it wearpart of the compling, tlow ratebet antonsatically holding one coure w hen the mpe lase the proper haticathy holding al
Where several indepembeni ropee are
run side-by side on a pulley, all can le
kept at the same tension with the greatest exactue-s by putting a fee is moticod. Dy besing thie coupling. a multiphe rope drive, any single rop
can loe taken off in at few minntes, and

 plunger pump, which hate the valve chambere all -ep-
 plates. They are made of beras with lenther faces. This is if greater imporlanes, the tep-ion alju-ted to coe

The Hunt Coupling for Transmission Rope
The rupud ibcreate in the transubsion of puwer b attemling it- use. This is the gradaal letogthening af dunope which increaws the sag untal it becomes fiocessary either to rosplice the rope or a very long ranke of motion.
Rapid wear of the pope ixem Raping woar of the rope from
slipping on the pallevs in quently canced by lack of ontticient tewown. Th . Hont Rope The Hont Rope Coupling; to do amay mith all neceroit for rexpbeing, ec, \({ }^{2-}\) it will keep a nope at exactly the right
(wneim for the most effective provice ant log life, and do
this with littleng no..xtra time this with little or no extra time
or attention being viven the or attention bing given the
matter and with no expense cther thon with tho expense the coupling The derice is made wholly of alouminm pounds io the sple to pounds to the square inch and an elongation of 30 per
cent. in cight inclice, which is cqual to the strength and toughncer of milh stecl. It is very simple in its constraction, there being but two part-conti-ting of a-cres pot on the pulleys and luck securely, so that the pat on the puileys abd lock securely, so that the epecial de esign.
A very important and interesting feature of the couprA very important and interesting feature of the coup
ling whien scread together is an internal swivel and ratchet, nloch we show in Fig 3. The swivel permits the joint to yield to the currature of the palley- white the ratchet holds the parts from revolving on each other

Gion uere combined with the etficiency of rotary blowers pereover, and of kexs et mengeth (for this purpower since less possure is regnined. The best arramponentio a "tmisht
 for a steam engibe ; the foumdation should be solid; peed the location should be in a dry place
Gere of Bovers-With rotary blowers, the beariuge being external and easily accessible, it is only hecossary have good peotection from dom serveral They usually oiling journals are is use, and in wotat the parts nui whoflv in ail The loat makeshawean indefutely 10 g life if properly cared for.
toch experiepec in builling capocity. They have had respoud exactly wish the other mopes. The oot of forough appreciation of the severe comphtions ibmpoed popedrive, with the compling eplioed in and installed it on such, and to beable to cope with such problems. The nopes spliced on the spat by the purchaser in the ord catalogar issued by the Hoghes Company, (w-nt gratui- nary manner, and it is also less than a nope drive with (onaly to mining men) thecriber the various machnes a tevasun palley which, in addition to its-copt, frequently built by tbe cobcers, and beciles, contain- considerable reguires space that is ueefol for cother purpece, Wheil

The advant ags, both in the
convenietse of ithtallations, the facility of ad justment of tencontmal of the olg, atal the in-
mensed life of the roge from a

\section*{4 \()^{9}\)}
-
ify an expend. more aqual tension, are sutficient to justivy and ture of tany time- firir cois.
The C, W. Homt Company, is Breailway, Sew York irg, ure the exelasive hientises in the Lated states for ranstnise on this coupling, and are preprated to furmsh and of the usoal sizes, with the complings spliced in

\section*{Hercules" Wire Rope.}

With this number of the Coluray Exotseen axp Meral 3ixes the A. Leschen of Sobs Bope Co. of Al Couis, Mo, begin an advertiement of the wire rope Geture tor which special ment for mining service is The pecoliar advantage elaimed for this rope is that ha rrambs instead of being circutar in crose-cedion result that there is a plamatity of wires to take the sariace wear insteal of obe external wire as in mopes of ordinary conatroution By thi plan a complaratively amaid ourface is presented even while the rope is new, and th wear heing distributed mar a pumber of wires the ted dener to become brittle in service is greatly leosenemb Thest ropes are made either will the wires in the These ropes are made either with the wires in the (ion (Lang' - lay), or neterely
The makers of this ropestate that by this construction they produce a rope without any tendency whatever t. pin or kimk, a feature of dreat yalue when tued foi asor for hasting in talke from onv mines In adhition to this epecial form, Messere Leschen manuiacture a complete line of wire ropes of all kinds and for all classex of sriviec. A pestal card to thei
 Chicage, will etabure their catalogae and detaiked information collowning these ropes.

ELECTRIC MINING MACHINES
A Novel Method of Proving Their Efficiency rking comditions.
But such a test would require a complete inclallation.
nit neither mine "ferator bor manabseturer has careal

 To enable the ore-rator to joder from ontual oheerval rached the limit of it power, and thas is mone exposed
 blant, subeprible of installation bear the mine furath. The cutter it-eif i- a chain machine making a ent 3 it

 The efectric K. W. or 100 hotat

citer. Althonglo in thi- cane is only runs came coal enttey
 ypanstle hanheas iof sle material to be cot

or hand, is a simple one of slollare abal cents to be suced by alopting mechumical nethods, but convietion is dittelectricalfy triven machineryand the -kepticiom natural man simp argarment of experienoce in alws pines is gecessary, as, for instatice, a cancinl test moder actual

out per buer mas not leos than 24 tont. At the mimes

 phase vostan in operation. It uas awanket in bee of the ner iswere coppretition and aloo in faee of the fact
 gompany, had been using for a nomber of ycars a mine:

\section*{MeNelly Coal Drills.}

The secompanvimg engraving and that in the adeertrate latieme of the Meselly patent coal divils reectity pot on the market by the firm named. pipe pasts, wifl and jack scrus.
 Alow. This duable-
pinal drill thome is of orteral ant
 can he driven
withintmoincluen of the rib. The
top, or direetly
noter the driv. can the changed itwone positson
toanotlier almoot instantly.
The oquare pine peetitrill ehome ate as the donble poot,
save in the pouel
 spave pipe grip drill in its parts is the sanm at the pot drills, execpe that a zrip poet io enbetituted bow the vertical prost. Iby orolering a prip post with cither of the 1 wo drill firet
derribet the miner can bave \(t\) wo conplete machimee de-cratmed the miner can
Full description- of these machines. prices, caporitier, naunvl, anst which will be sent frev on application.

\section*{Fighting Mine Fires by Direct Process}

Experience with mine fires haw proven concla-ively that the most effertive work can be done by the dimet procss, if the tifbteta are ahle to approach the location Indianapolis, who pramavily put forth the Fader patent Indianayolis, who primarily put forth the fader patent
fireman's smok- potector, on a means fo nalle firemen fireman's smoke protector, ar a meanstocnabse riremen
to entef and work in burning baildings ngardle.e of to enter and work in burning batlinge ryarde it of smone and gaserof combueton, and in whech use it has
mot mith ungualified raccess, now hring it to the attenmed with ungualified enccese, bor hring it to the atten-
tion of mine ouphers and mine officials throngh mantion of mitue ouners and mine ofticials throngh no adMspr. Fereeted by Mr Willi-C, Vajen. It consists id a wellpertected by Mr. Withis Clajen. It consists in a uels. tormed helmet, which is placed orer the hear hand ace,
constrowted of a spexial asbestos tannel leatber, or asbestow closls, 1emlering it proof against fire lieat, steam, boiling water, and afl poisomous pernading aeriform tloist- the helniet sets down cloee opon the eboulder and is held firmly be two trape under the arms. The ocupant is supplied with iresh air from a scientincally constructed medal meervoir hocated at the buck of the
helnet. with a anparity of 100 pounds pressare of comheltoet, with a caparty of 10 pounds pressane of comneell for the pmpose. The amont of air in store can uhich is easily charged by a epecial
air poup in leak than fiffeen -innals and retain-tbesame pross are of pare nir for toonthes; it is alwayever operated on top of the reservoir hotes
the sir throngh the supply tubes to a point front of the notrily
and month, and in butEicient guatity to res-
der tu .
 deand for ther purproe intented. Tbe stantly forced into the

wand powain, and the foal air uscancoth far and around the buttom of the helmet, which is lined with lamb's wool under the lower tigge, The tuo lookonss are constructed of clear mica and proterted by four cro-b-uirec. The side or ear plater are constracted with a -fecial diaphragm, to as to render the hearing perfectly "the pin doup is pame all the alvanter ere the outside. The horn, located below and in fronts of
 at any time when desired The Rader smoke Protector
furnishes full protection for the bead from falling debris, is gracefof in appearance and casily adjusted. The helmet weighs tive poinds, is quite ornamental, offerivs persect ease and common to the weaner and salaty toin
 The eyesight and the breathing are fally protected by this invention. The nose and monthare perfectly free, nithonit incombtance of any kind.
Mine ouners and mine managess can readily see the
 whereby they may protere their prope
sace the lives of endangend employes

\section*{A New Recording Thermometer for Atmospheric} Ranges of Temperature

The nowed and expecially raloable fegture of the ording portion may be located at a distanec of twepe are is to be masatumal
 of the outside temperatnes while the wconber is lucated at a concenient point within doons where it may be readily testrimental intluencer of inclement westher
For cotd etorage plan- where ctoced rovas are to the is Iocated.
 Thy high rampes of pressome are emplayed
Thi- thermoueter in being mamulactared and placed on the marknt by The Brimg Cow of Waterloms, Conn.
 reconding the coutside teanperature. The meover is

\section*{THE BY-PRODUCTS OF COKE.}

Their Value and the Importance of Saving and Utilizing Them
The following of a coing coal, are from -tatetmente mamo befory the
 Weeke on March inl and the, anil pmblisbed in full a

\(\qquad\) hich is exceedingly valuable to our agricoltural indu. ries, and I will take the litaris, Mr. Chairmam, of real ing here from Xr. Fnlton' - book an extract of what li. says is a valuable paper by It. Mrino Terne, n hich wae tite in Philailelphia, Pa,
great leed. A fen ilgys ago I visited Amheret and rpewt
an evening with Prot. Gironssmann, who las charge of hive station. I felt certain that while the theoretical vahte id lornyanl manure ua- a certain quantity, yet that there uas a cyrfan anomat of waste foms the time hat it was dropped until it reacheal the tiehd, and I was

 masle tet- (iki I thisk in al) of manares in varions parts saloce in nitmon-n potash and plusipluyn was as it is put

\section*{clu-ion:}

\section*{ \\ }

Ti relor it job Therefore, it you wew to bay commercial fertilizer-
 ambutake to ray, Or. Chaurman ant Gebtlemen, that there are net some gher eleanent- in the manare that are
 sifle exceedimg cane have zome, you can poschase with sl.t. the ame amount of nitingen amel potash abil phoce

 finir to asonme thut an animal mill sat 25 peatis of fonl day, and that amounts in roand numbers, to \(8,0 \mathrm{or}\)

 hir kimel is of ereat value as the t
The recording part (Fig. I) iv an application of one po Bri-tol's recording prossure gaages Fig. \& -how - an
 arm directly at end of a tube of tlattemed chatsection bent into belica The bulle partion Fig. 2 if vaceal at teroperutare is to be cists of a meries of tructed or eame principle as corder. The hellcal coils are sns. pended in a vert al peeition with free, the upperends
opening into the opening into the
capillary tube conMecting them with The system of ng the bulb partion, the preveure tube of the recorder and the capillary connecting tube are completely cilled with alcohol under pressure and permankently sealed. As the temperature riees and falls where the bulh is located, there is a correpponding expansion or contracrecorder and regiotered on a sexen-day chart 10 the cocorder and regintered
os read in degrees. Fathr Excessive pressures due to increa-ed rolunie of the
non-comprectble liquid are provided againet by the expansible form of the system of belical trabs of which the bansithle form of the
The total volume of the bulb portion is very larges as The total volume of the bimb portion is very large as
has grown enodmanty in the lant 28 yank, amd the manatarture of illaminating kav is not hanger -ufficien On the thler laud the innad which eder riall plant for illumination lave been making yearly on the poo Anction of illaminating gas hav already been felt, ane Water gas abd oil gas are other factore that ame cutiong down the amount of ammonianal liquors prolueed.

But there is anotber source for tar and ammonia which, so far as tay knowledpe goes, hae, with a single

\section*{ \\ Fich as are oar resouress, mo ane but ísh enoagh t} watle continually, It rems strange, ind, ne-vertheles is a lact, with ait the imgenoity of the Ameriemp people technical industries, we have been and are yet clow in the developuent of the chemical indastries

The aced manufacturer of Europe, erraciallv of England and Germany, had commenoed in the Leginning of this century to make homeelf imependent of the sill phar mines of sicily by using the salphurous ores of hi immediate neighborhood, and to utilize the pyrites for making his sulpburic aciu. It hav only been within the last 20 ywars that our people have comatnencel to tiee the ores that have been lying under their feet, and today even, the Tnited states consames more salphor for the It is the same pharic acke than any oflier nafion. by-prouluct of the manufaction of colke.
If you will visit the coal regions to-day yrom will bud the sightly eky thmminted trom the fires of the cols mony that we are masting the richomes of cour land in order to pay the wiser Furoneas coke manufacturer, whe Gre- his anumonia and semels it to as in the form of sul Phate of ammonia, and who aloo saves his tar, which aiter passing through the complex jucresecs of monkers orgamic chemistry, raches otar slowes
aniline dyes, vaceliarin, nitro-benzol, et
Let me, before 1 eater upon the subject of zas, refer to the importance of ammonia. Everybody who is familiar ith agriculture knows that the three essential eletnents of plant food are nitrogen, phoophoric acid and potash. Aow, we have, fortunately for this state, an agricultural experiment ctation at smbers, wher keep- in cloee the land of this State and of New England is in such
cunis a year. Youcan reckon the excrements at about walf of the font, or tuo tome and a guarter. That is, the thanurial valoe of an animal for one year is two amel a
The profeson tells ne that, in order to prablace good

 infortance of thi-matter to a hich 1 am calling your
attontion is this, thatr in every tom of bitominams- coal attention is this, that in every ton of bitaminots- coal
burbed forday there is the equivalent of 25 pontude of ummonia, which is the equivalem of five pounds of nitfoget, and, at the rane value at which it is reckoped lu-w as manure, there is a montey value of ta eqnts. The daste of fertilizer ime erer) rix tone of bituminous coal uhich is burned throughont Ni'w England, is coguivalent "t the manurial raloe of an animal for a var. Xow. what dose it wean with reference to the agriculturnal indastry of Mancachorettr, if all this nitngen could be aved and placed upom voor eail? It meane that in thir Nor,ow tons of conl that are burned thanghout Nen England towlay there is a manurial valoe of a million of cattio, I kbow of nothing buore hopectul for the agriathure of thin siate, mor of New England, hor of the
 ing their attention torday to the protervation of thie Grathel wils. What diac it mean? Amol thisiako in himking that this in an ebterpriee which this state can pryperly ebcomrage" it manas, of course that throwing neh a large amomint of nitrogen "joan the barket wil heapen its cost, abd that is to Alvamege of in, pen uruld eell for a quarter of its coot today. From os, ior 18:2. 12 yeare, pulplate of anmonia ranged in wrice from stat a ton. The lowet price nas about Sod.
 armern, and the people in dohmeswa fold toe that they men, cuery man who is lamiliar nith the neco-cities of
 levefot the savisg of these loyproalocts will be fo great people Prof firmomanis finld mee that, in his jode ment, but publem of the time was how to incrise the mopply of sitrogen, aml aminaly who hat any ccleme cakufated to increase and elonapen it mas doing a polblic

Mr. Joe D. Wexke of Pitteborg. Pa, -tated, in answer Oquestions by commel, that he war editor of the Aarri-
 or \(1 w+n t\)-fow veara, havime phhlished in that time Gitite a number of monegraphis on this sabject : that he had hot charge at buth the Trenth and Elecentl Gei(0)N, (\(\times\) <et and 1000 , of the T'nited States of the reports of colse, fedrolenm and natural gas: that he had been
 belgimm (1)
 vens in oftration: that he hast been secmery of the boand of judges, department of taines, mining ansl metAllurgy tet the Wopld's Columbian Exposition, and that he had jost completed if tern as presikent of the Amerio on Inetitate of Sining Engineers
Mr. Mclaughlith of conn-el, having arked Mr. Weeks ostate what was mant by cooke, how it wate made and fon it differed from inthyscite and bathtimems cos, as aell as any other facts and information material to the
he-tion at iesue, teplied
hink Chairman amd Genteoren of the Committee: I
 mox liain facts regarding ccal, as well as the differohener ween zarietles of colke shonld be stated. With is suther for kinds of cond ant juy jaime lisme mat there are tu ommonly named hard coal und soft coal. The differ nces in these cals are chiefly two
Fist.-In the amount of volatile matter contained it hem, that is, the amonant of percentage of volatile sal stance
and
```

Scomi-I-Ifferencea in ploveical elructure

```

Anthracite coal contain- from 5 per cent. to 10 pee
cont．to si per ecut，while coke，which is tande from butamiboss coal by processes that 1 mill deveribe later－
contains from one－bulf to 1 per cont．The ofler con－ti－ toents of all of these foels une carbon and ahh．Analyen tuents of all of these foels ane carbon and ash．Analyeco
of each of thene cral oml eoke ate a－follom－

\section*{Authracte Bimui－colits \\ \\ }

These coals，that is，the anthracite and bituminons， lonagh they differ now gevally in chemical conetitution
 Thy fein＇steam coal and evertan Pennsylvania an－ thrscites are all the l＇ittsharg bed of the upger coal meas． ares．Here，for example，is a piece of amthracite coal coke made from Pittelsary bothmimons gas eval in a by Thalact aren（showing the samples to the comanitioe） history the same．The anthracite was at one timw bitnminots coal．The volatile matter contained in them ba－lieen driven ost of it by the earth force－and hwat， seat of rhe earth that has been gererated powsibly by the ＂arth movenuents that threw up the Appalachian moun－ tains．In this respet the only difference as coupared oke is that in the anthracite soat the molatile matter fas been driven of by natural cansers whike in the coke the volatile matter has be
Sow which of these fuels is the leat？Practically olid fuel with inore carboon and kes rolatike matter is Fetter faet than one that bac lod carbon and mote vola－ tile matter．So that pound for pound anthracite is a anthracite，as bituminoos coals contain say but 61 to 7 等 ex cent，of carbon，anthricite of to s3f per oent．，and coke Ro）to s？！The colke is the better
Yon will notice．Mr．Ghairnan，irous
Yom will botiee，Mr．Chairnan，from an incpection in le coke is porous，it is filled with little cells．It is this poroxity，this cell spore，that mabes eoke a more vigur ou－foel than anthracite，that is，it will burn more rap．
idly，隹基 the same as a ponnd of chavinge will tharn idly，juat the same as a pound of shaving－will burn
mote rapidly than a ponnd of solise wool．There is the same umount of licat in the same meight of each．bat the one burne mach more freely，minch more nupidy，is much more vigaman－fuel．
It is thin Jovinity of ande，
It is thin jurabiry of coke，combined with ite tough－ ness and hariness，that in a lange tueasurv gives coke its
value as a blast fornace fuel，muels superoer to antha． cite．A moslern blast furnace say 18 feet in diameter at be boeber u－ing anthracite coal will do good work if it makes tokt tone a week．A furnace of the satue eize nace is being bailt at Iftshurg to use eroloc as fuel that will make at heast 500 sons a day，a feat that would be
utterly impoeable nith anthracite as a fisel．In our Tnited state－practice the value of a blact furnace fued
 its woek．If is the same in many opreations．We mast
do our work quickly，wind to do this where beat is used we bued a quack acting vigories foel．This gives a jorone fuet like coke 58 Ereat value，I conld make a frel in a ing under prosure，but 1 monld dustroy wiue of the most
 wify
 mg is simpoly the driving onf from bitumimes coals，by
the action of beat，of the volatile matter they contain the setion of beat，解 the volatite matter they contain
vin matter low coking is performed．whether it be in an illmomating gas work－，for the mamutacture of Illumin－
 place is always the same As the beat is upplocel the chnowe off labbble－of gas．In a wowd the cad melt－ uperarance and stricture as well ami the fartieles five． inmo volatile－whetanco－white in a colen－nt mass of is
 a bich makes the cells like those in this pove of hatas

 with large txll known as gashonse ruke，that will hardly
bear it－own weight．Hut if the coling is done under

 ont is addend again from the atomepdere，but a part of it tever is rustured unless it is put there ly human means
third，the fertility uf a voil remains abelanged if all of the ckenent－of feritity are reatomal fo it；and Fourit． The maburtal prodnct of a farm mever can motore all the
eletuents of fertilite to the soel．That is，it makes no
 fueent on a farm it never can restum io the soil all the
element－taken tome of is，atal inerefors．fertilisers mant
be abldel to maintain its fertility，As shom y yesterday 0y Ifr．Whitmey，the muel imporiant elewent－necesary po amod to maintain tho fertility are nitrogen，ploue pitash．The most valuable as well as the ratest od these is nitrogen．There ure three chief sources of nitrogen） Chili nitrates，atunonis，and the manures cither of the barn yard or the greet manures．The chief source of ammonis，which is the muet imporiant of theers is coal． the use of the witer gas instead of the eoal pas do by the dise of the water gas instead of the eoxl fers jurocres it ga－werks has－been very greatly meduevi，becanse is the nater gas jrwcer mo animonia is produced．It is only in the itlaminating coat gas process that it is pro dockd．Sr．Nhithey slow od tou ye－teniay that in i per cent．of ammonia，or eight pounds．In a ton of of ammonia，and all of thi－i－beine wasted into the air
Asmmaia，abi at of thi－is being masted into the air
ommercial fertilizers in the Vmites states in 1kN4 was 1， 250,006 tons in which is incladed some 31,000 tons of ammonia．If the ammonia from all the coal colsed in
 1, （om，（006）tons mixexl frtilizors，cmalaining 3 jer cent，of nitogen．legarding the probatility of an increased consumption a large dealer in fertilizer writes me

If the price was lowered the consumption of it would vauly incram．The question then would be，Can they coubd afford to lase it．

Fmon Mr．Cirvessman，of the Massachneyts－Agricul－ ferreal yeoterday．I have this letter

The nee of ammonium kulphate as a vourve of nitn

 mote；and ats consumption，it may be contidently as－
equed，would inctease in the same ratio as its warke price nill be lowered
As to gas：What is the relation between the gat jtm－
doend in thes avens ami the pas prodneal in retort in the summactane anillue gas prodicer in retors three zases used for commercial parposes：first，the illomoinating zas made from coul；econd，water gas nhich is aloc in part a coal pax mode by the well－known nater gas proceees，and third，a prosloor kas，that is， gas that is makl by borning all the eombustible parts of
coal with a mixfure of air into gis．This is nsed it coal with a mixture of air into gas．This is nsed in
barme quantities in rolling mills．Coknogen gas is practically the same gas as illuminating gas made from Nal，abil therefore belotugs to fore first clase
is th the veasibality of enriching colkeoven gas fon Illiminating parposes at the point of con－umption Look at the amatysis of this gas amil tell mee what in the morh i－there to prevent enrichimg it．What obetacle in marsh gas amb til par cent of hydrogen ipp to almoet any point desirable - And it is m great deal befter to din it at the point of consmmpfion than at the point of
origim，leccause the difliculties that come from attempt ing tw convey under for－ane the illuminants，which ar conten－able，are aromed．There ure many methods of pensise． 1 now
I now come to a mont ionportant practical quection，
 elvetmical composition cokwoven gas does but differ materially from illominating caal gak，on that for all purperes of heat and jouser it may lee a－stibet that the

 iron in the blast furnace and in the melting of iron in the fomodry cupola．In these came the iron touet be kept ayart and the fuet hav to bear a burklen and ounse－ quenty，in a blat furnace of a fobimity coprola，gas can used to make，wrought irun from the irat gos cam thot in eanuet le uevi to melt jug iron for foubdry purposes．
 fommelry purpmose vets day loy she nev of gas in \(u\) laat is the large mills in I＇tishurg，pas is uscul almust exelo ，ively，Whem natural gas is not barned，poolocer gas

\section*{VENTILATION OF FIERY MINES．}

\section*{A Discussion and Criticism of the Separate Ventila－} tion Theory

Mr．I．I．Maver，it fromitent Anstrian momita eny
 pubtiration．Chat loritiols contemporary \(\frac{7}{2}\) ． bemowith，pablisloes a smaslation of lise article，amil wo

The edoges of aparate seutilation－by which torm is
 the bain air supply－is tir naluee the doptestem of the main surmat，to bomer the m－istance，which the ings by mous of valos－and－plitions－weokl trod to in
 d．theineries of a main xevtilator，uhich，hy navon of the the way＞of from thimer，the ineutticicent dimeneter it

monsony，it is not expeciemt to reploce the fastallation by anare powerful ane Thit is the sole mison fodr catel ank party carried vut in the saarbriak dietrict cannot be looked on as justitable．
If the omly point to be considered were the sopply of Cortain quantity of air to the workings in a given time．
 dreed－whether by the abd of comparowed air，hydranlie presorre，wentilating fan，vte，－bat it is found that the fact actor that mocely of parif ang in the falle－1 ixtent the warking inte of pariving for the folle－s extent the workings into mate in this disection failed，eron whers the dmarht ande in thas difection falled，even whets the dranght bocalse the ais need wne impure，the vmat a，simply
 pure wir derived from the tmetre poce workone the fan conres，where the fans ane wrofked by hydranlic presserfe the mosits will be esen thote unfaspable
Objection has of late been taken by Uthemann to ven－ ilation ly panallels，on account of the great expense of jobstructing and manntaining the dowbe morkinge，the hability of the croe－driving 10 harhor fire－damp，and he increaed quantity of gas hlecding from the larger soriace of coal ex peser by this method，and be has me ceated－abolition of thas syserl in working seamis， pruproing in substimtion the sdoption of singhe heading－ entiated mparacy，This plans jorened the kede．1 and Konig pit at sarbruck，and it is a－eerced that the to satue s－ 20 in one saver The ventilators nad amg small，mote exocoling 41 f1 in size and are thereforment Into the pit sithogit diftionlis The late et canpresed ir fullow at Reden is of the ser tacelel with armo 20 It dianeter，and driven be belting．Theee ventilators ase alon tuen usel with hivdranlic jower，woeked by a Pelton wheel giving 1,700 revolutions per minate，the fans themselves having a speed of from tow to 1.000 turas per minute．The air supply is conducted shroagh plain dameter which ane fuind to act better than cournmeted
 pipes and deliver double the quantity of air under ite or muge frourently with flange joints，and the perventare of wa－t
 fagures ndtained from a 11.8 trough supplied by a Pinette hares norainedions－ Gan being us follows：－

At present there are eighteen fans working by coti－ tiven pit，and at the Konig jit foniteen wiok al by bydrathic poner，tosether with tmelve by roming water． and supplying thirty workings．
So far as the reduction of the working expenses is con－ erned thi＊syetem answers ite prorpoes，beat when the question of eafety ix approached mattere wear a different opect，for is it Ike consideted that in oxstimary working as a precautionary measure for obysatimg the risk of the interruption of ventilation in cate of an explosjon，and ilat only where the drivimge are shori are metal trougho ind．what can be the eccurity of the minere working in beodimge of conesherable length when the only air apr－ gly is conveyed by these slember troughs which a slight turk woukfor sutheient io split，and thas Fender use－ ecas especially in view of the great clanger existing in ponifing uricell ahong sums an a matter of fact，them cuing anv whot critioal one，and the propprin of tew t evenat hoal exporotoh of gas would be extremely re－

 pots forth anmber argument in favor of the simgle lead－ ng eyetem，viz．，that an explosion will be mure locat－ xed，as the gaver will manain is xito，bet this means that tbe twen actually on the spot will extainly bose their fres that the offers may escupe，an axion thut is surely not justifable．Desides，the lecalization of an explosion －say in the care of coal duat，as shown by the expeti－ lang－1 mualls flas the men in ofler morkinge may sare is way of escoper，while with parallels there is always a b－iter chamce for them，upart from the addi－ tional－ecurity afforiled by the tuore sabotantial separa－ tion of the airmay right op to the workiog face，
In the Karwin district，sbote erparate wentilation is a moore gemenally adopted，as being soine than the fragile fans，the hooking of one of which wookd heave a wlole
 priv Kuser Ferdinauds．Xomlhahm，a Capell fan，ilriven at a sped of I．160 surns pes minute，sapplied the neorer
 tou worn out，and it war foabed cxiperlient to noort to of maintenamee was shernty reduced 21 per cent． alilwagh a buch groater quantify of air war u－ed up．
 seporate ventilations but the very best plan is to venti－

\section*{Easy Lessons on Mining.}

This Department contains articles to assist ambitious Miners to educate themselves, and obtain Certificates of Competency as Mine Foremen, or to become Mine Superintendents.

The articles are written to be understood by the unlearned and the learned alike. Plain language is used, no
possible.
Further : The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors, are printed and answered.

Air The Series of Articles "Gestagy of Coal," "Chemistry of Mining," " Mining Methods" and "Mining Mechinery" was \(80 m m e n c e d\) in the inaz

\section*{MINING METHODS}

The Resistance Due to Air-The Different Velocities of Falling Bodies-The Effects of Different SusDust Particles-What Should be the Limiting Sizes of Dust Particles-Recapitulation of Facts and Principles.
94. The Resistance Due to Air.-All boalics are eabject to resi-tame during their pasage throagh air
and by oleervimg the comblitionsof surface extensjon and mass that affect it, we are soma able to clareify its modec. and determine the amounts of retardation that am
peculiar to cosh of its phases. As for vsample, wo cal Chrow a poumd wright of kod mweh forthor tham a Froud uf wood, or a puand of cork, because the watler in
tbe woud has a greater surface of su-pemefon than than
 passers a larger areas of end surface in the raten of 5 te 1
From, this, then, we me that the distabee a baty will travel in air is mot only a quation of velucity bedt alsel
one of clensity. Again, a cylimher of uood moning end-Way- thrumgh air, is enblect to leos recietance than a cule or sple-v of the sume sutrofance, and the same is true of
masees of any velier kimd of matter, umid to illinstrate this
 throwing \(>\) p decrical shot, as \(B\). Xow, if the shot \(A\) eventhrowing epdicrical diat, as \(A\), Now, if the shot \(/ 8\) con-
tains the same mask in the same volume as \(A\), we can we that the eytinder will mevt nith lese resistance from
the air than the sphere, herame the extension of she
 ter murb leer tham that of the epliere, for let ne obserie than that of the sphern, the dispdacenecnt at the front of a ematier volume of exchaange than at \(f\) ami, \(r\) in the front aquare, that is extebek of or spowal out in a plane at a right angle with the line of its moition, will pmsh from -ddes of which are voe spoan yard in anea, and the vactans is the rear of the sleet will be as complete as it ritkel gun \(A\) is togive a twirling or rotary motion to the top shat contimese lo revilve perei-tently in the same plabe of its axial rotation at a right angle with the lime axir of A after lesaving the zun, continous to bove along its path or trajectory If matil its journey endis, with shot, eontinning to move crid on, is subject to mueh illu-trated in the ligures. A shot may be Alirown at the higlest velocity attainable nith the moet ponerful gun In wec, but whetherthe xhm be large of email, swift of
slow, the moment it ctowres form the mozxle of the gun it begins to fall, amilibat, too, at ibe ordinary rate of oo on, abal it is sin this account that we know that the
 before \(A\), and ilis is indicated by the curvature of the erajectory of \(E\), By the dircetion of the arrowe in front
of the splure the chot in ceve to pueh the air oat of it course, and by the tlirvetion of the aytuwe in the rear, the
ir is suen tor rish into a partial vammm. 95. The Different Velocities of Falling Bodies -
 trasserse extension of their suraox Mirst then we

\[
\pi_{r}
\]

D
velocitivs of the culer in filling, will be in the in
 suan sution, an nill ke mocee clearly thuwn further on
 encels weight of uovel in was in II, then the cylimider
 hownh is as splucre, will fall quicklv, leceass. if sumpension sarface is small in relation to its weight, amb we - tall wihb an aceveratimener of lead megot hanh
 example for howe ue have two eylinhers of irot tami of fan the urchat emin surfonconf is the vene ns that

 ckar after ne explain what is meant by the sospemesion p6. The Effects of Different Suspension Surfaces.No chater and

air in pominls per square fooe is eyual to the weight of the cubje food of coal, the falling cube-will cuas to we colerate ite velocitr Lee us then, take the cubie foot of eond to weigh so pousds, the peralare of the at moce

 to the velocity in fiet fer nexud at whieh the bating
 of sorpenebon, and to make that clear, let our cube of eual this tome be a cabic inch, inctead of acrabic foot; then a
 Again, the fave of wore of the sider of the cule is one squar inch instead of one guare foot, or 14 -quare iorthec: and the pessatre at which acceleration will crase menet be reckobel per aquare inch. as \({ }^{2,120}=14.72\) potands,

fhere masser ane let fall down a vertionl mine shatt al
 little cabe of coal s will preant, for its we eight, as enster mospension surficc to the resisting flaid than the cutec for ite neight, dlan the cule \(\ell\) : with the rexult that the
cube \(C\) is suppesed to be eut into tuon slaber, and the oneat X is entire, while the other vate is dividest into four mat rettra as erer sow, if the >lats 8 contet tre mate meight we have the same surface of stasprisions, as for the entire cubic lome. Then, \(\sqrt{1,00,00 \%} \geq 121 \quad 154.2 \mathrm{ks}\) Bach of tha cuts \(>\) are sarface of susperision p-r proportion of weight as the >Lal K, and this we will stom in two uays. Furs, then, cuel of theer little cuber have facx-, afl of which anv oqual in
atea to onsc-forth of the area of one of the face of the

97 The Unit for the Velocity of Dust Particles.in finding wat that the velocitiex at which falling bodies crate to acceletate vary an the fourily voit of the ares. of their surfacese of sacpersion. We found that a cubic falling was erpal to \(\frac{15}{2}, 4\) fext per secornt: mos at
 and each of tlecee -bate fare bawn cit up again into I bitte calser, of to patt the tuater very plaialy, a cuba

 per fecond is the limitimg sehocity of then suall oubes Grain at é, a cobe inclo if coal is divided into 1 a caker
 cale. Then the limiting velocity will ko 1 r!ug 10,24 St, fori per reconel. The cule af Cis intemed to bets ince indiees of tractional divisaums. 98. What Should be the Limiting Sizes of Dust the aim and intention of this lessond, and now het us ask ourselves what dust is, and I think I lesar all cour readerraized by a wiod, whoer velocity is greater than

 moch increasel, ansl such a monle of pocecting musans

 snificiebtly large in slianoeter to rou off the flow at a
 in jowetical burchanics are nos morth the paper they are writton on, ankess they are the curclusions and de-
 the etatements are bawd on facte that commanal re>ove and attention, and this is the case we claim. There are
two fuctors in the application of steam puser that require our closest attention, and the ene ane the mose reforioy
 minnte after it has vxpasmed; for by the use of these
fiectors she proce and also ther babane required for the

\(\qquad\)

 presums, and as she [monire is vationar, bee must the

 mam, the vxpromion ' "e supplise it, hat this is the

\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{MINING MACHINERY}

The Hydraulic Main or Delivery Pipe of a Pump-The Connection of the Intermittent Flow-Rod and
Planger Pumps-Recapitulation of Facts. 813. The Hydraulic Main or Delivery Pipe of a Pump.-It is promible to dix a larzer pump for the dis
charge of a groater voleme of water, amel find whe- 1 it is conc, amel trivel that it - pumpiog ctlicienes is not expal

\section*{,}

 sistanes which ablive to the lowal, nill lalance the
presoure of the steam on the -sigise posin: and woden there circumstancek a small molome of steam will Io min

 andem

cording to Boyle's law, the volume of the air at A will be and ther-fore the diameter of the phanger will ber invereely as the preerne; and the result is, if the puand
is started with the air vessel compty of water, when the column reaches the elevation of overlow, the air tha filled the
 cylimet of uniform thameter, anal the hasel fireveral for the

 replemisler, and that is a pomps to foree as intich in into the rexoel a- will maky it act a< a opeing of hom it is bot likely to have a coslion range of more than an imets, whereas, if the rosed is half intl of emmptowe Amother mason for the noe of the replenislaes is this thas air at atmosphueve the replebisber pump is enliel \$15 to one side of the air woec-1, an 1 i: \(T\), anal flien the beve inther gacge at al
115. Rod and Plunger Pumps.-The rod, rolanger ame lift pumpe arc ta-t parsing utal of 1 ter, anil with them, to
 However, they ary still in ase ami the buning engineer where areat volume of water laid to be lifted, two lift pumpe with alernade action werw made to de the work.
 cessum the plamger or fonang "mets" ;and set in mover craine of the weight of the lowacy moknlen rale. What.

 The reftion ralve I: The dower at
which sle-saction valve ischamgat Whest out of ocder, for athather is

dameter of the plomper clomilal In
marly, by thesarnabove-nit the pexton timplaves on the
 with an area of \(24 s\) circular inches, enthat the flow is the
 that it will lalanee ther peomp rials meighiong lo tome, we in \(2 t=20\) will mane the julo
The perssure of the has pri circular inch will he

 the weight of the rouls ussists the steam, and wen the mr stroke the steam has to lift therm; the resuls bs, the voZite can exert 40 tonse thore pimping pressme on the
down stoke than on the of, -troke, and then-fore \(2,240<23 \quad 525.51\) circalar inches mant be provicted for in pieton ana fur falance alone, and as the area of tw: [mimp piston is sit cimular inclaes, there bust in
 cular inchees. The total area, then, of the coil if the

\section*{156. Recapitalation of Facts.-Ques, 1, What
formen fix the-limit of the}
borves fix the limit of the telosity of a pamp piston?

 pieton" The dianneter of the delivery pipe shoakl never
 the promare of the rieam will tavi, whe mach incerease
 ter, and the perssure of the steam is not inenamed, of hal witl cercar?
Hok-The convemption of stean will le nelueal anil the pamping cificurocy will be reducal in the eame po

\section*{CHEMISTRY OF MINING}
 fluger with a sworil or tomblust joxint. s.aml the wo
 lowit for changing the giston and shetion valce is seon
at \(D\), the planger is shown at \(F_{\text {s }}\), anal the divery pipe
 pertion as 1
 \\ \section*{} \\ \section*{}
 vertical or nombal position the thane is parallel to the axis of the lamp, but if by mone accidens, ever liable to ocenr, the lamp slowht fall on ite side, then the flame
mill tep parallel to the sertiral radios of the lamplas.

 Haber, of the flame shonld be tou hag for the nulites,
then the glam wouhi be blackened and cracked even at

(tin angle of inclination of 5 , fexm the verical, and it is
 when the famp is canted through +50 , and at \(/\) it jnat tonethes, whike at flonth the offects ane sure to fodlow 101. Forms of Lamp Glasses.- Atee this we dis whe that it is tot casy matter to deternine the form
ind dimenesione of a gomil lamp gla-s, and vet we canmont
 irat, then uspotice the principles alresaty tovated on lengit and minimum diame tor for the glase, to secone the Ereatest peoible diffosken of light on the roof and thow. refraction of the light. Third, that a thick glases, of om uithan extended surface, ofered at greater moistatioc to tivelysmall sarlace; atal mon the fourlt, primeiph is Ix fure iss, and it involves the rlation-hip of the rulius of vieu the fact that the ghass with the bumbmon sak int secors at once the greate-t abmant of diffusion, anal the
 amiged to bave its sides shilicisontly ont is the range of the forgree of tlame, in the event of the lump bxing
canteal, ind foclearly show what is here mesant, Fig, 140
 the required somall top and i-4t-th cliametere, atat chemld
 the flame of during the act of thrning womht sway
thrameh the are cod, and when the tip reached of it monlif tue tubeh the insisle sarface of the glase ; hasi.

 Drighborboosi of the thane, and it exrtainly lowhe nowe retiring and appears to lwe mon like a lu-biment for the
condition- Here the tip of the flame woold thescrite- the

lime jk, ami the tip of the flame, after furning thongh an angle of to womhl hase fonches the glacs at the pritnt ys bot it uith low ewth that in this, as in ther ither it ele the bip of the flame contal mot table the glass cies Ga-ne loup was furnoz on its side. These vherolin flionenciated with the fact that glacetco having large Gotfacy arras are great mastere of light; bat in |sactied buy would be rery disappsinting anlers sone ane cosald guanamee a spectal batike of glaso that bad a todgheme and an cla-tucity soch as me glaw natever known t.
 enbject to anequal heating, ami consaybent ntecjual es pansion, than eylindrical oass. This ean be men by
ofecrvation and consideration, for let us notice that the
 Dormat contitions fhan the evtimitricst wis, ant wpecially the upper one, throngh which passes the beated gases from the flame, for lece the ancat is so cometricted That the bigher temperaturc catock ene expankions, and the frequent rapstume of the glask We gev, then, that thenght ind cumnot lo overlosked in this invertigation. 102. The Volume in Relation to Re Surfaces of Gauze Cylinders.-The volothe of the ges aud air szac within a lamp is at matere of swrinas consoderation, for if It is too large, then the oxygen of the entering air is only portially consumed, and, therefore, when the air in charged with usarol fac, and bighly beated, the mixtare explates This has bevn powed by paininl experience, where large Dayy lampe have luen mex. In mone cane the writer has seen the gaose of a Jowy lamp mo low than \(3!\) incles in dianneter and 4 inchece in longth, and such wete the dimen-ions of the Slantire lampe in Neot
land, at the periox w lien the last explesion occurred in land, at the P-riosl when the last explosion cocurred in
that mine. Now, when whe of the-d lampe was plaven that mine. Now, when whe of thear lampe mad placem
stantly, and, as we might expect, when a emaller Davy nith a ganze \(1!\) inche- indiameter and it incturs in length
was- tosted umber the same ponditions, it pematined in
 somer. Davy lamps withstoud the test for a longer time
Let us just compare the two volumes noule notice, ame Let us just compare the two wolumer nonke notice, and
to make the mater ta-y, me will take the melative and bot the actual rolum
\[
\begin{aligned}
& \text { Blantify Da } \\
& \text { Inpoved [}
\end{aligned}
\]

That is, the contents of the Phantire ure 110.25 , ant thoee of the ituphoved Davy, 1: S cylimbrical inclecs, of
the content- of the Rlantire gaoze ueve S times thoee of the improvel Itary. Them ane two reamons whey th
 than in the -mall rawze cylinder, and this can he proncel by diviating the evontent-by the -tatiace of the panze in

\section*{Blantire}

\section*{Improved}

We thas sev that the heat prombod in the large ganze is -s fines greater p-r spoame ineh of shrtace than in the small eamse, for
expletelon within the ganme, the flamex will mat ouly par-
 that of the small une. 103. Commendable Improvements in Lamps.-We opecially degarture in the right direction, and las re is one of thein, that giver a chstimitice character to a hiosi-
 fied Masselher lampl Fig.
1t1. In it the air to
capmare the comlan-fion
 centside of the glass cyl.
inder, and we may rest a-sined that by thireanth will the secyared, and that is, a better
motive colnon to nid
combuetion and inn comve the light. In the feed the flame firet
pased throngh ihe meslice of the louner ent
of the gause cylinder, amb then contimmerl ot its conser through its
slowet ritg of gumbe, cal! und down the glaw
 way with the shjoet of
peraring the eotmplete ionlation of tlame In
the Mme-cler lamp, alicers safety was
coloed by the sacrifice a govel light, and t
 the air is sbers" contoring the tope cuils of the tubular fols, and at C the iar is shown leaving the bottome ends mere it entering a bollow cone, whoee top nestrict- the Gair >trvan, amil proycts it , firectlv onte the flame

Fg. 142 is a cosulination of Hew 4itay and the Markant lamjes, pat maseskt ot the
main poles of the lam
 Has tusting is Moguised can be tarnoal up abil
eample of the etratuma kample of the otratum an
air flosting tualer shae moul air tisumg buker fiwe ho to the flater. The fannel surs- in a vertion flat on the axi- If II is Ite ofo arc port - for the the
of air wise fle fumbeout if us. This lamp, tom proverin tut
trial of the lames on the.
 poetpritionL
104. Recapitulation of品保 Facts lise the flame what way lump affect the boust ther rublius of the whes Ane- A- the axion uf ilier Hatue in a sufty latup is
nimays vertient, Bu- ratige
 of the gias stomble b fogger that the axiv of the flame, pon that in the event
of the lanp lxime
 fulping ur phemerital plater?

av to grvatly an-i-t in the diffurion of the light; and their dieatvantage-are, they resluce the intensity of the
light by an oxer extended -arface, and thes are liable to erack is the mosult of their tombleney on umequal vxtansion.

\section*{GEOLOGY OF COAL}

The Miner's Interests in Geology-The Origin of Metallic Ores in Veins-The Nature of the Conents of Veins
6o. The Miner's Interests in Geology--The miner a ho has push and enterjuise in his makenp has is alowet amy uther profession. for with "Aladdin's'" wonderfal lamp of kmuledge in his land he can discover the hinding places uf nature's hoandlewe trea-tarek
 requires, in addition to the qualitios named, to be earmed in the embining receosobs of siebece, the it is Sbrangh there that the light ohimes that dispela the larkoces that eatscaak the ried prodoctions in bature's latoratory. If is strange, ant neverthelee- true, flas
notwithoranding the notwithstanding the great value and importance of
 nogleet is to lee fombel in slow lack of at goosl, amel umpul.

\(\qquad\) Whe -rpplies nf kown halge within hi- waeh and then l The supplies of koonh hedge within hi- rach and then b

61. The Origin of Metallic Ores in Veins. The
 searage of wetallic ores in veins, and in ther interstices of certain rocks. We canne, however, that slusat the master wow in a cursory way, witheat rueving fo the

 ditions existed for their selection, collection and dupuestion, and therefore let as lowe iry to find the origin valigation of the natter, let as priceed with the lo ly
 -arrounded by a hive-like inerastation of silica. We sannat look at thim peyerer withom feeting a desine

 imughty jet of uater" From whenese conees the supply shlowt motion will boiling nater have" What pmatnecel the siles hive at ther month of the veat" And a ill the incernatatiom but the nente of the same mushe of action ase

 ciscat garticles that the vandy increa-ed surfoce "xposed theight of the jet is far short of that of a sutid vertical -treain, that wrolal equal the initial jwespome of the evatn ins it uas geterated in one of the earth's hat ruck saldrons, satuated tar bewasht the stepths of the decerest
steam that forsed up the geyser was considerable, then
 Than any of the wordile Iemperalure of the oteam arit ticzally made for it is nou uell kmown that all teorjeraIf the perssure, and comang protly the temperature, of tbe sleam, as grownted in the deep hot enverns of the
earth, was wry great, aml we cammot doubt the conelnion, then we can we bow silica, lime and the chbrides

of the tuetals and of her mincral enopronsls, have been carmed np by the hod sodxent waters from the deplis of the betlee trecks. 1 gam, ue cail we withont ant effor of the imagimations, that the butmral- in rolution woold "rystallize ons as they herame inoriable thongh the falling temperature of the wates that exatainod themi
The temperature of the opflowing water would de crater: in secending, and ac differnt minerals would ceare to be rulvent at difforent femperatnrus, the deposition of sonte miseralk, as we find thetm, uonld take place at ditierent elecations in the vein. supply of uater evntinned, for matore's pan, like artifi cial onco, will be ant to benil stry? The anamer is, na ture's pan flowe benl dry, and a- the reanlt of this the
 exhameled by expansion and then a fresh supply of uater demonis to gemerate - deams for another diseharge We can nou >> what pmalion a
So san now ex what prolliced the cilica bive-tike Hernstation arounal the rent of the Beyser, for tha io potson sf the sotwit that was somble in the very ho

 carth s beat has been the praneipal agent in the rehec

62. The Nature of the Contents of Veins.-The fun bel of "t evever is ofike thing and the tiselane of a wein in pourite out a great vertical -luet of water, us at geyeet

 The xein, lowever, canld only lee nace filled with water, and if a atill frorther upflow continued it wrold

 ore now or have lxen at the time of flling, alvove she Irainage level of the razion, anal the eveppe or vatfor

 talization procerefing in the shtesof the vein is ctown

\section*{Pipe For Mining Purposes.}

The Mieligan Mige Che of Kay 'ity Mieh, the lamers onustry, or for that mates, in the- morld, mako their fire
 The pape wamufactured by thi- compamy hav had the
 places where muctallic pipe mombletand the int men thel ualers bat a feu busths. E-senes water jupe, they make -tesen pipe cusing, bonal froan solis loge, whici
 for the stesat hxating plat in thie city (Scrantons) and Iir all the wher stezm lowaing plants lusits be the The Miwbizan Kje fompons has a emosocing plan
 conduiss for amborgramal efoctrimal wiros ubich ate is ate in the- large citue where wive ane laried.

\section*{An Injunction Granted.}

Jouker Itallas, of the Y'uiteal Stater Cinveit Conrt, filed

 of an min insement of the plaintifi company's potented 5 lomally Philak-1phia and the Link-INelt Mashinery Ce of

\section*{Hose}

The Reoton Ihleing Che, hat jost isomed handerme and

\section*{Miscellaneous.}

MEXICO'S FLOATING GARDENS.

\section*{sthe are larger:
Thiee plotare inter
ciestom ate propelkel}

\section*{} from wa-hine choult
Tle swatol tankers
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|}
\hline \multirow[t]{9}{*}{} \\
\hline \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
thry hail nowe, until
them to form nevaliYexbeats owrieat after the fogmation of 3t-xiva The
\(\qquad\)
\(\qquad\)

\section*{For lung apse the
tating immatations-}

\section*{poal lalos. The 1
Xesios, is clevatuo}

\section*{}
\(\qquad\)
\(\qquad\)

\section*{The regular fiel}

\section*{WHY THE WINDS OF MARCH GIVE PLACE TO} SHOWERS

\section*{} thatel incnown slarch and Aprit may theretore be mes
na the sappy

SOME FACTS ABOUT BULLETS

RUBBER SHOES SIXTY YEARS AGO

THE TYRANNY OF THE MOON
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Souer motuble case of sucallot movmblink, of momb bit} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{ther} \\
\hline \multicolumn{3}{|l|}{York ater a long craise in thime} \\
\hline \multicolumn{3}{|l|}{These men, we are todel. प <er its the hakit} \\
\hline \multicolumn{3}{|l|}{cleck at night, with their Lum-tirwal upuand, anil is a reoult} \\
\hline \multicolumn{3}{|l|}{zern erreken with tewrerary htiralno.. Imrine the day} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)

\section*{A WORD WITH THE DOCTOR}

\section*{Experiberbt- with mustel coffor prowe it to be a pownertal

}
\(\qquad\)

\section*{SOME REMARKABLE RIVERS.}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{} \\
\hline & \\
\hline & forer the sumfos if the Xile ley awruling that uombertiol \\
\hline & \\
\hline & thestreame their supplies ampleterey were eshasstest, an \\
\hline & \\
\hline & fien loy owerlamit nente* \\
\hline & \\
\hline & 隹 \\
\hline & \\
\hline & \multirow[t]{2}{*}{liwand the sextet of ther 1} \\
\hline & \\
\hline & \multirow[t]{2}{*}{} \\
\hline & \\
\hline & \multirow[t]{2}{*}{Hiovizh Fertike lathl the imometse volume of water tweve} \\
\hline & \\
\hline & madies the was. A stenft distation merth of the ogiator the river is liest in a deoert regiont a tex nailes from the Ifuliats \\
\hline & treall \\
\hline & \multirow[b]{2}{*}{cuerisaclaim that the Min-iouggi} \\
\hline & \\
\hline & \multirow[t]{2}{*}{} \\
\hline & \\
\hline & \multirow[t]{2}{*}{Io Ivan letrof, 0 lio spent "wer \(t x=1\) years in Alaska, colleviing materisk- for the lact rensas, ther Yukun empties ink} \\
\hline & \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
Xerfon sumbil shenst om-htirit more water than the Mise issith grone intortre fialfof Mhxiow. The Yakon basin com \\

\end{tabular}} \\
\hline & \\
\hline & \\
\hline & \multirow[t]{2}{*}{its meath the river is 2ease miles in leverth.} \\
\hline & \\
\hline & \multirow[t]{2}{*}{Travelers ripert that in Alecria thore evists in small streme thist the ebemiotry of nature hax turned into ink. It is} \\
\hline & \\
\hline & Sornat ly the unive af twat rivalet-, Dene of which is vers \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline & \\
\hline & \multirow[t]{2}{*}{} \\
\hline & \\
\hline & \multirow[t]{2}{*}{The tiow -te Yisaun, in cistumbia, is is spram the waters of} \\
\hline & \\
\hline & \\
\hline & that the riter has kect appoquiatedy natowil the lite de Vinar Ere. no Visegar river, \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline & \\
\hline & munntaine ukich aparate catal Trom the etrogev Pove \\
\hline & \\
\hline & \multirow[t]{2}{*}{ which are feumb until the riser fasses themeh a hablev ravion} \\
\hline & \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
 cos, alonet in-tantly killing the fiol flat venture mear it. \\
'hina' © Nortor, a curinus- name for a river, is the tifle
\end{tabular}} \\
\hline & \\
\hline & \\
\hline & \multirow[t]{2}{*}{} \\
\hline & \\
\hline & for \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
mighty celonue of water make ther river it ennefant semme of \\

\end{tabular}} \\
\hline & \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & it-charee nime times. It has momel its tanuthforr dezevs of \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline & \\
\hline & tivis, ami
townean villan a have that \\
\hline & \\
\hline & Himbotan. It rises in Thilec, amt its omese isa ucoulerfil \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline & \\
\hline & \\
\hline & \multirow[b]{3}{*}{of lowe it divish futh matsy chantalk, ane of which nee} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Thiat hawhel ricer the tiamzes is ernetie in its coarse like

 enlith matter.

\section*{EMERY.}

 has leon quarridel sitse liotory lengats. If- nevilerfol prop-
 Filuwn. Curiceals, molern muchuls of minue this solotatecy

 rojer Stans were afterward fanal to cement and maxalits
 zrat imbostrial importatux

\section*{}

THE CARE OF THE AGED

\section*{New Inventions.}

\section*{PNEUMATIC PUMPING}
 Gorm of the apmaratus enployed heoriligirg lom lifis, and
 Witer is rased by morans of compremayl air, whol is forno me cup 6 Tle gare of the panypontaining the jet atul deinto it thim slecen and tarmet upwand, asol as it jemenover the

Fig. 2
trives is apmond, after the manoer of ath gector. The set pipe is thas oweromme. asil the depth it nhieh the smop Gorman of peocumatic of "air lin" patazes. In Maz-2 flor lifting
 annalar squar c , compage thmaghe the narnow pascape \(g\) in Thin shevt and trizes the water f spranl with great firct gerate lifs of consideratile lerizht, with i rery mekeris tepeth of sump

\section*{STEAM TRAP}

 As the seata turno to to wot ho the lyee e, the entraine

\footnotetext{
cient to lift thena; and if they are saljusted to urork pouprorl
}
 Prosure, Thise wothe \(G\), whisho werve to lift the ralve and float. The valve stem prasis tomin through the wator onthe \(D_{\text {, anit }}\) of the lever. The beganey of the theat ail be quikily adt fustod to any stcam proxare by shiftimg the weghe d; of

LUBRICATOR FOR MINE CARS.

\section*{} E a sibe vie
ating moxale
This apporatos in thecigmed fo oil the car wheode whil the cit to tene fletymal. Eath vile of the domp is fitted with

oil every time the duspp is torbol jewn for comply it cat

 aml its inocr end is provilital with a Iatel, whimh is repalated
 tiil, in caral tinus.

\section*{STEAM BOILER}

with the lave frame. These tules are eveler than any of t othres, abl the uater travels dow wraid within thom. Th

 Tht, and the frar lawhers 13 , to the liverizetal tho heseles 25
 letueerit them, which are ritud with pemuvable domers fur
 drums 15 and 23 , and the steam os iriet in the top drum 31

DEVELOPING POWER FROM STEAM
 t. napolied with sator from any convenicns nomp by th

Torometh the which is tedivered by the museor is pasee⿻ tank \(/\). Here al stean which is mingled wath the water bablites. Tlec upper part of the is marde solid and free tron

The water is slelivecot throngh a jet \(A\) ppron a water whel ad doc Peton typ E to whoh it imparis it- menocitum. The

The pape " -npplice a xmall smosant of water fram the tank coveluas, anf the garplas rans inte the coenten-ing tank, thowazh the pige P it is clatmed that the vacras if the

SHAKING SCREEN.

 The coal is five in flumagh the chate for This nanmer of in the scen formse than is foumb in the use of the varietios of SLaking shem thw in SEPARATOR

\section*{}
 coal fissso wer the ferfirated plate i, and strikes the wowelen

into the clate or nuber it dejencrls woon the veluesty it

 forwanl or losk liy mansof the pinion 2t and raik is mondi= Gren in plareby thelock hamile 3: The harnile 17 is aftactral the upper enit of the chate 13. All of these parts may be

theme flear of the dirtm, hy mean of the rod 3i aral hamile

 provital with at
natime the at

\section*{STEAM SEPARATOR}

MINING MACHINE.

WATER TUBE BOILER.
nner simillos

 Plate of the hase loxes, as slowne of the right laif of the i- shawn in the lef half of the slranimg In that cose sher

COAL TIPPLE

thay pass ooer them nithout lowige separated. The oont sclumped into the ulper ebel of chute 3. The bettom of this
 are pabl obly for the oral which poenes aver this screen, that
 parated by the wowen io the eaz nal pawitag ints the

 from the Jomper 1if. The stuf whinli powes thereugh the

PUMPS.
 Fis ion Silk, inos. Fis. I is a vertical sextion of the promp:
 rumpang bercol walls The thain barret is towhles the -pace

ablice of
 twine to thest shate they may he boule of any length, in porlot to meare ant itvind atomint of valo tpeninge. The valut- If, if are inke ralves, abl U, U am diecharge valese joints at \(k\) It is thimed that this coostruction ationds a

\section*{The Colliery Engineer}

\section*{IMFTAS IVIINFR,}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{VOL. XVI.-NO. 11.}} \\
\hline & & \\
\hline
\end{tabular}

THE SIMPLEST, CHEAPEST, MOST EFFICIENT AND MOST DURABLE
 THE PULSOMETER STEAM PUMP CO., Lock-Bo天 2511 NEW YORK CITY.

THE OOUIRRH MOLNTAINS OR THE MERCUR MIXING DISTRICT, UTAH

\footnotetext{
phyry dybes, together with subsequent mineralizatio mithe nore distarised districts. The Lower Carbonitero limestobe- of Lexiston canyon constitute the ore-bearin horizon of the Mercur district. Asociated with thes
are beds of clay shales. On the north side of Gophit canyon a peculiar arch of Cambrian quartzite has bees uplifted by a fanlt
There are no large expoures of erupire rocks, sue as resalt frotn surface outtlows, but ratber dykes an is fogular intrusine bodkes, to bomphath canyon the an porphyry that oceur there. In the Mercur distriet the igneous ncks ane mainty in thin shets paraflel to the stratification and immediately beneath these sheets the principal ore deposits occor.
}

The porphyry is generally mowh deeomposed, the weathered roeks are stained various sasder of red and Hill parallel to the bemtiling inf the linustone and overlying the ore badies. As the hills around Mercar are nod covered by dritt, it is easy for the prespector to traco continnomsly the lime of contakt af time eruptare
with the sedimentary rock. If the achal boandary
 ments lying on the surface which correspond pretty
cloeely nith the solid nak telun. In the weathereil

\footnotetext{
where a porous or brecciated zone had been formed by minemalizing solations thacheos material which the fissures exterding don nward from the respective sherts. The principal vein materials of the silver ledge are cilica, larima, antimony, copper and silver, brought up by aseending bot oflutions, the metals in the form of sulphides, the barium as sulphatex. They wer We 1 depesited in the contant zothe below the lowesto this sloed porphyry sheets and to a timited extent above plaved by silica. The fireures throngh which thin mineral solutions ascended bave since been filled with One, called Eagle Hill porplyry, is very like the Lead. ville white porphlyry, the other, or birdseye porphyry.
Two orebearing beds about jok feet aport exist near the middle of a great series of limestone strata. The
lower of these two beds consists of quartzite or dark allicified limeetone, brecciated and poroms, carrying silver and sntimony and copper, but no gold, and ledge, is a zone of decomposed bleached red of yellom limeclobe and shale, containing realgar and cinnabor nith a low but uniform percentage of pold. The silver
ledpe was casily traceah ledge was casily traceable, owing to the hardnees of the rock, causing it to protrude as a ledge, bat the gold kdge was more ditticnit to follow, being marked at the watcrog obly by a slight ocberous appearance in the rey diseovered that certain secams of beds of slale-lik matter in the mines, forming the roof of the ore bodies, are highly altered sbeets of a white porphyry, called,

rock the limestone chipe are of the typical dark blut or ween, and no a fare hillsile the line spranating the The birdsege porphyry forms two eminenees called with diatinet light grey feldspar crystals, mica and grartz crymals spected all over it ant forming the mass becomes deep olive green color. The Eagle porphyry weathers into suall sharp fragments bat the Birdeeye decompows gradually in place, A large part
of the racks in the Merear hasin contain traces of pold bowing a very ulight bot wile-sperzt mineralization showing a very slight bus widegpeod mineralization.
Of the rocks analyzed by MIr. spurr, the great blue
}

of zold: altrect weatherel limestone suall quatitite-
 Thie firro white oomay conmested uith the chief mineralization, slowed light scowal mineralization of the rocks of the kavin
 proditably worked. In alt caser lhow locatitios are at
 almars pofitably mimeralized. In lacalitice obly is it
 black quarta. Ho shows chloride of silver, antionomy,

 iy the miner. It is beaty black lot uxibloces to light
 bioch areevic atial mascury emploide. The sitier ledge the loweet of the ilonev tminot slecets of Feggte IVill

 ledige nith the puphliys is wery distimet, groster erosion litusstone below the -ifver leslge ane numernse narron

 forcais of the silver lealge, A moticcable harcleming atiol

 drift at the leittatio of the shait shows at strongly frae tural zobs. The fructures are ofen and large, withoms
sein filling, asd imblivate the artion uf fanlting There tionarvk contain for ore, and weme later in terigin than

 calcitic or harite, and is +ut by xeins of calcite in as twd

 protected for golel.

 in cavitios has been proulneed by divolving agebuce

\section*{}

In and cryetalined so pare whate valoite in numemen-

 slicitiod lase + (ohe alon

\section*{} the homacombet comblifion uf loe rock whel is sigmibs
 iflos by a rower proweon the enw

calcite veins in the lava, hat have nut as yet lexsid of

 there is a zonce of transifion from own to the otlor, -1 gesting that barite may hase replarvel the limestome a The fime of silicification, and that borite and silien wern bindoced at the same time This mimeral is If sam
 The barite is often the gangou in which the mevalieg salphictes that fumbish the um are imbacded.
कumcher Flu* of saricer formsof co a-ovelateal nitl -ilser In the peiphlariou Tintic dion triet cuppet form- a con-pertone pant of the ure asol an
 he formot the salphide reagar. ('hinwoe tale, or googe White pors chay menlting fram flio docompusition
 varying abmant of enf phate of alominas. It is cowpact,
 The vilver ones in the silver lerlge, all carry stmal Glantities of grold. Ther silsor ore is small filtos of
 porployry and limestone. The poant of groatest mimaml froen thi- it extemds outo the limestome away from
 disappear at a litife thatance from the contact and the

 from in fext thick, to int in places of ereat mineralixa
 litue of contact. It dows met extetnt into, the porpdiyr by folow ony sawply dypang zone as whetki be can-ex by blame of inctare facre are bo fractures of wate Giotzoull has
 hime tote af ombari nith the porphory, and they wen Fevphy
The inimeraliziog agents we.g. heateal water, circulat

 of gratual mplacetwent, wirlumt Ancolmyiog the sifimal

 -ilica, tlee tlersvation of she from the other lecing quite. Gear, equaria in the vicinity of erapdove mocks acemon

 Mr: Shur gexo a wer ckar explanation of the way in
 igmemak kralitixs ud ure kepesit. TIs water n livh bavar contain is mad comited till the

 at the surface is forme cloorl- of statas which isothe- Irmen

 ties of walur shewis that lecat flows seat exelont. il

wislth of the zone of alteration following the contact of ail itheras uith a sedimentary roelc, zanee con-tantly
will the nature and sise of the intruding inses, and the Slong the same contant Iotures the same ernptive abs solimentary fork, are great differnoces, and it points where the proptice nek furme mentrant imules the one of alteration is हnater tham at projecting angles, contact mont
The pheromena of the silowe ledge indivates brief interase scrion, laghly brated waters capable of areal
 eplacerneat of limestome by eilver and by great corof diseolution, e-perially where alteration has heen eralizal somes of those are socoral focet is diannetos
 these spacss was lime or silver such is riddling of thec ock indieates very metive agent- of vilution.
The harian fonme in the silver ledge ar heavy your, was derived from the cooling ernjece thask Barimm
 bernd in weins ane prosent iif the mimerals comporime

 e taken up by the forming tunteras; ant the ownat Ifer same tion, uveld levecarriex nat and dopeoited in ther

 The solutions, exomling at every point fram (hes combing

 ofening of firbure- and formation of broccias. These waters licated and noder great pressames would move along the loroketh meakiy resisting zone, and whenver
pessible also in un upwanl dimection. Whom the porphyry shects cht acto-s the strata the watere wowht

 ing phyry, bat often the contrars; the veighbohlood of the srialler -herts leeing woost inimeralized.
 foter sitiface of the lowent -hece of gatern- roek. This pevence of tarites antimony, copuret and silver. The orter is a carbonate, the silver a choride, asonciated - of antimom

Thore was gresat strainimg and fracture at time of
 persist far into the mass of malterenl limestome, and herr are cavities formed by the gormeive actoun of

silver aml cople and ant inomy wore origimally the poeited an enlphater, The mineralixing agonts were
 Melatimens silica was depenited io quariz, the lariom as miphate, the movais as sulplite Tion swion was inteuse abit lerief, the watorn lighlaly beateal. That the mineralization climge clowls Io Ithe joppleyry slown the
 a comamat corigin with it. Thac masernis nhelt the popphyry. The water uhich acovopanied the eruption and formal its way into the auljuming
 the coarte of thim aftrmation the ans mere dequited
 fiminisluat in yumatios, when tore waters were trach gotits they vergimally lach in oolation. At this foint
 Thagher uith the cherty alterat limestons ith the- ter
 cimabar coats these erystals. Nuch af Itur clay ins this mifequently, anal the fant erack is fillext with mineral,

\section*{}

Which menox that the mineralization, which introlever

 porplory bexi alowe the lowest, of silaw ledes. clow-

 carmal limentote, farrying only it tran of pold. The 'Tloe parphivey it contast slows many irregularitioss mbling up and down along the conse of the tannels and

the formation of the calcite veins, and are of greater
length than the calcite ones bet ofen following a calcite length than the calcite ones, bat often following a calcite vein as a line of leat resetance, Sining stogs at the
lower contart of the altered porphyry, kaving a clear, lower contact of the altered popphyry, loaving a clear.
gaite regular wal!. Helon, the minentization extemlnowe irrezularly and gradaally into the limestones
 venient distinction leturen the altered prophyry and
attervd limetone in the premence of caleite velis in the limestine, which am newer foume in the porphyry The limestume in nany cases shown phoforml fractaniog and sheeting, and is opell fisetrvi. Whem hasuns an
wide-t thece is lrat mineralization, and whore most
 presages, whilst they paosil mapitly throtagh the uide otwe, leaving no theroit above the contact alteration ami minenalization of the porphyry takes plawe slowiy.
 timestone iarmowist, the ore stope atruptly at the coin porphyry sbeet may be xulficiently imprognated witi)
 Lealville) shrimkage cabser- certain planes of weak so that the roek is divided into blueks, between which the mineralization penetrates inwani. The vertical ofening up the rack- thringh which thes paes to th pimeralizing curronts son times (tike at Cripple (reek) they ane crowded clowe thegetiver, forming a crumbles realily and is carried auay, leaving the open limentes ne hase decribet. The menerabzation of the finn of the silver felose anid the formation of the cateit veins which aress aboulant in all the roelss.
The vertival fiesures existed before the arrival of the pold and were the chamels for thix mineratixation.
 their may futo the gold fedge whilat the gold levtes min.

arals do not trangerese into the silver hestise. The porphyry bail nearly reacherl its present state of decompo-
sition thefore the mincrits wi-re deposited foll of the marked signe of alleration of the porphory is likee what is combon at Cripple Creek, Colorakes, viz, citrioar pat-
ternos and evorcntric markings of rad and xellou nxale terns and eobcentric markings of rod and xellow oxishe
of iron on the porphysy gromnd maso. The limestume in of iron on the porphysy gromnd mass. The limestume in by silican wilhas great deal of mum or loces porvas-chert, which Hills oberract is doe to the leching ont of the
siliceoos clement of the limestote ant enerntrating siliceoss clement of the limestob
the-m in the-form of chert nombules
The rallars, which is is comspietmene trinemel in the deporits, is a rolphicle of ar-enic of a rich rexdich brusit
 impregmation of the limestome with mincral took place
by filling cavities frows which guartz or calcite may have
 tion or nplamment, as at Leadville.
The ores of the gokl horixon wewe odigimally deperited is sulptides, ame all stages of the transition from sonl. phakes to oxitics rain be writ where the orev arcexpescet. werv accmating, ristog from lelow, till they taet the sbert of altered pagdeyry, when they epseat ont along
the under contact and sorposhocal minnatization. The the undet cuntact ansi so: porshaczl mineratization. The
 ixation is goatert
In the care of the silver ledge the agents of mineraliza. iven were heatul usters derivel froms the lava it the time of conneridation, In the caer of the dold ledge the that the mimerafixing agents wem more in a gatote-
than liquid combition. The varicas metuls fuand asert ciatex with the mold uere juat ench is uould eneily poos into the state of origin amt ore dep noit secons very moch like that foing on at the Stomaboat epribers, Nevada, ebich we Joral. Maske
After the eropaion of the parphyry a dieturkatace bronght afent is set of vertical fiscures vetablishing as an ubcertain dephlound afforling a went for moint voleanic vapors. The limestone at the lower contact of the parphyry had heen partly silicified at the period of the pri-
mary minerdization and in the sococaliug perioal fad been rendered porns by the leaking vat of a large part

 iltered lat leve parome porphyry. Lava retains beat an enorman fitue after erxption. At Jurullo, in Mexico, a
bed of lava chitteal vapor- from fiweun'* for yearx after its eruption. sach woald supply loth luat and rapuer for mineralization. A paint wofl modicing in eass of
mineralization in matanic areas like (ripple Creek,

Suly of the erater in whelt the frowers of seliditication gow on slowly for an indelimite atal very long perinal afford Mg a continuans nouree of apmeons vapor charged with rarion- wineral nobsances.

The goll bearing horizon is about lid) foet ahove the

 roek, last this material can be traced throngh varions
 sobl is imvieible and only ganged by aseays it is aco. Fiateil with arsenic (valgar), cisinalar, iron pyrito Varite calcite, gypam, Chow-tale. It is associates tom a rourt of blark ti-nile row revembling a blark slates. Thi is greatly mineralized e-pecially by realgar, iron pyrate-
 The ore is in ath oximized condition and the gold frem In oftur- it is contaned in the tiriginal splphante. The occurrebece of the gobl in a limestobe zone is mmasal. cold or garallehal hy that of the Litle Jobnnie at leadville hin., wlure in a komowhat similar way llue goht is a
 Immblewin both cases the porghyy is nowe rospunsible whimb ondtatlo for any kimt of oro by mason of it soluhilits anil evernon- -tructan: Is is the tea col which holds the tea, but not the tespod whiel posirs it ont ; or, perlages a better simile, it is the wesel into
which the which the ligud is peared from the spoege whel hold it The black shale is an alteration of the porphyry
slocet. The decomponetion and leaching ont of the nut plaide ores gixes a peculiar a-pect to she mineralizes eone which makes it easy to be followed. The oxidize ores have been the most worked and readity yich op
their gold to the inflombce of cyanide of pmotasion ur the cyamble procuse In the sulplisle state, lowerer
the ons bave to be roxsted and the entphat driven off a process which entails sume lese

The gold keloge is thevelopeal as a mineralized xone on The lower fart of Mercur Rasin, mainly on Mercur and Starion hille It consibes of an altered limeetome, fotbowing the ander contact of a thin row- id altemal white Forphyry. The mineralization of the limestafte alomy but varies from 39 fext to nothog. The lines of grestest mineralization coincibe is directuns with a ere of nearly
 phides. The former are extracted by the eyanid proces, the latter by roasting In the salphide zone ont amb casily polverized ; Luth contain muals -caltome clert. The amodent of gold in the oney ramely exceedTree conners to the tom; silver is absent.
Ther mineralization of the gold ledge took place after the silver ledge, by pakeote ratleer than liguill agebts
 ancooled body of iznows nock Inelow, smpergnatol the one at the lower cobtact of the porphyry stoet atread

\section*{Coal Fields of China}

The North China /homil of Jamary 17, INe日, quates a
 tomo inticating that the (himesc now Deking are awakening to the anlvantage of employing (uregon enginecring vtemal wer a vast ana of the momataime noth amal neo of the capital, at a distaner of ahoset loo if from it They have hitherto been worlasl by the -terootypeel, irational, moke farhion, on charactertictic of "hincer
 them, and in somse places they Jane provedrated us far as s.cof feed, in ablerro naly a fes humdred fere, when they uexe eloppeal hy water, with which ditficulty they have gen entifely unable to eofe, and ther mines have comglad, buwever, to liear that some rich Cbinese, stirmal by the railuay movencol, have entered into contract-
uith a foreign engineer to decelop the mining poribilities of the northern distriets

China's coal tields are expected by none buit thoss in Americs, and in a more cliatant time they nill have
equal vffeet on flo- commere anal mamafactun- of the
 allow the coal to be carriexl to distant countries and saled mowe cheaply than exal imat mearer sompers; but the erol
otruction of railways, the improwement of navigable -truction of railways, the improvement of navigable

 rapidly aperseding the imporetel coul, and the came in flate will evenitally take place in somet Africa amb

\section*{Boiler Test.}

We have mocived from Nlewerx. II. I. Cbllins of Fh . Inodsume illostrated pamphtet, which is a nport if a
comparative teat made by ibe Pitstoms Testing Laborakors, Lal, foe Currie Furnace Ca, as to the relative ettichency of Cahall and Babove \& Wikox hoitere. The
mesulis of the test show higher etticiency for the former
than for the latter bailes.

\section*{THE VILLCAN EXPLOSION.}

\section*{A Description of the Mine and the Conditions Existing Therein.}

The Work of Rescre and an Investigation of the Probatle Canse of the Disanter.

\section*{}

On Tucalay murning, February IMh, 1086, an explo-

 cumy, hols, nhich woulect in the doath of forty-nime Fumke, assistant mine foknan and Themas Larrigan fim buse
Thif coal hearing strata at this mine piteles about \(17 f^{\circ}\) The me sthke of the sam is suatheas and nerthwest There are wereal worhable seame of coal on the propthek thers of about iop
The mine is ubler the managenent of גr. C. J. Deve fin, E"teral manager of the Mchimo, Topeta and santa
 pany's wine inspecter, who inspects and ropurts on atl
 hereman with an as-intant and three fire becoes whersch worked cighe four shifs.
The acompanying map of the mine on a scale of toct fore imel will enable the reuser to arrixe at a goom make rlear combitions existing is the bome and the anse of the explision. The sume is operned by a slogee, 1, drisen in a piteh of \(5^{\circ}\) IB' for tory throngh the e日rface wash and the measures anderlying the Whoveler mams of that ponit the bottoon slate of the seam is it the botom the prent where the slope strikes the hoteons slate of the
 parallef to the slope, 15 driven on mearly the same pitel an the denpe with the exception that mear the surface it be drixen on about tup potch that utorlening the distano of the slope and parallet air conrse is about kat from the mosatl
At a point alout ter from the month of the slope, the forming a sery stort curn and a slecp graile for hamage Wer this entry a whoden air bridge fo, is constructed
for the main -hapenir coures and ahoat 58 ahono this nii
 Ire bestome of the parallel air conrar, amit the right entry -hpe the right entry runs on the sirike of the sean and duable parting abosat 13' wide and iot long is contructed for the perguen of farilitating the haulage
rhasis alowen at tho point \(K\) on map

arike ontsude end of the partung close to the print of atrike, a cruse ent is driven to the top of the sam and
frum this feint and log nir comre is itrigal puralle. from this point annelics air couro \(N\), is itricen parallel tor theentry anil to the we-t boumblary line. The opper
and top alate nir comrack are conoweded ly an sir bridge
 firm rome or hraat is thrmsl off. In this entry there re eight rowas anil rixteen chastes as shown on the

 is 710. At a paint fis from the mouth of the -lope

 abent soy from the slopes. In thik entry there are eight abonif soy frasu the shope
ronton and sixteen ehntes.
The Fonessate itll turnel off ther main entry and on She beitoon slate of the seans; they are \(+0^{\prime}\) wide with to pllars betwerl them. There are Ino chates to esech the clontes. Mt a Fount abuit ito' up the piteli the chates Gre conmested by it erossecnt amd the face of the monen is Then fummed. The mimery lake dnt irome, fo 8 of tbe may buite on carh side of the breast about is -48 . It. sectional area for ingress and egress and for centilation of the face of the working- The roome ar fter whuls all the cot coal is taken ont of the rovise Arother operation ther takes places Dren selected for the parpuser, called "top mon," are put to work to cot the sams at right angles to the piith and up to the tig of cosl, is hlateat down and tahen awavethroagh thi lute felow, care lwing taken noot todraw ont too moch. So as to give the men snancthing to stanal on ami kery Trit close tor forir work on arriving at the kop of the off an that there will not le any print of it ligher that the top enweent in the lootion conl. This is necesar becmase if the top ecal was exesavated higher than the The lirst of cration of morkiting op the vonto is dobsc lo Ioc yanl and the top coal mean are paid by the day. A sooni as the top ecal opration is finished all the coal is takent out as rapidly ns poestale becanee if left for any length of time it is liable to sponfancons combastion.
Thy coal is hadhul hy men selected fur that purpese who art paid by the day.
by 1 mofans \(K K\), of the compresive type. One was a been rprinkled at the time and six thots were changed cur? We admit that gas is emitted freely from the strata Cinital fan 12 in diatneter mith blades \({ }^{6 \prime}\) in uidth
ant the pether was a thomble Murphy fan \(6^{\prime}\) in diameter. These father merv capable of prodicing froms 38,00 to
 The internat if the mine wak eo arranged that if one fan mise. The right and lete entries hat sepante and distised coment- of frowh air foum the obsside. Each cour Not uas again oplit in the mine thus givive a separate split currest- Jowod at the face of the entrice abd returned through, the nain entries. Air cussings nere door- and to keep a nutinuas air carrent through the movived ereat attention ant nas, in my opanion, well conducted
The natnagenent recognised the danger incitent to the preewe if coal dawt and tork the following pre cantions. Tonder the brow of the hill ated about oo I, nere cometrofid, into which water from the Grabd
 are conterted io t' pipe Oil tbe ventries which are
 an the nows contections; sone of the rows bave pipes
near the ferce but generaily a lowe conbection is made mad the lroec is moved to the point of watering. The luse las a reducing maxle and by the use of it every
-ation of the mine ran be reaclied from the nearest connection. The altitode of the tanks, which are about 23' of anme above the entriex, yieldsa possine of nearly
1th lis, to the -quare inch. Thicre mas a man enguget fue the purpoce of estending the pipes and sprinkling I coriotur the system as koul as can be adopted.
The vubject of dampring "e sprink-- gaining favor among the mine ofticials, and there are very fien officialubo do not reognize the improtance if keeping the dust fruth coutaminatne the air current, sume of the cx tensive mines in the coutherns part of
the state are nou uatering al their lanlige way \(\begin{gathered}\text { and the offecinls state }\end{gathered}\) that great hereetis have been therived the quantity of air is increased and mproved inguality, and beebles then o a perceptible decrease of tempera-
in in the mine Whon-xplocivetur in the nine Whonewplocive
are used to mine the coal the duat are used to mine the coal ine dhat
puestion is \(\rightarrow\) mattee of great importfree and elowld not to maklected at any time, ated it slould be borne in mind that sprinkling i- not suticient In orper to bee on the saie side the dus-t must be well watered. The Pruerian Fire Damp Cotunission and othet anthoritiey say that the du-t must be
dampeacd with aid: of if -cown weizht dampened with 60 g of fown weight
of water before any degree of eftiof water beforva
ciency ix ntainel.
 everal inspectiono of the mime in
 superintebinht and Mr. Conbors,
who mas then the mining bees, and whorably fuamd the mine in guad condition. It the time of one rinit we Asecused the que-tian of sifety labyp and the maropernent informed ne
that they hat tecided on the use of the Mueseler lamp to replace the Clamy lanp then in toee I applaved of the clange, for a short perical an accomulation of gas nombla be the and that was the hamp naxd hy al workmen exeepe the fire buses at the titue of the explocion. On the whole 1 pagyetion to make to the managewem whereby greater dezree of safedy could be secural. There wen place being waskol in cight hour shifto in arder if make feecty de volopments.
Oin sptember 20th, 1856 , Mr Jolon D. Jones, Deputy Inspector, wade an examination of every working place

 Gotemats, and Mr, John Funke, his assistant This was
 sati-Ged that everything was uell cotalucted. Depoty In-pector Jones repurted as follows: "gantity of aur
 water lopprinkle the fromme The haulage ways an well timatereyl. A new fan will te-pit up in the near fotar uhich will undoshtelly be of great henefit.
This alditional fan war put in operation on the 15it
 manang at fult caparity. Wr nere botition of this be the vefliciats ant we fele a-wneet that atorloer safegmani had been ahdel to the Vulcan mine: On Febenary Sth.
 with 2 Nowre. Horricke, Harrisu and Fonke. On thip
day the mine was nos norking. Them were a fow com pany wen at work in So I nown on the left entry. I pervous t-, hetering and he infosmeed we that the mime Was in berter comition than cove before We walked
down the slape to. the left cotery and thene met Mr Inrrison, and we cxaminet the main and tack entry. We then catue tock amd went up to the tuperal rovim
where there were five mon at work blacting down top

 in an unkosen quantity as to percontage in the air cur
ront, taut pat suthient io bedetected by the Davy lamp rent, bat not sutticient to bedetected by the Davy lamp,
and there mast be pome small quantity of minute parti cles of bighly inflammantle thast in stropension in the air. Sucb a mixtare wonld to panfexplavive in contac wish a maked light, lom lighly explecive if detonated be a blown-out shos, ignition of lecee powder, of a smat guantity of fire-danip. Froan the location of the bodies of M1r. Larrigan and Mr. Funke, and the eourse talen by the force of the explosion, I am of the opinion that the explosion originated in the right or uect entry mear one of the chutes between No, 7 and No. 10, shown on the map at points \(M\) and \(N\). The timber form this point wasevidently forced inwandly and outwardly. The inward force travereed the entry abd forced its may to the parallel air course and thackward, some of it going up the manways No. 15 and No. 16 at pwint \(O\) on map and over the topair conrex and ont through the fas openings. It is evident, however, that in poxing throogh, the top air fourse and rooms, the farce was bot greatly augmented, weanse the air coaree was hount in good shape, the only damage done being at the month of the fan opening That the greatest force eame through the main right entry is evident by the manner in which the timber asastrewn. When the outward force arrived at the air bridge located newes this entry at \(D\), a ueak pout of recistance wats foond and the force expanded, some of it going up and down the main air-coarse parallel to the slope and most of it in contact with the retrirn air rom the left entry. The force going op and domn the bain dir-course (and intake of the tmine) did not get the thex enary mgredtents to asguent is orre, tomy anstion afres supply of oxygen for the suppor of combanstonThe foree on getting in contact with the return air of the ory for revital the influmable ingredienks withont soing moeb damage to the timbler, ete, only one sef ef which was kmeked foat, and this at the entrance into the left entry, and
five ar six mote at the dlonble parting tive or six more at the double parting. It is evident that the foree poing
down the airecourse preceded that down the uir-course preceded that
goong down thic slope This is pmonen poing down the slope. This is proven
from the fact that the stoppungs in from the fact that the stoppongs in the eross-cuts were blown outwardly Into the left entry, the nust ennspicuous being that of the regular stoppings between the left air-course atd the domble parting at \(P\) Evidence of great xiolenee in the foree traveling
inwardly themagh the airecourse and entry were fonind, and I am of the opinion that it was aided by exploin maligess for the use Howeres ne could not find direct evidence to hocalize this any more than that the angreentation of the explosion was nircurma car was foond the ends mul sidee of which wars am, the ends kinatling uvend. The bodies found pear the fam of the main cotery were badly mutilated. The forees ooming in through the air-course and main entry met at aloout No. 12, or at point motion at this pownt. After expending all the elements of earryy the reaction took place and volumes of shoke came out teismrely through all the openingz
thate at yet omitted to explain Thomas Larie explosion origmated. xamine every place in the noine pos for a short perial an accumblation of gas monld the the vious to thing any shots. He uas also suppoed to fire reente and a defective safety lannp would ignite the the shots. Now, I have formed an opinion that one of musture. Under the sume conditions a cancless miner the chutes in the right entry hat beeone blocked, and
 shot may do the same thing. A sulden outhurst of gas explosion wecurred. I have no donbe that Mr. Larrigan may take place and impregrate the vontilating enrmen examined the combition of the place and osad his joig. and form an explonive buixture and the same coming in ment is to the amoust of powder, ete; ; but there may contact with a naked light of a flame canse the explo- lave been a xmall gnantity of fire-dabp existing in the vion. Other modes coald be ennmerated by which a chote at a point be comh nos nach or obeore it is disastruas expleefion might uecar in a paweon- and doaly mine. However, 1 muet form an opnion of the canse from obsamable evidenex.
As I previously stated, the mine, in tmy epinion, was ing gor and sufe condition and there was no accomala the noot competent lirelo.es had examined the bibes a mimate previcass to the explosion he wonld bave peo Lamed the mine to te perfectly sate and th a norkante of detertion of thanger in tom cruble and the damer line is much foo high. We are aware that it is impresiblets detect lees than 2s of tiredamp in the atmerphere of mine with the common Davy lamp and getrally ote fire busses eannot detect less than i. which in itself is nearly at the explasive point. Experiments prove that pliene than or ver dampernom in a dosy atome tust, in the aboconoc of any gas is explosize othet doube the phenomena. However, all experiments have proved beyond doubt that when bosh the ahove ingrode onts an in the vontilating curnent itire-damp lring lea That 1 , it becumes highly explowive under certaincon ditions With these remarks in vien, let uw comsidet the conditions existing in the Vulcan mine. Every
preon that has morked in the mine is well awan- that grat quantitics of gas an contantly tranopiring fore the etrata amit that the coal is naturally lusty, ame for twroote explusums have covartod in the lieht which have heen elaimed to toe doe to dhat alone. Thece is m.
doubs that the dust prodoced in the Whoseler seann in bighly inflammahle
protable that any practical man nould have dome the same thing be did. Now, assuming the above state. ment to be eorrees, 1 will endeavor to explain how the explosios originated. The explosive usod may have heen placed on the lump of coal blacking the thute and cosered with a small quantity of doed or elack from this the flame would elomgate and set off the small quantity of gas that could not to observed and an ex. plosiun on a small sale would be the nosult, and the On-mperstom of the air enrrent due to this uould canse.

Oo sunday. March 15 th, atree all the bodies nere re, The following a conienence in the mane conssistmg of

 ville, Colos; Ed Flynn, spperintendent, Rockvale, Colo.;
 mining beet, Iockvale, Eblo: Harry Jobn, tire hoem Ra-kvale, Colos: Charko Grant, fire book Roclovale, Calu, tieorge Ward, lasal fire How, Rockrale, Colo: Hompharey Thacies, fin bose at Neuceathe mine. Others were invited, but for souse recusun did met at-
temal. The abject of this confennee uas to try and localize the Juint of origin of the explosion, Eint no Iefinite conctokion comld fe arrived al.
In examining the cifect of the explusion, the reason
 maviifes. I will here state that my upinion is tased upun the mont plansible cunse from nhieh it woald hace
cocarred Many ate under the improserion that it origi-
nated from a blown-out shot because it was about tiring time when the explocion occurred, bot tbere is no evby Mr. Larrigan in a dog. Hole near the face of the left entry. There were several lamp keys found on the locike, tmit not a single open lamp Matclies were found that anybody was lighting a lamp or attempting to of the opinion that the principal ingrolients causing the disaoter 耳ere dost and pres, buit that the known line of is only a mater of suppreition at best, and vill remain: mystery libe many other similar disasters.
The effect of the explosion wns so violent that I am of asd that not one of them breatbed any after-damp Some or the bodies were burned, bit I do not think the burning efferts would have resulted in death. The ians located on the enrface at \(K K\) were blows to pieese and closed. Thim was cauerabl by the the map were nestry being blown cout and the dirt they sustainisd caving in. Every wooclen stopping and door in the mine was broken exoepe one
door in This was foreed opeb and nearly off its finges the others wewe shattered like matchuwed. Two stome stoppings wer bloun out, one between the chrpe and
air-course opposite the left entry at \(V\) and one between air-course opposite the left entry at main cotry on the domble parting at \(P\) sereral stone stoppings between
the slope and its parallel air-course stood the swere test and thas aided os greatly in getting air through the workings after the explasson. On the curve coming out of the nght entry nearly all the timbor nas blown out.
Many sets in the inxide withstoul the vinker, set being ont on the double parting. The slopec timbers were undi-turbed with the exception of six sets at the month and one near the entrance to the left entry: In-
side of the parting on the leit entry and aircouree the side of the parting on the lett entry and aircuaree tbe blown out and bravy eaves of cont bad falles greatly relarded the explorations.
There are come peculiarities in connection with this explosion which cansed differemt opinions as to the in-
gredients which were prodominant in the explorive mixtare. It is the opinion of sesentists and pramtical men that if fire-damp predominates at the time of the explosing intene heat is developed, and that truces of
this wilt be left on all material simergitle to fire, and if this will be left on all material suceptible to fire, and if
the dust in suspension in the air current predominater, that caking or coling resalts nitl be found in abuedance after the explision. In this cuse ue bave no traces of fire on any susecptible material, such us timber, canvas or brattice efoth. The steam pipes were
corered with bay and then wrapped with slareded canvas, which was as dry as tinder and strewn all over, but even on this we could find no trice of fire, and with a
very diligent seach by tmyelf and otbers we failed th very diligent seanch by myelf and otbers we failed th
find any trace of coked tu-t as a residues still, some of the hodios were barned in proximity to wore of the
sasceptible material mentionox above. Such a statesusceptible material mentioned above. Such a state-
ment may appear to be abourd, pevertheloss it is ime The only way 1 can account for these phenomerm is that the elements in the explceive were tod proluctive of a
long-extended thame, but intense heat was created and long-extended thame, but intense heat was created and lightning nupidity. That there was intense heat 1 have no doube, but it must buve been of very short duration-
Some of the bodies were dennded and horribly matiSome of the bodies were dempled and horribly muti-
lated, decapitated and dieemboweled. Xearly all lated, decaptated and dimemboweled. Xearly all
them had to be identitied by their wearing apparel ather appurtenances.
On the body of one of the mena wateh was found that bod evidently stopped instantly, owing to the violence of the explocion, at \(11: 27 \mathrm{a} . \mathrm{m}\). . 0 we concluded this to be the correct time of the explosion. 1 uat notified of
the explosion through the coortesy of Mr J. A. Kebler. genern manager of the Calorado Fael and Iron Co, at 12:45 p m., and at \(2: 05 \mathrm{p}\) m. received an officint to
gram from lis. Herricke, the local superintendent. gram trom Xr. Herricke, the local superintendent.
In accomlance with action s, Gaal Mine- Aet, In accondance with scetion 8 , Casl Minet Aet, myself
and my deputy boarded the first available train nond on board the cars we met Mr. Kebler and Mr. Willard general superintendent of the coal agpocy of the A. T. A
F., alon Mr. Coughlin and Mr. McGourty, both of whom had sons is the ill-fated mine We arrived at the sene of the disaster about \(12: 30 \mathrm{p} . \mathrm{m}\). on the following day. At this time some bodies had been bought is doe Mr. Herricke. local soperintenslent, Ir. Pual Blount, superintendent of the Xeuciotle mines and his
 which they erected this fan, which had to be transported from the Consolidated mine, engine erected, fan fased, ele, fours after the explocion. Mr. Choate, the
 carpenters to aid in its construction.
At this time all hopes of resening any of the minere to elear out the fool atmoophere in the mine. During this time we held a conferebce is to hom we were to proceed. In this confernce were Mr. Kelter, Mr. enter the mine at 2 to A m. and that froba inside the apponated time Mr Herricke, Mr. Kebler. Miempor Ward, John Evans, Humphrey, Davies and meysell entered the mine. Geogge Ward, John Evans and
Humphrey Daxies wer the heromes of the party. Thie first motiserietion we met was the dilapitated air-bridim acress the right entry at \(D /\) Wand and Davie- paseed abort the ghstruction, and penetrated into the right entry narrow entry round the carse wasy in bad sbape, but that the double parting was in good shape and that they had not seen any firedamp also that there was al good
nail penetrating hi- fool), returned to the surface, and the remaining five in the party went donn the slope as ar as the entranos to the left phity. Here we found wian furni, Wethen conclimed to meturn She surface and take immediato stepe
fire-damp from the left entry and at the sames fime ban the air-briulge wer the right entry at \(D\), temporarily erested.
We had all the voluntary help wo beeded at this time and the first work done was the placing of a tomperary toppagg on the crop entry, thecarried all the sir phe Jown to the air-britgy, and returned it thongh the alope Then the air-bridge propesition uas considered
and from the amoant of work peoseary 10 ereet it and fie gmate- manter of lowles layg in the left cotry, if Sas tecided to build a stopping on the citery unit have Ahe air doun to the left entry as soon as posible
Itaring this romliminary work, Mr Rehler
Itaring, this preliminary work, Mr Kebler acted \(\approx=\)
 On Wedocshay night, Feliranry timb, atoat mieninght Mr. Jow. Fleteler, Sante Fe mine inspector, ant Dun
MeLaughin, supromentent of sarkvile, arrived will teinforoment af woll lwuty in 口umb amil some a them nere immediately pot to uork buildling stoppings etc. As yet there had fren no sysuma adopted as to the
hoours of wurk. On Thuran night. Feloroury 20 h hoorg of uork. On Tburoday night. Feloruary \(20 t h\),
Mr. C. J. Devtin, general managet of the A T \& F. coal properties, arriced on ther somper All the detait then known ns to the condition of the mine and nody if procedure were stated to him, and be was satistied that everything had been done to the best advantuge
under the circumataoce, and that the bours of lator noder the circumstaoce, and that the bours of lator dion it uodid Ce meonsary to systematize the worl ob the \%ond of Febewury the following motiev appeared

\section*{- Notice to misere-}
 thervatith

Previoas to this notice the mees had been working nix hours at a shift and some diseatisfaction was ex hithited Fletcher, Herricke and myself selected eight shife bese who were men of jractical experience and wequainted with the moxle of working, ete. They were Geome Gritfithe, William Doyle. Humplorev Davies aud I is smart. Tuo of tbese nen were in charge of the wort
ery six hours: their daty mas to direct the men "hat in the mine. Whene fire damp was we koen existec difticalt to ohtain men for the work and many of the niners lad to work six hours in onder to kenp the worl going. If it hud mut been for the Colorato Freel ined Ton co: closing down their mine it would have beet farry on the work On On the 2ad of Felirnary Mr. Ed Fiynn arrived with twenty-çght wen from Kuck vale
 brought eventeen men with bim on the name dale We nere now well reinforod and cverything was dome that was necessary to expedite \({ }^{\text {the }}\) mork. Mr. The clin Soeeph Fletcher nith the manageroent of the exploration
 "xperaes, that to got the bolies out with all prowible
After removing some of the gas in the kefe entry ue nere able to explore the double parting up to the
haislage crosecot and dat not find moch atolruction, only a few sets of timbers toing out. At the vomb of the porting we foond that a great quantity of coal had fallen and had to be removed. The slope vas cleared and the cars were pot in motion to remove the fallen coal. The
zas in the fwo parallet entries was removed by placing in gas in the two parallef entries was removel by placing a
temprary stopping in the crats-at- as wo alvancua tempozary sopping in the croserut- as ue aivanced
and all the miners were taken into the intake air coarse until it was diluted. On the night of the 27th of February the main leff entry was all cleanced up and Pamined. Doring this time work was alse carred bo
in the back entry, but from the fact that there uas tom in the back entry, bet irom the fact that there uas some
 cleaned up, bat pomec of the explowers went over the layet, in the face of the back entry. During the time in elkaning up the entriss we knew that the math-way
ervescuts between roums, and some faces were full of inflammable gas and this was constantly watebed by one of the shiff bosese in clanges. Preparations for a greater sopply of air trad been made by rerairing ami erectime the double Murphy fan, and at \(12: 39\) a. m., March 1st the fan was started and the air corrent tarned up the
in-ide nomos. While doung this a three-boor -hift was laid off and only fire boesces allowed to be in the toine The quantity of air hat nou been increased at the ontle
 the fact that ail the stoppongs merek kaligy, the quantity remoting the preat quantity of gas from the toomo great procsuation was used in beephg all lights from the
return air and also from the manth of the slope the morning of March Sth all the standing gas had been removed from the left side of the workings and all placoo thoroughty axamined
On Friday morning, 3arch Ceh, operativas ner men were working on the left entry, preparations were mare for getung into the right in order to be able to
-plit the air carrent. Ay dosing this the quantity af air in the lefi entry was gratity roctuced However, enongh werly all cok ent that kutoe air haw been poing throngh thave fonmd morce stags ing the right entry or we momle flace nhere standimg gas uas found was at the top slat ir courar and at lie fortot - . \& ronto at II We fognt things in a mach better condition liere than we expected, the worst eaved plice tring aromat the curve oufside of the double parting. on the double parting an accusnneceevary to lave a pump located near it. A pump was lie - borthe grommd andint the co entry resumex ima sinday morning. March liel, the budy of Nobert Allier uas brought to she enfface ami iel Sompleted the nomber as reported on the offucial boses a trog the expmesion work sorme of the bliff uppointed to till the racamelied; they wete Mexorx. Thomas Recom, James Daniels, tharkes fifant and Gieorge Rinun.
Hereat voulit is doe Mewars Jones. Theputy Inspector Wabli for the peneral wereving of the pork and to the shift boeses for their diligebor: However, the greatest
credit is she the mimers who wer betnally doing the To.give the thetaite of the exploration would eanse this
 We were fortumate not to haye any scrions accident to by of the explorers.
Pefore resming uork at the bine with the fall force onen I recommended Mr. Herricke, Jocal superintend Hame rak stoppings boile in all crese ests between all pandlel entries, bind in placing doors on the ganguays ar, or sotue other material bot liable to fire. Have a Can of fans capable of producing, kay 00,000 cu. ft. of nir P-r mitnter, to bedistribated to the right and leff entries IIavethe air diotributel in proprorion io rapurebuente Have the air di-tributed throngh, the working places the ame as ar previoum (athe explosion. I recommended biver hawer lampe I am of the opinion that the Mueseler lamp now in ise is an grod as uny. In relighting the lamps in the minec cept the tire boee and that all lamps be opened in the intake air coures. I alon meotnmented that the watering ystom le kept in gool order and in olsat- to kprinkle ifcewary to pat the entrice in pood onler be imtnediately ent, ant to allow mo blasting except at stated perions Whon all the men exoje theee actually beeded to fire dectrie bell or gong in the steam cagige houls for the perpere of signaling. In case they continued in use. tosam for pumping parposes I recomaneniled that the protent stam pipe cosering low removed, and, if the
 also suggistell the nse of compressed air for paruping purpaees 1 requested Mr. Herricke when ready to macle to notify me co that I might examine the general sumdition of die buime.
Ther peesent mule of thee defection of gas is too crable ond as there is now on the market a meliable and very entages of gas in air may be defected (namely Khas'
 of gos in the ar as for emble him fo find the preovntage Sbe air currents regulated accordingly Furl womar very -0jperintemdent of a gavena mine ehould have on these bachibes so that ataify teace can foe mable in ile local ollice
In ragand ta the a-0 of explasinge I mould meommenct The folfowing rites for use in danty and gasons mimere the least productive of flames
Sin: least prodil tove nt flames drilked under the super-Thirt-All looles strutal be charged, istoned and fred by men selected for that purpose. The chatge should be in accordance with the burden of the hole. etc., and the tamping should be of material not produc-
 Funefly Vo shats to be fired or powder detonated any where in the mine exoept at a specified time and all tren to be out of the mine except thoee actually nequired for the perpose of firing.

\section*{Ruberoid Roofing.}

Our attention was recently called to the roofing nsed at one of the larger anfbracile collieries onf the breaker hy an official of the collsery. It was made from a heavy ool felt thoovaghly saturated with a water and acid pooph not ram at ans was strong and very darable was cianle and any (emperature, cuntained bo lar, and

 fecten to the gasco on the boller botuse, where it was sab jecteif to the thection of heat, steam amblition of coal, it gave remarkably satisfactory results. liceides it makes a tire-proof rool. It is met expensire, and the ease with which is is lait malkes it an itcal roofing for mine and mill structures. Literty streat New York, whome repatation as the maz-
 guarantor of its exelleom, even if practical use had not

METAL MINING.
ARTIFICIAL MEANS OF VENTILATION.
American and Forcizn I'ractice Compared-Fans and Their Different Varieties-Air Pipes for Blowers and Fans-Foree and Exhanst Systems Compared.
 (Bistinaus foee Kur Munker)

Aberican practice in she merhanical ventilation of buetal mines varies nidely from Englach áni Continental
 knewn typer These large fans are well saitel to col. ierice as they hamile great volunwo of air at how preve-

 shait mousts, from nhich thery snek out the air. Some

sunnerwarily combrate They arm ras at relaticely low

Fane are much momen frequenty u-vi than blowers. and eneme of them dervlep proselite or varua cobugas
 lungest distances rachest by minimg.

A- In monle of action, them an- tan main divisuns of dgram," is dosignex for forcing or exhansting large vol fans-contrifugal and pops-lher. The former clas is unass of nir, as in mine use. The casting ane very maselo the bave important.

 fores, the ontgoing air lowig replacod by
the center. This principle is taken oulvonetage of by a menltitude of deviers
vunct vantage of by a matitude of deviess
giving improved efficieney over that giving improved effeiency over that unamed by merely beating ther air with
phain that ratiat Inwket- of Heats lae phain that ractial Encket- of Hoase las
 as they are ealled in fansts. The pros
peller class aet on the primeiple of the xuall ventitatom ueed in building= are rill open, and trise the air through them. them.
Ylen

Mentioning first some of the large cotrifngal fans
Whales are dat fors.-In this foum the tipo. Thes an or slightly curced at thw inelined hackward. Then may be s in to blades. The fan is cased in. theter features are regulating slowters and an expanding exhanot -tack nhich redaces the whecity of the air and coneopuently the back preskene of the atmcespore. Tbere ure many moditications of the origimal simibal.
The figneil fow of equal power is higher speed. It had tua eonewntric sbells besides the onter casing. In rach are curved rabes, convex side forwand Sir enters the intier slocll, is foroed ont throegh pert- into the seronal outer

and another is to ;0 fext in diatneter. The Chonnjuion Fins.-This is really twor fish joinal together by a comHoth outher ring, o hich is a solid plate. The onter rimger lave unn-ablly large opomage. The blaces have a carvature skesigned to propel the air nith minimbert re-i-tamen. Thee fint is nowl either to blow air into the mines, or as an eshanster. Thwe is an inncr casing (called a hoont) and attendant diaphngen which ume hung on bearinge. ,oct that by revolving the hool arnond the fan without shopping the latter, the earrent may be changed at will from blowing to exhansting. The Ctampens is ueral withoat air pppex, It is plaved at the side of an air shaft, With which it is conbected by an air-
waty ambl at a tammel mine it is losated waty, ami at a tummel mine it is located at the eicle of the tonnel mosath, conliveting with the tumnel by a similar side airway. The fans ane made in
-is sizes, ranning from + to 11 fext in -ix soze's,
diameter.

shell where it strike the concave face of the onter blacles, the inlea being to minirn part of the impulse first revived sulucity It has an expandius exhum or-licity. It has an expabding exhasest thec, arid is used as at suction finn.

 The cicle is cloerl; the osher hase at tral opering. It is an exhanst fan. it - main peculiarits is that it is ame it- main pecularity is that it is -et clowe to the carimg af sime pasht only, and the figibal and is rum nt Wamkent comparable with the Ameriean fance Therable aite many ulher fans of Emo.
Then pean imxention, bot the fibital anal itiman imxention, bot the fibital anad it-
monlifinations is pmalahly the romat in

\section*{}

The Nilocrowl fira, -Thi-is a sirnagh twit (of stel) compert machine, cap-
 minute), and therefore of large cagace ity in propertion to ito rixes, It is nesal to firminh air at lizh provelire for inoll furnaces abd for foreing air loug tiotames, as in plequatic thle de.नiv-ry systeme, aml vabeypuently is fitted to

bines, toing smallep aif pifen, if moterokery, than nsual When ned at high prossure it is calleal a "blower." It is made as a forcing fan and abo as an exloan-ter ; rightcharge : anal it ten eizen It is ather driven by Io It in

n hich cuec a lange pulley slomld be used on the cratuter daft, th wheain high spuad of fan withone tow high atriy fug -ponl) or by clectric motor ton the fan its-lf. A p-cial form of Sturterant fan, known us thee *) Dun-

The 大with Fins,-The eveential foalure of thie fan (or T. . a mocull mathe is proxilesl, whind is led amemil and

hang before it counjbles a revolation (at ane-thifol revolution, it is claimert). whieh air comma low sliselarged attil carrind itrumt, waind thr hack frowner, till it The same fict.
cannod, it is argued, be obtained by merely doubling the area of a eingle ouitlet, for the effective peripluerat dietaner of the blades is limited to the space nhere the tangential action exisis. A blade cannot discharne air
lack of it, bue bergnal the point whene it eroeses the line

of thow. The double dischange giver a large capacity for a given area of fan, of in other words, a emaller fan can (blowers) these give larpe volumes of air in proportion to size. There are manfeat advantages is reducing the

fave of the blandes is laith conc face no the buates is laiti concater delivery. Each sur tres pretoure as uell as volame, and thoagh mof enectany mande for thitse wiak has been used in wontilatins long railway tunmels, owe is ft . fan tuoving 160,000 enheic wher 20 fe . diameter (said to be the largest di-c-wheel
 minnte throngh a \(4,58 \mathrm{ft}\). tunnel.
As to dise-wheet (propeller) fan- in general, it may ba eaind that there are situation- in mining where they woald ber usefol. For example, whow electric plant is
 placed moderyrousd where bust mecded, abd radily
bomed from place to place as repuired Even small hand-pouer fats of this clase woskl be available under certain connfitions, expecially in minee baving mor pozer plant. Or, placed lorizontally over an air hhaft not giving satisfactary ventilation by matural drait, dise-wheel-
Iriven by wie rope from the hoisting uovk, of by

electric motor, would secve a ureful purpuee. It might that is, possible to med the sect (that is, a shaft inturnded solely for ventilation, anod not somalloat dimenamone that conld be conveniently cut out, if a fan were adderl. soch a variety of fans, asmally to onder for special he quiremente, it of improsible to give a general clascription of the machime. Fior mino ventilation slev specialties are exhansters of all sizes in wood or brick bonsings and rectly attached, buade in many sizes.

Fumbe:
Almost all the makes of blowers and fan- are baile in variety of ways as rgaris the upplication of power, and the user has a wide choice. It is of comrae cheajer
to belt on to some other machimery and if there an-

Sirnieb pumping engines it is pretty oertain that the are constantly ronuing Artificial vestilation, if roquired
at all, should lee constant, mat intermittent. Pamping engines and (usoally) stamp mill engines run preatv steodily, bat the hoisting plant may not. Heries, if there is urgent demand for machine rentilation, and
that on a large scale, it is befter to have the blowers or that on a large seale, it is befter to have the blowers or
fans driven by their pon engines or notore, amd for this pitpose the arrangement slionlat be self-contained; that is, the engine shoald be on the same bod plate and the
 spesel fans of hioners, eleetrivits nuited fordrisimg hight \(x \rightarrow 1\) : and \(x\) lot is terac, available, which can be attacleal to the bower of Ean

and (when sinking ithe bottoms of shafts and winaer It woakd bever oure legical to mend the fresh air from
 drovigg out the fowi air. Is for the gemeral ventilation
of all the Workinge, taken as a whote, them is listle to chooes letucell the exhwos and plenum or fores -ve. bens, and for the reason given the force system is usually sight alght if may be, base mot to eqporeat, and the whole arrangement at the vebitilating jifen maxle accorclingly. In very deep and hof mincs, if servoal levols are being worked simultantously. special attention should begiven It womh loe tietter that Ales lownecast abd the air chat ane the efaft showld be a
 impuriant is that the wroking fieses be kepts nheolemone Moet of the blowetrand falls act mpally well as forcers of exhanster, bot fonw are mase for one purpose only, fied that an "exleamst" fan is recpuired.

\section*{An Automatic Mine Door}

Nos matter how good a wntilating plant is usect at a tribe, it is never proitive in its results unk ins the doors In the air pascogts are vither chact of apm is the caee
 the air current frob sume bation of the workings Yosed doors are beversary in every well wentilated mine and the efliciency of the ventilation depend- very largely on their leing bed dinad execpt when trije or wophown ate pasaing through them, This neecosity, las in the post requind the evployment of door hoys "e trappers, whese doty is to see that the doots are kept
clowd as rabels as posible. Whowe no dower lows ano clozed as bubcls as posible. Whwze mo door boys are comploged the rule is "leaveeswey thoor you pase throngh jast as you fount it." This rule is freyoently violated, fimes serions accidents are the resulta. An antosentio mine des that is fo
Am antobnatic mine dow that is peritive in its netion, with dour loys and the trabble of domes left ppell throught beglect, it desamble af all minoss. Niteh a This dowe is manofactured by the stamdard Mine Mane Co, of Gilotster, Whic, and it is either pat in on ruyalty or mold ontright. Its constriction is remarkably eimple, aml it morks equally well oat vither straght of curval noskl. It is very durable amd if at any time repairs are meeqled they can be made by the onlmary muine blackembe. This feature is these divis be can bave it repsied whenever nece sary hy his oun black-mith, and the one parchased will last during the life of the mine. The traek har is \(s 0\) arrangeal that the trip of carx will either open for a car tor ride the track bar. The doot can lo
 rifor any "usuber of care desired. The doar ane is mo danger of eoal falling oif the car loneaking any purt.
fectly air-tight. Small leakages ane mot allouable, for as moneh peuser is used upon every enhec foos of air lest as upros the same velume milized. The bepher ther prossare, the Greater the leakage through boles of the
same area. Wrought imon pipue are commonaly usat, while steel is coming into noe abon. The bed styles are the sparal rivited or the melded seamless, when the air is at considerable jeroure. For low persomes acheajuer style milt answer. To protect again-t ruating, in wet
mines, the pipes may brvither galvanizal land regal vanimel after riveting or oxated with cosbl tar or asplate

In a collicry the vaecotial ching is to draw off the gaser e-eaping from the coal. Hewog, if the gas emission may be- J y
 This is it addition to the necreaty of supglying fresh mines the conditions are differant. Elaborate syblemsof brattices, sodlars, air doors, ete, are not often needed All that is required is that all the workings through which men prase should be fairly veutibated, and that particnlar attention should be given to the actual workmeg phaces ber moet impront beling the upjer parts of

What obe doner saxus in trapper's wages will more This door is uot placed on the market as an untried pplianer There are a mumber of then in use giving rs of them, which learsily semaneml them, Ar. In \& Williams, superintevent of the Chicage

upaler date of Janoary "A, INer, as follows: "The siandard Automatic Ihor, placed in our mine No, f, is loing exvellent work. It is a perlect -twowen, We
checrimily recomomonl it to all coal componien as a good thing 3. A. Hopkink, Nipl- mine No, Jo, of the Sunday
 trap doors, placed in this mine motse time ago, are givine excellent sativfaction. While the place we are using Them is a mevere feet, they are giving ns better ventila-
tion and saving money, No enperintendent will make a mistake by having shem pat in."
Mr. Pewis Jones, Nipt. of Mhenix mine Na 二, of the Thenix Coal Cog, Glomster, Uha, writes amder date a Ke. 17, 1Nes, as follows: "The tuo Ntandarl antomatic trap doore placed in twibe No, 2, some time since have entirely satisfactory, performing all claims maxle for

\footnotetext{
"Jeffrey Lalvi Karing Appliabse" i- the nugeertive
} itle of a habslunsely illustrated pamplilet recently
 hamlling and conveying machinery, and nucoespfol

\section*{The Colliery Engineer}

\author{
Metal Miner．
}

WITH WHICH IS CONBINED THE MINING HERALD．

\section*{THIS JOURNAL}

A LARGER CIRCULATION
COAL ano METAL
MINE OWNERS AND MINE OFFICIALS
\begin{tabular}{|c|c|c|}
\hline Alabswa， & tawn， & Norsh Dakota， \\
\hline Alasta， & Kansas， & Nova Scotis． \\
\hline Atrama， & Kestucky， & Onic． \\
\hline Arkamans． & Maryland， & Oregon． \\
\hline California． & Massachusetts， & Vennaylvana， \\
\hline Britesh Cobemba， & Mexico． & South Carolins， \\
\hline Canada， & Meichigan， & South Daseta \\
\hline Cotorado & Minneata， & Tennasos， \\
\hline Connesticut． & Minsouri， & Texas， \\
\hline Delanare， & Momtana． & Utah， \\
\hline Ftorisa， & Nevada， & Verment． \\
\hline Georgia， & New Hamplare， & Virgiaia， \\
\hline Idaho． & New Jersey， & Warhiagtos， \\
\hline Itioneis， & Nuw Mexico， & Weat Virerios． \\
\hline Intiana， & New Yark， & Wisconsio． \\
\hline totan \％y & North Carelins， & Wyoming． \\
\hline
\end{tabular}

States．Territotics．Provinces．Et

\section*{CERTIFICATED MINE FOREMEN}

A
 onent of mine infotors ly competitive examima－ tion，has leen freand whentagevor－in every coal mining state that las nech a luw

on the part of ritber miners of mine ownere．A mine
foreman who is naturally of goosl exective alality， ＂oerpetic aml teneprate in lataits is not injured by the asquisition of technieal lnowledge．On the contrary． he i－improved．He can，by thatoughty andentanding The laws moserning the tlow of sir through mines，die－ tribate his available air carsont to better atemontage，and cun abo frequently ineroore its efliciebey．By a knowl－ edge of the forow tif natum and of the scienees con－ nected with mining lee can produce ecal cheaper and can imerease the safety of teitb the miners atul the prop－ erly emirusted to his cars
Certificates of cotiputemey for wime formen do not Gan fewer practical men，they mean practical men with becaler views，tuen n hearecopipped not only with their own experience，but aloo with the experiences of chers．
We do mof chaim that exery man who secores a cortifi－ cate of competetey as a taine foreman will he a macoss． His certificate mondy sluws that be las the technical dinowhedige necossary to keepa mine saife and to get otil cal in the best manner．Whether be has the excentive alility to landle men must be decermined by ammal ivial just as it muth be nith non－certiticated mens．
In fact，the case may be ratat briefly as follows
Withont corstinstes of cumpetebey meither mine own－ Fo nor minurs ran be sure that a forcman hax eifturt mining knowlolge or execntixe ability，wher lee has lex a a forctan for year．
With certificate of competency iented by a reliable buant of examinets，the presetion of miming knowledes is netukch and it is safe to asomme that nem intelligent enongh to pacpare theneelise for an examibation，are mate hikely to know low to hamble men flan thone whe have not emoveh atakition to intreace their knowledge （o）mining subjects．
As for the gelection of mine inejectors by competitis， xamination，ue wilt only give the following nawne for its superiority over other methods：－
Bre，－It insmres the selection of a evomperent man． Acond－1t remones the oflice froun partisan politios． Thiul．－Tbe man appointel on merit is under ohti－ gations to meither miner－not operntors，abd can there fore fultill his duties in at impartial manore．

\section*{THE DETERMINATION OF THE COKING QUALITY OF A COAL}

Ais well kemon，the cbemical malyois of a coal is too gnide as to its coking quality，and the que． tion as to，whether at coul will prothec grod cok has only been sati－factorily prowed th the past by actual trial．The chemieal amalyeis，which gives the prownt ages of fixed carbon and volatile mattere，will farnish an iden of the mataro if the colle to ber obdained，hat it does not determibe ulether the oal will cobe or not． 31．Lovais Campeelon，in a paper read befone the Acadeny of Sesebess in Paris，in December las－，de－ erribes of method for obtaining the bisting power of wal which toe has noed at the Vienae Works for thime years with ragnal success．To sbow the lack of relation befween the cotopmition of the cral and ity bituling quality，Mr．Campredon farnished the following table i4 annlyees：

\begin{tabular}{|c|c|c|c|c|}
\hline Yeriliyr（sonth Wabel & 50．0） & 6.20 & Ne\％ & 0 \\
\hline Themit mot from sex & ＊23 & フava & （4）E & \\
\hline & 3.28 & кะ & （ts） & \\
\hline III & Juso & 850 & 22\％ & 6 \\
\hline & 5T， 21 & ¢ 50 & ct．b & 13 \\
\hline & 2012 & \(\times 1\). & 6．31 & ＂ \\
\hline & 27x\％ & 53 & 如江 & 11 \\
\hline all & \＃\({ }^{\text {in }}\) & － 80 & 12 m & \(1:\) \\
\hline ，tal & （1－2 & \％ 6 & An＊ & 3 \\
\hline
\end{tabular}
is uill be sexn from the table，he has saken so we the besoting power of pitele，and be makes that of a coal
 （fonnel，up to the date of the preparation of bis paper．

 cememt．The frioriple imolsout is the miximg of the coal with an inert sabetamee，anil the cartomikation of the coal in a clored rexyl．The amonat of the inert methetater－the
Innding power
The neatmal of operation as geven by 34 ．Cimpocklon in am follewn
Palvorixe ther coal or．that it will paxe－Herongh it siem
42，580 me－hes per equare inch．An an inert boly take
potue sliceous sabt，（sea，riter，we quarry satel），of a
fine atal uniform grain，which will Joas through a sieve
of 645 medhes per square ibch，but over a sieve of \(2,(50)\) roctlies［er square incli
To a constant weight of powdered coal（one gramme， （or instance）mix variable acights of sand，and beat the mixture to a red heat in snall porcebain crocibles，wo as or carbonize clie conal．After cooling，cither a powdey rithout comsistence or a more of hess hard drose will be haned．Then deternine the maximum weight of sand the costl can agglomerate in forming a volat drass．Asum－ me the weipht of the cool used as a nnit，the binding power is given by the weight of the agglomerated sand．
A little coke indicates a small binding coal，and a uollen and bright，or a hard and compact ooke shom a coal having the binding properties beocssary for coke making．

\section*{UNDERGROUND TEMPERATURES．}

THE question of the rate of increase in temperatare from the enface of the earth downward has long been obe on which peminent anthoritios differ， and no law on the increase of temperature expressed in arithoetical peozection hase cere been formd applicable is a universal sanew
Auneng the scientist－ubo have recently given this onbeet considerable thonght in M．Sheeph Libert，whe evends observations make at Produits colliery，Flemp Belgium．Thee atoervations oning to the depth of the shaft，have been carried to a depeh of 3,722 feet． Taking 82 feet as the depath at which atmoepherse vara ione of temperature case to have any inflowece，it was calculated that the rate of increa－e of temperature given by the tests at Fhem was 1 degree Fabrenheit for 53.97 feet of vertical depth．This nanlt agrees cloeely with that abdained some years ago by if．（orbet in floe same distrid，hife rate of inemase tring 1 degree Falrenheit for it fiet，onlv，however，for depthe up to \(1,6 i 54\) foxt． Prof．Prestwich＇s mean，derived from English and Belgian mines，uax－ 1 degree Fahrenhet for 90.5 feet． II．Libert，doen not，bowever，think that the lan of nerease of temperature can be correetly expreeed as arithmetical progre－sion，but that the rate of inerase is greater at greater deptles．Taking the results obtained at Flemen with there obtained at the firand－Ruisson col－ liery in the satue field，he concludes that the rate of increare donn to dopethe of 2,23 fext is 1 degree Fahren－ lieit for 6 or ta feet，while for depthe from 2,263 feet down to 3,72 feed it \(^{2}\) is 1 degree Fahrenheit for ts feet． At a boec holo sumk by the Wheling Development Co，at Whecling，W．Na，which mas \(4,500^{\prime}\) deep and 4，＂in diameter，and which was caeed to the depth of 1,570 ，the strata in nearly as normal condition as pes－ sible，and dippong only \(\mathbf{o o}^{\prime}\) to the mile，the following re－alts were storm in
The increase of temperatare betueen points 1,830 ＇ Irom the top and 2, gha＇\(^{\text {from the top，which is very }}\) nearly M．Libert＇s internediate di－lance，was ahoat \(1^{\text {² }}\) per lioy．Froma point 2，23v from the top to at point 3，78）from the fop the increase in tempenature was
 Io the lowest juint at which observations were taken， 4，to．＇，the increaw was at the rate of \(1 / \mathrm{B}^{\circ}\) per \(100^{\prime}\) ． In other worls，from a point 1 ， \(30^{\prime}\) deep toa point 2,235 deep the increas of temperatare was ahost \(1^{2}\) for \(100{ }^{3}\) ？
 at the rate of \(1^{\circ}\) for cach 7\％＇indepth，and from the point 3，zav＇dow to the praint 4 ，die＇deop the incream was at the rate of \(t^{\circ}\) forecach \(5 \mathrm{~s}^{\prime}\) in thepols．The average increate in tempenture from the point \(1,3 \mathrm{~B}^{\prime}\) leet from the sur－ face to the print 4 ，the＇from the surfice was at the rate if abont \(3^{\circ}\) fies each \(\mathrm{To}^{\prime}\) in depth．The average rate of inercase of temperstane at the Sperenbang bare hole
 for cosh ta tir theph．At the bore Lowle of Nochadabach， pear Weip－ic，which is \(5,7+0^{\prime}\) theep，it is at the rate of 1 for cwelh（as＇it depth．A comparison of the resolle foume at these different thome holes makes eritent the fact that no prositive rale fur isersase of temperatare with depth can be adopsed

PROPOSED SCHOOL OF MINES AT BUTTE， MONTANA．

E
 mine at Botte，Montana，on the lines of the state－seluot of Mines at Goblen，Col．At the start it in proproed to ceect a building largo
 anrangel as to promit of cmlargement when needed， Tie peoperest schosel heilding will be of stone and prepod brick，liwit．x \(1: 30\) it is area，two staries abd trasement，and its c－timated ose in \(\$ 50,008\) This build teg will contain the fallowing compartments：A eliemical lalneatory， 34 it \(x+48 \mathrm{ft}\) ；in chemical hevture room， 32 f ．
 \(16 \mathrm{ft} . \times 24 \mathrm{ft}\) ，to contain about twelve away farnuces ；
tuo laboratories， \(24 \mathrm{ft} . \times 32 \mathrm{ft}\) ；a prokesors oftice， 12 it ． \(\times 16 \mathrm{ft}\) ；a store room， \(16 \mathrm{ft} . \mathrm{x} 48 \mathrm{ft}\) ．；a class roum for geology and mineralogy，没 \(\mathrm{ft} . \mathrm{x} 32 \mathrm{ft}\) ．；lecture moom， \(24 \mathrm{ft} . \times \mathrm{x}\) 化；a library， \(24 \mathrm{ft} . \times 32 \mathrm{ft}\) ；an office for the 22 ft．；metallargy and mining ronm， 32 ft ．by 32 ff ，tuo class rooms，（drawing），汭值．\(x 32 \mathrm{ft}\) ；mathematics room， \(24 \mathrm{ft}, \times 32 \mathrm{ft}\) ；aloo several reserve moms．
Montana is one of the most important mining states in the Union，and the efforts of her enterpriving citisent in the line of increating the knowledge and shill of her mining popnlation are most praiseworthy and deserving of encomigement．The better equipped a state＇s min－ ing men are，the more valuable are ther minseral posecs－ sions．If the Legislatare liberally ebecourages this echool，the state will reap poffit from the investment． Intelligent mine officials，equipperl with a tirot clase mining edseation，invariably make the mose of the wineral resources of any locality．The safer and more economically the great mineral mealth of Montana is developed the greater the wealth of the state．There－ fore the investment in a first class school of mines will be a profitable ones

\section*{CARBON MONOXIDE AS AN ELEMENT IN DUST EXPLOSIONS．}

THERE is some groond for a theory that a suall percentage of carbob monoxide，（white damp），
sach as results from the discharge of a beavy shot such as results from the discharge of a beavy thot if blasting powder，in the atmosplere of an dosty mix－ ture．This theory has been adranced in Great Britain by Prof．Vivian B．Leves．Prof．Lewes ignited a stanll weight of carbonite is a closed bomb，a part of the resulting gas（ \(\mathbf{4 0 5}\) of \(\mathbf{u}\) bich consizted of carbon mon－ oxide）was mixed with air in a small gas receiver，and the gaseons mixture slid not ignite on the application of a lighted mateh．A similar mixture wis then formed， and coal dast being sprinkled into it，the whole was readily ignited by a lighted match．This experiment showed that the mere presence of a flame，withont deto－ nation and consequent compression，in such a mixture will protuce an explotion．
Prof．Lewes states that experiments which be made varly in 1805 shoued clearly that carbon monoxide， when ndded even in small quantities to a dust laden atioo－phere，caneed it to become highly explocive．This fact reemed to him to be momprtant，in the view of the presence of this gas in the products of combastion of many explosive，that he thought it well to bring it to the attention of mine managers．sitrees of ofber work prevented him from making further experiments to determine the exact quantity of carbon monowide needed to make a duot laden atmoophere exploaive He，however，satistied himself that the producte of the combustion of many explosiver used in mines produce exactly the sume effect as pure carbon monoxide．

BRUTAL MURDER OF A PROMINENT MINE OFFICIAL．

MR．GRIFFITH G．ROBEITS，aesistant soperin－ tendent of the Honeybrook division of the Lehigh \＆Wilkes－Barre Coal Co．，with headquarters at Audenreid，Pa，was brutally murdered on the night of the gleanit．Mr．Roberts was fonnd that night between ten and elewen o＇clock，alongside the Lebigh Valley tracks near the Lehogh Valley machine shopo in Hazle－ ton with his skull fractured．The engineer of a pas－ eebger train noticed Mr．Roberts alongside the track， stopped the train and be was taken to the Chureh street depot，Hazleton，for recognition．His features were so covered nith blood that he wae not blentified by thoer preceat，and as there were still signs of life in his body be was immediately taken to the Miners＇Hospital， where he lay in an unconscions atate until he died early the next morning．
About twenty feet from where Mr．Roberts was found， a piece of gas－pipe about two feet long and two and obe－ balf inchee in diameter，with traces of blood and eotne human hair on it was found，and it is believed that the blow which killed Mr．Roberts was struck with this see－ tion of pipe．While it is certain that Mr．Roberts was mardered，the police and detectiver are at a loes to assign a motive for the murier．The money in his pockets and bis watch laad not been taken，which proves conclasively that robbery mas not the motive of the crime．
Mr ．Roberts nae one of the bect known tuine otficials in Lazerne eonnty，having moved to the Lehigh region some years ago from the Wyoming valley，where he also beld an othcial position．Personally he was very pope－ lar，not only among the employes under him and with his official associates，bat among poople in geberal．He was a kindly，charitable man．

As a mine otticial be ranked among the most com－ petent in the anthracite region and enjoyed the confi－ dence of his superior officers to a remarkable degrees His death under any circum－tance－wookd have been a stock to hosts of triend－throughent the region，and bis
brutal murder bas intensified this greatly．Mr．Robertr was a comparatively young man，being but forty－four years of age，and is sorvived by a wife and two children． Luzerne connty is gaining an unenviable reputation for the number of brutal munders committed in that eection of the conntry．There are folly a＊oore of uncon－ victed murdewrs in the Iazerne county prion，and the fact that such is the cusc is a disgrace to the county umil to the county officials．The immunity which murdeners have enpoyed in that connty during the past few year－ is，in a measure，responsible for the death of Mr．Nob－ eris．It took over a scome of executions in the schayl－ kill region to effectually check the work of an organized
that of assaseins some yearr ago．The measures that were effective in breaking up a murderoas argabization in the Schnylkill region will be equally effective in checking murdere in the Leluigh region．

\section*{Book Review．}
 cloth ；2oi phes．Published by James Fairley，Ahaft． House，Chester－Le－street，Engfand．This is Yfr．Fair－ bey＇s lateel，and cerlainly one of his best books on min－ ag．The plan of the treatiee is such that the stment is carried by an easy grade throagh the snceesive stages
of the subject by a series of nell arrangod question－anal answers．The fext of the book is excellent，and the only adverec criticiom necan make in that the numetoms illustration：are too ronglily made．They are clear enoagh and fully explain Mr．Fairley＇－itleas but the mechanical work on them is of such a nature as to
cheapen the appearance of the book and thos give the hasty examinet of it a when impression io sterling value of ite contente．We reatet thant this is the ca－e，and trust that in fotare editione Mr．Fairley will ge that the illustrations are redramen in better shape so that they will be in better hammony with the text．
Pexsmylvasil Geolforal subvex，a pummary deserip－ tion of the grology of Pensoylvania，VoL．3，Pirts 1 and II，and an index in separate volume．Theose publica－ tions cotuplete the second Geological sarvey of Pennsyl－ circumatances imposed on it by a legislature that comle not recognize the value of a full knowledse of the great districts of the of the state somee day dic wayny of the necessity of intelligent representativerat Harriebarg be convidered day arrives a thind geologgal surney wil greater than a rational continuance of the last survey would lave been．
 MEst uF Gis Exorxex，by G．Lieckfeld．C．E．，translated of engines．10S pages，ctoth， 81.00 ．Published by spon \＆Chamberlan， maptability of gas or oif engines for minigg nork，and
their economy and naccen wherever used makes this little volume a wery neeful and important one for mine managers．It is one of the eerite of pratial hane books issued by Messrs．spon \＆Chamberlain．It is a very practical and neefol publication．
Tur Ono Mintxe JocrexL，official organ of the Ohic Institute of Mining Enginevrs，Nos tr and 23，embrac ing the proceedings of the winter beetinge held at o Conco，Ohio，on Jannary 10， 124 ．Published by R．M．Haseltine，secretary of the Inetitute．Bosh parf of this publication contain，beride oflicial ablirener and reports，papers on mining subject by practica mining engineers and mine managers，and intellizent di－careing of the enbjects treated on by the member
of the institute．
 48 pagex．Pablishel by The Sivicue nod Alt of Noming This Part III of the series of landbook－treats on ven． tilating methods and appliances，and the wee of the by a arieter，barometer，thermoneter ant water－gauge， work is well done and cannot fail to be a boon to min－ ing students，and is worthy of the attention of all prac tical mining men．

\section*{Personals．}

Mr．Janes MeLaughlin，recently with the Phailadel－ cary and treasurer of the Bar Pomping Engine Co．of Philadelphia．Mr，W．W．Lindsay is general managet the latter cotapany
Mr．E．Webster，the well known expert in steam appliances，for many years with the stilluell \＆Barce and smath \＆vale Coil has been apponted Westers ing Co．of Xew York，with ottice at Xo， 14103 Monadroek Block，Chicago．III．Mr．Wehster will look after tbe uetern themand for the Etratton separators，fied watel heators，engine condeneers and steam traps，manufac

LEGAL DECISIONS ON MINING QUESTIONS．

Correction of Certificates of Mining Claims，－Where
 elate hack to the thate of the origimal．But where the origimal is void，a subsequont oertiticate cannot，as an Mondmemt of it，so relate bokk．
Moylev．Pallene（Ct．App．CoL．）\＆Pawific Reporter，71． Measure of Damages for Trespass on Coal Lands，－ Inn shtimit bur an intentional trespase to land，consiet－ mg of the thining of cal from same，the party ening fter severence antil suit mite lomarht，withant asy allowance for the eret of mining the coal． E．Keporter， 12
Negligence in Blasting．－Vider the lawn of Maine atomether states if is the daty if peteons ebgaged in hive－ramplable notice of palon，fore the pach explowon，to give semonable notice of rator，for the potection of per－ notice is in itself megligence，and rembers the party lintle for injaries resulting，whether cansend by flying debris or the frimhtening of horese thy the noise of the explation Walsworth \(x\) ，Mar－hall isup Jud．Ct．，Me．） 33 At－

Lien for Coal Furnished Manufacturing Company－ Coder the law of Xorth Camolina dasabling corporitions fomm conveying their pookr），by tantgage，freed from liability on a julgment obtainet against such corpot－ ations＂tor labor performed，for material furmished，of crongs committed by such copporations，their agents of employes，＂liens for coul furnished after making the mortgige are superiur to it；the cal being need by etoch Fompany to enable it to operate its plant．
Poralonatas Coal Co，\＆Hebolerwon Elec．Light anal
Mining Pattnership in Montana－To－Matule a Goung partnet－bip under the proxisions of the lawe of Montana，two or hume Feroone must not only own or weqnire a mining claita for the parpuee of uorking it， fact that one part owner of the clatm is changed by an－ ther nith unlawfully extracting onc from a portion of a vein，the apex of which is alleged to be within the claim， dons not ereate the relationship of mining partners be－ tween the parties．

Anacoblb Copper Mining Co．v．Butte of B，Mining Knowledge of Danger by Employe．－A complaint alleping that an employe＇s injuries nere caused by the beot－，and the accomplated rocks and dirt on them trone the interior of a tunnel，for the purpooe of reconstructing sach tumel，and withoat making any inspection of the top of said tunnel and in ordering the employe－a youth of tember years，who bad no experience and was not in－ trueted in ench work and is attendant dangere－to
 She impeniling danger，and that whilemgapel in romo． ing the debri－from said tunnel，be was injured by a fall inck from the top doxe not show that the cmplaye most have prrveived the dather with mamonable exercíe of his faculties

Ry．Co．v．Cornelins（App．Ca，Ind）
t．X．E．Jeporter， 31.
To Whom Royalties are Payable Under Gas Lease． －An wwier in fee situple makes an oit and pas leave for
 commence operating is faid，for，among other things， lelivered in the pipe lines to the eredit of the leesor．

 produced，the leowor sells，conveys and grants the labd in fee simple to hi－fix chiklren．to coch one a part by in er smple to his rix chiklen，to coch ome a part by affection，by deed of general warranty＂exeept that the party of the second fart takes the same sulyect to aby any sale of ravally fore by the party of the firs part of the same deed he retains full centrol of sairl land in ait reopects，and for all parp－aes daring his life time soon fterward of wello are lared，and oil produced，savest
 obeceight rovalty goes of right to the tenant for life（the lemari and his grintees，during the coatimance of hiv slate fur life，and not to the owners of the tee ex． pectats．
The tenant of an estate for life，unkeerentrained by corebant of agreement，has a right to the foll enjoyment incloding tainseof of of teso pern when lis life estate： begins，or laufolly opened and worked during the con－ （iniance of such extates．

Kuen v．Bartlett，23 \＆E．Reporter，ditid．

\section*{LARGEST CIRCULATION}

Gor mailing list is open for the inspection of any person desiring to assail the rating given thi－journal． sutueriters ming publicution will show how maby

Efitor Colliery Engineer and Mrol Miver
Sut:-Pleate pablich the following in your next is-ne receives 800 ; but A receises 25 cents per food more than B, how many feet does each dig. Big Stone Gap, Ya.
Jlay 11, 1 6 .

\section*{Machinery Catalogues \\ Sis:-I wioh to state that amous the many valuable} catalognes that I lave received frotn progresive enabintatitled "Contructors Methoods," second edition, is one of the most interestins on conveving machinery. With their usual liberality the pampthlet if eent free on applior Boaton. Reopetially, E. W. Binky, May 12th, 10 me .

Rock, W. Va

\section*{The Fifth Root.}

Editur Gilliery Emgionor and Nowt Mimer
sin:-I hope Mr. Thomas Hannah will be interested fo find that any com can be found correctly by the rules
To find the fifth root of the examples he farnithes, proced as folloms: Raiee each of the numbers to the rixth pouer with a false root, as in the case of 4 , make false moit S , then extract the eixth rowt- of the products. Next lomer the numbere 9 and slofs. 4 to the fourth power- by dividing nith the talse rows, when halt the nearly correct, and to find the absolutely correct moat let hin now take the approximate root fonnd, and raise and loner with it as belore when he will find that he can repeat the proces antil the fourth hot will come out the same as the nixah root, and then he will koon that the roat is fonnd absolutely correct.
Find the fifth root of 9 .
\(\left(V^{0} 2-\mathcal{V}_{2}^{11}()-2=1.504 \mathrm{sc}\right.\)
Non, we know that this root will be too rwall, there
fore we bext take 1.2 as ,

\section*{}

 "xplanation

 cule roxt. Yuarele.

\section*{Fighting Oob Fires.}

Sm:-In hoting aver the February, 1Nexi, issue of
 that the tompring \(R\)-huald tee beith firet and the stop-
 fully disagree with the writer tmol desire to. than him detceltion to his etror, There may be a mistake in the description of the shetch uhieh may Meseal whers is renome large quantities of gus froba a mise plenty of Tresh me shand be ased. This is all right, hot the case of an uncobirallable gob firy ts shown on lis
 flre will be exciugui-bed, and the product-of comber-

FHer the ganze of the bank. The Morscler lamp constracted on the primeiple that only sufficient air is air is contaminated with me explo-ive nixture the lamp witl zo out. The forni-l good exatuthe in this very cave of roppring beilling. If the stopping \(F\) is constacted fint, ibere will be no danger of an exploslob as thane kluwn that the prodacts of combustion To, allow the watume of fimat air which rntere the mint to fow into the beated -pace and there mix with the firw-damp whike building the sopping Fon the intake (which should te built Efted there is great dangor of an explosion. On the other hand if the stopping \(F\) on the intale is built first the heated prodecto of combuntion from the fire will find thrir way leisurely to the upeat while the stopping \(R\) is being erected on the out-take ent. Thiere shoula be a pile or value on the stopping taken so as to shon the pressare and temproture

In continuation of this solbject I submit a aketch of a gob III which actually occurned in No. in whaft at Stauntoi IIL in 1 200, and I refer the followiog qoestion to sume your sof has whe whin shoult to baile first that marked \(P\) or that marked \(F\).

 and heated gon Therner we the large volunee-? The soppong \(C\) was blown ont.
fubung that some of your abbe readers will discuss fetle the puthuess) if which tuppine -hould le bent
 W)

\section*{The Natural Philosophy of a Ventilating Regulavo:}

Ant-Thanks for copies of jurmal sent to me. In the darch issme I see that you revien by Philobophy of a Xentilating licgulator in a curions manter. Int. You deccribe myerlt at a yomg man of sman 3 pitman for 31 sea
2nd Yon are at in lowe to muleretand why Mr Panely sloould be singleal out for attack, " and yoo think that my ideas of reepect for stach writers "require a little cegulating The it never ecen to gou that it was jast my very profound neprect for Mr. Famely which led to my nasung him? Ermes by unknown writers may pars "nuraced, but their repmoduction by eminent men like miv) oun.: "remind" we that "in our isone of Xoven ber lant we gave on puge te of the Cobleky Esciseren \(0 \times 7 \mathrm{Merat}\) Mrxen the cormet exprecoion for the relecities of air currents thonagh regulators, and that is the
month in which Mr, Haltaum printed the tratiee uisker consideration.
I ato bot -ure that I eev the point of this "reminder. Do yoll wish to imply that mime is wor a colret expter tonn" If so, you must have read by pamphlet very carelessly, for alibongh expresed in differat letters hay formula is exactly the same as yours, and bringe out the same reale-; the only difterence ariong inom yous
 Ii von don't ineman thanareuracy proctically the same vou cannos do this unlem you impugn pour own-the ibject of your "reminder" can timly be to nagesel hiterary paricy our my part. If this is your object, the rork was printed in the xame mointh as voop gave moin formula (which, after all, is trally Mangoe'sibut is is Het true that my watk was then printed for the firstime, foe ther pataphth you mevieused was simply it eptint A aricles that had preswarly Mamin-Aggst impome though the Eamo and Aff of Neang. Hence your
 "tator" some mouths mer 1 had pahlisisel the suln unther journal that cirenlates all over the world.
 4-10 trors affecting the "welocities of eurnents entering fans." I was speaking of the fact that iun extra resies aise of one kind (as friction in one phlit, might be ourp-nxated by an extra rei-lane of anctler kimd las Whocity in the Mher -phit. And 1 quaded Murgow's Avory as an illastration id equivalent valoes of differemt
 on curation che whole theary of them conmenation energy" And you nill, I think alote stat the trath
of an abstract statement is obe thing, while the touth it sal-therery sapposed to be based on that statement spuite abother thing. Wunk, vir, that yon will see that the tone of yoar
rijoinder to make, I have no donbe you nill be kiod nongh to sebal me a copy, as you lave already sent me the otber cogies. I am -it
ouns faithfull
H. V. H

Humaty.
116 Blenheim strewt, Neweastheob-Tyne, Euglanh, April 2s, 18ki
[In our revien of Mr. Hatham's hook, we dial not gean to woply literary piracy ous his part, foe ue said then, as we repat nov, his work is a good one. What
we principally criticizel uas his sharp critician of Mr. me principally criticized uas his tharp criticimo of Mr.
Manely's formula for regulator quantitios, and wo mencly
 a better way of treating the matter. That Mr. Halbaum is Technically correct, and Mr. Pamely wrong on the subject of regulators, we iranily admit, but we masi aly that the latier's cftoris to advance the science if coal mining are deserving of courteons treatment, for his excelfent publication if unquestionably the most complete book on coal mining as yet pablished, not-with-tanding that in its nearly 700 pages there is ans incorrect bormats. Mr. Habroum desries credit for corvecting this cror, bur ue must deptecate the caustic manber in which it is treated-Entror.]

\section*{PRIZE CONTEST.}

\section*{Prizes Given for the Best Answers to Questions Relating to Mining.}

For the best answer to each of the following questions, the ralne of 81.00 in any of the books in our book cutalogue, of six montis' subscription to TuE ColuEky Exgixern sxi Meral Misebs.
For the second best ansuer to each question, the value of 50 cent- in any of the books in our book cata logue or three monthis subecription to Tire Colereas Esoixera axd Metal Mexen.
Both priser for nasurwe to the sumer guration vill ind be

\section*{Conditions}

Fral-Competitors man be sulecribere to Tas: ColERY F.
An-mi-The mans and ndiress in fill of the enntestant nust be sugned to each absuer, and each answer most be on a epparale jajn
Nort- tnswers mast be written in ink on one side of Fiumih-"Competition conteal" must be written on be encel-ip in which the answers are sent to as
Frmu-the persom may compece in all the questions hall to final decision as to the berste of the answers thall te final.
e mols hiswers most be maiked tos not later thati Eindel-The publication of the anewer- and nawee
 idered ruftbient notification. Sucoersfil competitors are Fequested to natify us as month as possible is to what dirpusal they wish to malse of their prizes

\section*{Competition Questions for June.}

Quk, 202. If we batn acotyhene gas, from the liquid acetylene, in our bew lation an viou think it will be cale far object is to obsain a stoall white light of high jotenmal withont the use of a mick. Flould zots joigment be favofable, will yon please kay what ndrantagers this light will give as in restricting the size of the lamp, and further, say if you think the borning of this gas nill
prosluce over much soot and choke the meeber of the Ganze, QRE 20 . What very decisive proof can you give ns in supputt of the conclinsion, that there were inataense serctelios of dry lamd on the globe daring fimbrian amd sinirian times

Thee number anako is 1 tiones the eighth pone to tength of obe of the sides of a cage guicle in fieches, and if the guide is spuare, what is the measur of obe of the sider, and what is the leogth of the gride
in fret? in fect?

How many umits of lewat slowld a pound of coal of the following comproition dexelog. Carbon
 10.6; per cont. We are alvint to intralnce an endlees rope hatlage at ter thine for an compeat of vki long tome pet day, and uc will mequire a mam hamago foe the total
 fed an to the main hanber rojnc, nith lait- uorked by
 age. Xow if me call the di=triets I, \(B\), ame \(f\); then
 thedist the molisery of coals inem cach disitict will be A. \(1 ; B\), fiand \(C, f f\) of the tital natpur, and what I wish fonr hando of rope ane mol the first is this If all the

 The xoond thing I wish to know is if I were to pat a ehalk mark on each of the fieter bauds of roper on the function streaver, that ik, where the foter band- of rope Gore together, at tiftelock in the trarnimg when would cat bask- on the four hand- conne bogetber again at the learn from this experiment. çtex 23t. During the working of regniar -tratified vat iff able to thie seatat. At ahoer times the seam is ent ant hy a comghomenate-like delosil Vow if vor wole omine

\begin{abstract}
siperintendent and either of these occurrences were met
uith in a mine under your charge how woald yon report he matter to the operators?
\end{abstract}

\section*{Answers to Questions Which Appeared in the Apri} Issue and for Which Prizes Have Been Awarded. Qus. 217,-1haring the coare of some experiment We have beer making with a Musseler lamp, with the view of perfecting onr new safety lamp, we have foand that nlien ue makee the top dametet of the conmeal out when the entering air eontains ahoat \(\frac{2}{}\) per cent. marsh gas, and when we make the top diameter of the fuabel Eive-eights of an inch the lamp is not safe in an explosive mixtare. We will thewefore feel obliged it vou will explain to us how it is that the lamp is saf with the small diameter and absulutely mnafe with the large obe.

Axs-The expansive foree of the exploded gas in the lower chamber of the lamp is not strong enough tower come the resietance of the conical chimney and force the cient, however, to develop an at its top, but is suftipressare large enough to provent the intlow of the outer air to the lamp flame, thus extinguishing the same by excloding the oxygen necceary to aupport it.

If we increase the diameter of the top apertare of the chimney from \(\frac{1}{2}\) to \& of an inch, we nos only increase the area of this aperture four times, but we also chang the converaing sides of the chimney to a more perpen dicular position, thereby diminishing the resistance to the upuard morement of the barning gas enfficiebtly to allow the flame to reach the upper part of the lampand explode the gas contained there.
In this case the lamp flame will not be extingnished. because the unobstructed upward flow of the burning gas through the chimney will canse the gascous misture outside of the lamp to enter the louer chamber with at increased velocity; explosion will quickly follow explo-
sion inside of the lamp and in a few noments it wil sion inside of the lamp and in a few moments it wil become as dangerous as an open light.

Jons Verses, Locac, Iowa
Holeopple, Someren in \(1 \%\).
secood Prist,-Romr. Eris, Holsopple, Somerset Ca Que 218 - We are ventilating a mine with a furnace, and the quantity of fresh air entering per minute is of coal per bour. The conposition of the call is is pet cent. fixed carbon, 10 per cent, volatile hydrocearbins and 12 per cent, ash. The volatile hydrowcarbons may on faken at the average compreition of \(\mathrm{C}_{2} \boldsymbol{H}_{C}\) Now, wI minute of the air and gases ascending from the fromact in the upast shaft, when the temperature of the descetid ing air is ta \(0^{\circ} \mathrm{F}\)., and that of the ancentling air is \(20^{2} \mathrm{~F}\) Axx-The \(300,000 \mathrm{cn}\), it, of air at \(40^{\circ} \mathrm{F}\), uonld become at \(200^{\circ} \mathrm{F}, 100,000 \times \frac{480-200}{481-50}=126,472.4 \mathrm{cu} . \mathrm{ft}\).
The farnace consuming 1.5 long tons per boar would consume per minute \(\frac{1.5 \sum_{\text {ti }}^{2.2+0}}{2,5 t h}\) the coal per min ute, composed of
\[
\begin{aligned}
& \text { Fixed carbon }=C \text { os } \quad 0, i s=43 . \mathrm{is} \text { Ihe } \\
& \begin{array}{ll}
\text { Volatile matter }=C_{2} H_{4} & 06 \\
5 i t & 0.10=5.60 \quad{ }^{\prime \prime} \\
\text { Ash } & 0.12=6.72
\end{array} \\
& 3.0 .00
\end{aligned}
\]

Ibs. bydrugen and \(5.69-0.42916=4.975 \mathrm{~F}\) Ibes, carbon.
 carbon will burn to carbonic acid \(\subset Q_{\text {, }}\), bot in toing on will not add to the total amoont of air and gas, as the \(\mathrm{CO}_{2}\) compresed of one volense of C and two of \(O\) is only
 water \(/ f\), will form tuo volumes, but one valume of , is incladed above, to we add one-lyalf the \(I I\) to got the increment in volatas. 1 col. if. \(/ f\) at \(30^{-5} \mathrm{~F}\). weighs
 \(32^{\circ}\) or \(35.75 \times \frac{470^{2}+200}{4 i n}=720.8 \mathrm{cu} . \mathrm{ft}\), at \(200^{2} \mathrm{~F}\), Hence, total amomint of gas and air passing per minute Cust. E. Bownox, Tracy City, Tenn. Pas
QLE. 219-We have a seam of bitumimons coal tio keet thick; it i- lying nearly level. The botton rock is lard and strong, but ue have a following of 4 feet of slate that we cannot bexp up. The slatie when eank
nill be Nox feet deep, and we will thentore lee obliged Will be s(x) feet deep, and we will therviove be obliged
to you if you will explain with a sketch how we should to you if you will explain with at sketch how we shombt
wrork thie seam so as to obtain the highest possible perwrork thit yesm so a- to obtain the highest possible Per-
contage od large coal, and yet be alle to keep the mads and rooms in sate condition without the kies of mach timber.
Axk-Perbape, gemerally speaking, a method of
longuall woald give the lawt an-uer to shis queslion longuall wobld give the beet an-uer to this question:
bat as there are many ma-nos why longwall wiald mot bat as there are many manons why longwall woald not
 ditious etated), ue blall give the ansuer which we think
will give the thnat sutiofictory nanti - in North ill give the moet sutiefactory maule in North Amernow
Further, the question reiers fo mooms, and as the term Further, the question reiers to woonk, and ae the term
roout is seldom nsed in commection nith boggall workfogg me pretnme lomguay to not the answer expected. We take it that the " following" can be maintained in its position for a short distance and at leart for two days, en that it can be removed from the roadnay to the gol. The "following" from the roadway will till the gob and support the patt of the "following" in the etrong suppoit to the superimeabent strata over the
lars are removed, and only the stampe (entry stumps)
are in. Four foed of "folloning" will stow or bearly stow the waste behind, when the pillars are drawn, anid As the pressure due to \$10 feet will bot compress the towing to anything like its origimil compactions we wil! have only a small atommt of enbsidence and that so slonly that it will cane- little inconventence.
Now, that I have given a masog for the ansuer I will proceed with it
In the oketeh are shomn gob entries in order that "Face uay be furnished tor the "following." It showrooms with only goe road so that the dirt hay be stowed
on oane side and the road located so that it will le ready

convey the coal from the pillars as it is drawn back as uefl as torming a haolway for the ecal from tho advancing rom. By this methorl, if the timber put in is a greater item of cost than that doe fo removal it can or resdily remoned. In the first place only eide props props, used to beep op the "following" until the pon is stowed, can be removed as the room advances or the pillar retires and be used over and over again. The in the riadmay, can be removed as the pillar odel takent out.
The width of rooms has not been specified as that mont depend upon the per cent, of imetease of the "fol rowing taken ont of the roodway
The nriter hase worked by this method a seam averag ing about is feet with a "following" varving from is inches to 4 fert with good resals, hut owing to the lach of skilled labor and other cmosea, longmall was an tuttes Gilame W, D. L. Hoson, Box JB,
tos Tonti st., Ia salle, III.
2ces 220 -We have a ventilating fan exhansting from out mine \(1.50,000\) culie fevt of air per minute with Water gagge of \& inch, and we mish to ret up anotber mbil tarker We will lome the will furnish is with the following salues for the row Gan, on that we may seecure the best revall-

\section*{Firat-The diameter of the fun}

Thinof-The breadeh or length cylinderwise
Thied-The number of revolutions.
Fobk-The ams of the grifice of biste
Fom-The area of the oritice of entry.
Sombth-The area of the oritio
Eighth-The area of the oritice of discharg
Eyntk-The ctiective horse jower of the fru, taking

Aron-The dianeler of the fan
and the angle of depression of the apex of \(L\), measured
from the lerelof
the apex of \(T\),
was te ts
loubd the distance in a straight line from \(A\), at the foot of the southmest slope of \(S\), to \(B\), at the fooct of the sontheast slope of \(\ell\).
Ave.-Let \(H=\) horizontal dietance, \(\mathrm{I}=\) difference in lexation, and \(f=\) the angle of depreceion or elevation, betweon any two points.
\[
\text { Then } H=\frac{1}{\tan D}
\]

s to \(T=\begin{gathered}781-472 \\ \tan 6^{\circ} 25\end{gathered}-2 \pi 7+35 \mathrm{ft}\)
\(172-320\)
\(T\) to \(C=\frac{152-220}{\tan 4^{\circ} 43}=1842: 25 \mathrm{ft}\).
\(\mathrm{Ito} B=\frac{472}{\tan \operatorname{lon} 5 \mathrm{si}^{\prime}}-882.30 \mathrm{ft}\)
The triangle \& \(T B\) is right-angled at \(T\), bebce,

\section*{\(1 B=1 A T^{2}+T B^{2}=\)}
\(11242.57+275+26)^{2}+(1542.95+882.39)^{2}-48.53 .72 \mathrm{ft}\).
Hennear A. Welcox, Aspen, Colo.
is A. Ray, Westville. Pietog Ca, N. .
QuEs, 2an.-In a mine shatt in course of being sunk an iron kettle full of water was hodsted froto the bottom cy a mean velocity of 6 feet per second. The kettle was yimditical in thape and a.5 feet in diameter and 3,5 teel devp, and hy eome unknown canse a round hole had ter of 3 inches. The resuls mas that the kettle left the sump in the shait bottom full of water and arrived at the fop of the shaft empty, and by conincidence the diechatge of water just ceased at the monaent the kettle rached the surface. Now, I uill be obliged if you will dedoce for me, out of these facts, the depth to which the sinking has ndvanced.
[A great number of competitors attempted this quesinn, and bone of them have snceeeded in obtaining the correct depth of the shaff. In the next frial please notice four thinge : Firet, take the vena contractaat .t. econd, take \(2 g\) at \(6, .22\); third, take the fall of the enter of gravity or the mean pressure at 1.76 it ; fourth it at jis ft. lont it is neither, for the one in too gate atal the uther too little,-En.]

\section*{Anti-Rust.}

Mr. B. E. V. Laty, editor of the Tin ounl Firme of Pithburg, eatimate- itie guantity of tin, iron and steel ronfing used is the United statee at 000,000,000 squar eet pee abbum. Metallic monterial bow ebter into buidinge of all kinds so largely, in place of the wool Which wa* formerly uked, that it is safe to say that he thonsand million egrare feet of meta-tin, ikon and structural ourk of all kinds. In mining operationo mill
 :tre used in paper, roofe, stacks, shafting, head-frames, meakeks, tipples, bill structores atod bridges, not to Epeak of the great amount of machinery ued in the todustry. All of this great quantity of medal is conit is enbject fo corroeion from salulated mine water, pases, etc.
It luay be truly said that there is bardiy a songl owner of any abount of this metal that has not, at for it- polection, imonently finding it imeffective ume
 process of deatruction, being constant, ceposes only nh het wothing is left for the msidious and otmimivesent lo-stocer to attack.
Becignizing the extent of the vast feld before them Gesork Allen, Ackley \& Cob, of 123 vine street, Cinmoati, Ohic, sotue years ago placed on the marker am
 fiol! is a guvet for motal, anot is wat nowe for rong other ug from all parts of the continent. Tbe manufactomer include in ther large list of patrone many of the largesi monnfactaring plante in the world, and the Vinted states gevernment.

It is not surprising that such a material shond meet with a quek demand when we consuder the needs of the world. It fils a requirement lomg felt and etopplies retmedy ungently needed. It is with pleasure we note that the manufacturers are mecting mith marked enccess and even in the present greatly depressed conditana of general trade they have found it necessary to quad rupe the capscity of tbeir works in order to
with the demands of their growing bonaness.
In the use of this excellent naterial there is an appli cation of the old and truthful proverb that "An ounce of prevention is worth a pousd of cure" The idea of mime masaters erecting beildings at an expense of londreds, and sometimes thousands of dollars, and machinery, that more frequently rums into the thousand than into hundreds of dollars, and not protecting them by a reliable and cheap preventive of rast and corrocion is wrong, and reaults in constantly increasing repait bills, and finally, the destruction of the inetal in a comparatively short time

\title{
THE METAMORPHISM OF COAL
}

\author{
HOW IT OCCLRS AND WHAT CAUSES IT.
}

The Censersion of Bituminous Ceal into Anthracite and Graphite, and the Conversion of Carbenaccons Matter inte Diamond.

> By H patios. F. R. © E.

The subject of the metaunerphism of coal presentel itelf to me during the comre of an examimattonn if the
anthracites of © \(3-1\) lecomer, County Jilkenny, Ireland, anthracites of Ca-tlecomer, County Kilkemny, Ireland, I drew your attention to what I suppered to be a thin
layer of graplite upen the bedding planes of the eval. ayer of graphite upon the bedding planes of the coal.
In following the matter up since, I have fommel that whilat the generat que-tion of coat metanomphi-a has not been dealt mith, vet a large number of case have
been tecorded in which ccal has beese changed in varions mays by the action of heat and other agencies. Cases in which bituminons coals have been metamorphooel into
anthracite are numerons, whilst, as we thaft see later.
 and graphite has beve proloced; furthermore, it is by mo teans nalikely that the diamosid owe its ongin to a intrudel igneous rock-. The general featores presented by coals, and their arraugement in an asending eer Trom wood and peat to anthracite, are well knoun
The various stages of the procese may be saill to be marked by an increse in density and colerebee of the
coal, and a lose of wolatile hydrocurbons in the form of coal, and a loss of volatile hyd
gavewth-compontuls and water.
The general conup-ition of a coal wam in it- varioutages irom wool or peat is very well indlated in a -erieof analyses pmbtisloed by Prolessor T. Thorpe t From

To there we may atd graphite mith usually wn per ent of carbon; and the damond, nhich is almoet mire carton.
The analyes show that the convession of one coal into another higher in the series is marked by an
increasing purcentage of carbon and bvednenen, and a decreating ferenatage of oxyen and nitrogen. In the care of anthracite the carton percentage of very high, and that of the hylrogen, oxygen abd nitogen how-
The fact that bituminotas coals can be comverted into The fart that bituminoas coals can be converted into
athracite is knon an chiefly by reason of the phenomena anthracite is known chiefly by reamon of the phenomena
presented in the suuth Wales coal fieh, wherethe seams are wbolly bituminou- in the ea-terly protion, but pare into semi-htuminow of steam coal- an they noch the center of the area, abd into pare anthracite- inther
west. The change from one to another is so gradoal west. The change from one to another is \(s 0 \mathrm{gmaloal}\)
that no sulden momification is seen. There is mo evi lence of the change having leen booplht about by in-tro-ive ignews rocke, sech as We elsall see ocemr elee-
where: hange from bituminous to anthracite coal takes place along a detinite plane, which dips to the soath-south-east.
In Pemboroke-hire, which contain* only antbracite In Pembroke thire, which contanss onfy anttracite, volent crumplings and rock folding have cecurred, to Which the formation of the anthrasate may be in motse
mesasure due. In Ireland, the coal measures are capable "neasure due. In lreland, the coal meastares are eapable in the embern lieht-of Limerick, Clare, Cork, Tipperary,
Queens Connty, Kilkenny, and Garlow: and a huminous series occupying the northern fielde of Arigna, ots series occupying th
The greates depreite of astbracite in the world are fonnd in the eatern Penneylvania rezion of the Dnited etates, where they encer an anas of choe upun h.0001
 ar to these of suith Wales. There is the sather passage
frobn hitumimuth-coal in obe end of the field to anthracite is the appoosite extremity, and a pradual loss of hydrocartus sumpenms is arociated with the converson into untiracite. There is alse the same develop-
ment of earth-fokl-in the areas containing anthracie as is pree pted in the Fembrokeebire area.
Whalst whole cal tiehle of vart extebt have been condence of vanius agencies by which this clange har bevil drooght about in twall and companatively unimportant arvak Thase, Thelere, and uther- itrew attention many
 into anthracite abd graphite by the intrusion if a las-al,
similarls, at the Thwley Hils, in the Sourli sationl. shme coal tielt, the thick cast has Geen peretrated by metamesphism of the coul alopg the fines of contict. Fenally the coal has leeenconverted into black ponatery mase of a dell color, ery frable, abo almost destimfe been eonverted into anthracite.

\section*{TTrams, Maneth Gieal cor., Xal, XXII. pate}

retee of anthnoite, abd has ziven cases where it hat \(\mathrm{H}^{\text {en }}\) insmed by contact alterution with erupten roks He inotanc- locabities in Sew Mexicos, Cuborats, Vir wheres with precisely stmitar contact, no alteration ints anthracite has followed.
Intances of the conversion of bitumibou- coal into anthracite by intruded igneosas roksy have beeo reconded Mon Zealand
Thers Krinta west and clange into pare anthracite towards the easIn the intermediate districts, the coal is frequenty in an internecliate condition betueen bifomisons and anthracite, add no atiefactory term can be applied to is. The close analogy between the feat ares of this coal beld mum ly betueen the line of anthricite coal and the eryetalline
 converted the former bitaminous eral into antluacite.
From the cases we have enmoerated, it will beeviden Wat the parsage of bituminous conls into anthracite las been moet clearly cotabli-hed and that thi- cbange lias been brought about in a variety of ways of a hich those by means of eropted rock-and the proximity of Bexures and foldings are perhaps the mons evident.
That graplite has been formed in sume eases as : re-alt of the same causes which insluced the formation of anthracite, and eitber as a further -tape of me-tatropphim of it, or along uith it, i- bot comumonly km.
the metamorphism of cral rarelv pocceling so iar.
the metanorphism of cral rarely procecting so far.
The occursence of graphite with anthrseite at Nen
Canmock. Ayrshire, was first describel by Nicholt in Commock, Ayrshire, was hirs desentad by Ncholf in
\(1 \times H\), and hax often been mentioned by late obeervers The mithe is traditionaly reported to have been in operation for nearly a humdicd years, and mas tinally elroed in isds. 1 nm indebted for a considerable amount of
information relatimg to this mine to the kindness of 3 Ir . information relating to this mine to the kibdness of 3r.
Johs smith,: of Monkredding. Ayr-liure, a zentleman John smith, of Monkredling, Ayr-hine, a gentleman
a ho has dewted considerable attention to the Ayrhire who has de wed considerable attention to the Ayrhire
conl fiek. With great generoity. Mr, Fmith has iurther s-lit ine a valuibue withs of spentins which illustrat the -pecial feature of the mine, and which he desires me
to pow over to the Xanclie-ter Man-om, Omenls College. to pors over to the Manche-ter Mnweum, Owens College on the completion of thi- paper:
The conditions under which
Craigman mine are so peraliar that I parpose dealing aith thern at some lengit in a later part of the paper.

A section at the entrance to the mine is an follows:

Mr. Smith writes the that he has examined bearly very acoessible part of the mine, and has come to the conclusion that the basalt penetrated the coal bed in abch a manner as to break it up into detachod potches,
the conaller of which have been converted into graphite the raaler of which have been connerted into graphate sent a columnar structure, the columns lying in every possible direction, bat more usmally parallel to the basali When the cal approaches the bosalt, it pases into a thill layer of mamive graphite, which is clowely applied To These feat
These features are well demonstrated by the specimenMuch of the graphite.
Atroctore of the graphite precents a similar columaar tive tosethar pact mone finme cotumbs lowever bohk fafling auay from each other when dog ont.
In the paper by Professor sterenson, which has juss of col into miner in the Tmited stater, e-proially in Sen England, where the anthracite coal is retated to be largely praphitie
 Mr. E. W. Parker, is his conal report for the year Nes qay- "In the New England bosin the original wal heds have been metamorplowed into graphite and graphitic Gal, which have special u-en, athough not classed by If Cran anthracit.
potheiticand nelime at wowster, Mare, the coal it
 is \(\sim\) orich in graphite that bue oumb te matally in clined to dombt its origin froen coal
In a letter which accompanied the specisen be etateThe piece of cool which 1 send yon does not exhitat than conpletely chanped carton, and is less graphitic Giraphite pecimens which thave seep
bets of Sew Mexica In the later case the Laramie into gruphite has been brought about by an introxionn baraif.

 ua- ejectel anbecguenty to the deperition of the inc tacroas deproits, and betore the commebcement of the Tertiary period, tt

 Ivë
G

My colleague in the Manchester Mue-um, Mr. F. 6 Pearcey, has kindly furni-bed me with the accompanymor tone extmeted from the juarnal which he kep
 ceally knonn as coal bevts, are found. They are beds of bituminote material, interbedhed with clay slates, which form the nust striking geological feature of the islande Tbe hitmminons beds eometimes run out into a ort of culm, the tran-ition of the latter into a typical saphite being aloo clearly marked.
Fagroents of thix grophite were often used by Mr. Fearey on boarsl ship tor the purpose of marking boxes

Whilat in the cases just emmoerated the conversion of oxal into graphite is umbubted, in the great majority of ster- lown in cribence to flew what mae its oricimal ondition. It is, however, significant to note that uhilst the parest forme of praphite are associated nith igneons and more especially metamushic rocks, and graphitoid anthracite with eclinnentary moks more usanaly of Carboniferons age, yet in the mica schists and clay slates of the sason Eixgebirge there is a graphite or "graphtood"
In rocks of Pred ambrian age in Canada, Sir J. W Dauson has found large quantities of graphite, in some which becoakd distinguish traces of vegetable tiesuex +
Pure graphite in its mose familiar form has been whained in the Pritish Isles from Lomrowiale in ComberIn Cornmall, and Killimuir in scoeland. Amongst other conntries may be leentionerl Ceylon, Camada, Bohemia, Algerin, Norway and Finland. It has beenfound in association with mica schise, goeiew, basalt, quartz and slates. If ne except the graphitoid of the Saxan Eragebinge, graphite is deslitute of walatile hydrecarbons, and confists of a slightly higher percentage of carbon than anthracite, together with a slight quantity of mineral axh such as silicate of alumina, sespuioxide of iron, and other componmb. In the development of graphite and
anthracite fom an originall hitomimals coal-as in the anthracite fom an originally bituminous coal-as in the cave of the ypecimens befone you from Woreeter, Mass, . . A, and Xew Cumnock, Ayrshite, and in the oecur Ithink, comolnoive evidence of the prossibility of the origin of graplite fom is veputable prurce, the theory ipbeld by Dameon and other- in respect to the graphite The in the Pre-Cambrian rock- of Canada.
The purest mineral in the carbonaceot- series is the batmond, which consists of more than 99 per cent. of carbon. The dianmond oecurs in association with a varief of rockw, but in mose cass these are of sedimentary
origin, abil show ummitakably that the diamonds which they contain have bevn derived from preexisting rocks desiroyed by denualing agconcies
In moot ciares, as at Bingera, in New South Wales, the matrix of the diamond is either a conglomerate or coans derivation from older meks. In rezard, however, to the diamond fields of Sonth Africa, there is good reason to be lieve that the diamonds are still in the parent rock, and that they owe their origin to that ageney which has "peratel in theorigin of certain anthracites and graphites In the Io Beers mine at Kimberly, which may be taken as typical of all, a volcanic "pape", which forms the diamaintiferous area, is surnounded by a seriee of deposits of a mixell character, in which carbonaceons -halee of Triatric age predominate
The depoits in te-cending order are as follows

\section*{ \\ 中uartivie}

The material of the pipe has been described by Prof Fonbey: as a eerpentinous breecia; by Mr. E. I. Dann as a decomproed gabbro; abd by Messrs. Hedleston, Rupert Sones, and Davies as a volcanic mul. The general feature of the diamantiferons areas for there are four "pipes" already known, have been well deseribed by a number of observers.
Mr. Itunnslowed that the material of the pipes, called yellom groand" and "blue ground," whilst igneons in origin, yet contained large masses of the surrounding Carbonaceuss shater, often to bnch an extent as to constitate a breceia, whilst the beds in immeliate contact nith tbe "pipes" were abmptly bent upwarde. All the隹 anet heavily charged with carbonaceoras shale, there is the richest yield of diamonds.
Trotessor Carvill Lewi- has al-o, drawn attention to the passage, at a stepth of two feet, of the material of the volcanic pipes into swo distinct typer of rek. Ohe only of carbonaceno shale, the mon-diamantiferons ty pe being The onvelusense arricel at ty Pical voleamic rock The conclusons arrived at by Profesor Carvill Leuis are stated as follows. "It eemes evident that the dia-taond-baring piper are trie rokanic rocks, compoerd of
a very tatic lava amociated with a moleanic breccia and nith toff, and that the diamonds are secondary minerals producod by the action of this lava, with beat and presure, on the earbmacemns thales in contact with and enveloped by it.
to this theory by the researches APdevor kiecke into the chemical composition of the
"bloe gmand ". Xoticing a peculiar smell somea hat

\author{
 \\ \\
}
like that of camphor, Professor Roscoe digested a portion of the materinl with etber, from which he afterwards
nbtained a -mall quantity of a cryetalline aromatic hydmo. obtained a small quantity of a cryetalline aromatic hyd
carlon which bornt very easily nith a sonky flame. Prdessor Le wis las added to the abstract of his paper, Which apperared in the firofogicul Mopoziwe a note etating
that a similar acocoiation of voleanic and carbonaceons that a similar awociation of volcanic
rocke has been found at oflee places.
In New Soath Wales, the diamond grounds lie nean the junction of serpentine of basalts with carbonaceone
rock-. At the Ringera diamond field, for example, a rock-. It the Eingera diamond fied, for example, a
boek of erujutive eetjentime is almot surnomded by carboniterons rocks containing coal seams. In Western Aberica, the diamantiferons gronnds are is cloee pooxituity to an area n
rock- occur together
The evidebe is fairly conclnsive that diamonds have been formed in the areas mentioned, as the resalt of metamorphic changes imbiscal in cartonaczons matter rocks which have penetrated the bexls. In other cases where diamonds bave been found in coarse sandstone area romitar to that of Kimberly which mas -nbjected to dennding agencies, and mone of less destroved. It is well within the bounds of probubility that as mondo, future proepecting will lead up to the original diamantiferous areas where an acmociation of carlonacrons and igneans rocks may be expected to ocen
this is what lappened in the case of Kimberly
this is what happened in the case of Kimberly
The causes which have operated in the eon
bituminoue coals into antliracite have atracted many morkers, and varions theories have been put forwand
Metamorphism of bituminous coals into anthracite by it susion of igneoins rock is gerierally mimitted, aithongh
ithappens that the coal is simply charred, or converted into a friable dull earthey mass, as in the -tafforl-hine coal fiest
The inthence of earth-foldse earth-heat, and deepseated igneons rocks is not \(s=\) widely accepted, although these agencies have each been selected by various workers as affording the best possible expl
ditions which obtain in rarione areas
The la Feche in attempting to determine the formation of the anthracite of Fouth Wales, showed that the bituminons scams changed so gradmaily into anthracite that it uas chifficult to mark one off from the other In
this field the pasage into anthracite is towari- the west, the beet and parest cecurring in Pembrokeshire, where the rocks have been most disturbed and folded. A similar feature had been botiond in the unthracite
fields of Penn-vlvania, C, \&, A., by Profe-sor Rogers, fields of Penn-ylvania, E, E. A., by Profe-sor Rogers,
who sought to explain the metamorphian by accountIng for the diesjgation of the origimal poseots contentof the coal, as the result of superbeated steam and heat
developed by the folding which the roclis band undergone. Seveloped by the iolding which the rocks bail undergone.
Bat De la Beche in thi- country and Profesoor Steven--on in America, have sbown that this theory is mue
wholly satisfactory. The former pointed coat that certain of the bituminoce coals of south Wales had been more disturbed than the anthracites; for example, the bitumi-
pous coals of Voleter, in the Mendip Hills, Ieing far bous coast of Voleter, in the Mendip Mills, being far
more contorted than the anthracites of Glatorganthire and Carmarthenshim
The latter bas shownt that I'rofessor Rogers' concla Sinns are not wholly correct for the Pennoylvania field, abil that as in south Wales, certain bituminous areas an moge folded and eontorted than others which eontain
pore anthracite. As a more workable theory and as pure anthracite.
agrecing toore clesely with the facts of the Pennsylvania coal the Pomsetel-w of the Rennsylvanian anthracites by elppoeing that they
oppesent the oldest portions of the oval field, of the represent the oldest portions of the coal fielt, of the the old shore line over the shallous, and that being the the old shore lime orer the shatlous, and that being the change and greater loss of volatile compounds than is the case with the younger depooits of coal further west huch still retain their bituminous chameter
By this theory, as I moberstand it, the lies of hydro carion compornas mued be
relative ages of the coal bed.
This argument woold prove very useful as an explanation of the origin of graphite deposits m common it
the older rocks, bet I have not been ahle to. find it carable of application cateide the Penn-ylvanian ares. South Wales, where in a single seam there is a grainal passage from a bituminone coal to a perfect anthrucite, unters indeed it can be proved that the moot meeterly phrdoat of the ean wat formed at an earlier period than hypothesis outside the Pennsvlvanan area, it is almost critain that the progre-e of chemical change in the course of ages, to which he drawe attention, maet alwaye lo
reckoned an important factor in the altimate passage of coal to a high state of carbon purity.
Dr. D. D. Orent explained the formation of the undis turbed anthracite fiekls of Arkanea- by suppociug the existence of deep-zeated igneont rwer giving off heated carried away the volatile hydrocarbons. A similar collclusion was also arrived at by Professor Hull for the
Irish anthracites, and by Sir IR. J. Murehion for the anthracites of the Donetz coal fiehl in Southern Rnssia. Prof. Lesley, taking up the question in its physial
a-pect, put fornarl the axpect, pat formard the eqggestion that the action of
earth heat, dae to the looking of the coal meacares by overlying deposits, might have bren melequate to drive
off the gaseons constituents of the coal.
Where it can be shoun that the loading to which the

\section*{Miecenirs tised, survey, Nod. 1, po 317 . \\
}

Coal Mea-uree hase been subjected can only be wekeneal by thonsands of foot, this enpposition may be correct,
hent the diftienley odten is in proving this overlying thickbess of deposits. That a comparatively low beat if long contabled, is enticient to conver a bituminions De la Beche mentions a casp- in whieh bituminans coal was converted into anthrucite by a very gradual appli-
cation of heat. Dr. Laon Plavfair, examined the epecimen- 0 prodnced, -peake of them as
 anthracite and coke mary be protuced, the former owing isorigin to a lower heat than the latier.
apply them it these varions theortes amb eceking apply them it becotner rery exders that whiter ang of particular casc or area, none of them are beld to satisfs all reguirement-
In all cases anthrarite is formed by the elimination of rolatile hydrocarbons from the original hituminous coal, lower than that reguirel to coke the coal will, if long continned, be safficient to effect the change, me may developed, whatever may have been the canse, it, and it alone, will accomplish the change. Cases, however, fokle, intrisere dykes, and -imilar aments, con-ikeratile heat has been developed, only to be rajuidly diseigated by the condnctivity of the surroninding mocks, of by finding some avenue of escape, of even by acting move
easily upoll aneveiatel -trata. An in-tance of the late occurs at Craguan, New Cabanock, Ayr-bire, where the clay shabs Which overlay the coal have ondergone mach move aiteration tham the coal itself, and partake
Where a dvke-like maes has been onddenly injected into a coal beel, an it the Sonth stafforil-hire coal bield, the grat and sodden accosion of heat has converted the adjacent layer of ecal into a friable carbonized mace somewhat in the nature of a lamphlack. The layer thas conbed would act ar a pertecting layer to the rest of the
con it- bow conductivity, and little or no antliracite woald be producod.
The conversion of bituminons coal into anthracite is, beliere, chiefly accomplished by leat, and as heat is developect in at manner of ways in the earth's crust, it is bot natural that rariou- beat-prodncing agents bave been cite formation. Nostatement has been jut forwand hitherto, so ine us I am aware, of the stages of metamorphiem of coal into graphite; bat that graphite has been formed artificially in many ways, and in variou- manufactures and metallurgical operations, as a direct poolnce of coal Iher smbjected to great heat, is mell known.
In the evtorts of gas furnaces large cuantities of graphite are depronted on the inner sibles of the netorts from the gaver driten off from the coal, and by the kimdness of C Nicksob, Eop, I am able to lay before you seyeral
opecimens of graphite formed in the retort- of the Manchester Gas Works. Graphite is not unfrrgutently formed in blast furmaces, where, under vorying degrees of heat coal has been seen to pass through the stages of bornt Coal, anthracite, charred coal and coke, into graphite This fact is nd considemate importance as furni-hing a
clue to the metamorphism of coal into graphite in ibe clue to the metamorphism of coal into graphite in the
earth's cruet, and is probably paralleled by the series of hamges indaced in coal in the Ayrshire coal field
Mr. Smith, of Mookredding, writes me that bis obser-
ations of the Ayrshise coal fiph show that the changem eations of the Ayrshime coal field slow that the changes
ahich eoal ondergies as it nears a trap dyke or an intrusive mass is as follows

Charred ecal (generally colummar, but monetimes
tansice, and often redoced to \(a\) b massice, and often redoced to a black poonder),
Anthrucite (not inflammable, with a glittering -triface)
3. Burnt coal (elighely inflammable
4. Free coal inflammathle)

The coal near the introsive matee in the sonth Stat orodshire coal field appears to have paseed thoogh similar series of changes, bat bas atopped short at the
cliarred of coke condition. some specimens of coal inly a few inches in diameter abtained from this con fielh seem to consist of a confnsed mixtore of anthracit and eompact charred coal.
The epecimen of "graphitoid anthracite" irom Wor-
eeter, Ma-s. U, S, N. kindly sent me by Irofessor steveneon, of New York Toirprity, is very largely Iraphitic, so much so that it is diffienit to say what was
the stage immediately antecedent to the graphite. I portion of the -pecimen show sa few doll compact frag ments which seem included in tbe zeberal graphitic mase, and which coar a sereral hiketares to the charred cannot postulate that the same changes from anthracite to charred coal and then to graphite vecur in the Worinference that such is the case can at least be hela The presont condition case can at least be held
The present condition of the beds in the case of the ipbeut material. By tbe first, the stable mhich lay upot the coal was lifted mp and pricelainized, the coal being twok place along a plane dividing the ecal and the hasa gortion of the lir-t intru-ive mash, which is bow moch decumposed. The overlying -tsake having beew atready thos becoming subjected to a higher temperature than in the fire care and for a much longer period, with an by Mr. smith, of Monkrodiling, and agros. the facts that I sce no reason why it shoald bot be the correct one. The changes induced in the conl are exactly anakgous demonstrated experimentally.

\section*{3 Kem, Gecal survey, Nol. 1. p. 232}

For the artiticial conversion of coal into anthracite we have ulready cited sir Hi de la Boclie and sir Lvon
Playiair; for its further conversion iuto colke by the paplication of heat I may intance the effects of combus. son in coke oven- and ga- furnaces; and for the still jurther change of cole directly inte, graphite 1 woald Henri Moivan, nhich are deseribel in detail in the Henri Joireab,
Moissan found that a samall crocible of very pure coke fitted with a lid of the same material was entirely conerted into graphite by lieating for fea mimafor in the
 graphite) being preffectly tree in its phace
Jas and
raphite being [effectly tove in its ploce
Further experiments with clarenal of sugar howed that the mass was entirely converted into graphite, ahilet stil retaining it- form, and showed no th
ision exen nhen exanabed with the micomores
But exen nithont these experiments there is cle dence that when rocko emptaining cartomacenons batie is a cun-lituent are -olifected to her metamophism, ter carton is comverted into graphite in the metamorphosed
Koeenbasch, Bouger, Rudeman, and Sater agreed in regarding the gruphitic particles in the weks of contact areas a- having an origimal carlonaccons origin.
This fact has been proved by Me..rs. Beche and Lazi, \(\dagger\) bo lave moet recently stadied the queetion.
They state that the EPQer silurian clay elate and Kiesels zchiefer of lirna and Kreischa are rich in pardiastolite elate rich in uraphite and into mraphita guartzite, in the contact zone of the Iholna granitite and of the Wersensteiner hornhbende-granitite
Examples of chiastolite slate and of graphitic quartaite were taken by thene authors and carefally examined, petrologically and chemically, and also compared with ha unalked Pier silarian slates and koese Schefer. was shorn they ham beebs ubdonbetily derived. If echiefer ham leen entimely recerstallized when the nockposeet into chiadolite -lates and quartzite, with an mervase in the size of the crystals. This recrystallizafon took place after, of at lea-t contemporaneous with. The xcte-ively tminute that thev con scareely be tmasnrexl. and are uanally under \(001 \mathrm{~m} . \mathrm{m}\). in cliameter; bat in the ontanorphosed roek they are represented by praphite particles which vary in size hetween . axb and of m. m. and rive is bigh ave m. m
Not only so large erystalline aggregates of graphite colates erssals havine date and graphitic quartzite, bet Messrs. Beche and Lnzi sevm to have charly demonstated by both petrologieal unil chemical means what hasd preciomily been ateerted by Resenbusch and othere that as a rebalt of thear work it may be taken for granted that when a sedmentary rock contaising carbon is metamorphosed, the earbon is converfed into graphite.
a considerition of the foregoing facts shous that, whether by arificial mean e or by natural mosans, the converaion af hitmminome cesal into sraphite is by well defined stages. loy an anthracitic complition being first rached, which gives place to eoke, and that in tirn to graphite
thokean researches of Mos-wan, to which we have not Allsked, bet which are deale with in his paper, seem to lensed, srophite aluays resilts, and it may be that in stace of ther oldowt known roeks volatilization of the car whaceoth- twatter haw fir-t taken place, amil afternards obdensation in veine and pocket- as graphite.
The tew knomn cases in which eropice rocks hav p-netrated carbonaceuns shates have bot vet yelded an may ealely aseert that no theory at present propounded for cral metamorphism throws any light upon it
Moissan is of opinion that in the case of carbon anbgected to light prevolure imed hent, increased densaty enalle, and the diamons resulte, and claims to have In my ingots of iron refrigerated in lead I have prolocel small diamonds presenting an appearance of an We know that there are foomel at the Cape and in Brazil diamome possessing no trace of apporent crystallization, and have manded forms like those which a liquit Gight a-oume if kept in the midet of a pasty mass. tate, and colidfis like watev, poopoting taither a cond fined mass of crystals of taking a rounded and arorobotas figure
The aoociation of carbonaceoos shales and a diaman-Keron- area at Kimberly are, heweter, so remarkable expressed a belief that in some way the fonmation of diamonds has been due to the action of crnpted material pon carbonaceots mattec

The Goyne Pump Works, of Ashland, Pa, has recently completed, for the Ielaware and Hudson Canal
Company, for one of that conpany's collieries at Plycompany, for one of that company 8 costieries at Ply
month, a duplex compoont condeneng jeanj. It high pressure cyinders have a diamstian whe the low
 Manor chaft Con, at Manor Btation, Pa

\section*{ELECTRICAL MINING MACHINERY}

Description of the Electrical Machinery at the Scott Haven Mines, and Its Success.
 at the time the teote mere mash, was rin by a temporfain is \(121^{\prime}\) in diameter and 5 ' wiske, single inlet. The volnome of air prodoced wa- vo,000 cublic fet per minute

 water gange will toe moch higher and the volutar lowet as the wir roall frobin the fan for the first split is mos snall that water gange will be proklaced at the expernec of colunse of air.
all the eral ratting in this mine is done by fixw Jef. irey vhain coal cutt ers. The nuike is alos wovided with power moligusar tomsil The pump, motor amd theo. the track from place to place in the mine
with a levert of hasl a litte wuer \(1 /\) milo- The eradu. The track is laid uith boporni tails aut hus a guage of

\(\qquad\) acls ather by the river intmoluees al momet feature inte
 Coughombeny cotugany's sublom curnot is earried maler the rougtioghering rixer by berify fusilated
cables to a small cable lomse forming the center of dise Eribution for the lisee rumning for ther mibue on the weot
in Sn t ami the Soutlowest mines clostricity is afplieal

turive having a drum-lar pult of 2, inc punde, with 3 the enface This mine aloo containe a panap similar it size to that in . in 1 mine whielh is driven by a 7 ! hotse Pwof motur lowated about 1,0,0 from the powe loouse, abont low feet beyond the pump This fan is a pood
 and costly, and is of an vefliciency in transmissian, eer tainlv) nipt hitherto attainecl. The fan is 8 is diameter and of ' wide, with is single inket, and in other respects is the satue as ibe fan firs deerribed. The power is cansied

 shaft 13v derp, themee up the slaft to the surface where the fan and motor wre ecectet. The tirst hour this phat started it ventilited the bine, the fan giving
61, cubic feet of air per mintie on an outpat of 15 boret-pouer by the tootor. In the forcefol tanguage of Gre nete turman in reponting the start to Mr. tinales the Went off shek as grease
cal ft . of air per minute at \(1.5^{\prime}\) watio paume for fisho co. fi. the quantity varying with the opening and clom ing of doute and otber coniditions in the tuo mines. The remalts of the test in detail are as follons:

\section*{Vrotat fur}

From the above statemedt it will be feen that the cur-
ont loes for : 3 files, the distance the fan is away from the pewer bonse, is only 6.75 . In this conbection it the Caps-ll fan with this scott Haven plant. The Boni facius plant, Kray, Weatphalia, war erected about three year- aso and a tect wae moske by eminent mining
engineets of which the folloming were the reenlt. The fan nas 10 in diancter and \& \({ }^{\prime \prime}\), wide.

\section*{gowt of tin}

\section*{}

The cugine used in this case was of superior tinish and high speed, but the difference between the indicated and hrake liorse-phner is not -tatel.
In the new - teel tiplle at Xo. 1 thine a 71 lowreepower
motor ditiven a revolving sereven and vais an cmery Wheet ing shargening bits for the coal cutters, ete. The move than eveselerable bemefit frotn every point if
Fiew. A far ides may be chltantier of the evolontaical
tabo of electric lanalage from the statement that the their drivers and the foor peampre which take onls small share of the actentaon of thiee eparate med, ar doing the work townerly perturned by ten men, fous mules, two steam boilers and two steim pumps, and they ate doing it more efticiently
The entire electrical apparatue ued in the power bowse and in the mine, with the exerption of the coal catters, is of the General Electric 'ompony's mannfac ture Withon the gast there years fins company has perlape dose mose to develop electrical apparasto- for os- in mining wook than any otber electric company. It hasover 50 of its miming locomonfives in ase at different mines in the comutry, as mell as pmope, hougts, rentila-thr- coal cotters, drills,
factorily and ecobotuicalls
Thw idyull fans were pit up moner the enjervieton of Mr. Wia, Clifforl, Mimity Engituer, Mitteloorg, Ma, whe is Ir, Capest':

\section*{STEAM SPECIALTIES}

\section*{At the National Electrical Exposition, New York City}
dit arranging the great exhibition of wectrical machin-

The arrangenemt for -"pgetsing the buiter- with foel a:- com-tructed by the C: if, Hunt Che The coal atten far is taken by the E. W. Hant coal convevor auc carsied along the -ide anol a bitive past the frobt of the
luiler- when it is liftel to a a sint mar the-ceiline of the beiler hone froan whence it is ak-liverod thangh tules co tho lonppers of the stokers, from that pront it is fed oniformly tirno inclined zrates, hurning on its way, and reoching the font of the gratio as a-h. The Hant conhomping place somewhere in the mat of the briler domping them there automatically
The Iniler feed water is supplied by a boiler feed

Thi- pectane carried by ther lviler- i- I2: promel-
 F Fower moluchog valow mannfactural by the Fioten Eucima ring Cow of Xowark. X. I. fo '61 puobels, from n loch point it is carried to all the other evgiues on

In the Facitie mine the bualage is effected by a loon fipe of the beaking of any of its fitting- by thiv mean

Ther Neam in the boiler will in-tantly be stopped from thohing into the pipes and all sach faishties at have
 witl thix intutur, ster vatro is foamy in a pipe leat
 (1) instanty, anil thus the nboke stean cupply can be cat of irans the main steam pipe at an instant's botice. The visitor cannet fait to be erosek with the beantifal inish of the water tube boibers. The fine, smooth black tini-h contrasts stiakingly with the nickel work od - produest by the use of Dixon's graphite boiler ront paint, maxle by the Jremph Dixon Erucible Cos, of verey I its, X,I, whow uxhbit is in the nelghborhoosl Among the engites lleed at this expusition is one of the well-kwon Weston vngines which compares plemdidly with any competitor exbibited
The exhaust from all of the engines is pasoed hrongh a tiombert feed water lowater and then oent Grongh sparal riveted exhauet pijee placed outside the wnildng to a print above the foth. All the feed water aned will pa-- through this loeater, thens supplying the mere uith a bonntifal enpply of mater beated to nearly The entirn plant is so simple and safe in operation that a moman las been pui in charge of it to show conype of that if the seam uech- want in an up to date manner throughoat its operation becomaes so simple has a woush can of
and strong tireman

\section*{SUPERIOR GRAPHITE PAINT.}
 darnfing Co., of Detroit, Mich., a plece of a boiler stack mich hat bectl in tuse for three veare afier being rainter with ow cmed of superior graplite paint. The Mece of imon, after thi- serere eetcioc looks as if it had anta which hau also boon used three years after being painted with one coat of superior graphite paint looks as perfect as if it had been cut off of a new tube. The praint out this piece of tube ie still bright and freeh.
 ciner paint accompanied tlue pisce of satk and piece of
cabing. The canvass is similar to old sail, or battioe loth. The paint makes the camcaes perfectly water ponf and protecte it from the action of mine water thich -an rember ordinary hrattice cloth ratten. This raint las bext prowets a wouncorn pootector of iron xpmerl to the betion of sexdmated waters ithi gises. *s an "xample of the resietance of this prime to the ctob of acci- and atkalik, the makere mform os that Hey bave soljactot it to the follon tests
Ficqus of irun paintex sith superior graphite paint, wheh ane bow lecme teotert have been dippeal in muri atic, -n|phutic and uxalic acide and then allowed to dry aith the acha on the them tor 19 days, at present writ Gg, mithout shwsing a particle of dhmage to the paint The bongers time which other paint- withatonal theee coblitinge uthont injory wa- \(2 t\) lear, when they were btirely deatroced, sujerioy graphite paint has alse
 cual oil for sexeral weeks, and in strong brine for sis years withont slowing injury. They hare aloo sobmitted piecer of imoll pointed mith supering graplite paint to vitue and lociline sugar and water witloat the paint fowing any injary. Fied lead paint saljected to boil. ing alcolost stose is minntes; to builing lnaer 30 minuter; to beiling brime, 25 misute- ; to Isiling sugar and water Lisminuter, superior eraphite gainit has al-o etocal in ovid -ait kap ot horare withust samage, while other pomb- stont tor whe botar obly. These are expretacly號 A paint ubich will -tand -nch test- is of value to every mime manager, aml we ;ulviev all omeो to give it a trial.

 Motroit. Mich

\section*{Improved Car Door Fastener.}

The Watt Mining Car Wherel Co., of Darnesville, Ohio has reccutly had patented a door fastening for mine curs Which pumenese such merits is to malke if exocedingly patmlar. It is cimple in comatraction, quick in operacar taring a dow s oung fom the tols. It will pot casily fot abt of repail, as it is so construetey that it allows the etter the -ifec or the Inttom of the var
An illustration of thi e impurareme n! io-shoun in the

The Waft Co, is on the lowkeat at all times for ans

\title{
Bellis Mine Collars
}

Mr. W. I. Brlli-, mole tuanmacture of the Biellis Mine Gllar, ... well kmown to maby tuine managete thtoughWht the contutry as an exiethent proventixe of sore

Tlie- Bellie collar las math antenviable record in mines in all parts of the contitiont. They mot only prevent corv slowhlare but corv thew at well. These collass are now ngularly nsed by fully forty of the larzet coal

\section*{CLASSIFICATION OF BITUMINOUS COALS．}

\section*{What Constitutes Good Steam，Gas，Smithing and Coking Coals．}
 The question is often acked by young mining engib－ ereand others interested：＂In nhat particulars do soft ouls difter chemically and pbysically，oo that a coal which is excellent for a epecitic prorpee will fait to give satistactory resalts，shonld it be pat to other uses．
For example，why is it that the Cleartield ar Pocahontus For example，why is it that the Cleartield or Pocahontas cosis are supenor to etther the Combellacilie or west－
moreland coals for steaur generation，while the former for coke and the latter for gens mamblictitre are stporion to either the Cleartield or Focahontss coall？ Mestredy of undeservedy，the couls of certain mione have ersablizbed for thenselses high reputia－ standing the liveliest competition，to maintain them． No region can long continne to monopolize a special trade unlees its coals poseres in a greater degree than put to sprial uses．So firmly indeed have－ome regions established repatations for their cools for certain u－e． and so high do they stand in＂Trade＂circles that they have been accepted as standaris and as coals from newly opened fiekds approach or recede from，in chemi－ ical comprestion，theee standards，their values are determined，i，c， 80 far as the＂Trode＂is concerned For instance，when a nes coking ecal field is developed， compare with Connell－ville？Arain，when new coals are placed on the market，for which are claimed empecial value for use in generating bleam，buyer－will ack，how does this coal compare with Clearield and Pocalontar coal？
In view of this，for it is bevorid question that these region－bave bo firmly intrenched themeclves that they scemingly cannot be dielodged，we tunst，for the pres． ent，at least，and until a better plan be evolved aequiesce in this jodgroent．Assuming this to be cor through the poxecowion of what peculiar chancteristic of characteristics，are these coale made more valuable tor specific parpoeis，than others？
In this paper will be considered exals for steam gen－ eration，the manufacture of gas，somithing porposes and the manufacture of coke．For each of these parposes， certain coals have achieved euviable reputations and continue to maintain them．They are as inllowe：
For steam purposes－Coarfield and Poeahontas．

For steam purposes－C Cearfield and Pocahontas．
For the manumacture of illominating gas－Westmore－ land and Youghiogheny．
For smithing purpreet－Brosal Top and Bralford Tigga．

For the manufacture of coke－Connellsville．
At the very outset，the requirements of each subject min－be considered－and theee it will be noticed differ widely．
What then are the requirements to be considered and what exsentials must be possessed by a coal to make it more valuable for geverating steam than otherst One of the heed answure，If noe the beet，to this ques－
tion，was given by Ibe late Prot．Henry Darain Rodger－ tate goologist，in Vol．II，page tre of Mg，＂Gieology of Pennsylvamia．＂From it have been compriled the fol lowing：－
First－It
powet．
Arcond－It should at the sume time，as far as compati－ ble with the forgoing poperty，kindle readily and burn with great celerity，geberating a lange boty of steam in Thirf－It should be readily managed and steady in shatil tend as little as pumible to choke the drift of the should tend as fathe as jnosible to choke the draft of the
urate by fu－ing，evenat an extreme beat，into an adhesive grate by
clinker．
Fuwth－The fuel should be free from any exepse of ineombustible matter，as this，all veher shings being the same，nill materially impair it etficiency，and its asbe－slowhl joraduce fot litte clinker：
Fiph－It should be exempt from any consblemble amount of sulpher．for this tetals to corrade the ftoes and is otherwite detrimental
Sidh－Volatile tasters sbould not exi－t in any greater mount than will suttice to give Ereat rapidity of com－
busetion to the fuel．Anv larger proportion is at the expense of its heating power．
Soroufh－For certain uses it is important that a coal donk toite with a bigh evaporative power aloch a degree of den－ity and structure as will enahle it to con－ tain a relatively large amonnt of earbon in a given space：
This compotifility of brime ecomomically stowed of packed nwatitility of ocing romazerg con－ileration． Eginfl－It is likewise decirable that a coal choold posco．－afticient tenacity in the lamp to bear the abra－ fion imeident to it－tranepertation withont ecrions redne－ tion to firse coal．
A stidy of the chemical analyses of standard steam coals sectos to indicate that the beet resth－have been oblained from coals wherein the perceatages ranged as followe：－

\section*{Fixed cartwom
Yotatis mather
Salohur \\ Sulptiour
Ash}

\section*{}

CLEAKFIELD Cvat．
The following analyexe of Cleartield，Comberland and Pocabontas coals，all eonsiderel sfonder），made by Mr． their entire reliability，may be taken as typacal：－
No， 1 sample taken from thirfeen care at Greenwich Ptilatelphia
No． 2 sample taken from five cars at Canton，Balti－
more．

No． 3 sumple taken from seven cars at Canton，Balti－

\section*{No．
more．}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & 1. & 1 & 1.64 & 1.100 \\
\hline & & 3 & & \\
\hline & \％ & L， & \％ & \\
\hline & S＊） & & ธun & 6．135 \\
\hline & \％eam & \(100 \pi\) & 190 & stree \\
\hline
\end{tabular}

No．1．Nample taken from conl smpptied to the Shen andoah Valley Itailrond company
Philadelphia．Rample taken from six car－at Greenwich．

elat tor（manostiay）cosh．
The average of 10 analyses of this coal is as followe

The average of 8 analyses of cal taken from the No． Pocabontas bed shous

\section*{}

In writing opon this subject Mr．MeCreath aye Thite the analyest of a coal afford－a fair opportumity
 and coking qualities which an analysis caunot show that a practial testing under boilers is of the higheat itipartance＂
The ropisites of a groal coal for the mannfacture of illuminating gas are
1．That the percentage of volatile bydro－carloms hiould bee at leas 33 per oent．Above this amount， quality，rather than gnamity，slonald be surght fot； ， 1 ，
nehass in illuminating properties，That the pereentuge of solphor shond he low，sal
frotu 0.5 to 0,8 per cent．
3．A low percentage of ash，say from 3 to 6 per cent
i．That is shondef vield upman distilation from its to andle fext per ponnd
S．That it should leave，after the eximetion of the volatile matter，a firm，bright，merchantable coke
6 That it should be etrong ebongh to bear tranepor－ ation well，for long distaness，without setiones naste by duction to tine conl．
In his brochure on the gas cocols of the Thited states， cead belore the convestion of the American Gas Light
Association，in．Savannah，Mr．H．G．Alans of Phia－ Astaciation，in Sarannab，Mr．H．C．Alame of Phila－ delphin，says
The cosentials of a good gas coal are a low percentage of ash，say five per cent．，and of sulphar，say cole－balf of
 ating hydo－carbums．Abd it shombla yield under present retort practice，eighty－five（8S）candle fost to the pumel earbonized it shomold be entliciently denee to lear Transportation well so that when carried long ditances it may noe arrive at its destination larpely redneed to
slack or fine coal of the consistency of sind．And it slack or fine coal of the consistency of sund．Aud it
shonld puomen coking qualities that will bring from the shonld prow－ws coking qualities that will loing from the
retorts，after carbonization，abont sixty per cent．of retorts，after carbomizatio
clean，strong，bright coke．
The folloning table showing the analyses of sume of the principal gas coals nill prove interesting and valu－
able for reference：

\begin{tabular}{|c|c|c|c|c|c|}
\hline No． & Water． & Volatile & cixel & salphur． & ，ath \\
\hline 1 & 168 & 3751 & 3193 & 718 & 5.48 \\
\hline \(\frac{2}{4}\) & 180 & 37100 & 3198 & \％ & 5930 \\
\hline 4 & 17\％ & 1201 & m & \％ & \％ \\
\hline 6 & 100 & & 430\％ & 楽 & 2迷 \\
\hline 7 & （10） & n．s & 6211 & 81 & 1200 \\
\hline 3 & 1900 & 3ish & 5 & ？ & \({ }_{1} \rightarrow \infty\) \\
\hline 10 & 1行 & 2m & 4.75 & 1.2 & Tom \\
\hline \({ }_{18}^{11}\) & 130 & 43.45 & & 1 178 & 9360 \\
\hline 11 & \％ 18 & 2516 & \％ 2011 & crs & 250 \\
\hline 13 & 1，40 & 絮 \(=0\) & & dom & กสั \\
\hline 3 & 1， 40 & 51.39 & 6.110 & 31 & \\
\hline 22 & 1，415 & 201s & 81．901 & ．9tis & 325 \\
\hline
\end{tabular}

Nos． 1,2 and 3 are of coals mined by the Westmore land Cual company；Xos，4， 5 and 6 are of coals mined by the Penn Ga－Coal company；No 7－of coal nined by the Gireconsbung Coal compony i No．\＆is of coal mined by Saltstarg Coal company；Sos．9，10， 11 and 13
coals from Jefferson county：Xos．13，14，15，16 and 17 coals from Jefferson county；N．
coal－from Reynoldsville region．
The requiremente of a good coal for smithing porposes
The mey
oe that：
It should possess a high treating power．
－mall percentage

3．It should presess safficient coking qualities to iosm anateh，or cant，on the forge．
．The jereentage of aoh should be stmall
The first requirement means a high percentage of percentage of smphur is ber only momens 1 a the iron，but presents good welding．The percentage of salphar shonfla never exewed 1 jeet cent．Chal contaits－ ng lit onte－hat of 1 pre cent nould be berter
The advaatages afforded by the third meguirement ame many，among them may be mentioned
1．18s economic ibuprance in saving a large anount of fuel，the interior of the pile only being in a state of combastion．
2．By concentrating the best upon the imon to te in op－lit arch over the base of the fire is practically heat．It alon affonde postection to the smith

The coke forming the arch wben broken down， makes a nuperior fuel for fine welding
The following table exlibits analyses of standard Tenney lrania smithing cools
\begin{tabular}{|c|c|c|c|c|c|}
\hline No & Water． & Yodatile
Slater & \[
\begin{aligned}
& \text { Fised } \\
& \text { Cartoon }
\end{aligned}
\] & Sulphur & Als． \\
\hline t & （1） & nam & toss & 1，\％ & Bime \\
\hline \(\frac{2}{3}\) & 80\％ & & & 柱 & 4380 \\
\hline i & （31） & 5900 & 720 & 36 & \\
\hline \％ & 100 & 13\％！ & 6as91 & （06） & 9131 \\
\hline
\end{tabular}

\section*{Nos．1， 2 and 3 are of Cambria conanty coal． \\ So． 4 is of coal from the Rroad Top region．}

No． 5 is the average of eight analyses of Blossharg coal．
Tpom the subject of coking coal much has been writ－ ter，but the question as to wby somue coals coke and Seither has the question as to the percentage of volatile faster necemary to complete the coking，withont the expeuditure of any of the fixed carbon，been definitely etthed．Tuenty yeare ago John Fulton，then，as now． the best authority upan the nubject in Aoperica，saiil （Report L，Appecidix A，Geological survey of Pemeyl－ ranas：＂It i－evident that the calorific power of colke is derived from its carbos，and beroe the purest coles will produce the greatest hest．This requirement of pure dry coke is more evident when it is considered that all foreign matter and moisture nos only do not contribute beat，but require the expepditure of it in dis． protng of the extraneoos matter in sha and vaporizing the mosastore it is masifes thas the character of the coke is determined by the quatidy of the cont und，and the
latter should recoive very carcfal oxamination before ex－ pending farels in plant carrcoking The first require－ uent in the pody in plant fus coking is a pare bituminoas coul－coal baving semall quantities of ash，sulphur and phingthorus
and requirement is that it contains a suffl－ the fercerary heat in coking nithous the expenditare of carbon．
And，thindly，that the coal produces a coke of sutb－ cient tenacity to sustain，nithont crombling，the buriwn
and blast of the furnace，and to inlerit or opon ovfoloy and blast of the furnace，and to inberit on open oflalay sforiuer，fo forifitut ite impurgang
He further states that＂ordinary amalyses fail to imdi－ are tbe erential qualitien of a good coking oal．They are highly uefful，bowever，in exhibiting the carbon， arh and－ulphur，thas clearly indcating the slrength Ams purity of the coal．The only sure thecthod in the deternemation of she adaptability of coal iok coking，is
to have a puantity of it made imto coke，and a stedy of 1－phy－ical and chemical propertien carefally made？
 Kits sharg bed in the Connellsvib．bawin of Peansyviana aracol mear mecelo pom－is in clu mical amata ir nhydell est iswalue is determinel Thes amayero

 a．good，if it be poppetly taade．For comparison． anafyes of typical specimensof each ecal ate given ：
\begin{tabular}{l|l|l|}
\hline Conneltertile．Fwahomase \\
\hline
\end{tabular}

\section*{ \\ Yixelciatern
subluy
int}

\section*{}
trom
（ince

I＇pon examination it will be found that the percent－ age of fixed carbon is greater by 14．450 per cent．，in the Proabontas coal．It afoc has less talphur and aah shan Conoell－ville．Thece are all in itsfavor，In the mattel of volatile hydrocarbons，howewr，it is deficient．Con－ bellsville possessing over 11 per oent．more of this highly important constituent．Experiments have demonstrated that the lowe of carbon in coking anounts，in the Prahontas coal to 30 Ier cont．，While In the Connellsville cral it is but 8 per cent．under like eonditions．Pocahontas coal，as shown by cbemical analysis，upproaches the coals of the Allegheny moun－ tain dietrict of Penovylvania rather than the Counells molail Foan the forezorn it may be sud that the colatile luatter slomm be between is and 32 per cent the clameter of the coke． the character of the coke
ads is a side． vals is a zide ote set bere we find good colser being The fom encl．
The percentage of solphur fhould not exceed \(\$-10\) of per cent．，ubile the proentage of ash shoald not The question of cellular structure of the coke is of

Table Showing the Physical and Chemical Properties of Standard Connellsville Coke.

工可

\section*{COKE OVEN CONSTRUCTION.}

Its Effect on Coke. With Special Reference to Semet-Solvay Ovens.
25. IL. IL Alwater Brat Bober the socict of Encibeers of Weot I'rof. J. P. Lesslie describes the well known Pittstmeg 'The Pitt-lang region is an ont-predid of the Pitt-
 fert in thickness for the whole reginn looks like a fair
ome. This gives simet, ©e
 the arkatorte intenal, ame of per cent, for pillare am
bad mining, we may pet down this cral, avallable for markre in the thture, at \(S, 1 \times 0,0 \times 6,1 \times 0\) tons.
"In this basis "'s of the Iitstourg oual is contained in not over 1' of the high grode -tandard cukigz cosal ; yet in Pemnolvania, wer s,iomoko tons in \(1 \times 2 k\)
The object of tuy puper is to cffer bethods of coking
the Pittsfary coal, whoch will enlarge the busndarie- of the standanf coking oual to all of the P'it-hurgecal tiedithat lear coal of ciandand chembical comportion. The to ptralnee \(\quad .0,00,0 \mathrm{k})\) tons of eoke, which, ut the 1205 rate, will last 10 to 12 rears. It is, therefore, only a
question of a few year when other coats nut le u-eal,

 the brom view of the question, no cobtroveroy bet neen the Comelloville bechive oren and the retort oven. The
exi-ting wen- will bave completed their ounfol lite ben fore the abljernt coal is exhabsed. No, nithout sactitice, thes will hisaplear, and the bew eunstruction will take the form of the retort oren. It is this eradual and
economical merging of the okd bethos into the new

The Inevise owes makes bo provision tor the physical improverent of the coke. It is a broal, shallow fosin, in which the colking frillows ont its onn matural oun
 a happy govlacky wom, and in the lattery of its applica-
tion the prize felt to the narmo and limited Connell-
 lay, for heth the north ansl ewath end are mot of eqnal quality with the soralleal "'stamiand eoke
In ihis fortuitous application of the beehive aven.
great region- of coal of eqmal chemical purity mith Con-
 Price, becanee they did not make bard coke, If the one
arking quality of stractural strength ese be mhled to

In ehetrelaise oven a shallow basin 12 it , in diameter
is filled with coal to the depth of \(2 t\) ineher. A it urad nally tore intocoke. the nare-twelle io. a beight on

 turet the cin"
Pisthurg ver."
Comparing this op mation in the mort own, wheth is

 of ceal. The noult is that the coke nhich is sest nhen
owkol in bechive owens is hard when moled in netort
 mus- of the coke in the le-hive wers, form rertient pas
sages or tell-, and make their way in chandels like the

 the-y have foce cunr-e, and asoutue their full size. Tha the
other land, in the- retort oven, the velatile gases pass off other band, is the- retort oven, the velatile gases pass off
Eir horizontally from the -iches is the inven, and uniting in the evotral part if the mass, poss njp to, ther catht is

composition. The three characteristic imparities of colke ane sulphur. phoephonis and excere of ant over that re quiresl for errisctural -trength. In the lieethive oven, twot unly is all the etorplas rolatile wa-ted, bat there in a
greater of less ilestraction of the tixed earhom. This
 to tors. This loss is inevitable with an internally fired aven.
On
1815
that the ather hansl, in the retort oven, there is an ace ras gain in the anomont of coke poulncal over the theo
retical viedd of the coal in the fixed earbon and ash retsal veld of the cool in the fixed carbow and ash. gate ami the deponit of eraphitic carbon of the -norface of the coke. Thi-gain absunt- to from
the ondinary practice of beehive oxens.
In proportion as the peoduct of eoke from the retort wron execests the product from the bechive oren, the
 the oal, anal nomain to a large extent in the- coke. We may, therefore, sum up the effect of the evil onstruction on the resulting eoke as follows. The vield of eoke will be increanel by the grester rapislity of coking, which never exceepl- of home, and may often require only 16 hours, and aboy by 1 mraing part of the vola.
tile into coke. Second, the quality of the coke is im proved chemically, by relucing the impurities, and ply-1
coke,
Cin
Con-idering the Fourth Pool coak as tributary to the Pittsbang and Valley region; the coals of the Eppet
Monongihela anal Weat Xirginia as tributary fotlee blan furnace in the Ohio Valley; the Western Marcland cest- an trithtary to the Eartern Penosylvania und Jary latat furnacoz; and the Pecabobas erals ac tribatary to the Virginia and Westera fornace-the reealt-are. fombamental importance. The impervetuent in the quality of the coke prodnoed houblil raise the value of thee coke by at heast 25', and the increase in the product of colke, which may be fairly stuted froen provent coms mob prowtice as 20; is equivalent to a peotit of 30', ovet
that obsamen by precent methol-. For every fine tons of colke prolocid by preent practice, oae additional ton witt fr probliced by means of the retort oven, and
this extra tom, reguiring me extra miming or mamipulation up to the time of shipping, is all profit
still, it mot not be forgutten that mo ocen will make poud colke out of poor cogl. The docuntain canoot rise higher than it-owarco. I have no doablot that ther retort oran will proluce eoke better than Conme-lloville from coals that an better than fonmelloville, if -ache can le tomad. Tbe sest of 1,50 tons of Revert-kilvas colve from Comelloville cial at she Bnffalo firmace ok-mometrated

 in the quality and ammant of the irme prothecil, Io the
 namable to Afer. The is the wender of the abik aby

 ham beebs, a wes ramarat coke will the the reenlr, an the lewhive may mot be is it.

\section*{THE SEVET Wolvay hetuat ovex.}

Aboug the rariots refort otens that are ofered th American engineere and of =ratore, the claneffication ma bee broally mave batuent the recuperative, hentionta tloe ovens and the regenerative ovens with vertical flows metallurgical enginece, consitlering do mom the "peration of coking ocal, woald certainly not consider
the heat of the popmeratice farnace as mumite for the low temperatare if the colke oven, which marely execols 1, son \(0^{\circ}\) or 2, man F. The adation of the regeneration fornace was an afterthought to overcome the loss uf heat
in [menetrating the thick Ilwe wails of firebrick. It in in trendrating the thick tlue walls of firebrick. Its inventor has hime if alteably abambonel it, and now recomi-it- expensive initial cost, its liability to serioms imjur? from cambles oteration, and it- expensive repoir charges mearad it is frota a simple evoziticering stamdprint, a bevilessly complicatid cometriction. It eevk- to ace complish by a high tetupeotore, applied through a vet Smite=l aren, that which the reenperatise fornace as compli-lies by a uniform and beve bucklerate tvoures

 ieve, representing the levizht of she men, a fotal otroction, a ith lomizontal flues, the burning gase thaverse three harizontal the a bong the vide of the coven coch it feet long, and return under the wole of the oves making a tokal of 120 feet thomgh on hely the heat of di
work throogh a thin tile of only 21 in , ection, while the vertical floes are \(+!\) in. Shick, it is eacy to see that the tetaperature produced in the interior of the oven is mach solid masonery emstriction between and above the ovid masoniry enostriction betreen and above the to the beating of the incoming current- of air adjacent to the heating of flime incornmg flues of the ecwet-Kolvay oven. Toeether, they form a natural recuperation, of equal
ffectiveneed with the checlier work of regenerative inmaces. vell known that th e siewnen-
mperature remenerat
and 4 h at proveve a miform temp-rature, and that thie emperature varies in pryportion to the perands of the
reversal of the curcans. For high temperatures these ereveale are frequently made at fiftevis minute intervals, thas otercotming as far as possible the mp-andidown
reait to the temperature of the muking furnace. When bese perialo are extended, a- ill the menenerative coke oven practice, to tuo hours, it is evilent that at the time- just precoling and just ioflowing the reversals, the reating temperature in the uven anst be sobet large variations on the other hand, the heat conducted imuas mothal fo aniform for every section of the furnace. Morenver, thi- aniform temjeratare is under fery complete onntrol, since by the admission of proper bep resolting ter gas and arr to any ohe of the three floes, onsalting telupratare of cachinaticidual foe is und asion abd di-tillatbon is monet effertaally applied at the ower part of the motort, and this effect is prasloced, as een in the temperatures on the clagram, in the flaes of he sometenvay wrene
On the otber band it is equally evident that where burning pares rise through rertical thes, and are then diverted by batfing pater, the temperature is greatest at the batting point, abd it tloeretore necossarily ollows that in the regrberative onke wens the highest remperature is produced at the top of the Eloes, the reseree of the jopper application of the lowat to the purpose requirad. When through carelesenees of wilfulhess, the periods of reversal become estemeded, as every febser's furnace man knows fromil his own experience they ecca-puatly are, flue restalt is a belting of tiese This is pates ana emornoob- mjury fothe constructaon. This is the fatal movid of amit prompled the remark of Mr. Darby, of the Brvmbo prow Worke. Wale- theat if it is poosible to avoid the ezencoatice eotstruction in coke ovens, etoormons cronble and expense will be avoided
Mr. Fulton dater as lis conclation abont the comparative norking of different retort ovene, that the Setmetsolvay oven is ase quicker in operation than any of its competitors is evidence of this we may point to he 20 ton- of commellesille coal for the Bufalo test, in 1it is in 16ito in homir, to jod tons it Friment coked in 21 to 2 hours. From these reanle we can confilently Jorert that the Kempet-Kolvay oves will paduce 2, (kN ton- of coke from Pocalontas val in one vear of 1 aro tons of Gonnellsville or Fantas Pond coke. No aven in Earope or Atacrica has reported esults within al, of this reconal.
This rapid operation of the Remet-Kolvay oven affects both the original ami theoperating coet. It will reguire twice ae many ovens making \(\boldsymbol{h}^{6}\) of 44 hour coke as kemet-kinlvay owens making is to -t lowir ooke. The
 can constrmetions. The Comnelleville coal from the Valley mine eent to Earype is lake repuired is lowis for coking in the regemeatice over with vertical flowe The coal from the same mine at syracose required only 20 hours.
When the direct object of the netort wen is for the perthection of fuel gas as nell as coke, this rapid operaillatioce of greaty incregsed imp-otamee. The dislace tim of the swatie is not evell through periot- of grat rapiclity daring the first half of the time, and wery slowly towards the close of the evking operation It is, therefore powsible, by whortening the eoking period, to coke tro clange- in at lomers, and prosloce nearly double will eonmand as high a price as blast inmace coke. In the semet-solvay oven, this "peration is practicable dithent any chamge int
In conclueion, we may con-ider it an fairly demonarable thas, whether for coke or 4 as, the semet-Kolvaz iven is eonstructed "pon correct principles; that it a,
 o- a working device to the cosl miners and blast firmace operatore of the Mits-lorg and Chion fielde as a profitable investruent.

\section*{Mechanical Rubber Goods and Hose}

It is reported that the New Jerecy Car Spring abd Eubber Co., of Jeregy City, X. J., and the Eareka Fire Hose Co of New Vork, two of the largest and oddest bunufacturets of hose in the cosintry, and whose busibose relathan have for the past trenty yeary been very
 mon cotngrasieg nill be sill cloed conbected in the hannfacture of tite, mill amd cather kital- of boeec All the brabis of both eonorras will hereafter be
oade and wold by rach cumpony. The lime will be nade and sold by cach eoupany. The line will be
 4upriority is ite clam. This arrangement, we take it, will mot alone pave derirable for the Nen Jerey Car Fpring and Libbor tos and the Eureka Fire Hose Co,

\section*{Easy Lessons on Mining}

\author{
Certificates of Competency as Mine Foremen, or to become Mine Superintendents
}

The articles are written to be understood by the unlearned and the learned alike. Plain language used, no obscure terms are employed, and each subject treated, is made as clear and easy to understand as possible.

Further: The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors are printed and answered.
en- The Series of Articles "Geology of Coal," "Chemistry' of Mining," - Mining Methods" and "Mining Machinary" was commenced in the isaui
\(\$ 0.00\) for twelve copies.

\section*{MINING MACHINERY}

The Knock in Pump Valves - The Halt of the Cornish Engine-The Double Beat Valve-The Cornish Valve-The Piston Balance Valve-Recapitulation of Facts
117. The Knock in Pump Valves.-To securv more than the average efficiebcy in the working of mine
 have been made the sabject for stady in this lesson.
To make the investigation progrossive, however, we will begin with the primitive example, and this is illus

Fw 13. Theor, and the valves of a pump are kaid to be ecll acting, becanee at the mowent of opening or elosing, the floor are different, as for example, when the valve lifts, the pressure abder it l-greater than the preseofelosing, if the piston of the pomp is stationary, then the valre falls by its own weight, or on the otber
hamt, if the engime terins it- neverse stroke before the delivery valoe has had time to fall, then
the velocity of fall is mecelerater with a weight on it equal to that of the delivery head, and it is in the hater case that the heavy
strain on the delivery value, called knock cecurs.
There are still sobe rod pumpes
and Corni-h engines at work in tuine dimina engimes at murk in tune dranage, and on that ac-
count, and also to explain the knoek, we introduce this valve for our firet consideration
With the rod pampes abd the ofd Cornish. engine then was no real knock, because the engine halted for thre or foar eeconds at both ends of the stroke At the top of the stroke, the halt allowed time for the suction valve to fall, and at the bottom of the stroke, the hat allosed
time for the delivery valve to fall, so that in this caee
 fion of the weight of the valve, because the valve was movieg in water. The comparatively light construction of the valye seat was sach that it conld not withstand a knock of relatively small amount and this fact can be at once realized by reference to the figure, where the delivery valve is been at \(\mathrm{V}_{\text {, and }} \mathrm{C}\) ts the vertical column of water resting on it. We see then, that thas valve could only be enpployed in cases where a halt was made at each end of the stroke, and therefore, in pamps
worked by a rotary engine that does mat make the required halt, if some provision is not made to avert the knock, it is sure to occur, and its severity is proportion ate to the pistom epeevt of the parap and to the beight of slight fall of the water colnman reeting on the valve oceurs, and should the pomp be ranning at a relatively high speed, and the height of the delivery column be high rpeed, and the height of the delisery colatmo tion on the part of the stadent to discover that ordinary fall valves, like that in the tigures or buttertly valved that is, those with two doors opening in opposite sides of a middle hinge set over the waterway, or common epindles, will fall onto their eeat- with such destructive force that they goon become incoperative.
118. The Halt of the Cornish Engine. The object then, of the halt at the ends of the strokes of a Corniel pamping engine is to prevent the knock of the valves,
and we can therefore see that for the continons action of a rolary pumping ebgine some provision must be made to prevent the occurrence of an excees of presoure On the upper sules of the valven, and we bay be sure vention of the lacok has been accomplished by various devices in the cematruetian of the valvee Then are many different makus of this clas of values in uae that many different makes of this clars of valnes in wee that We can only treat with probi cal the the formatuental modes of action of all the others
119. The Double Beat Vats 1ig. The Double Beat Valve. Fig. 15g itan illustration of a double beat valve, sometimes ealled an equilibrum valve. The valve in the tigure is but, however,
a true equilibrium valve, becanse the top valve \(V\) is arger ind dimeter than the boefora valve , out it belong is much greater in the fignre tham in a real cas and the diagram the examingation is becemary do sive elear ness to the principle involved. To uader-tand the "equilibrium," or "double beak" valve in the gigure,
let it be granted that the area of the under side of the top valve \(Y\) is equal to the area of the top side of the Futom vatre \(S\) and that Ibeet two valves tis close on
 will exert the same preobure under the exerts on the hot tom valve "; consequently, we have foree exactly equa to a downuard one, and the result
is the double value will nod riee until the upward force the downward one cgual to the weight oguaal to the weight happees, butever, that the valves
newerfit their mats with such perfect make the boutfon side of the top
valve exactly tat. ance the top side of Une bottom valve, and therefore the exeess of lifting Ifrec is casily provided for in the cate of water valuve. Before we proced to point oot where this valve tails to the an equilutimm one, whe日 it be set umber a great water arad. let us first iry to eumprehend its principhes of eon
iruction. By the bizure, we can see that one chamber is act within another, and that the inner chamber \(I\) only communicates with the outer one by the valve portand s, and therefore, when the valves I'and \(r\) are down on their seats, the communication between the inner and onter valve chambers is entirely ent off. In the figure, the valves are 㫙 off their *rate, anal it will be further seen that both valves are fact to obe spimille, abd thereore they boch rise and fall together. The course of the entering water \(I\) is indicated by the arrows as paswing op through the top valve port and down throngh the bottom valve port into the onter chamber, from which the flow from hoth valve poris parect into the delivery pipe ut 8. This valve has done goosl work as a steaty valve, and in that case its nowemest= were controlled by the engineer or the cams of the engine, and it can. indeod, be need as a perfect equilibriam valve at the moment of the lift, but at the moment of the fall it is entirely out of balance, as the reult of having two seate and it is therefore subject to a serious amount of know ing force, Let us suppose it is used as a delivery valve then at the motoent the plunger takes the suck in de-
pression cceurs at \(/\) and elien the weight of the eolumn pression occurs at \(/\), and then the weight of the colamn
\(D\) gives a greater downward force on the top than on I gives a greater
the bottom ralve,
 cume, CC, that may
ifverted with a bole in the top end; the edges of this hale are with a bole in the top end; the edges of this the mitre seat of the valve that is favt, and therefore and of move on the supporting spindle, \& Fhe wid
fore the top eat of the valve is shown as \(s_{1}, x_{\text {a }}\) and Tbe bottonn eat at \(s_{2} y_{2}\). This cane ralue then, is a
truly double beat one, and the case is at once the twn valves, and the analogice of the inner chamber of the quilibrium valve uith a dusble seat. For*team it is an equilibrium at the boment of opening, bat for water beary kDock at the motsent of eloeing. Jlany modifications of these valyes have been tried for pumpe, but vobe of them have given the required result, namely, a valve that is nearly in equilibriam at closing The alves in common mee lave a ermall lift and the knock is prevented by a coanteracting epring that can have its le enginer in chare bat dhe defe the wit or
 in the mode of action
121. The Piston Balance Valve. -Fi . 154 is a true equilibrium valve, and can be made to falance both at Tening and closing as it has only one valve seat and bercfore the knock can be reduced to a minimum without the use of a percussion prevention spring. The conI, is fastened to the same pindle as ans: The valve I' is fastened to the same spindle as a piston \(P\), and the area of the piston is baske suthciently less than the area of the underade of the valve to provide for lifting pressure In the figure the eesat of the ralve is mitred, this kilid, for a murrom flat seat repiers it poasille of meduce the differance of the aceas of the pistan and the paluce the diference of the areas of the poston and the rent thr possibility of knock. Thu mode of foreby preIn this case is woy interwating and is will now be explained \(C\) is the delisery colame and ts weieht explained. is the delivery column and ite weight preter the under sole of the paston e and the upper side and the deliners walve I: the equilibrian pipe E conocts the witer space alrive the pidon at water apace bet Eecen the suction and deliwery valoes at . Durime the suction stmoke the pressume uader the alve at \(n\) and abrye the piston at \(\%\) is considerably leas than the preserame of the sumuphere and the posule is the pressame under the pi-ton and abone the valse is at that time eqmal to that ilve fo the leat of the delivery colurin. bat the pressine of the valve toing a litele onater than that amier the piston. the valoe fall. at his periont gently into its sont. During the forcing troke the prosellmes above the piaton ang two forcing and above the valve, and |woweath it are all equal, and therefore the valve opens gently. The secret, then, of this valve's action is this, the peosenre per suare inch of the water above the piston, and beneath the salve. are almays ofoll, and the pressare per square inch of the water beneath the piston, and above the valve, are

alwaysequal, and the froult is the value is alwave halabocd in opening off and closing on one wat. The graide hhe pobare and piston spind e is keft ont, to prevent Curl then io a sumary of Hur doriee dhat have been Fried and practient to prenent the hooch at pamp ged and practend sidered in relation to the subject of the lesson.
122. Recapitulation of Facts. Ques, 1. Say what valve is, and name bouse of the typical varieties in ose Ans. A valve is simply a trap door for fluids of inter anttent flow, wnd anong the eommon ones we have the hap, the batterty and the button sat ce Among kal -pring, and the piaton balanee calves
 Fod purates, worked by Cornish purnping of the prevented? Ans. The paonp pieton ma- moxle to halt at each eod if its etroke to allow time for the ralves to fall with their own weight, and the duration of the halt was con piston tlat fills aith air like lallawe during the "1p stroke, and the period of diecharge is regulated with an iuljustable valle. Ques. 3. How dras it accur that the latest makes of pumps for mine draimage, den not contait the flaph of Ane The lakel mak ef pumpe?
their action and themfore, the valses ane co they have time to fall in water, and the reeall is slizht full of the colame omars at the periost when the salue cloces and thi- prodmere a geven blow, catleal 'the knock" and lismfore the old rlass of valves are unfis for thit hard urage.
Ques. 4. How does it happen that the equilibrium, of dubble beat value, thoes nat prevent the krock whed ased as a pump ralve"

Ans. The equilibrium of double beat valse is only a
balance at the moment of opening, bat on elosing it is
so manh out of balame that it is satjeet fo a setemkrock and this is the resalt of trou values falling on coues is In ubat rejpects are the curilibrimen and

the. The Coraish valu, is in all negpets as domble calve, mut cuasquentil has iso scats, that anke the
 berek is producol.
you- ho What is the trozal alvantage of the pialou discharge ?
Ans. The apreial adrantage of the piston balance is, the valve woty fall- wnone wat, and therefore by making the sabee rat narmow and flat, the salve falls uith ser? litile krouck

Ques. The How dows the pestoll halano the valee fi-ton and abure the value is cymal, and the theconner tom maxhe with the equiblibrium pipe the prevenre betwree the saction abal doliowry valve is aluay - lhe sance to that abowe the piston and unler the vales, and as the valer and piston amos ane newrly equal, the piston talances the presouner on and under the valve.

\section*{CHEMISTRY OF MINING.}

Facts Relating to Safety Lamps - The Glass Shell for a Light-The Claims of a Small Flame-The Diffusion of the Lights of Lamps-The Heating of Lamp Glassen Should be Prevented-General Recapitulation.
105. Facts Relating to Safety Lamps.-As this leor anxions to eliminate from our decision all cormors of tmis. conciption; lut even after ue hase dobse our best, let it of this himel, and therefors, we whle claita to haw initiated an imquiry that will, we long coasa to have in the constraction of lamps that will give a better light Than thos it zeweal use
The summation of ther facts will proved in such

at, naturly, that a gool anall light in a glam colimher of matively emall rentios will give a better light, an! -rywre a siter lamp, than a ham
to6. The Glass Shell for a Light.-The inpertumes If a gla- - he Il b. inca- a light, i- net a quedion for the miter only, hut one shat athect- all clawers alike, for
nithibe oxception of the candle, all artiforial lightx are
 tor moluce the painful dazzle or glare of the light near the ege, for the flame con-ists of a stroas of white-had
 te-flectert, the realt is, the duscing rays fatigike the aye and weary the minel. The dazske is the same in

 img throghtit leghtst? and yot ue hate not reves owe yet that is satios
些
fartory in ane. fur all of them sate bik or mome per ocht of the lizht, and yet pouple are willing to soffer the low

107. The Claims of a Small Flame. \(\mathrm{\lambda}\), onall tlane dones bit aluay- unatia low intensity of the light, for in

 .
 imtersity, than with a Garge flatow of low intensity, they foe small flame is the twot. Myain, if a tenter anit saley amp on be made for a somall thame, than a large one
 decisise clamm for the enall thame. Il. Solums ifes lighte diffust is greater from a ghate evlinder of stoall thameter, than from wee of lanze dianieter, an demon-

\section*{}

tiv. The center of the dame- -lomid occur at an eleation of one-flirid the height of the macowered portion of the glam xy linder, for otberui- the light woold be mevenly detributed un the reus and floor, as illustrated by Fig 14, where at A the light is set too bigh and at hit is set toul low.
Lyocs 2. What mivantates call be ectured with a 110 glawe of mall dianseter
Ans, When the lemgil of a lamp ghase is the same for the cow with a amall finmeter has lhe chameter, then vertiral diffusion, and therefor provides greater saiety for the buiber: if a shick glaton -lotll for a kafety lamp?
Ans. Thure isouly one adrantage that can lu claimed or a thick glass amd that artaps friat refraction, for this serams a zrater range of woftical sliftesion. The disadcantas. Fin: First loss of light by interference owaml a thick elam repuipes a miles frome: and thind the slanger the glase is liable fo of erseking in an explceive mixtore
goses 4. When the diameters of the erut- of a spherical, of lenlging glass, are the rame as those of a cy lindrical one, does the former give any greater range of vertical diffusion than the eylinder?
Ans By Fig 146 it is seen that the spherical glass tows not inctease the vertional ramge of diffasion, for the

右
range of the cylinder \(A\) is equal to that of the bulging glate \(\%\).

 erater neistance to the passage of light than athin one, ami, therefore, if we take the thickness in two cases to fie evomb, as in Fige 147, the glane with the smalle-t suriacearea intercepts the least light, for as the resistances Gary dinctly as the areas of the interecpting medinms, when the thickneswes are eyual, then the shell A inter-

evpts buow light than the whell \(F_{\text {, in }}\) in the propertions of ther dhancters. Again, it is finilier sluwn by the tig-
 feetole light nakes a faint am:
(fuex, 6. Why is a large flame objectionable in a catoty lany?
Ane. When the thame is propertionatelv large, the glass bevemes werlesated, and then offers a greater resistaner to the pasagge of lights, as in the care of the tho latioctor intaps in Fig. 14x. Fow after the lange thansey, the intensity of the light mansmitted is
heni mot tran-mitter of light; and the thiml is, glare is
 hat a but in the ervent of the air ventering the lamp being an rxptraive mixture, then the sliect of dame within the glase wouht raise its temperature to the puent of danger. and thes joppertixe the ecearity that the lamp eboetel
 the comabmeition of the oil at the wiek is netandied, or, in Bhor worde, the nomsal dame is reducet, bot still it continues tobmen for a perind that is more or lese prothe ventering air is damperomaly changel with ges-, and
 expres, bus the pericel of the duration of the wick tianue and therefore the lamp \(\begin{gathered}\text { Tith a g glace of sanall diameter is }\end{gathered}\)

Sow, the completion of the whole matter to this bamp glase cught mot in In newe than I. .2. ibeloce in
 then with a lengit of 2.5 timest the dianoter, the length of ther glans slomld not her lose than in Th ioctres
 sto. General Recapitulation-Ques, I At what hayght homit as flame bee set on the nick within the

Malumal, athel thenthe smather lighet seen in A is found give the low light as sham in by the photometer.
Gomes. What is the m-latiomalipe of the length of the flame of is lamp to the radios of the glase cylinder? Ab- This relationslip is clearly shown by Fig. 149; or if the radins of the glass cylinder dows not exeed the longth of ther flame, then the glass will bo blackened ant berken is the event of the laap falling on its side. Ques. \&. What shoukd is the maximum slameter and the minimoum length if the glaen in a satety lamp" Ab- The maximum diatueter of the glases eylinder in a sakety lamp should not execed 1.7. inches, and the minimum lengit stoould mot lev less than 2.5 times the leageli of the tlianacter.

\section*{GEOLOGY OF COAL}

The Great Land Masses-The Areas of Land and Water Never Vary-The Axes of the Rock Waves. The Effects of Erosion-Hot Water Discharges.

\section*{63. The Great Land Masses. Wr caunot look at a} map of the worht thrusgh genlogical spectacles withont
 m mach eruleal that the proent obs- are only the frag-
ments of the greater whole that whec covered large pir tions of the prosent sites of the Atlontic, Dacifle and Indian oryana.
It is mot, lowever, likely that the ana of the dry lame sariace of the globe was ever greater than it is toms, for
if we try to leflege otherwise uc finat that for for so we if we try to beliece otherwise ue final that fordo so we
mutt accept certain conelusions that camon bo sustained by evinlenc; as foe example we wrald have fo believe
that the dry lam was sitonted at greater elevations atove the ves floor than now, for the volame nf water on tho
earth woval not be less, and if it was confined nithin earth woold not be less, med if it was eonfined nithin
mone restricted lateral limits, the seas monld have to be mach doeper to contain it.
64. The Areas of Land and Water Never Vary. After looking at the facts jost related, we might say
again. the contour or ontlines of the prenet lamit masme again, the contour or ontlines of the present lami masser the ditficulty of the myuisite cleration of the laval on the incmased depth of the ras, that somelom or oflee
the contiments beling to a former groat whole; for if we asociate Greculamd nith North America, it dons serem to be a piece that has been just crackeal ofi, and therw
fore if we join thi- piene to Sorth America, Eamope, Asia and Africa agpar to be a large man-s broken off from Girevenand and the eontimente of sorth and sonth Snar
ien, and that the present sate of the Atlantic ocean lies in the grest fissure
Looking at the map again we can see traces of the outlimes that lave mot ben worn away by the grea
erceton that bas taken place between dinculand and Enrope, and some of them are leelant with many other smalier islands, and sotue greater ones, as the Tiritish I-les.
The
The contonr of the western cosay of Normay fit- that

 the mouth of the Gulf of Mexico. That these contenal
 not be donbted, for the limes of the former bond are still Bay of Bircay on the Eurupan side, and Neufoundland on the Sorth American side, we find mubroken limes of
omall islands and shallow waters, and dancenas nev small Elands and shatbow waters, and dangernate noke
scarcely coreved with water. Off the jemmontory of the
 in the great recros on the ea-lern side of the two great
contiments of Xorth and soath Ameriea; that is that zast group of islands near the enoranse to the fint of Jexies, of whichkt. Dowingo ami Cubs ane the largest Now by placing there Gact- in order, me dowhe whatever can exise of the formuer contimuty of the continents of
North and south America, the lange land man- of tirexirland, and the continents of Europe, Asia abi Mriea. and Sonth Ame rica, we tind the hoen of Prines of Wafth Caje at she extrenue mextern limit of Alakek, Mearly touchiag the extreme eastern limit of Akia al Yisi Cage
 eala in North Americas to the Reninoula of Kameloatha in İuska in Asia. Feriape Hue meet simpular boont has yet to be poticed, and it is this. From Jajoin on the an imnente belt of themsumbe of islands extemis from The rastern eides of Asia abil Australia nearly to the Ameries, and if a gencral contone line is made to enclose
 have at sotse periud in the past bern parts of a great
land whole that lia- been divided by aome agoneies ue are mow seeking to theocover:
oot be mendone, marl itat is that the comefosion that canthe earth conld out be confined sithin narrower limits thas the preeent onex, and if this is on, we ask what land mases, for it we maite the continut- by land thas displaces the Atlantic, Pacibo and Inclan cecans, where would the waters of these seas that are the ehief weser euguiry no reply can be given, anlese me diseover that the land massere
65. The Axes of the Rock Waves.-To find the canet of the lonet lines, let as look at the map sain momntain Rystems of the Lat mastes is north and wouth, and from this
Ereat monntain myetemenernl direytion of the nxes of the are moving rousial she globe eilher from eas to weot of
from uest to vast, and their advano is glow and majestic, but sure The canse of these great wawss is a
common one, and is, modould, the resplt of thr cooling and slarinking of the earth. for this shrinkage wonld camee an acceleration of the earth' motation, of the will temil to give this mase a greater angular volocity than that of the fnterior kertiel, with the mexult that
this belt sill buckle and adrance vasward, making the
dimetion of the motion of the rock waves from west th
Thet The nock matter comproing the dry land will then simply have a wertizal nusiono inese fet of one of transta-
 of the rek uaves the thand lims mil owcor just as we
find tlem, and the contaurs of the contionets will there fore ariee chielly frum the parallelism of the axes of
adjacent moch waves. That thin couclusion is correct, is capable of puraf, lecanse the giant march of these naves is prowen by the work they have dome in thihting up he -tratified rock- for in niowther way coald these rocks

 and be arrangod by latsimatina, as is the trugghe of the
exck waces. We now oco that the very exiskeno of the
 waves, by which the thuer of the sea his lecen repeatedly porained and deperevel ; and is further con-ideration of we examios it sevtion of seat memalire strata, we find that very scratum in the series tells the story of its

 the times between mhich the statativning tyrata mere the fitmes
deprisited.
66. The Effects of Erosion. Thie stratifiax rawlis Hien, ane the month of a a that callee than mesy be stushe amber the heakls of erosion and errise montion. The crimet

motion ue huxe just consalkered, and now, the refors, lee as briefly motice some of the effects of eromom, Fig. Io
intereds the as a very sharply defined example of the
 molton lava, and ufere the by pee of hotg ager- blee -corio Has lneen eroulerl abit the contents of the lava dy kes thas

and, therefive by as still greater to weralixation, we ees that all the various coust limes of the great land maseese are rugged and indented in the proportion of their poner
67. Hot Water Discharges.-In onal mining we deal with the eonsideration of rocks that ane oryanically derived, for such are the cost scomes, fut in metal mining ue lsave to dkal with rocks that ane chemically derived,
 ores, mane-ly their solability in hos uator, ue ibtoxlome Fig 101, Nom, the prosece of quarts imblates a
 olved salica at onec lozins to erystalize ont in a pelatin-thi- isustition, and on further conding it solichitions, and hi- is exemplitied in the rongh cone-like mass of silies

 The earth's cruet, do we lee content with the dealactions for the lawx of operation that compreberal the whole of lose facts.
68. The Recapitulation of Facts. Q Q E 1. What Hought netrike yon on tooking at as may of the world?
Axs The themght that ctrikes me is that the land masses of the evontment- ane bot fragments of a onee grenter tans that ibrlobist thesm, anin rowernd the prex-
 Axs The jeportimate area of the dry lami has mever been greater than now, and on the wher hamel,
the propertionate area coverad by nater has bever been leke than now, for if the lamd areat was ins beverd, and the mate and redond. Ine elevation of the increasent to make a joybartionate depmeeton for a skpphto of the Nas, far exocding what coald take plawe sithout the
mater paring into the beated kernel of the varth. (2) \(1 \times\) Wh Whe is Ihe dinction of ther axes of the Ava, Looking at the majy of the workl we see that
 t21 B. 4 . What is the problohle cause of ther north atat
 direction of the axes of Ele nek waves is Clee vorimking
of the varth, amd the consequent stonetening of ifs diameser, by which a portion of its limas velucity is
 to a relative wivancing stran that provaces ther mock wavee. The atvanere of*a dlow to te uprained on othe of its sides and deproved
on the oeher, and the canse of the direction of the ases of these waves in to te fonmi in the fiect, that the wass
 then otratified rock-
ame-Ther two monler of peolecrical action that lave fornenced the weting seratitied treke an firm, erosion, revalting
 alternatedy raiexl and depn+owl
Ceves th-In \(u\) lat way has bot water been an uetive
 frad water, ami umly partially so in cold water, anil therefore, where the compoumds of the metals that are hes pules, bresent in the rocke that wore traversed by abil depoeited by ervstallization in veins io adjacent

\section*{MINING METHODS.}

Dust Raised by the Wind-How the Clouds are Suspended-The Classification of Mine Dust. Recapitulation of Facts.
Erratum. In the recipitulation of our last lemon
 as fullow:
 chise of spheres are of the sane material, umi that in the weighte of ernitente. Far "xatumes the limiting

 is 1 fout per second. raieed from the road by the nimt becomes as saloject of

 that lifeed loy the air curnonts of the mine is that of
 İS is in illistrution of a dus clomet, not let os lirst motioc that the relocity of the wirnd bear the groased is
lower than at higher cherations, and thi- in the renit
 is propertionate ti the- leageto of the slantest armow, anil is and at velocity is slow in increster is the prom watching a dinat clonal, loe highoot otratam, as that aboty
and that portion of the elond above \(C\) is seen to con-i-t of men and horess, and the slake profuced by trains of of langer ntes, and looking lower at the convolving duat and above the levels \(B\) and \(A\), the farticlesappear much larger than those atome and if wo mateh the surface surpt by the breeze, we will tiod that pieces of paper sticks and strans are swept along as mith a brush, but nerer rixing to a high elvation unkoe the rpeet of the aind is at a dangenme velocity, and then prome of the
mods of livanse and other crections may

\section*{\(=0\)
\(=6\)
\(=0\)}

\section*{Von. 12x}
 the clecatoons of aboit sax grateo of dust, bat the particles are so vartons so size that they cond mot to \(a\) if all the fine particles were above the line \(p\), but that is no4 correct, becanoer before they reached the higher elecation they moe fram a loser one. There are, houever, partiele, makr fothat cannot riee abov, Cor \(f\) or A. The chaser if the-limited elevations that characterize the particles of different sizes is found in the varying velocity of the nimid, for it does not move with a constant and inniform celceity, bat blou- inguote. and therefore the grower partickes are lifted by the highest velocity of the gust, and never reach a high particlev, mith a n-latively large surface area of suspension, move npward and onwand to greater elevations.
tor. How the Clouds are Suspended. The cloudconxist of little wuter protres that are so small that if a relatiovely large hall, and vet ther partiches of water dose that make the different cloot- arv of different rizes, and we ue may expect, the emallest partictex ane fommit in cirrus or white feathery clonds that sar above the flight "f the sagle, are cotbunsed of smaller partiches than that fleat at a hevdium clevation. Thee cumulas choulare offen taken as the procuren of rain, but the nimburs is the troe rain cloud and it is either poodneed by the oppozition of winds that eross cuch other's path, widd in dong so make the partiches of the cumolns elouds collide nith each other and exale-ev as rain drope, or the cumulos clouds strike the sides of moontains, when the particles coukece and form nimbas clouks. We ece matter whice large that they ane essily lifted by the air. Fig 13

fully suetaine flew cobclavione arrivel at in relationt dust parteles, for lute ue have illustrated the behaviot one prrice the 18 -ican of mater that, that hos beet promberd by the condensation of steam. The uater sizes, becanse the water of comblensation in the evlinden will be ejetted ar spray, the condensation of the deam is it passed throngh the valves amd stema ways will gebemat- particks of many size, ami furtber, the
varving velowitare of the steam whon exhauxting wil affect the sises of the partickes prochexd. Nova, as the result of the exhan-te=l gartiches being so different in kize, when the steam is hlown out of the funmel uf a bifurcate, and trifurcate, jnst as the illnstration indicater: for the lwavy particleo form a bottoan prong, as at i,
 and the lightest particlos from the tof peroneg, as it e: to eve town that the differwht sixs of the particles clond of stawhe from a chimbey of here bitamiposs soal is burst, fursishos the same jfiemomensi, and to look at sach a clond when you kene the facts, makon them uot erons fargutten.

 the diagratm, and then proeced to show the value of the facts bere eet Lefore ta The little circles consaining the
 velocity o, in the sop trift, ismonly able to vappend ony time duas, white akng ther Hoor of this pawage a larger gaup of dus be wil to le slepeited, ami this du-t is (o) suepent it and therefon the mavemente of the fow
cans, cau-e it to
The current in the middle drift holds in euspension \(d_{1}\) and \(d_{i}\), and the dust for which this current is a little (oo slow is \(d_{3}\), and this lies on the floor, and in the cur rent velocity that prevaile it is easilv lifted by the treac tmen and hormex and the ranning of the cars
The comrnent in the bestom pas-age hoht-in surpension duets \(d_{3}, d_{2}\) and \(d_{3}\) and as this carrent is just a little tom slow fo suspend \(j_{6}\) it lies on the floor, and it too is easily raisel by the tread of men und the movements of the cars, and en we see that edel class of dust is raised by particalar velocity of the air currene
The objoes of theos leeeons on coal dust is of a threes. fold character. First, to discover a hat dose is; second, to tetermine the nature of the conditions under which it becomes suspendable in air; and third, to find methed of cla-ification by whicb different sises of dese particles can be aseociated with air currents moving at different relocities. The firet two points lave been deternined, and the third one now only meguine for its complete development a finishing tonch, and atter the conclusion of much labor and thought we mecommend the following tuode of clas-afication, for it is at abo simple and cornect: We nou know that the sixes of the largest particles in xnyp-nsion in a current are the limit-

ing ones for that relocity, and ot: the basis of this fact W. mow propree toselablish a claseification by the veloe sixed dusts are saspended, as \(10 \mathrm{e}, 11 \mathrm{f}, 121\), for dued arried in suspension at velocities of 10,11 , 12 , ece, feed per recond. Das las- been clased as Bocenlent dust irom colliery A , of I , or C ; but the dast froon colliers A might, in a test, be more explesive than that from olliery B; but had the dust from colliony E bern dmy ped at as low a velogity as that from colliery A . the Be dow from colliery is might lave been more explo. sive than that from collery i. It is clear then, that all dust shonld be classed by its velocity of maspension. or otherwise any tests made with it will gice varying re-ulte, according to the velocities from which it has been slropped. Again let as notice that the 12 e con tains all the grades that preceeded it as, I
cte., tete. Of to put the manter charly 120 motnet in considered an addition to all she gradea of duat below it Sow we have a guide by which we can direct our joulg ment to right conclusione
103. The Deposition of Coal Dust.-Fig, 141 still fur rent pares along the drift \(P\) with a velocity of 12 e of 1 bect per secoond,
and suppree it
halds in suchension \(H_{1} d_{2}, d_{2}\), of by the present clas fiction 3 Now Now plit into two airbays whow sec-fion- are equal to that of \(E\) and it Es clear that if the of the splits is

saken an half that of \(E\) then at hat she velocity the dons of 12 g grade will fall, zay at the points I and A, when

 -plit-theair will suspend grude of or 31 , bat as all the phlts teanite on fi, the current will bou pase ob after having droppex all iss su-pended dost except of or Dir \(^{\text {or }}\) We are now in a pasition to noderetand many problems that uvald be puxxling when watching the behaviors of eral duas, and therefore let as now proceed to recapita-
late the fact of the loenen fate the facts of the leweon
ro4. Recapitulation-
to4 Recapitulation of Facts,-Ques. 1. Is thet velocity of a wind blowing along a road as high near the cround as abore it
Ans. The wind
Ans. The wind on striking the uneven entace of the ground is reflected anol deflocted, and therefore is stratum of the chrrent near the groand has a lower velocity than at a higher clevationt
Quee g. In looking at the dast
Qrack In looking at the dase as it riecs above the Aronial, What dor you observe.
tris a more denee at the
 bure than two or three feet and then drop or an- suept
alone at a low level. alone at a low level
gonaz. 3. What do you obscrve at the top of the dast Ans.
Ams. I observe that the particles are very minut the volocity in bowanee of thoee near the grouind when

Ques. A. In what respect is the mix
particles bifferent at different eleratione? Ans. At low elevanion lanpe ami saat particke are muxed, whereaz at higher clevations only particles of a \begin{tabular}{c}
mall grade are seen. \\
Qass, If. \\
\hline
\end{tabular}
merded? Tin partiole of wher that
Ans. The prarticles of water duat in the clouds are auperted by their mlatively large kurface areas of sumpension and are sabject to the operations of the same sav all other duet particles.
tques it. of what aw you remibuled when vou look at the cirras, the cusublas and the nimbus cloads?
Ans I am reminded of the fact that as the cirrus fouds are saspended in an atmosphere of about half the densaty of the air resting on the earth, the particleo of uater duet that compoee theee closuls are like the very one particles of coal dnot sarpembled in nearly still air, thid that the particles of a commlu- clood are hike parair curnents. and that can only be suspended by switt amenopentable in the reducal velucity of the wind like the heavy coal du-t that only rise with the shake of a pancing train of mime carr.
Qoes.7. I- there any law associared nith the pecaliar appearances of the convolving clobsls of steam escaping from the exhanst pije of a steam engine?
Ans, Yes, there is a law relating to the stratification of the water dent of the conden-ed steam, amsl it is this, be langer partieles arrange theowelves like a tail phoc eeting irom the buttom of the cloud, and thes the clood is somestimes hifurated and and at olloer times tifareated, ucconding to the prevalenes of the grades of the particles.
quek \& How may different grades of dast be clasAns. Diffemat graderof dust mar be claseified aconding to the velocitios by which they are eu-pended, as Quex 9, What is the object of these lessons on eval duen?

The whject of theap haenotio on cmal dinat is to there of the character-tica of cosil de-t and the inst shows कlizut coal hase is, thin gartiches of dust are smspended in air, and the third show how particles of different sizes are saspended by different relocities of the air currente.
Ques. 4 . How should samples of oal dast be abtained to kest their explosive chata-tel
Ans. Namples of col dust from different mines sbould ke collected on the floors of airways where the ventilating currents are moving with the same velocities

\section*{Mining in the Caucasus.}

The immenee supplies of fowign capital which have of late year been make ayalable in soothern Rowia have atod brought into praminemce the mineral pomsi-
 moremed. cereral akew ventares are at present in more or less inlvanced stages of installation, and mone inictsor conterypation. Oos eynticate is goang in for focksistr mining, and at its instance the variocer xpert. The bing examumed and reported upon by an experc. The Crown works at Tachatoch will agrain be got in operatnon, and mining rosarches afe to be imotiof the desirathitis uf an incruse ing upon the queston head ore, ow berrof Canca-an mines ange that they have never applied for this, and that they do not require it. The ore deposits are son easily acceseible that bo such protection is needed; what they mquire is an improve. ment in, and an extension of, the means of traneport. ubich are altumet excr where madequate, and in many parts almuel wif. This cannot be done by private initiagive, anal it es experted that the government mill ere long move in the mattes. Thew ane eeveral striking examples if excellebt ore defrefts remaining literally
unbroken for want of means of thansport AI Ibe Dage unbroken for want of means of thansport. At the Devechat monsiam, for instabe, there anc vast deposits of
zime and leat one right on the surface which canoot be sine and lew ore right on the suriace which canoot be ittilized, although the distance from the Dlack Eea (the
 the ecost, a monntain ridge of \(8,000 \mathrm{fL}\). in leight has to to pasod. What is replated is a tunnel t wo miles in lomgth, but, so far, bo mobey las been forthooming for thin purpoee similar instances might be mentioned Where the aloence of railrodeds or otber means of communization alrocet completely ntopes the development of
mining in varions parts of the Cancasus.

\section*{A New Scoop Bucket}

Spenar Miller, engineer of the Lidgrwood Mfg. Ca, for a novel form of ecosp bucket, which has been homazhly tested and has pinwel entin-ly satisfactory in reme end sums. It is rmplovet on at gillewny. Tho nurket i- lowereit to the tow of the salldhank and the farriage in run ahesal wo that the slram of the hoint rope is approximately parallel with the slope of the hank and the bueket is stranil ups thereby filling it. If the naterial be suft, the luoket will fill withoat maidance, beat in bander material the hackes has th be gambed be a man following it. The hoeles is then conveved back to the place of dunuping ant bo virtue of lownting the burbed it is averturned and the lead spilled. Mr. Miller las also had amelur patenf snonted him fog a novel
form of arial dumping devioc

\section*{Coal Washing Machinery}

Mr. Walter M. Ntein, of Stein \& Boericke, BAd, 325 Walnut si, Mhiladelphen, informs us that his firm hase Fevitly elomed contricts for a cery complete coal washcry of XKI tons capacity for the Jamison Coal Ca. of breensburg. Pa., and for romouleling a 50 ton lignite briquette plant for the Texas Briquette and Coal Coan
gasy of sain Antonis. Texas.

\section*{Miscellaneous.}
\begin{tabular}{|c|}
\hline BENARES THE ANCIENT \\
\hline twonty eenturies ago, whers Rape was nod \\
\hline chen Athens was in its \\
\hline nder, Jbenares, uns the moble Gatnos, exerted a migi \\
\hline \\
\hline \\
\hline ries from this center to Ceylues China, Japan, thar \\
\hline \\
\hline warl, faring a powerfal rliginas and polit \\
\hline Bublhism sycommbed to Irshmanism, Jeavin \\
\hline \\
\hline i- to the Mode \\
\hline tos the Hin \\
\hline The city is brated alone the crost of a bill, over loo feet \\
\hline bowe the sacral Ganges, tor three miles on the shoptug uest \\
\hline nk, palsocs, trwiples ami mo-y \\
\hline nachex, ami minarete, nar thesir irtegular tope Ai \\
\hline ghte of stobe staiss, interrupted loy wide platf \\
\hline \\
\hline d \\
\hline \\
\hline or countrixs, in every staup of drow ami umi \\
\hline acnue desite is to plonge into these holly waters \\
\hline rtakes them. These pigrims are not all from \\
\hline of niddele diases but incluele every rank of Indian meriesy \\
\hline rajalix, followed by loner r \\
\hline lants, to the unxighty lowkins axhos-coveren \\
\hline the miecrahle deformed begzar, and from the little \\
\hline d girls to the aged zramifathers, bitted loy leareen \\
\hline cam, all bent upon dipping in the mothe \\
\hline \\
\hline Sany of the Wonws and girls garry wratho of a hife and \\
\hline ir facs towatl the rising suth ant \\
\hline eir pragers, the zarlands are broken into pieces \\
\hline apon 1 \\
\hline ith brice jar*und other weowls, in which thoy carry auas \\
\hline cir slistant bothes mane of the booly uater, ant ezoplayt \\
\hline the temtiles foom ecntral and saitiern India are \\
\hline 骨 theit leather water hase ohich ate to to tille \\
\hline on the \\
\hline \\
\hline (ong the rixer lank there are not low than fifly of \\
\hline atol magnifi \\
\hline \\
\hline mospacs and soaringminarets. The \\
\hline e rivers ane sapforsed to meet ond \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
 pass the shat where Vishan doz his fimpes welt. o her tioblen Temple,
cily known tlo w
ing Ghat, where laclics are hroasht from all over Inalia to th bathed in the Ganges, and then creroatel on its lanks chat, ami scoral corpers, wrapgrat in white dith and lastied

 away.
There is, living in the mosatainuse parts of the Moyst

 There is in very pretty atel withal it very straxer liazril
frabsl in ovveral localities in the Mogave choset, whish has

 (arther morth than Lowcy Califurning lum ment expleration-

 cic tutal bagth over all masaring warly tiftern inclurs in an There are at leas threv species of hornal bust livirer in Gaval ves the wret aml which is ol well known to cuery bos the sierra foothits as to be almoet inclumes ase one of the
 very -imilar to the one foumt is the intaint vatiens bat is of
a lighter cotos, atel the arramsemment uf the lifferent, The coloe may vars, hwover, from a dall white

\section*{A WORD WITH THE DOCTOR}

The muixtare of the ege is a genaine solvent Staby pet

 cueen the te-ih after a meal. They may be rwored with
 Guring the Hesloy parts and teaviog splinters, whirh in eome

There is mo better aid to difestion, in certain casec, than he cooked afple it is a rocoghition of this truth-thuagh
trobeless the remgnition cume tefore the trath was fulls
 make tronble with the slige-tive power. The derangements

Bcap tecl wu the hair is apt to make it trittle if anc is to

There is bot one way of getting rith of blackluath, and that

 onest of the ofening, Which insmediately fill, up asain, eati Hackheals bay bot culy lee remored oxtlowat leavine aby

 he besask, the saboe triatment is mogined If

Perspiration of the feet sonmetimes anomats to a bant a dis morning, is scala ani water, of water with Heci, mighition of

THE MESQUITE TREE.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{saging in the arhl regions of the suatho} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{is kept in an sartheo jar, or ofla, uFan the hop of the houre, \#here, by means of the mote rapol exaporation, sausol by}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{this direct exposure to the stris rays, the contents of the jar} \\
\hline \multicolumn{3}{|l|}{explainesl by the fact that the only fimber thromgh mueth of} \\
\hline \multicolumn{3}{|l|}{that resion is the moquite, a low-growins shruh rather than} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{tree, the roots of which are very hard and make an exeedlent}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{fuel. For a whole winter I have been warmed by tbens. booken anto little pierec, for they are ton britte to cliop imid}} \\
\hline & & \\
\hline
\end{tabular}

 till weave it into baskets.

NATURE'S PLAN OF DISTRIBUTING PLANTS WITHOUT THE AID OF MAN.

 turfance was the islami volcamo of Krakatma, which emsitted
modtea laxa amal harnimg bshes in such alomatare that evors

 vereable lify abl ,s making a clowe cxaminatson lue di-

RESIDENCES IN PALESTINE DURING ITS GREATEST PROSPERITY
\begin{tabular}{|c|}
\hline \multirow{25}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
and

\section*{THE CAST OF A BELL}

Thu aperation of casting in bell is a mine intersting ,ane

 walajes
the lay
Thom in

 The catimuane" =wegt' In the fiemere, as appliow, hoth it tow iof materials, \(x\) that when the exteriof motel is shancal

 Ther tuo mart- -a the thak twime plarvil tuecther are firmoly

 pouls the furnue is bupped, 1he bright streate caselt in

THE STRENGTH OF ICE

\section*{SALuting the flag}

"What is that" I I uskel

 we heant the tomblex wandine gean, for yon monet kenmentat
 aluting, xain!

 Were satherel in hy the swose, and the last note of the

 leck, insl alf the bens shoald remecther, u lien viating a
 chaiges aluas- tliexat the faffrail slaff, ant raise the hat

\section*{LATE SUPPERS}

\section*{TINY OXEN}

\section*{MAKING HOLES IN GLASS}

WHY AND HOW THREAD IS NUMEERED

\section*{}

\section*{HORSE-POWER OF A LIGHTNING STROKE}

\section*{This Indenture}

\section*{New Inventions.}

\section*{MINING MACHINE}
 Fig 2 is a vertien section abong the asis of the main shat

 berats of the spercket \(x\) shaft 2 , whed 19 ant ponsms 11 aml 19, shaft of mar 13 and pinion it, whidh is on the staft of the urnatire is Thre ginivins It and Iz are jeovbled with

grutes in. These efrates are made in small sections so as to be
 bain karx are roked. Esels main bor is provided with at armin If, ly mhich it is cobuected to the raker shat is. The
 the fire. The sortions are cisily femoved thengh the farmane theor, nithut taking thoun suy partof the apponatus. The clinker, of to dump the fies

\section*{PUMP AND ENGINE VALVES}

 nay scotion of the same. The values E'anal \(D\) are maik in paim, ansl n hen in u-e, noe forms a sent for the vether Ibsth valyes bave bat in urposite dirathone the mevary throw is thos onchaif of that ordinarily requiret, amd the openimg

air nompressons, anal for teve in triple +isparsine -tvan cughines, ete. The drawing shuw. them, at nised for inket ami discharge valves in as pluturer pamp. The bearitg of the vatce \(/ \rho\) upen the cytinaler is only around the celyes, anit itere are no ports eljer of the wherl to The frame 5, uhich carrics all of the cylimber cartina

 ont the doce 18, which is aftached to the emb uf the main -haft ". The rate of feed may be shatmed by shining the frie tion

 rately as tesiect by manipatatius the fool livets, 21 , 22 The cutter chain is peor inlel with tovable fircel entters, whels are derigned to cut in ather ilinvetion.

\section*{TUBULAR ROCKING GRATES}

No, 2S4, Whi Jons I. Wurck. Wise Remouon, Wos. Rurpeberal arramgecment of the Erate lars: Fig Z is a eross se

trunnion 7 at the front eonl and os is bollow bearing 3, at the rear veni. The nir blast is forced thruaght the pipe 2 and loax A, into the interiorof the grate tars. The air e-tapnesthrnugh

\section*{COAL WASHER.}
 tie al is a vertial section, at right ansle to the tho therion tof view, anel Vig \(\delta\) is a monlified form of hase or diri intcler

 it overthess intor the zutter e. The smal to loe washoxl and

separated from slate is fol doun the central tube if. The ug warit carrent of water catclies it ss it cocapta froen the feed
 f, while the slate simks co thac bottom and is causht it the bose \({ }^{\prime}\). The otject of the T bectot on the water inlet pipe be usel to stir up arol lowen the grdiment which sectlee in the

\section*{COAL JIG.}

 mot show in, simel the oateq which is betsenth it bo foroxd to sarce up through the material in the working chamber, and bock at ench stroke The bottom is curvel as shown to facilitate the morement of the water. The perforated plate which furma the

No. 556.739.

 froes the coal can make its way downward to the slate qute
 by the pmbations of the water up to the tip of the sliedorme. at \(D^{2}\). Here it is taken up by the comeyoe 22, and theliveret to the chute 2t. The slate noxl impure ceal whiclt is njested in everral of thee jigs, is eulleted by a suitable contecter
 little avol oogl a
fimally mosovel.

\section*{THERMO-EXPLOSIVE CARTRIDGE.}

 Through the ignitet. The maturials amel Fig for is a sexthon focerso are non-explosive absler all unlinary comblitions, ami fie cartritges cannot be exptoled by accifletit. They are of milh a maxture of abrat is parts by weizht of clatorate of mianh mith one of parathine of Other materials may be

 cartrider, aftef it is placol in the bers trole. to a lemumerature of atwent liep. This wealiens the cliefinical stabibity of the cmpotimts ant beings them to the verge of spontancons ile-

oomposition and exjalosion. When the charge has attained this eritical condition, the beat is soddenly turned into the igmiter 2, whoch matantly detonstes ami precipitates tbe expartridye may be variol froma part of a sevond to laalf an boar, tossut any variety of work, from artiller, to slow blastins. The heating is done by means of electricity, whech is sent thruegh orals of Germans silver wire embentied in the
material, and the imbiter is fims in the same uay. The material, and the igmiter is firvd in the kame may. The
material commonly u-ex to charge the igniter is voe part of wot misel dry with tive parts of chlorate of potash. This cartrider is well adapted to either simultaneous explosina in large bumbers, or to single sbot blasting. The materialo are sate to handle both betore and after they are mane ap into sith impunity

COAL HANDLING APPARATUS.

 contor get out of place or hecome jammet on thic hoom. The

main slecave \(A\) is bung below the cemter of the trolley, and the bowke is thus umberhung eatheiently to avoidscrikive the brom at any position. When the trolley reaches the
louer eml of the lowen it is stopped, and the bmeket descends vertically. In hoistime, the troklet rises intil it strikes the
 wut a stoppoge of pause of the hotsting engines.

\section*{MINING MACHINE.}
 of the machine at work, ant Fiz 2 is a merkonat conl view of
 The croave absl the tat of thelar is armets with a fair of

Wrats of cfanks of the retical shate 3. Mais to fartmol hy Morans nf a worm wheel which engazes a worm on the main
sleece 6 Thas the cutters ame given a shearine and ratary motion at the same time. The machime is draws aloug on the tracks by mesin= of rope ami block, the rope being uround ing \(y^{3}\) and a woem \(\%\) os the formard end of the armature bet. A quick motion, tither way is obtained be otening Coe clatch of the drum and coupling to the shaft, which westing the truck wheels by means of cranks \(y^{2}\) and side conmeting nol- of A sorg, f having a conveyor inside of it follous close lehimal the cutur lar, and remores the chips

\section*{MINING MACHINE.}

So, 557,141 Eowsen \& McKist, ©, Desver' Colo Fer-

 type which is urmed with eqtier prointe and is forcerl loroad-
 chains not shown, which remore the chips made ly the cutters. The shaft \(月\) and \(I\) are itriven by chains 15 abll \(N_{\text {, }}\) Troms the shaf V, which is geared to the engine shaft \(\gamma\), by
 to the erank shaft at the rear. By this arranewment the

 the pipes J. The main frame is coms. inders \(t\) amithe ross zirts 5 . whirh
ire coanectal wh battom by slow lar- \(B^{10}\)
ramed pouder chamber. Fig. 2 shous the deviee used to place the fuse in prosition. The wires are insulated for
a short distance only back from the fuse \(/ 1\). The bare wires

Fig. 1

GRATE
 Pubutaf Marce 3 jok. Piow. Fig. I is a top view of thowing the erate hars in position for ondinars use and Fig. 3 show the pusitions anumed by the lara When tweked. Kach bar wak- ont Trunnionse ulich

 and the istermediate bars ane rocked by moans of

Fis 2

 withlrawn from the wol by hanal feot. When the cutcer lar hav leen enterel to a proper septh, it is given a reljgrocating with the chotick jaw ? C Thras are retipromitat bygugise it hith the rhack jaw io Three are retipromated by means of

PLACING BLASTING FUSES

into the bore-hole until the fuse \(/ 1\) hangs down in the prow ler-chamber, as slown in Fig. 1. Then the explosive matcerial is put into place in the notnal way, ordinarily bary,
ins the fuct therein. Then thetamping material 7 iorammed in and the apparatus is reatly for the lifast it will be ween that the roal /b beiog stiff anillying straizht along the loitom of the thacting will bot interfere with the reaty mastion material, which may ler oomeniently rammesl inte place

 in inserting the blasting clarge and the tamping material
 CRUSHING MILL.

 angle of atowat \(65^{\circ}\), amo has a comsave face to suit the onvex

Tim of the zrinding rolle. The roll- are bung by owing links

 atriver, lespother with the Inplper II, is fistergat to the stecve Fand turns with it. There io a fecol spoat S in front of tsels resler, and a scraper \(f\) in the vat The maller spindless are thpped and well potexted seainst the entraroc of duat into

\title{
The Colliery Engineer \\ AND \\ \\ MMETAT IMIINFR.
} \\ \\ MMETAT IMIINFR.
}

\section*{IR0N AND MANGANESE.}
the great cebolla rifer deposits.
The Location, Geology, Topography and Development of the fireatest Beds of Iron and Manganese Known in the World.
```

Written for Teg Columev Fouakkek and Mictal Mines by Foof.

```
. During a reent trip to Gunnison coanty, in northneliere to be by far the grated deproits of imon and manganese at present known in the world. The locality as well as the deposits, have been bot little known hith erto to the outside world, owing to their distance from the railroad and their not being near any considerable
market. The Jocality is on the lanks of the Celolla, market. The locality is on the lanks of the Celoila,
about a mile below a mamber of cold and hot mineral pprings, wer which a rustic "resort" has been located. The fills on either bank of the Cebolla (pronosanced Cevova) are capped with a light coloned rhyolite lava,
and dykes of the same occur cutting op vertically thifuegh the river banks, indicating the-original sources or fissnres from which the lava issumd.
About a mile below the bot springs the lava cap on
the east bank terminatee aboruptly at three lofty and the cast bank terminates abruptly at three lofty and

\begin{abstract}
the iron and ste
over the bills.
Paveing aroanal the corner of the muantain whene is separated from the next bill by Thel Ihorita creek, we climbed up to an opening tarade abomt को foet above the stream. Here the open quarry showed a face of 23 feet of solid ore withoat any ascertained limits. This mies manganese, yellow with rust from oxidation since the quarry nas opened. Fermoving this crust we find Geneath it the massive dark manganese, Numenvas litlike mangancer, which on fracture, showed a madiating erystalline structure. Some crystallized lime or calespas in also asoociated with the ore
Mr. Lewis stated that in this quarry there was aboul Obe right nataral combination of iron, lime and mangances to make spiegel iron nsed in Aterl making. A errain per eent. of phosphoras vecurs. There is abous at a coet of 15 cents per ton. A few lownlred yant further up the creek along the base of the momntain mi again climbert to an opening aboet 30 feet above the base where another open eat into the hill, 40 feet long showed a vertical face of 25 fret of solid ore without greater portion being of solid steel-grey manganese of cavernous crackly natire, full of enall irregular cavities somectimes lined with erystalline calcspar. At interval of 50 feet above this are two other cuts in the same expoesed ore and this practically continues to the top expoeed ore and thin pr
the montain, 500 fext.
\end{abstract}

25 por ont iron, the rest being silica and calcspar. Aboze the mine the ontemp of the cap rock on which
they went down is been. It look-like a hown wand-tome travereal by thin seatas of white calcepar and patches of iron and mica. Wherever this cap roek of calespar vein oaterops, which it does very genenally over the humatail, a hesavy body of inon is sure to be found below This quarry nas within 300 fec of the top of the of this hill above its base is 1 , 110 fert. Along the saddle joining this hill to the next, cap rael and prose pect holes, all on solid mangane-e, occur for quite a dis-
These hille seem to lave a sort of nathral division of the ores. The eastern slope is one third manganese, the western tav-thirils is of iroll. Fhospboras in these openings on manganese, Mr. Lewis kaid, was moe chemivally cimbined with the ond tom rather contanticd in the ang agencus.
ast bill年 Mr. Lewik said, at per cent, imon. The lower portiong of this hill shows the peculiar fringe of minarets and pins ancles of calespar or tavertinc we bave before alInded to.

The geohngeal origin and history of these vast deposits of iron. manganese and culcspar we think is as follow 8:

beight, \(2 \frac{1}{2}\) miles in length abrout one-half a mile wide, and their bases covering about 200 acres
These bills are momatains of solid iron and manganese, mingled with erystalline calespar. Their prevailing color is a tawny red ; the upper part- are covered with
fir trues. Behind them, to the wast, and bordering on fir trees Behind them, to the wed, and bordering on ousiron. This hill is grever looking than the others, and the line where the titamiferons iron emde and the manganiferoms begins is exceedingly clearly marked by a line of color
We firet examined a sanall quarry where the titanic fron came down close to the mod. The grey maxeive iron was mingled with streaks of trown maca and green, somewhat bornhlende or pyroxene
may be hornblende or pyroxebe. and iron hill and studied a typical outenop expoeiny and about \(\left.\mathbf{2}^{2}\right)\) feet thicknecs of the oncos near the mateide The appearance was that of horrible, rough, scraggy, black and ruaty material tike clinkers frestily throw ont from a slas furnace. Streaks of brown mica neessionally ran in and ont of this, together with patcte and veinkets of white crymblline calearar
The depoeit was fall of roughstalactitic cavities. Underbeath some 20 feet of this "cup rock" the dark
manganese proper begins, whoee boetom, contines, of limits have not been reached or determined. Much the same typeal formation continues to the top of the hill remarkable hills, and who is an old and experienced iron master from Miscouri, and one of the pronevers of

Crossing the Del Dorita creck we uscended the next iron moontain passing up over similar iron and man
ganese deposits as in the precoveling bill. ghese deposits as in the preco-ling hill.
At the top of the hill, forming ito creet, is an contero of brown eap rock ealespar. Crossing this and deseent ing a fen feet on the opposite slope we found quarrie bowing solid manganese and inon mixed with a fait Imount of cale-prar which would act well in flasing widely parallel zond calcepar on this hill oxin to lic in 100, (0) tons of mangunese used is the United slater only 6,000 are produced in this conntry. The rest is aported from the Cancasian momntaine and from the b-band of Caha, nhere the keads are only four feet wide, merce is from small leads in mo way comparable with these vast deposits. The ore in these quarries, Mr, ganese and 12 per cent imn and 12 to 14 per cent. lime anosher good combination for spiegel.
The lower rart of thix hill for some feet to the base shows onteripa of ealeqpar standing up in little pinnacles mingled with deposits of iron and manganese A deposit of brown jusper about 50 feet thick came thes op of this hill over an were or so, Kouth of this jasper another remarkable body of one shown in a cot whel rats had made a nest in a crevice in the shaft. Here is an upen cut showing a face of 20 feet of cap rock caleapar by 4 feet wide, all in solid grey iron, showing neithed fotion nor lateral limits, in fact 40 fees of ore rumning

In the first place we must remove a popular fallacy as a the kuppeed molten origin of inon dypasits in gearor luelle metion. The ores are nat she praduel of fire tuat they an not nor ever were in a molten oultition ike fava They are ke bava They are the proclucts of water and that in a
 the Ceholla never, which are daily depenitime both itum and mangamese and calcepor, the same components as these great hills
Though noe the direct result of igneons eruption, the bills may have un indirect relation to sach eruptive agencies. We have obseried the prevalebce of eruptive lykes adjacent to the iren and to trachyte ind fou- and og at thoee lille. Hot speing or solfataric or zeyser action, together with Ereat variety of hot or cold miberal apringe, are the efforts of voleanic activity. It was soch solfatarie action that decompossed and leached out and releposited the ores of Cripple treek aifer the eruptionk of ambesie veins and ore depveits have been formed in this way by solfataric or hot spring netion
akn>er.
We hat a remarkable instance of this on our trip the ore deposits of a mine called the Mammoth Chimney have evidently been sleposited, in the form of opal and

several inches thick, and forming mat-like coverings in the rlaggish owerthu channels, show the action of plant ife mos clearly. The bucc-are layers of membranelike material carry minute little erystals and stellate acerctions ncatteral about in the plant tissue. These grow into snall pellets that uniting topecher prodoce firan layen Thin lamina of carbonate of lime also form between the membrumes and a compact deposit of iravertime results from a combination of the tro.
"The hot springs and geyeery of the Yellowstone ane
surrounded by large anas of siliceons sinter (opaline quartx) that often entinely cover the floor of the geyeer ba-in. Skot the spuating vents this material has been
tnilt ap into monds and cones of tminne forms and brilt up into mands and cones of unique forms and grat beanty. The more quiet pools have built up more or less ngilar monnds of white sinter which are in blaces as mush as 20 fee in height above the surromedhig leve. Besides there dejpesits the alkatine zaters of the geyeer repions have left deposits of silica wherever they lave Nowel, and many gruare miles within the rark are covered by white and glistening deposits of this
materal. Ieposits of siliea are formed about the materai, meposits of silica are fonucd about the ing a true peyserite and this cilica is erparated by plant life by the alga, that abound in the hot waterg of the region, and by this agency by far the largest part of the inter depmeitn of the region have been formed.
This algous wgectation with its varied tints of pink, yellow, orange, red, hrown and green, alorns the sloper
of the gevar cones, flushes the white silia of the little of the gevser cones, flushes the white silica of the little
laxins with its tints and marks the maternayy with ite brilliant codane. It is ever preeent whem the temperathre doek not exceed \(1 \times 5\) F., often lining the great howls of the conder springs with leatbery shecrs of
liroun and green. Where it constant overtion prevails hroun and green. Where a constant overtiow prevails
the channet is filled by a vigorots growth in which an alge mat is formed having the consistency of a firm jelly, ond most beantifully colored. In whatever form it is found, and no matter how brillianty tinted, this algous material, if renwed from the water and dried in the hot sub of the egiotss, mptaly hass its color, khrimbs it seizet is not one per cent. of its formmer state. Chemical werat is mot one per cent. of is former siate encemacal
\[
\begin{aligned}
& 8_{1} 0 \\
& 11,0 \\
& \text { Organie matter }
\end{aligned}
\]

\section*{40,37
4,17}

The growing alge form a jelly of hydrous silica; of This the algee filament- ane formed and the algar slime is a hydroas silisa bioding the threade together. In the case of siliceors sinter formation, alge growing in the Wuters choke up the chamel and canse the main sopply to to diverted. Basins are formed by the algous gromth
and in them pillars grow on from the bottom, often a foot and in them pillars grow op from the botton, often a foot in locight. These incwasing in number hatly fill up
the pool, and their topes machine the surface conlese and roof over the basin antil ber waters becoming clooked reek other outlets. The yradual lessening of this smpply of water cau-ere the Gmat desth of the alges. In the cool maters that fill the space between the pillars the bydrous silicu tegins to harsen. Aisled by the acids of the decomposing vepotable matter this process is water to forma coral-like coating, and finally the former ost algots j-lly becones a hard tirm rock, Eventually licersions of the hot waters build up another growth upon the ofd one and thas the channel, swinging around mowthr and new depusits of slica.

The importance of theoe plait
ane to prowths in building Pa wall 0 the. Wre fiet in thickness is exposed of which over 12 feet is rewognized as clearly of algous formation and the romainler of cemented fruguonts of weathered sinter sinter is formeal by evaporation very slowly. At Fireterle gover hasin ome-twentie-th of an inch a vear is the maximim. Sinter, houever, formel by plani life may tain a thickness of s inclex a year.
Datom beds aecur in the park in cool marshes sup plied by bot spring waters. The resntting diatom earth siliea sparated from the waters by decomposing vegctable matter
The manner in which thece minute boe water plante prosit lime and puarix and so in titue boild Hu tiny cumal peos is ns monderfol as that by which
 buhto up the great ooral reef

\section*{The Dodge System of Coal Storage Chosen by the} Erie.
The Erbo Failroand Con, after carcfal investigution and the evosalkration of a mumber of plans, have contracted
with the Woulse Coal Storage Con of Philalelphia. Pa mith the Dhelse Coal Storage Con, of Philadelphia, Pa, Gur a liso,00M-4on stovase phant at Fast Buffalo, N, Y,
The weal will ber stoeked in nime divisions or niles each of alout 12,00 tobs capacity. The plant mill be constricted mider the patents of the well lnown Dodge systent, with the latwa imptrexements, incloding a complete haulage syscma for handling the carse The efficiency of the Doilge system is demonstrateal by the fact that every railnow using it ham contruted for a seoond plan
affer mone or lese extended experience with the first.

\section*{Hoisting and Conveying Machinery.}

Mceare \& Flory \& Co., of the Ramoor Fonalry and Engine Works, Bamgor, Ia., report a flourishing busiDess in cableways and looixting mawhinery from various carts of the continent. They are now at work on an for diatribution. Mogors, Which will khortly be ready their engines an improved friedion elateh, which has prowen to be an effective and hizhly appreciated appliance. It is so constructed that all ports are of standard sise and nopairs can le vasily aml quickly mames

\section*{HOISTING MACHINERY,}

\section*{Description of a Proposed Modification of the Koepe System.}

In your Fehrnary isene, jayge 105, yom publish an artacle on methois of mining in Fintte, Mont, is which there is given a description of the looisting appliances af the Anaconda mine, and of new hosting mathe most modern type.
I do not wish to be consadered tom sexvere a critic, luat
 machinery, and I therefore intontace sketehes, Figh \(1,2,3,4\) and 5 , to illusirate my idess.

Fige. 1, 2 and 3 show an old system patented in Burope Find ass, 2 and 3 show the syatem kmown as the Kreperse Figs. 2 and 3 bhow the system kmown as the Krepe sys comminat of one mpee for the 1 me cages, with at tail or conkibas of one mpe for the 1 mo cagen, with at tai or
halance tope attachevl molerbeath the eage, working around a wheet in the sump, we shown at . t, Fig. 2. By the symem and nith a friction lorake on ome ou louth cisle.
 rope never slipe on the drum. The halance nive is of ont fipe ansuers, is it has nothing toit its own weight to life. It effect-axaving in powerim lomisting the uejgit of the mope and a perfect lalamo at ait paints in the shaft, as against a variation of weight sturiag ditfenent portions of the looist unkler exoblitions existing in the old system.

Fig. 4 shows a nystem of hosting that was dexigned by
 arrangement with him was that I was to get half of the proceedl-, lout I have pover luarit from him since rip iol bovenuveth, han, in INa) I reromenemded this leet dovp and did mod laidwood, whos had a slaft fit fet drep and did not have power ebough to hovet I that the Mesors. Braiduond had patented thi- idea I have adeded to my oht plans she chater doown at and economical hoists in tese. Ichaim that with two mern whe on cach cage, three tons per minute can be lioisted from a depth of 2, Te fere. Fe. 4 shows a wectional rien ueed at well in a coal mine:
I claim by this system of hoisting it saving of the work of eloven men, as foffows: Five men on top and iwo men at ewh of the four landing- or levels, an shown on
 kst.on Next eomes tle saving in mine cars. Is an example, we will fake the proposed system of leaisting as Anacomda mime with domhle tleek cager, three care on a deck, baking for the two cager, six care on a cage, twelve cark. Then aseates six cars on top and six at each level, making a total of 12 mine ears suved by my system. The pies of the
is \(\$ 90\) each, making \(\$ 40\)
Now, I san sulistitute in place of the \(t\) mo men tor rible the cagor one man on top to open the case doons, which can lee doew by a systeth of levers, bat I prefer a strme thing as against mocertainticg, and therefore smpgest a matchet and pinios, as slown in the upter part of Fig, 5 A man can give one torn of the crank wheel anel raied both cage slonere in a evoond. The eal of on will then slide ont quiekly into buth chutes on vitber side. The doors can to lowered as soos as the material shi
and the cage is realy to the censl into the slaft.
and the cage is ready to theseend into the shaft.
The upper deck i, Fig is, is intembed for raen, tools
 to hold from four to six tons, in accordanec with the
capacity of the mine. A hoist can be made in, say, 11 capacity of the mine A hoist can be made ins, say, \(1 \frac{1}{2}\)
binutes, the Jowsing and unlouding of the copes cain cavily be done in half a mimute. Thingiven, with a rix ton box, thme tons per minute, or 140 tons pur hour
hoisting from a 2,400 shaft. This reyuires a velucity of

only 261 per second with a \(10^{\prime}\) dram. I have had hoists which worked at a velocity of \(35^{\prime}\) per second from a shaft only \(350^{\prime}\) deep. Now, with a change in the arrangement of the men, say one man on top of the shat and one man for each two levels, if they are oppoeit
the shaft, so that eoal or ore run be dropped into the chutes from either side, this man conld attend to the
 comperg and cignating, as uell at to the honding of the The eage with the steel hox will not weigh any mon than any other slabble deek cage, or at least will not be iban sny other thable
much move in weight.
much more in weight.
Tiv make my elselelies clear, I would state that Fig. 1 is an okt-fashboned balance pit ased to hoist coal of ore when water is plenty and when the mimemal can lne elevated and the water ran oent at a louer level. i Finter imos tank A A is mode to holet the weight of the fon umber the cages. The water is let into the fank
fom the top and let ont at the battom of the shafi: this is done nhile chging the ears. powerful brake is phaced on the pulley, or sheave wheel, which, lookle the eape at any foint in the shait, cither with or withont had. It must to understool that the water being empitied from the tank at the fool of the boest must have an ustlot eome place to the surfack
The clain underncath the cage is the same weight as the hoisting rope or clatin. The Koepe system slown in Figk Zand a was no same as the syxtem sloown in Fiz. 1, exerp hat a rupe is uact under the cago wish the wheel \(A\), it the bottots of the shaft, to guide the mope ant secum a perfect lalabce at any point in the stafi. Vig 3 fo the groumd plans, elowing tle shaft drom, brake whecls, palleys and a pair of "ngines with one turn of the rope aroomil the inam.
Fige t, which ilnstrutes byy plan, shows the engine, drum, bossting tower and end view of the -haft with evel-, thmping chutes and cars, aloo double deck cager. The upfor deck of of the cage is for meen only; the bower doek \(f\) is a steel boiler plate box, into which the exal or n⿰亻e is dumped as cach level by simply lifting the dooss CC' with levers The cuge at tbe bettom is shown ready to lowd. The cage at the top is ghown
ready to onkod into the clonter at tach side by lifting the cage door= with the ratchet and pinion, the same as

mater patex are lifted. The lontom of the box pitelass in both dinctions at the rate of seven inches to the foot 1 man is
mbad it.
Sow, in mzanl th the comment on the pmpreed plati if Anacomba. It the firet plaer, Ibee expansion ex linkers atul farlise vatese in on engine ronning constantly an andontacily is great improvement over the old highpeessure chgine, but in a boating engine that has eo many stoge and etarts to make it ix dombtinl whetber the same lemedit can be necircd Honever, 1 th ont some definite information as to the nesalts achieved, boi the system of domble deek cager and flat roper in tiffy years ohl and a noisance, It majuires doo many men to do the decking, ant there ts too totseh time wasted in decking. Then, the great weight and cost of a flat rope and the quick destruction of the same by mear maker it very unclesinable. A roand, hammered or plough eteel Cope if in diameder whoe kafe loal is 16 tons amd ponide, is better than a flat rope \(\frac{1}{\prime \prime}^{\prime} \times S^{\prime \prime}\) whoee weigh per foos will be about 6 pounds. The article from The Siring. Warid says the iwo meels will wind up \(5000^{\prime}\) of polley and neel, leaves to toy of mpe langing in the palley and reel, leaves 2,400 of rope hanging in the
shait; this will weigh 2,400 , or \(14,+100\) Ite equivalent to 71 tons. This weight nill have to be lifted in inldition to the net load at each hoist. The \(G\) foaded cars weighing \(G\) fons, make a total of 13 \} tons without
thr wejght of the cars or came which an supmoal to the weight of the cars or cage, which are supposed to balance thensetver. This weght will roguire ant engime of 1,200 horse-power. By u-ing the round rope balanecy as 1 eaggost, a \(b 00\) honse-poware engine would do, and by
using the Morris cage system, the ueight of 12 car, say it torm, plas the cuge system, the weght of 12 carn, zay, 131 tons, and if we add to this the weight of the rump wortag sepe, 6,000 lhe, of 2 tons and the weirht of the from the 191 tope, waking 6 tons, and sublract tha
 Korje -y-tem combined, there is a eaving of 7 tone at boist el io viel grace A \(10^{\circ}\) drum
A 10 ircon making 80 revolutions in 14 minutes

 we. Let ns sop what this size engime with if 10 V drum will hooist from the Fottom of the shatit. Mr mile is to innttiply the ane of the extimber by the -tesem prowore ind by the lemeth of the crank in incloses and divide is by the redins of the drum in inders, wherh will give the inswer in pounde Thus the aren of the exlimeler is \(452.31 \times 24\), lengilh of the crank in inches, \(x\) Nol, the team prownre, Equalo kos,iks, No Ibe. Dividing this by
 ins. tezaly of tom toms. This is for one eylinder, the 4her towe for trietion. The system is goond for shats running from 300 to 3,000 foet in depth.

\section*{A German Market for American Anthracite.}

Sr. II. Barring, of Wilkes-Barre, Ite, whe on the ocation of reveral visat= fo bary fios of the intrulnction of Tennsy) vania anthracite into (rinany considerable attention, mritez us as follows? "I enclose herewith a eopy of a ketter reccived from Jirussels, which may be of some interest in you in view of the propeced attempt to cobrpete with our anthracite oat in the European markets Anything that yoa can do in furtherance of this selvene, in which I thomaghly helieve, cannot fail to bear good fruits, if only as a matter of geberal satisfaction to you in having added the settlement of the ever growing question of over production.
'In endeavoring to draw a conclosinan from the within gwotation of price of Cierman and Thelgian anthracite it shoald he barne in mind that Weleh anthracite, uhich is really the article against which ue must expeet to
 \$1.25 more at the ports than the mach inferior anthramblat ha equal simp mearly 56
 prices, and calculating on eccan freight mates at 11 phices,
'The situation is not as Eavoratite in some other
 places, astor at 21 marks ; this part od the eomntry is in chose proximity to the Westphatian mines. But we mevert tieleak can mecet the completition of the Wel-h coal there on equal terme The same hold- goond in ather place along the thime and the other large rivers of placed ako

The hetter Mr. Farrimg mefers to is from M. Hansen, of thrussets, Thelgimm, muder date of Spril 27 th, and is as follows:
- Yourn of the 194 h inat to laand I atall forwand to you -mall sabiplez of Belgian und Westphalian anthat fite. I hase, bowever, in English (thelsly anthracite and the latter hamder than Bolqian anthracites Beloian
 thi- nawn the Pelgian cast is profermed in Helgime
 the kitelien ranges in theos combtrics reppiring a fres huming ceal. Funclid, anthracite is the skarent of the three imbl its chief di-arloandage arm, ircezular diment

 stobes, and as moch as possible no4 be ovaller in diameter than If inches, nor higeer than 2| inches, and of course be kumakelege
"There is a geol markes for Eoghish unthracite in Hollamd, but its sale has diminisbed in Kouthern Germany. In Notterdan, Engli-li anthracite has to be Feshipped to goup the thine as far as. Mannheim, from ahence it gox- to, Komtherm tiermany and Awitzerland oy rai, Weatphatia and Kelgiats emeh prohluce abon-

 eaply the w year- the er cosmirios, and at suitable pinion, large quantities of gonal foregg anthracite cam oo toli. The actini price is from M. It to M. 18 ar om on rail it the mine Fart of the Telgain mancs me Wert phalian toins pay abuit M portation to the 16hine." The medium price, 10 tone on rait is:

\section*{truwnts
istiontan \\ \\ Cobsye
Vrakfiri \\ tratimart
Frivere \\ OLm
Raset
Nanicl}

\section*{Garlock Packing.}

The Garlock Facking Cix, of Palmyra, X. Y., njori that the extensice additions io their factoried are nearly ornof hydramlic and high preceare piston pockings in poth ring and spiral forme. They are receiving for both of these packinga a constantly increasing trade and are cowaled with orders for all kinds of their varions packenwer with orders toe aif kind of their rarims pock ings, at buth their Palmyra, N, X., and Rotne, (ta., Garlock packinge slonald spod in a small trial order which will tucet positively monyince ibem of the aperiorily of Garlock packinga over cheap inferior rapers
goods.

\section*{MINING SAFEGUARDS}

\section*{TO INCREASE THE SECURITY OF MINERS.}

Valuable Iestructions From Bulletin No. 1, Colorade State Mining Burcau, by Harry A. Lec. Cemmissioner of Mincs.
The act estahlishing the Jurcau of Mines of Coloralo powidhes that the offiers of the departibent shalt exer-
cise proctically the saue functions a- the mine imppectors cise prowticulty the sume functions as the mine inspectors
in oflier states. In accoralanes with the spirit of the law, Commiesioner Lee makes the folloning suggeations Eypimions- Explosives mat tee stored in a magazine peovided for that purpume akone, ant this magazine must incline to intare their monaining intact in case the whole stuck explondoct.
all explosives
shift's work must be kept in the magazine. ('meler no conditions will the etorage of pouder in mudergronind
 and heeping it in condition for use. The water or steam is meant the surromeling of the veroel containing the pouder with another venel containing uater which can
le kept at the desived temperature. The thawing of pouder with dry heat is unsaif. Dry heat under the of salety. Mliners should mos be permitted to carry powler in their thod legs or el-e where about their per-
 scourely fastened uud so arranged that the caps cannot be jarred ont oor anything fall into the cape A cap
crimper shand te attacticd to the -ide of the cupbrard with a small clain.
 house for that purpose, and at a sale di-tance from the explonives. Their removal kor tee, lite the explocives, meet the mpuirements of h day
Pir Pr, wion:- Att phants nsing stram-ant erpeci-
ally small ones, where toiler, engime, blackemith shop and shait are all nuder one rouf-mose have a hoee and tree connection to the injector or feed pump and thust stophld be saticient to reach to the furthest point of the plane. As a rule the water supply at small plant- io action. Afew havid grobate- hong alout she plant in eobreninat place are great saiggards, and stoold be
provided. Ilvating stoves placed in shait bouses slould receive eren bore care in safedy eguipment than is common in duelling buases.
Tombering:- - Sext to explosites, inalequate timbering teneral inelination is fonse thing abont a mine. The Xo rule can be fixed for ure of timber, the conditions most be met as they arise, and ceonoby in timbering lies in doung well what is done, Strange as it may
 line, and the posest timbered mines are those located
in the noods. Tempratary work which cndangers life is criminal, ant mine uperators who supply their timber men with material hemen the
very grave reppoto-ibilities.

\section*{Iell-stop
Bell-lower}

 and placed in the engine room, at the collar of the shaft. and at esth mation or lecel, tegether nith a notiee and

 level, rignal porgener preaking tobles strould be plased frobn level tw level. Tbe danger of an employe sugnaling
the cogineer without firel knowing the lication of the twge or becket is uppur-ne. Where more than one level
is being operated, ppecial niguals from lower to higher
 ping of an up-going cage or bucket thoulh bo abolished.
To illustrate this paint: A. signals th hoizt frown the

 "hoist nutit stopical," hat "hoist to surfiae. Fown-
 therefore shombld not interiers signal bs beng otkyed, am The Bedh Lioe. The hell lime should be wo constructed

 of timbers, is aften all that is ropuined. At stations or l. cels where the line is used from both sioter of the shinf, an attachment shombl te- made so that reaching acries
the shaft for the lime is monexemary

or positively probibsted. If promitted, a notice must be proted near the bead of the shaft, stating the maximum
number who may ase the cuge or bucket at one time. nmmber who may use the eage or binket at ote the. shift," but, unkess fixed, may be exceeded at the end of The tavdling
The handling of men with a bucket is very dangerous, and its use is dieroaraged by this department as much bucket for handling men would, at the preeent time, borket har handship in some districto opon both the miner and mine onoer. But sbould the nork of the barean lemsenstrate the necomaty, action will he taken and the ractice etoppel. 16 is to be hoged that the next egishar a czes in slafts two handresl foet deep emil trich complianes wo handrod tert deep and over entitlef "Prily inspetion" will be demanded of al mine operators hoistine and lowering enoployes.
Shrup. Guands, -At the end of earb domp track, when car is unel, there alonald be a deview to prowent the car gily supposed that a trumber can or not. It is generhow that vhile pome do, the majurity giover the stump with the car.
The Aheen Ifoad. - The shaft beod muet te covered anil ow arranged that pervons or foreign objects camoe fall in
 down, must be arrangeol. This bonbet or shaft cover beevl not be tight beyond what would stop a small anibasl ifom falling in, bat the cage in turn mast be capphicy in the middle and hingovl at the calles to admit ending hewn long timbers, the angles of the siles must not be ixteenthsof an inch thick, When a tareket that wime thore are ured, the thaft must be homsed in and cosered nith doors which rtand at an angle of not leoe than peoning apwand of outwand. These deare whould not be ens than fuar incles thiek
Notums.-All stations sbousld have a pasoage-way
 grand rail most be kept in place serose the shait and in front of the level, so that it will stop anyone walking I pushing a truck or car into the shaft. Across the ev plawed, mi that cars or trucks cannot rus by it and into the aliaft, or trammers puab car- by withnat removing the same:
Aneng Noufte--ilafte equipped with meelanical aphlimas mast he of at least two comparturents, ani Wben sinking, and work upon hevels above are being moxuted at the rame time, esprcial canc muat be takeen tose-fitting and strong doors in the working ontarart me-nt, and by covering the lablder compartment nith plat, which will insure protection.
The Levider Wing.-All shaft- over fifty feet in depth Flembl be divided into at least two comportoente, abs one compartment net aside for a ladder way. The lat aers slomith be sutficintly strong for the porpee demanded, and in vertical sfiafts stouald have labding doold be elowely corered, except an opening lange corogh to permit the pawage of a man, and the labders bould to to arranged that by no nexans could a person all from nowe lather through the opening to the next The lakkers shomald be firmy fastenedand kerp put in as above describerl, bat a straight ladder on the inclime uned.
The lodders in "upraimes" or "ninses" from level to Wimaz or upaises are, affer alxambonment, very empen tial for rentilation, and, in chse of beevident, very ensential as a means of ceape. Just so long as they are other, they should be kept in repair and reuly for use if
 ang from lewel to level should te cencred or narroundel with goand nuils, mothet persons walking along canmot
 lie drift lewel tinand raik are earily placel atore Cluser Mill holes on the wher hand andern in center of the drift. These must be securely corered with a door and kept coweral.
Erits, Tinfilation, Simitury Cowdition,- As soun as pracicable, all mine- should have tomble or triple exito nected by upraises or winxes equippod with ladders and lapt in gooxl condition. These connections aidl ventilafon, and provide exits or merans of eccape in case of bumblateo to made mikes anilergmond cuarface is made with aljoining poperties. Proper ventilation sell such vital importanee to mine operitors that it in dition about mibes sfould reccion carefal attentian The uee of ahamboed etoper or drifts for eloects shoobld on be tolerited, and, where mesals ure saten underroand, the seatering of scrap and refuse natter aboul It the implated mine boarding loonm
Trualet to made for the dispocal of slopie and matter. It shombl be the dhty of the forman in chame and the cleanline san tary condition of the bunk homes be miners are cleanly, but some are pat. and a fof lithy men in a bunk buase soon infet the whold. cauen the cleanly meen to quit mather than sulmit to the ilthiness of their enforecd ameniates. The eonditionad ars Tlw comition of
thrifty, nide-awake and bealthful crew, and rice coson The Indioutor,-Upon all plants handling men, the ngine should to sapplied with a positive indicator By a pretite indicator is meant a device that is peared masitively to the drum shaft and moves a target of ndicator jost as certain as the recolntion of the dram aises or lowers the bucket or cage. Indicators arranged in lave a target by the use of a string or wire cenane depended upon, and are not as sale as marking the able with a hemp wrapping or paint.
h/ine Tisifing-The desire of persons, anacrnatamed of mines and mining ways to go underground shoeld be di-coaraged. It is a novelty, an exp-rience to relate of friends at hame, but an experience in which the langery are little appreciated, and of which it may be ruly said, "ignoratse is blisk" Were it within the proxince of this department to say who should and who Alould not enter mines, the fine woald be drawn harply, and no one but employer or thoee laving basioess nould be admitted. Sach a law would meet the nearty approval of all large mine operators, who apprediate the danger, tronble and expense to a company to eiomiteras; while the superintendents of samater misire to please, uvould ghadly take refoge and not assume the risks entailed.
Coderymurof Surroun-Each and every mine should keep an accurate plat of the onderground workings, and rave the same brought up to date at least once a month an be practiced in mining than working upon the sup
 Where mines are adjacent, or working upon the same rein, and water is encountered, the necessity is apparmand imperative.
Eaners-The bill creating the office of State Boiler nopector makes mandatory provikions regarding the the ingrector. It further provides sevessery penalties for ailure to comply with rexpirements. Mine operators using stram of oither peossume should familarize them selves with this law and its mandates, and thereby insure the safety of all concerned.
Th. Mechnsinal PVout-In the equipping of a mine whon. Why the extenee of taken into consideration, the very tops and repairs is isen capacity to be had, regarllems of firat coet, is the Cheapes. It is well to brar in mind that competition in the meshanical lime is so eloses that skilled lator ime and steel, have a fixed market value, and that in acceptmig a plant of a given capacity from one firm, becuase minchaser is simply toxing that mach leas material or skill, and endangering the sucess of his enterprise.
The Mine Ssperimendout.-The dutics and responsibili-ment- unequalled in any other profeosponal calling. One of his mest immertant dutios is the formalating of oset of standing onders, the compliance with nhich will insure the safety of all under him. Fatal aceidents can be too often tracel to lack of mine discipline. Laws governing the employes about a mine shonld be as inex rable as ill the manlar army fat the fact slablished that failure to conghly with regulations, and the safety of all concernest is almost assumed.
The Nior Forman- -The mine forenan is practically the working superintendent, and upon him devolves the detail of prowtical mining. The welfare of his emlependent upon his good jodgment, and he must of wecestity be a thorough miner, a good timberman, and fair miechanie.
Thr Enghurr.-Too mach care cannot be excreised in hechoiee of this officer. His responsibilities are grave, mascles. His cargo travels an invisible truck, that the mostex fis cargo rruels ant invisble track, and musd hisule ourk. His sers on the sert and concentrated on his romen by himell, and under no circamatances shoald he be jermitted to converse with visitors while hiz eagine is in motion. A law should be enacted cospelling all mginers to undergo an examination, grading them by mon hamalle men shoold all cars firs prade upon mines

 pplianeve shoold be thoroughly inspeted and reported apon daily, Some one man shonld be detuiled to perorms mis duty at a given hour, and make a written
mport. These reports should be filed and show that wport. Thes reports shoukd be filed and show that
that proper precautions see being taken. His daties that proper precautions are being taken. His daties
thould comanenes with the engineer, who will report the combition of the boiler, engine, cable, tire apparatus,

Then commencing at sheave wheel, he should test Il lodts and nuts on boxes und gallows frame, the cable hasteninge, and all things convected with the cage, herket, doons or bonnet- Peseending the shaft slowly, he shomld examine the belf line, timbers, lining boarks, tuils, skids, rollers, guard rails at stations, doons de.
He should also ascervain the amomnt of powder and the He shomld nko ascertain the amonnt of powder and the
condition of the warmers. Ascending thic shaft by latondition of the warmers. Asending the shaft by hatTloo the condition of winken, uproives amil ladder-ways, kept open for ventilation and exit in case of accident, byetd be examised
The obecrvance of this provision will prevent accihents ami prove econobrical. It does not debar those in harge from "kecpung their vyes open," bot they are and whicse position is tependent npon not overlooking it. This inspection can te made in comparatively short fime and at a time no to discommode the working of the mine
In conclusion Mr. Lee says: To those who may feel the above recommendations to exacting. I desire to say There is nothing advised which is not in constant prac-
state. Because a mine is not paying is no exeuse for is the light trick that can be used. It is chaimed by jeoparlizing human life by makestifif or temporary ssifety appliances. The common rute and the omioe
meet all accidents is the desine to first "strike it rich and then make safe.". The destre and thty of this departannt is to rexerse the rule
make sufe and then strike it rich.'

\section*{ECONOMIES IN MINING}

BY THE USE OF MECHANICAL APPLIAXCES.
The Adrantages Gained by Their Adoption, With Statements of Their Econemy and the Cobalitions Suited to the Dbiferent kiadx

It has long since ceased to be becossary to urge coal operatore and mining enginecrs to a alopt power mak
chinery in conbetion with some or all branclies of their operations in mining, either at the fave of the eoal, in
the entries, or at the tupple. The use of such machinen the entries, or at the tipple. The ure of such machinery
las becone an iucepted fact, and instead of having to consider whelter we shall adopt pozer machinery nod, we simply socupt it and consider what kind of
machinery is bot adapted for cor requirements. And it will be the object of the writer to oatline in this pape brietly, what points and methoots are bet to follow in
considering any change of system or operation, in and consanering any change of systen or operation, in and
about the nimes, for the purpose of effecting the greateal
Fint it is necessary to find out wbether it is possible to effioct an ceonomy by making a change in the pur.
ticular brapel of operation to te considereet We will ticular branelh of ope
take first the haulage.
take first the haulage.
Axomaing that ue
effected by inatalling a syetem of power hanfage, the next puint to be considered is the system best adapted It on condition
It is geverally agreed and aceepted by engineers that
where the gration excerd ? per cent. where the gradics exceed 3 per cent. agpinst the hods,
fraction hanlage is not au efficient us rope lanage: Cherefore, where such conditiuns exist, we can climinat. all forme of traction haulage and simply consider rope
hanlage. As this in itself is a subject woethy of a sepahanlage. As this in itself is a stbject woethy of a sepa-
rate parer, I will not stop to discoss it. If the grades are below 3 per cent. I believe that the bert sy-1
adopt is traction hanlage. The next point to b
siteryd unhat one bee peake of gas and the mature of the orat dust in the mine, If tbere is explosive gras the noof or creviees, it wadh not be safe to instalt elertric or steabs haulage and we are hrought again to conseder rope hamlage or conpeseed air locomatives If of lange rabii, a very etficient comproxedt air -yetem can be installed, everialty where there is any pmoping to be done and where the conl is atapted to be worked by and the curves sharp, 1 do not think that, as the prossent compremod a ar lreomotive is designed and built, it form offa repe plant of continning with males.
If the nine is frev from gas and the grades apainst
the lowd are belon 3 per cent, I twiwie that mo hetter oyetem of hanlage can be format than the slotric spotem with traction lecomotives, wing the overhead srolley wire and a track return. During the post cight year-
between tifty and sixty of thene plants have been bertalled and in many instances they have taken the place of endloer and tail rope systems. The principal
advantages of the ellectric system are its flexihility and dimplieity, abd in the writer's experience be has foond that whererer electiecity has been adopted as a means for the transmission of power in the mine, its ue has
been yralually extenderl to all paits where power is required, every addlition imerassing the eocomony by decreasing tbe fixed charges on the balance of the operahas been instafled, I have notired that by degrees thie system has been extended for the purpoee of maning che fans, pumpes, erceens and coal cutting machines frown the same plant. It is not necoesary to pive any tiguren
on this as the reduction of the core of fixed charges by this extension, is selfevident. With the electric oyotem in general use for hanlage, coal cotting, ponping, etc., the greateet total economy is effected, the only labor trip runnes. The expense on the out-ide, of the engibecr and fireman in the power station, being divided up anongst a number of different operations, makeo at
very mall charge against the haulape, wheress mith the very suall charge against the haulage, whereas mith the
tail rope syetem uee bave to lave a trip rumier and coupler, and with the endlew rope syotem the gripnan and the trip ranner on the inside, as well an an engi-
per and fireman on the patside, and as the power can oc used for no other operation, the whole of the experise I the engineer and the major portion of the expense of the fireman is chargeable againe the haulage
The cost of extending electric thanlape is
The eost of extending electric baulage is very suall compared with other systems. The trolley line with all the necessary fittings, bonding of the track, erecting,
te, can be extended toup feet for sn etc, can be extended 500 feet for \(\$ 20\) A rope could not woald be necessary to shut down for a perical while this change was being made, while with electrie haulage the extension could be made while the plant was in operation.
Another great advantage the electric hanlage has over Another great advantape the electric hanlage has over
the rope syelems is the ability to go into any part of the ibe rope syglems is the sbility to go into any part of the
mine and if necessary the locomative can do awitching delivering any car irrespective of its place on the trip on detivering any car irrespe
any branch off the entry.
Anotber economiy peculiar to the electric locomotive
o the light trick that can be uscd. It is claimed by rail for an electric locomotive as for a steam or compressed air locomotive. This is nos the case. A ten ton an ordinary road bed with a minimum of track repairs whereas a steam locomotive of this same weight would very won phond a track of this ueight to pieoss; the
differnee between the two locomotives is that the ectric locemotive has a trae motary movion and that it dexigued and built properly, the entire weight, execpt The wheels and axles, rests on good spiral springs, so The steam lig amative mecesarily bas conpecting mold and a rigid wheel base, a large portion of the weight aso resting dead on the axles The action of the con-
necting rod and this weight is to thammer the thack al Wery point the astion of the steans cylinders, set at aise and si contibually sproad the track. For a ten fot feam of culapressed air locimotixe it is necessary to are not less than forty pound track to cusure the sutue
 he fwo food beds wond mone than be enongh to buy the electric locomotive in the average plant,
 has a very three yery long ontrible hank of about two mikes. Sobic commenced to run it on twenty pound raile. In abost ix months they changed this to tmenty-five pounds ax months later they changed it to thiriy pounds anc even now it is necescary to keep one man constantly at work on this track. The writer's company "recently plant for the mine, the locomotive to hand the coal to the ont sid Where the stean locomotive woold take it. As the ueight of the mils in use in the mine was twenty pounds, the euperintendent was very desirous of laving a locomotive that woald weigh not more than four and would not be of sofficient capacity to do bis nork and therefore furnisbed him is six and one-half ton locomon Gee It view of the experience that this company had
had with the steam locomotive, it was a dicficalt conncinee thes that the twenty ponind rail womld be all right for the six and one-half ton locomotive; and it Iry il since and advieing us how well the locomotive is morking and bow emperior it is to the steana, as well as how litth tromble they are having with the track

Protably the grvaten single ecronony that can be ffected in and abont a ecal operation is in the substitaool of machinery for hond fabor in under-cutting the Thio and Weel Singinia, it is possible to Cenasylvamai of from liftewn to eightean gens per toll where il breast form of machine can he nowd, and from six to eight cents per ton when the piek or punching muchip is used. In no other hranch of operating a coal mize is it pomible to accomplish so moch as in this one, and cobeeguently this branch is receiving, and will contine in recerve, for gotme time, the major portion of the Intion of coal geprators and engineery.
Ifi constdering this question, it is no4 diflicult to decible Whecher it wall pay to install a plant of not, as there are will noe jay. In this diatrict alope the writer's dompony has installed machines which, all working, have a buited capocity of some twenty-fice thoxeand tons per day, while in the state of Ohio this is doubled. Bren in the very tisin veins (ay) of Alaboma, machios of thi-twenty-five cents per ton, while cout in Miesouri and the Indian Territory, where the price of labor is much higleer, the saving obtained is mach greater, During the pase few years we lave installed nambers of maschine ond, race Austria, India and thif. Nopors effected.

The question of atvisubility of introlucing marhimes is po problem; the main and pructically the only pointe
to to con-idered are: What form of machine and
 particnler mipe? Pery the exietang oonditions at him and the meeting same moningeselligent and carefo consideration. I believe that the first and most inportant yumenion bioml be: Is there any explowive gas In the wine? If there is, or even if there are only traces at intervals, I should strike out from furiber consodera has bren urged ly the pannfastantang the power it ery that a mutor ihat does noe spork at the commotator, or one that does mot have any commatator, cannot fire gas, and eonsequently they sulviee the use of electric man Chenery for operating the ecal cotter- in a gaseons mine The damper of all explosion does bot arise irom sparking motor will mot tire masordot, as it is mut of long emongh doration. It has leen proved by experiments that to ignite tiredamp it is necveary to deconpose it into its component paris with evolution of hydregen, which becotare ignited, and the heat frotn the flame so canecd point ofly rama the tebserature of the fire-damp to the point of ignition. This temperature, as everyone knows, there is no damger from the motor itself, consequently, for this work we may conclamle that a commatatorlese motor has no wivantages. The dangers arise from Gilo of cables and wirve, semil-eloort circuits caused by fotms an electric are of interoce bot affairs Demerally bot age 10 be deconenul, intense beat, nat as same thirty seconds, safficient time las elapeed to allow of the
action described above taking place, and where gas is exploeive by glirect contact with a lanap, as is the case in the coal wins in the Pitsharg district lying below electric plant.
If gas is present in a mibe, we have left for considenor punty the forta of machine to be ueed, beast machine arilly pood, is woolne If the roof and eval are ordio consider any form of machine exeept the herat, machine, where the system of mining is mom and pollar, and loconotive longuall machine where the system fol loweal is long walls, Axthis latter svetem i*not followed in this district, we will not conmider it furtber. My easons for making the above broad statetwent in Gavor of using the loreast machines under the comslitions menfioned are as follome
181. The coal can be undercat for about eight cents 2nd. The conl is in becter condition after it is mined. And. Not so mach territury is requined for the soma cotjut, and conequpuent
ith. Ease of obsaming labor tor ofrate euch mawhime (5th. The ability to cut in the timerlay isext fo the math the tbill reans when
bith. Larper yield of ocal per acre and conseyment oncreased value of the heas abt progeriy, ete
Where the roof is very but and it is rucesesary toponal close to the face, the punching machine will do good
work. Altomgh I have wen mumbers of winos whem work, Althongh I have reen numbers of matmes where he begat mat it womlt bare secened impussible tor work bem has proved, the tor bad ront, the intrudaction of thein has proved to be a selcowe, the rouf abit condi-
ions being very materially improved lyy the systematic process of trachine mining, moloction of territory promed, and rapidity of whancement of the faces same gencrally bring umbercui twice in twenty-fonr lowere Trotulive to seven tect thep
Where the mine is free from gas and the rout ordin-
 ooal mine. The following table giving the eost of wire and pipe installed, hawal on the proven market price of material and labor, showe very conchnsively the sugeriority and economy of the clectric
a companed with tbe pneamatio
\begin{tabular}{|c|c|c|c|c|}
\hline Harse Nuwer Thelisered & Jistance in Feet. & System of Transmassion. & Texal Lien ift the Lites. & \[
\begin{aligned}
& \text { Coet of } \\
& \text { Dine } \\
& \text { Iscallied, }
\end{aligned}
\] \\
\hline 110 & (100 & Cumpereed nir & 10 per cent & \\
\hline (16) & 位里 & Elatric 2ov. & 13 javent & kit \(/ 0\) \\
\hline (16) & 6.08 & Electric SSev. & 17 jarc cunt. & tenoe \\
\hline
\end{tabular}

Guided by the above figures the inclination woult to Io decide in favor of the electric live hundrod and fifty motanstabsion and if the tevt of cext hast itn ayerag be porneet luo thin Cham

 bundred and fifty; if five handred and fifty volts wen nsesf in a vein of chis thicknce if woeld be advisable in mothe of tive wires, and if this u*Te done povierly the vot of five thossand feet woukd be athont the sabee a. ained feed anal mity valik, so that nothing womin be bundral whes with a wine carrying a current of fis if the hav a heart or nervone tromble it is ant to fonder lime
 The same prop ortionate cobititions wouht obfain with carrent at tro homima abil fifty volse, mol that we mas kay that the only safe thing to do is to kavp unen with such troubles amay from electric eurreats. In vaine escroving tive feet thek the writer s company has
natalled quite a nomber of plamts tuing the high wolt. age systemi. The most motable among iticse beitg,

 Koob, Cool Ch, Brukneville, In, 3 uselisaed
Cmarr cral at Cuke Co, Blkhors, W, Va, 5 manchines
No trouble has been experienced at theoe plants from the use of this system and it is the uriter's openion that the majority of the plants installex in the future will -mploy the tive bundred and fifty volt sybetem:
It the birst cost of the electroc system is so mathel leme ble oxthrantan anil maintenance give a still more faveg the crose cntries to the fack. When the electric oveteni was find applied to coal cutting it was the cubtom to wire eath rooth spparately, runaily brathet mitu from Che eroses entry feeders in the same manner that the pre branches are put in for compresed air transmis sion The wrater extimater) that it uvuld redue the first cosf to inrmish ith insalalev concentric cable will each machine having a length equal to the lengeh of the Roou and so do auay with rovm wiring altogetber. This sybtem is mow in general lise abil has been fuand very economical, not obly dosng auay with the large
investment in wive but also with the man requifed in keep up the room wiring.
It is mot necemary for mo to enlarge on the grea advantages and economy of rjeration of the true and continuohs rokary baston of the elvetice motor as compared with the reciprucating engines for transforming the power on the machine, and as I have already taken ap more tham my share of space and time, I will elose
this paper and hore at ome celow meeting to procent this paper and bofe at eome ofluer meeting to present
another one, dealing with many other branches of this
very important sabject.

\section*{THE PROGRESS IN MINING}

Abstracts From the Proceedings of the Mining Societics

And Journals of Europe and America, Illustrating the Mere Modern Derelopments is all Branches of the Mining Industry

\section*{A THEORY IN MINE VENTILATION.-The fol-} in the case of lratticen workimpe in a coal mine, curent theory teaches that the infake air-curnont shoukld enter by the smaller side of the partition; for, as the ouppoed to be evident that the larger volume slomald be aseigned the targer section of plasige That is theory,
Bat practice has demonetrated that it is eometimex thet. er to ignore cursent theory, and give the larger volnme the Jesser pasoge. And iths we have to-day mining engineero ubo hoht strictly to earrent theory and
regard dubin anslyany ouppeal contradietion by expericher, whit- we have bany othere who roly on the les. sons of their own experience and reject soch theory as
may be contrary thereto. lhat nlake they thue reject the thevry jut refernel to, they have no theory by which they can explain the theretical fact. The tiret time the writer had his faith in the ortholux theory shaken was erven yoarm
go. The third elition of Mr. Wardle'y uork felf into his hambs, and he nas greatly struck by the instances Yoved to show that the expanded wolume oft-times
cloes the snaller poseage Mr. Wardle counciated a theory to acromet for this, but thi- theory did not com-
mend its-lf to the present writer. Some fitoe afternard. the writer massent to overlook a small sinking in Vork-
shime.This slaft was divided by a canvas brattice, which divisted the shaft circumferenoe into two ares,

 nnable to get into the shaft. And he obeerved that iroin the jack roll. off course, this brazier hong in the
wide sectwn of thee claft. The men's jolea was that this forazier woold act xs a furnace amblat np an upeast cur nent on the wide-side of the brattice If nas difficult to
we o hat effertive motive column they nere likely to see what efieptive motive column they nere likely to
obtain froog a brazier within thro of fonr fathoms of the surface However, the writer went to the marrow 口qees-
ing formal by the cloord of brattioe, and lighting at ing formal by the choord of brattice, and lighting a
wif of paper, lo-tal it over the aperine to soe if there nas any appocciahle dewn draugh1. To his surprise he
 -iderable truble wift a pair of winning loestimge giv-
ing off mueh gas. A hrisk ventilation pased into these
 pot the mastery, ami lobimge at irrozular joints hail to ou. buate to coge with shas state of thonge It was whigat the managetame to make them minch ofterner It was at last thecidicl, as an experiment, to make the airtaloes the return instead of the intake, The result wos

 This drift was ventilated by boxes 15 inches square carry. ing the intake curront. Cual uaz got at 110 yards, but
the coal lowers haul to drite a further diotance of 12 yard- to pet al holing. Se-fone this nas accobplislied Was dovinal mecosary. The bexes were then twate the
was any such manker. The rosuls mas aboolute failune, and
 aplamently contradinting bact. The writer mbatal thee
 forman fipion vither way, and therefore we brattion venie cis, Int," he cobtimued, "I lave motioxd that thome place nhere the air peros in by the smaller powsage 'sleth' of lumds ventilated continuously by the same
 sugacstive. The signiticant thing is that the place
whict fonts firs, imit that which font- laet have mu point of difference in the matter of quantity, secing that
bonl are ventilated loy the sane carrent. Howe. when We ask this question as to which side should bee the intake amd whiels the retarn in a brattiend place, ne may
cancll thix factor of quantily irom our prohlem, for if it
 all ventilated by the kame current mould alike foul, or
all alike be cleanoed, other thimps being equal. And it will be seen as we peocred that the quastom is solved,
wot ser much by sonsiderations that affers the qumbity, as by thome which afferet the perification of the air at the fare. It is mot herv peeitivefyand dogmatically akoerted
that quantity canme proitively be affected by the determinatiofl of which eide of the lirattice shall fex the intake. The writer merely aflime that he cabtat eev
what flactuation in volaties can restalt frum a mer. reversal of the current. The varions restistanocs to the circulation of a given volume through a bratticed drift
would appear to he monh the samu whel wuald appear to be moch the came whether the current
nter by flee ramrow of loy the wile eide. In cither ca-

and it is difficult to imagine bow the order of attack cai
affect the volume in the sense of increasing or diminish ing it. One thing is ecrtain, this eanstant examination of the question, only with neference to quantity, hak for kong olecured the inge theory of a very importain phame of colliery ventilation, vis,, the rapid resmosal of deleterioas fames and gaecs from the working faces. And it is time eolliery manasers and engitnerrs recognized that tuene volume; while the ventilating pressare as shown by a water-gauge is no record of the subele gains, loe-en, en routc.
Let us then accompany the rentilating correat into the bratticed plarg, and obeerce its pheroomena. The place may be a exal heasling, or a mine thane ithromgh
odiceons roek. In this commonication wo will assome oincous rock. In thas commamication we will assume
that the deleterious gases in the fice ame, eitloer by rea son of Alseir molecular weight or lheir expunsion b heat, highter, hatk for halk, than air. For di-tibction,
we will call all then-mion, know, then, that if two gasels of different dels-ily is klow, togetber, and if in the imbuctiate vicimity forn be a region of lower presure, bush goses will forthonith
begin 1o tow, or expand in that direction. Ints the velocity of the lighler gas will be grealer than that
of the denser thnif). A vion.e when enser thais. A volume stamke visibly ascend When there is mo appreciable upward current of the the koun to tho chimney y
whether anoget nhelt it movere It is imbateria whether the regoon of differemtial prossure are sep
arated by a vertical ot by a borixontal distance, the lighter vapor will travel quicker to, and wonaer arrive as, the Negion of lower prescare, Tramalatimg thee
remarks int. the language of mechanics, we atlim that:-The force for joressure) acting on it jarticle of the denere thid is equal to the force ueting on a par-
ticle of the lightier floid. Therefore the goantity of thele of in caghter fiond Therefor
motion in cacli particle is the kanw.
But, the quantity of mation the maser the velocit Hence if the mass be less, the velocity will be groater
From which we conclule that the gas of lower densily will expand into the regios of Jow grexalm with great velocity. In the light of thin imeventevertible law, le as examine the two cascs bandot movew. Tet us firy take the case of a drift with a brattio comsining of air tubes by way of which the current returns from she
face, In this case the air bas cotne into the face by the lagger passage. Hebov it has lost litthe of jts povesinme And hemee by bringing in the current by the lange side we pet the greatest possible perswan
drijt. Then at the end of the tulns
(o. them) ue get at ance the desiderated mgion of pron notherally kwer preenne doe to the velocity mpariad farther, the air having leisurely entered by slow wisk paseage, is in a state of steady rest in comparien with another -tate to le deacribed poesently. IIFRe then, u. have a net of simple phemotmesa remarlably easy is dies and the The fore acting on the vajurous impan pressure obtaining between the face and the entramee of the tubes, In obedience to this furee the air and vay being lighter, are man varily affectel ly shas farticher locity is mon casily and rapudly impreserd upast them, aud they continually lueat the heavier air particles as al
 maves the vaprames partickes are, as it wow, staimed on of the air at the faç. Thus the quantity of air pamemp is simply puritiod with the greates juraible rapidit the live.
Let un now take the oppesite case Whare for- inle after hasing overent to the face. Hexe, the current
 ity. This work is aceomptialest at the expense of it
 memdonaly reduced prexare just nluere me want i of the eurrent thas pat on the face ; survly that will is a grat fuctor insmeqping ont the impeane sapors! but energy at this point is a positioe marplat, For the ait
 race, again cleaver its was thomath this vapur the heads for the return by the lange gavsage, vajurag the vapor behind in the uncqual conteot. If both staricel
 the race for the region of low prostar, hat the linectio energy mecrumblated by the air in the taloss gives it a fly mge ntart of the vapor. The result is the me get quite a
moch air anomed the drift, hut that mefail ter
 goxs in by the wide side. We act the air in, buit we de pot get the vapor out. We kee our pressure on the face by puemeling it in the boxes, and we nullify the natoral air, its cotapelitor, with an undesirable kinetio omergy But that is not all. Not muly do we minimize oter prese
 a difference of phesure at these pmins aholetely in tin nroug direction. For when the air in dischargiel from the tubes into the face, if eddies and whirls about until Its velocity beomus radjusted to the reqpirements the wider passago of ritorn. And when this readjust Gmiliar with the plenomena of tlaids will dispute that We bave bus to reckoll with a restitution of presenre at
the very catrance io the wide return. the very entranoe to the wide return. Hence there it
mo immediate. ngion of louer pressure to which sliw vapor can escaps: True, there is such a mgona in the

Tulu-s, lust the vapor can hardly be expected to go out of the drift by way of the intake. Ant as for the nide vints, the entrance is blocked by the greatest prensure of all.
Lat 110 one inagine that the ventilation of the drift wonld be imporsible u bile stocha dietribution of prees ores obtained. For a pouer ocher than flaid puessure is concidend asa whowe, is vontilated bo itsy. The drift. the tluid pessare at the entrance to its intake ; but the face of the drift, considered by itself, is ventilated bye the kinetic enerey of the air from the tribes. But while the bir comes into, the fare chatrat with a biscetir nergy that enables it ultimately toweronne the restomed pereane at the entrance to the wide returs, we nand remember that the deleterions vapor in the face has receixed mon kach endowment. It is knocked aside and scattered aboat by the air; it is canght and imprisoned in the vortices of the wrial whirlpools, but the restitution of pressure at the entrance to the wide return forbeds iss Mgress until its diffusion with the air is throughly vapor particke by sheer comart-hions but in the moe for a retarn which is of larger section than the intake, the nataral poopertios and covironment of the vapor anite to handicap it mose severely. We get rid of all
these difficultics by making the smaller possage the return. The natural properties of the vapor then axsiet it to exape nith expedition. The preveuris are then coming slouly in by the uide side gaine no undioe ad cantage of the vapor in the matter of accobmalated kinetie encrgy. Lat it must le noted that this theory rests on factors pertaining rather to distribution of The writer dowe dietribution of quantity, or volume. fection of a brattiod placal the retarn you nill get an increased sotime of air, bet lee athrmes that by this method yoa will sooner purify and more eflectively cleanse the atmosphere at the face of the drift.

COKE, GAS AND AMMONIA.-The following is
 manulacture, posper read hy Dr, Kumblameh at the last moeting of the intaman Association of Gas and Water Engineers held at

Thie bebaxior of the earbonasal hydregen of coal on distillation is the clief point of interest in gas or coke
 gas works, it is to lold as tutuch carloon as poresible in combination with ivionoth-anal expreially in thome combinations which form the best ilhminating hydrocarlons. The choce of coal and the conditions of pro-
daction-mare particnlayly the tomprature of dimillafictione farticmarfy the tompratare elveing the bent illuminating gok. It has boen shown that benzol and a etmall quantity of tolaol are chiefly responsible for
 what higher tomperature will parlially deetroy them, With formation of graphitic carlon and so-called dilnente. Fot bexides the constituents of exal which on its dietillation yield saver suibable for proturing light and heat, crahle-quantities, which clain allevition. These are sulphor and mitrosen, of which the latter is the more itnportat, sime extain of Its proultacts have a very ligh market value The nitruguons parmets of tixallation were regareded for some time as rery trobblesome, and ary impritance, thoogh crestly ammonia meomery apin paratios is altacled to colle ovenk. The importance in the-nitmgen prodact= frotn coal will he anflictent justification for the publication of the following reealte of ex-
 ywars at the Cologne-tas Works, aml suberquently in the author's laburatory:-The aboonnt of nitrogen is very variable in diferent seri- of wasl, and even in the same kimL. There is from 1.8 to 1.6 per vent, in We-f phalian coul. The poppation that is converted to valuable com-
poumb- in, formever, y-ry amall; forming only from 0.2 to 025 of the wright of Westphatian coal. The enornows anosint of ceal diveilled laily in gas works and coke owen- makem the thal quantity of these essily ob-
tainest cotmpunt- very large- imbeed. The daily demand is million tous of ceal mer the whole glober, cortepeonds to a yivd of ammanime solphate of about 10,000 tons dany, fakimg the hitrogen recovered as amonbia at
0,2 jur cent. of the coal. The coal asel at Cologne peats yearly into the gas ntorts alone abont 1,0000 tons of eyanogen; and thes, mekened as bulplate, may be valaed at E12, Sm, It may appear nemarkahber that 10 yoare ago ue kow mothing of the ramamber of the
nitrogen; anal valy guite recently the matier of its dispoin the cuarse of a determination of the proprortion which is converted to eyanogen.
We hase men that the certain mataion exinf het boralat lat calealater hat until rexanty it was deconed correst to
 tacleed to ehemistry in the gas instusiry (and this memaine the case) ; and, ako, untit the nitivgen question
 any molecrike of ther onal distilled to. be traecd in any effected wery well in Calsone, after the chemiral bearange of the valoject had bean propmoly worked out, the nitrogen rquetion again came to the front. The defects in wet parifisation sud in the lignor works having been That the amomenia conpletely exiratel forme the opas in the gas ligquer yielaled nity 10.6 in io parte of sulphate

Wer 1,000 partu of coal-corresponding to a peroentage of
nitrogen in the coval of nerarly 0.2 onls. Fdimations of bitrogen in the exal of nearly 0.2 only, Eodmations of thowed neven to eight timue that quantity-correspond the to 74 to sio parts of sulphate prt 1, kot parts of wal stempts to onver mate nitreged into amonana wen acerued, and the new proceowe nere put on one side. The that before distillation, and the passage of steans over the incrablescemt cont an! soke.

 inthe gas and nithon boes in the tar: and thwo amo bly to foumd. Actually, analysws showed a great quamtity of nitrgen in the ofle The nitngen content of
the eobe may even to higher than thai of the coxt, vpecially whon the wolatik nitrosen is smatl in rolation to the total volatile matter of the coal. Nitrogen is not,
like oulplar, detrimental to the tse of thecoke; and eotimationes it were mot, thernfore, carried oat for the valastivo of t1e cotke, Without cotoring eloeely into il temperature in the retorts, the nitrumen will not rephain in the coke. After cxtimating in aldition the nitmeen in the tar and the nitrugen ar cyanogen in the gas, we
other nitiegen componnt- are in che prodtucts; and the smpples nitwoten mest te free in the gas.
working, or only after long eontinumb trial-; and therefore a laboratory apparatu- was devieed for distilling the coat. By this it uas found that the powrally possible yield of ammonia coukd be determined for varions coals, and vuriations nude deprexient only on the chonce of the
coal. The results of experiments proved: (1) That the nitneen content of the coal and its distribution among the different protucts are not in any degree prupos-
tional. For example, the yield of anumonia bay be tional. For example, twe yield of anmoona may be
muelh grater froma cool of how than froun one of hivh nitrogen content. This statensent is aloo true of the other nitrugen prontucts. Thus a sample of coal con
 mobia, and one containing 1.55 per cent. yielded 0. These variations are frequently wery great uith coal of
different origin, and often emall with rame kiod, thongh different origin, and often emad with wame kind, thoogh
even then (hiey are montimex very considerable. Foster even then they are monetimes wry consickrable. Foster onterned; and schiling has mate some experiment-
with varions kinde. The yieht of ammonia fomm in onmimmed in the thrre crive of oleerations. The yield for different kinds of coat in coke wens working on a larye senke has bew also determimed; and a series
of ecal distillations has been mosk in which the ammeo nia has teen completely extracted from the gas and liguor. Though mowe reeenty introluced at the ooke there than in many gas works. A large number of distillations of many kituls of evat have been made by the
 15 differnit sinimes is sthown in the follon ing table :

\section*{Expmaf}

Snumee of coal

\section*{ \\ Liyer selosi \\ \\ Soltavia
Stume
Sorth \\ \begin{tabular}{l}
smetion \\
Americ \\
\hline
\end{tabular} \\ \\ Shermit camel \\ \begin{tabular}{c}
syaim \\
Sustentio \\
\hline
\end{tabular}}

In choosing coal for mat maklng, it is desirable ascertain the yeld of tar, ammoniu, and sulphoreted hydregen, as well as that of coke and gas. The differto the current price of ammonia compoumd- The dif ference betaeen 8 and 12 part- pet 1,00 parts of coal, beetmeen jow and \(1,0 \mathrm{ikO}\) tons of sulphate per year-that is so say, about \(\mathrm{Et}, \mathrm{OO}\) raloe. It is also of centeiderable from a coal, eephecially in caers where the purifiers have (wasionally to be worked to their utuost capacity This yield also is in bo degree proportional to the which shalt not throw a great bumen on the pmitying plant.

Fire-DAMP, THE FORMENOPHONE AND THE liery Guardian. The membere of the French Firo damp Commission are carrying oat a series of tests on
the fardy formenophone at the Paris Conscrvatoire des Artaet Metiers; and at a recent mecting of the societe dee Ingenieurs Civilis de France, M. Molince presiding, the inventor, M. Frnest Hardy, direvtor of the Thiven eclies ef Fresbes-Midi Collieries, Nord, made a communication as to the application of sonorous vibra-
tions for analyzing two paers of different density by means of his apparatus, incidentally remarking that means of his apparatus, theibentally remarking that
ed ge, maste very incomptete
d. Hardy ine motupletes. andous, the sharpmes of coulg the fact that, ofore porbe depends on the density of the gas which caness if to vilmate, so that if two orgmon pipes, tuned in pure air be made to momal through being bloun with pare air by tuo distinct bellows, they will be in unison; but if
 is formene or carbonic acid, the sonnd of that pipe will be moditied and the two pipes somoting thgecher will prodnce a dhecosd, the number of vibrations in a given forcign gas mixed with the nir
In the apparatus that he had devisect, one of the in a tuht chamays fov with the saroe pmo air encloed surnounding atmospliere, which is drawn throngh scrubber containing a concentrated molation of potash or frocing the gasons mixtore from any carbonic aciod whet it might conlain. On leaving the blowers ama

 water rapor, so that all canses of error are eliminated leaving wo correction to be made. A microphone is insertel in cach of the moborons tabes; and an electric corrent traverses the two microphones in succession, acentating the ons pipes or the di-cond which they may produce
For registering the quantity of extrancons gat in the ar, tuo spenking tubes connect the sonoroas tabes with a sumd-kard, closed by a membinune, whels reproduces latter sumal in unizon the membliane vibates regularly and wish the same amplitude; bot, when there is dis cord, the difference of amplitude is utilizd for inter mpting an electric circtit, when passis througha tele gruph translatur. A wide paper band is contimally
uarolled by clockwork, a moverment of which makes contact every fire mimates for the epace of exactly 30 eeconds ; and the current of a battery, controlled by the translator, passes throngh this 20 -second contact, and
then through an elextro-nagnet, which becomes active it each heat that taker place during the twenty mecond of olecrvation, and nhich causers a ratchet wbeel to revore to the extent of one tooth. The ratchet whee commancater its mothonto anoflier nheed, the spindle Thech carries a hand provided with an inked dise The hand sturts from rero at each olservation; and it disc traces the arc of a circle on the paper band, making apoint at each discord. When the 3 hereond contact cerminates, the hand stops, and, a fow peconds after-
wards, disengaging gear metuated by the clockuark brings back the hand and its dise to xero, ready for a inch oberervation
According to the oberrvations of the French Fire-damp Commiseion, the density of fire-damp may vary from Sher2 to 0 ther, and it most be arknouledged that the density of this gas may be affected by the perecnec, in a
mine atmoeplere, of carbonic acid and water vapor. It inine atmophere, of carbonic acid and wuter vapor. It
is the former of theee two subslancess which, on account is the former of thee tno subslances mhich on ascount
of its great density, viz, 1. \(\mathrm{J}^{2} 9\), will chiefly vitiate the
 rosolts regintered by the apparatias; and calcolation talance 1.2 per cent of firedamp in the mine, or, what acid may mask as moch as 7,2 per cent of fire-damp If it be borne in mind that tire-lamp ignitex when pree. ent in the proportion of \({ }^{7}\) per cent, and explotes in
that of 8 per cent., it will be seen that this proportion of 6 per cent. of carbonic acid-uhich, it is true. has been met with but rarely in firedamp-bay prevent decection in the mine of
The proportion of 2.72 per cent. of carbonic acid, which las sonnetimes been met with in meturn airways, vastly higher than the 0.5 per fent which istoportion us a nusimum by the nuralations is sone coalfields. Cartonic acid appears alm to greatly affeet the pre cision of the indications forni-hed by the safety lamp. which is ordinarity used in collieries for the detection of fire-damp ; but it certainly does not so affeet them in the sume proportion.
The ine ice exerted by water vapor (den-ity 0.022 xertex in the contrary dircetion by dime mould be lensity of the air passing through the apparatus. culation thows that 1 per cent, of water xapor will prodoce the eame effect in the formenogbone aco 0.85 per cent. of firedamp. This amonts to waying that 2 per in return water vapor-a proportion wheh bs iset with horses, the combustion of lamps and the sprinkling of dusty mines where dust explosions (conpu de punssion are to be feared-monld convey the impression that firedamp is present to the extent of 1.7 per cent, while the therefore indi-nurnable to ouly une the formenomphone with an abeolutely prore gas; abd sach a gas fre-damp cerainly is not.
Nor is the density of ine impregnated with fire-damp sodified merely by the presence of exirameons gioss in he ine-fiamp; on the contrary, it i- alto moditied by chi. ppanatuseted by the temprature, Geames, bor the apariuns the two sonorous tibes nust have abeolutely the same temperatare
Now it must not be expected that the outer air, intro doed into a mibe as a standard of companson, will be of exactly the same temperature as the air impregnated with fire-damp, which air, expecially Then stagnant in roof cavities, takes from the rocks their temperature nocreasing with the depth; and here comes in the importantabe of the regulator of temperature for obtain-
ing inothermic conditions in the tuo gases that it is pro-
poed to analyee by the acoustic metbod, Great care must, however, be taken to secure the thorough elficiency of this temperatore regulator, which is traversed Sery mpidly by the two gases to be compared. Hete Gume a difference of only 1 deg. Cent., is the femper aure of the two curnents, modifying their density, will orregpond with 0.00., of lite-damps a dithereme of to
 correspond with 0.055 or 7.5 per cent. of fire-damp, leading to the supposition that the atnompliere is inflamnable, while all the time its expansion only has given rave to steht an indication.
 amp the atoumploce of sothery workings were then alety tor ery valualike and correct indications, ses buch sut that practiced ohserver is able, with the Masseler lamp, of kefect eqgit ofe-thoasamith parts of tire-damp in at bin atmophere, It has alen become puexible, be sulded with the last form of Fumat lamp (which has, behimi The flame, a reflector that may receive a graduated scale), to measare the elongation of the flame very a balf slisixion of shat acal - Ulat is to say, mith fomir one thomandth parts of fire-damje. These very stight eonwits, far slighter than that of \(0.6 \overline{6}\), which corresponels with the ignition of fire-damp, are thos revealed by a portable applasee, in the samp- of att the bees, shaphe drong amd sumbentiy cornect. If, howerer, at etil
 lamps with an abcolnol thame, the shght britianey of
which permits of the rings cansed by comboastion of the whelt permits of the rings canscal ly counbastion of the
firedanp to be sen mone clearly; and the Chesneau

 air. The speaker considered that stbeh minate proper air. The speaker consubered that soblt minute propur-
tions of fimalamp as these can hardly be arrived at by the formenoploone, which depents for its use upon the zence of lesaring

\section*{THE SPONTANEOUS IGNITION OF COAL} Kuhbor's Gicramon Trode Ririvy, and it is intereting to wotice that Protespor Dr, Medem traces spontanems guition to the oxidation of iron pyrites, and as mo coal is entirely free from this sulphide of iron, the cases the esting
Profesens Mr. Medem, in the courre of a tratime on hee spontaneoas combastion of hay and coal, gives the following acevent of the ennses of this pleenousenon and suppresion.
The rimpleat form of spondaneonsignition is exhibited by dry spongy platinum, and is doe to the absorption When exposed to a current of logiromen mas, chewical ombanation imaneqliately reto ill, raiang the tewnerit are suthicaently to ighite the stmam of hydrogen.
In the case of charecal, a pyrophoric tendency is only manifested a hen son of the vulatile hydrocarborss have itn lef belimel in the distillation process and emer
 fions eppedily loee this poperty, owing to the pores becoming saturated with air, but it will regain its pyrophoric character if powdened so that the internal ayert are enabled to aleorb 0xygen. As the procese of eliemical combination only gove on in the interior of a
beap, the bert way to amest it in to sproud the charcoal out, since attempts at ventilation by blowing or draw ing air through the mase will only rewolt in mereacing the combuston, Every time the elariveal is boken up
the dammer of ignition will recur, down to the time is is the damger of ignition will recur, down to the time is is
gromend to powder, bat powdered clarcoal once "killed" by exposure to air never regains its pyrophoric prop
Hard coals, beown coals, time the like are subject to Two dangers, explosion and Enition, each having a
separate canse. Explceion is doe to the liberation of fire-damp following on a decreane in atmonpluric pressire, whenctignitus wostis from the axidinion of th rom pyrites contained in the coal, when exposed to th grvater the fimer the state of divieion of the coal, and cral stacked above ground is partienlarly liable. At tempta made to rudnce the damper by ventilating the tempts made to rednce the damper by ventalating the
stacks lave failed in this case aleo, on accoant of the increased amount of oxygen thereby introdnced into increased amount of oxygen thencby introbinced into
the interion of the mass and aceonlingly the exal is tacked as tighty as possible in oxder to exeloule air. strangely canagh, the practice of ventilating the coal bankers of ships las not been altogether abondoned notwithstanding Liebig's impreseive warbing given ad far baek as 1sth6, and neglect in this particular has freguently led to lamentable fatalities. Since 1905 no less than minetyoseven sond-laden vessels have beell de through spontaneous ignition of the cargo.

\section*{Mining Machinery}

We are in receipt of a copy of the 1 Nos catalogoe of ville, Ohis of Mr. L. D. Howari, a pentheman of many yearr' ex perience in the manufacture of mining and conveying
 mining machine fy of ventilation, cleaning, sizing, convering, ete, ete. The
 ville shops together with a number of pouner of nomal ville shops, together with a number of payer of uxful
tables formulke and data. It slowld be in the office of
every mine manamer

The Colliery Engineer

\section*{Metal Miner.}

WITH WHICH IS COMBIVED THE MiNING HERALD.

\section*{Published Monthly at Scranton, Pa}

THE COLLIERY ENGINEER COMPANY, PUBLISHERS
Deswbi Oqvice, Set kutan Beilding.
sotat Stiter in Cham
Furrotices. PN, ormek is Morris buldisg.

To foreige Canntres in the Universsl Postal Usine. 32.50.
 per year.

Express Money Orders cun be obtainct ot any office of the merran Fxyco comptys, the I mited srate

EXPIRATIOM OF SUBSCRIPTION,

\section*{RENEWALS, ETC.}

\section*{}

\section*{motice of discontinuance}

\section*{}

CHANGES OF ADDRESS
 Sthet find bir basie on wor mailing lise

THE: COLLEHY ENGEEER COMFS
Vexhank

\section*{LONDOM AGENTS}

KDISX VAUL, TEENOH, TRUBNEE \& CO, LTE

VOL. XVI. JULV, is96. NO. 12.

THIS JOURNAL

\section*{A LARGER CIRCULATION}

COAL and METAL
MINE OWNERS AND MINE OFFICIALS
\begin{tabular}{|c|c|c|}
\hline Alatama, & Jowa, & North Daketa, \\
\hline Alavia. & Kansas, & Nowe Scotie, \\
\hline Arizona, & Kentucky, & Ohio, \\
\hline Arkansas. & Maryland, & Oregon, \\
\hline California, & Massachusetts, & Penesylvania, \\
\hline British Columbia, & Mexico. & South Carelina. \\
\hline Canada, & Michican. & South Daketa, \\
\hline Cotorado, & Minneatar, & Tennessee, \\
\hline Cennectivut. & Misseati, & Teras, \\
\hline Delaware. & Mobtana, & Ulab, \\
\hline Florids. & Nevada, & Vermont, \\
\hline Georcie. & New Hampohire, & Virginia, \\
\hline 1dahe. & New Jersey, & Washingten, \\
\hline Itilnois, & New Mexice, & West Virginia, \\
\hline Indiama, & New York, & Wisconsin, \\
\hline Indion \(\mathrm{Ty}_{7}\). & Norts Carolina, & Wyoming, \\
\hline
\end{tabular}

\section*{DAVY LAMPS}

TI.ST the Fuvy lamp is an unsafe lamp for miners haw been prowen time and time agnin to the ratisfaction of all intelligent mining engineers and onperintendents. That, when lirst inverted by sir Humphrey Favy, the Favy lamp was far in atrance of any other means uf lighting gaseous mines, we cheerfully almit, and join with the mining fraternity gen-
crally in bonoring the memory of the great inventor. That it was the foundation on which all subserquent lamps, inclading the best now on the market, were built is a matter that cannot be dieputed. Hut mby miners will inkist on using the moet primitive lamp made and will ignon the discoveries and inventions of late years, is something ue cannot understand.
The Davy lamp is not only behind the times, bat is absolutely unsafe under the conditions existing in coal mineen to-day. When it uas invented the relocitien of air currents were much below those of to-day, and a velocity of six feet per second was an exeeptimally high one, if ever attained. Tnder sach conditions the "Davy" was comparatively safe. Miners, today, who would protest most vigoronsly, and righty, against a slaggish air current, demand Davy lampes and refuse to use better and safer types.
We have personal knowledge of instances where mine managers have tried to introduce a safer type of lamp. and have tatled on acoount of the miners reftusing to nse any bat the "Tavy," The unreliability of the Davy lamp aas rery forcibly impressed on the writer on the first ultimos. On that day be was in State Mine: In-pector Brennan's ollice at shamokin, Pa., when a telegram was banded to the inepector annonncing that five men had bewn burnex by an exploeion of gas at Buck Ridge colliery. The inspector immediately ordered ont his carriage and invited the writer to ascompany him to the colliery. On arrival there it was found that two of the five men were fatally injured, and the other three serionsly.
Investigation showed that in a groap of three breastor chambers, worked on a pitch of is or 20 degrees, the inside breast, which was driven up only 2 fect above the first lheading, or aircourse, uas full of practically pare fire-damp. The tuo breasts oatside had been swept clear of gus by a rigorous current of air, bat the men working them were not allowed to begin work until the gas was dislodped from the inside breast. These men, rather than loee time, tendered their met vices to assist in changing the bocation of a lamd fan and in putting up a couple of lengths of small box piping up the breast. Five men were in the heading at the inside rib or manway of the lonast containing the gan All of them bad Thuy lamps, and, as a good current of air was flowing throngh the hending and paat the body of gas, they felt sate. The pushing of a length of pipe up the brestet dislodged a ewall quantity of gos, which was naturally foreed down to the besaling. whene it mixed with such a quantity of air as to make it inflammable. The men bad their lamps swung from their belts and as they moved around they naturally swung su that the flame pased through the gause ant ignited the asas. There was a burst of flame which scorched them and set their dry clothing on fire, and the hurning clothing cassed the most serious injuries. The main boxly of gas in the berast was too pore to ignite. The gas that ignited diad not exploale it mercly flaslicd. An examination of the lampre nsed by the meen showed that all were in perfect condition. Thene, we have ondoubted evidence of a seriuns and fatal accident difectly due to a Davy lamp passing the flame in an atmosphere charged with intlammable gas
There ane improverl satety lampes on the market, u hich, bave lech severcly testest, befh experimentally and practicalty, ant which have demonstrated their ferfeet salety by matomatic extinguifloment under such comblitions, and which will not pook the tlame muler any velocity existing in mins Thoe lamper an known to intelligent mining meth. Most operatory ane milling th "Hply them if the minere will use them, as they de-in to protect their cmployen and perperty. In nenst cancthe continamee of the une of the Iavy lamp is due to the purefodiess of the miners, and the smomer the more intelligent mimers comeince their chestinate bertbon-1 of the foolishmess of refuring to aceept the better and rafer lampes, the lewter it will tre for them
The hetmminoms miners of Peberylvania the not use the Davy lamp. They united with the oprotore abd
 rite miners, and they profit by this alcance in sucuring zreater safety.

\section*{UTILIZING NATURAL FORCES IN MINING}

I
a paper read before the Enginecring Akanciation of the soath, Mor. Tyker Cathoun demerites low the Iron and Railmad Co., at the Thenas minew
The oupput of the mines, frota it three it. ream which outcroqs on tlie monntain side, is from Nen to 1,000 tom per day. The inside baulage is effected by moles, hut from the mine mouth to the chates the bugdal cans are
unowed by gravity, and the empties are retarnel by the sane means. The armugements for donpinz the fan
and opening the end gates anc aleo automatic. Nos. 1 and 2 mines are practically self-draining, by gravity No 3 and part of No, 2 mite are largely in a deprewsion into n hich consilepable water runs during net seasons. There is a lange sump arranged at the lowest point in this bosin in which is necumblated the water from over fiity aeres of morked out territory. This water is taken out through iwo xiphonk, each \(1,3 \mathrm{k} / \mathrm{ft}\). long, one of ubich is 2 in . in diameter, and the other 3 in . The summit over which the mater is run is only abont six feet above the ordinary level of the water in the sump, but it is 600 fL . distant from the sump:

Eren in mining the coal, advantage is taken of natamal forces. Mir. Galhoun atates that the more intelligent mibers will, when conditions ane favorable, undermine their coal three or four feet and let it stand in that condition over night, when it is foums that the pressure of the overlying strata has broken down the coal, or has loosened it so that it is ca-ily wedged down, thes eaving the miner about tive cents per ton in getting the coal and en-uring a mueh smaller perownage of slack.
To get the ceal from the clates to the milowad, \(1,0 \mathrm{~S}\) feet lower in the valley, a self-acting incline is used, ower which two cars, holding elexen tons of coal, are ran in a trip. Theec cars are oft on a slope so that their tops are level when on the average grade of the ineline. They are hopper bottotned, and the lottoms each confist of two swinging doors held in place by chains mound in a two-inel, rod extending throngh the ear and controlled by a ratclect, like thoee ured on an ordinary railrcad drop-bottom car.

I deecription of the ineline is as follows: Its steepest grade, at the top, is 46 per eent., falling to 14 per eent. at The bottom, the axerage throughout the whole incline being \(2 \mathbf{y}\) per cent. Its borixontal length is \(4,700 \mathrm{ft}\). The rugre neex is a patent hocked steel rope, 1f is. in Hiameter, and \(t, 900\) feet long. Its tensile strongth is placed at eiti tons, and safe working load at 12.4 tons. It is worked at about 7 tons direct strain on the steepest part of the incline. The rope carriers are 8 in. cast iron collers placed to ft. agart. The droms are 7 ft . in liameter, and the guide slicaves, leading the rope on and off the drums, are of the same diameter. The movencent of tbe trips is controlled by a combination of levers and a powerfol serew, by means of which one nan can stop the warhinery, from foll speed, oo quickly that the rope, which is nrapped around the droms three und ove-half times, can be make to slip in the grooves. The drums are set vertically, and in line with the incline tracks; and the brake tanels, one on each Iram, have their hearings on two cast iroa rims that are bolted to the top of the drums, the bols holes being slotted to allow for expansion of the brake rim without injory to the ilruen
The slafts of the strums are coupled with exteneion shafts, which extend ahont nine feet abowe the drame, at which elevation they carry two sum whels; these gear with two pinions, on two cether sbafts knows as the fan shaft-, in the ratio of 31 to 7 . The fan shafts are carrial in cnp bearings that reat on girders just above the strums; thes- shafts have also two other bearings, one just below the pinions and one at the top, Betweell the pinions and the tops of the shafts are the fans, eight feet in chaneter, with foor woulen blades cach; thee fans act as regulatore of the speed of the meline machinery. The mgolation is practically perfect, the runners simply letting off the braker gradually at the start, until the resi-tance of the atmonphere on the fan- kalances with the motive pouer of the incline, after rhich the fans regulate the xpeed to at nicety, until it becomer mexssary to pot on lyrakers at the end If the trip.
The incline track is laist with 21 poand stexl raile, to a gauge of + feet. It is a three mail track, execpt at the enter, where the tripe pase on a dooble track, and at the lourr end, a here they ron on a vingle track, through in untomatic switch, which cach deserpaling trip throws apen for the folloning aseemling trip.
Trom the foot of the ineline the lowded ineline cars (uin out to the railroul chates by gravity, and returs cmpty by the sane mosume.
The coul is erecued in slie chutes by gravitating over a ecries ecwoll compreat of fur separate sereens each five fext in lemgit, with a drop of from tao to six inches from cach seceen to the one belan if. This turns the lumje aser and mbakes op the conl so as to en-are very thorovgh cleaning. The slope of the semens is adjustable by means of threatal malt by which they are sus. Fanded from the trayk stringers abose. The ecreen bars nsevl ane of the dimmond top pottern, nhich have been found to be wry efficient. Frnm the time of dumping thtit lowhed in railtosel cars or into charging cans for the color owens, 1 we chal in maved only by gravity. The charging cars, loadod nith alack, rus by gravity to the oke oxenos, and are hankill lavek, empty, by males The railnod traels- in the vand tombow the ehontex are
also arranged so that after the locomotive places the cars on the storage tracks, they are handled under the chutes, throagh the yard and over the track scales entirely by gravity.

In concluding hie paper, of whicb we pablish only a synopuis, Mr. Calboun says:
'Thus it may be perceived that gravitation plays no unituportant fart in the bandling of conl at Thomas mines. This accommodating force stands ready to do many other money saring jobs for us at this place, when sufficiently urged. The regulatiog fand at the drum
house consume forty or fifty horse power, which could house consume forty or fifty horse pown
at leave be rasade to ventilate the mines.

The outdow of water from the three mines, at the dryest time we have had for several years, was twentyfive gatlons per minute. A few days since, after several days' rain, the flow was 350 gallons per minute, and a regular flow of 100 gallons may be depended upon in all ortinary wather A hunderd galloas per minitet, led down the mountain in a pipe alongside the incline to the ovens, would easily give fifteen effective boreepower, with which a washing machine or a haulage plant on the ovens could be operated.

These suggeeted atilizations of force may be more or less chimerical, on account of practical difficulties, but they serve to sbow that, to an engineer at least, many interesting problems will present themselves in connection with mining work."

\section*{THE GAS ENGINE FOR MINING WORK.}

THE gas or gasolene engine for mining work is
mechaniem that, as a rule, is not appociated by mine managere
We do not believe that for general wee or beavy bervice it will ever approaeh the steam engine in point of efficiency or economy: But there are many instances in mining operations where it can be used to decided advantage.
For instance, there may be a fan located on an outlet some distance from the main plant, and the question of conveying steam to the engine through pipes has been eettled as impracticablec. The erection of a steam plant near the fan may be impracticable or too expensive in
first cost and maintenance, and ejther electricity or the gas engine mast be adopded. Electricity may not be adrisable for local reaeons. Then she gat engine is the motor. It is selfecondained, and can be sajely run by
aby intelligent man. The entire ventilating plant can be ieolated, and as the gat for propelling the piston is generated in the cylinder, one wan can manage the plant.
Again, for temporary uee in runnitg a pump in dip workings that will not last long enough to marrant the introduction of compressed air or electric power, the gas engine is a -uccese. In fact, \(w\) herever a comparatively ewall power is meeded at ionlated peointe, a portable gas
engine is an exerllent motor. There is no donb that the mining industry, with its numerots instances where fron five to twenty horse power is tetuporarily reguired at isolated points, witt in the near future employ hundreds of gas engines, particularly if their coet can be brought down to figures that will enable them to eompete with other motore, We under-fand that gas engines are now on the market at veasoanble prices, and if this
is the case, we prediet a demand for them, at mines, which will grow in proportion to the efforts of the man. nfacturers in introdncing them to the mine banagers.

\section*{MINE VISITING.}

TIE visiting of the interior of mines by men and women, to gratify idle curiosity, is a practice that cannot be too harshly condemned. They learn nothing from sneb visits, interfere with the work, and frequently ron into great danger through their ignorance and unfamiliarity with mines. All they gais by such visits is an unpleasant sensation if they descend
a chaft, and what to them is a novel experience in "darkness tande visible". They can get the same onpleasant sensation by riding on a fast elevator from the upper floor of a oky scraping building, and can see just as mach by going into a damp dark cellar on a dark night with mo other illominant than a small candle. Both of these trips can be made saiely and without ruin ing clothing. Mine visitors who are in-pired merely with idle curiceity and a de-ire for a novel experience are a nuisance to mine managers, and are frequently a sourve of danger not only to thewselves, but to the empployes. In bis bulletin on Mining Safeguands (publiehed
on another pare) Mr. Harry A. Lee. Commissioner of Mines of Colorado, denounces the practice of mine visiting by persone waccustomed to mines, and suggeete the enactment of a law prohibiting all persons but employes and those having businest in a mine from entering. This is a good suggestion, and is one that will meet the
wot prohibit mining engineers and mine officials visit ing mines, becuase they bave business in them. The
mining eogineer or mine official who visits a mine learn something, and is able to pote peculiarities in the geam or vein and strata, in the methods of timbering, mining, drainage, haulage, ventilation, ete., ete, which would be entirely unnoticed by the novelty seeking vieitor. The visiting of mines by mining engineers and mine aciais candot be too highly commended, but the revers the cace when nos-mining people indulge in the

\section*{Catalogues, Etc., Received}

The Boston Belting Ca, 256 to 200 Devonshire st. Boston, Mass, has jost isoued a convenient and hand It is catalogue of tirat class mechanical rabler goode

The Jeffrey Mig Co.'s new catalogue of coal mining machines and mime equipments has just been recoived grade as will ensare its being appreclated and saved by
The Xorualk Iron Works Co's
The Xorualk Iron Works Ca's new publicution deseriptive of the well known Norwalk air and gas compressor is a handsome illastrated pomphlet, which, besides describing the products of the company, containe considerable matter on the use of compresecd air
that is of value to all mine officials. that is of value to all mine officials.
Sapid Enlocoder" are theys" and "The Lidgerwood Kapod Lntrdar are the tifles of tao interesting and conventent pamphets published in the astal excellent
ayle of the Lidgerwood Mig. Co. They are mell illosrated and very interesting
The Knowles Steam Pump Works' new catalogue of electric power pumpe illontrates and deseribes "up to date" pamping machinery and contains some valuable .. An Era in Boviler Periormance'" is the title
mblealion of the stirling Co. of Chicamo. III of a ben pubbecation of the sutang Ca, of Cbicago, IIL. It con buns a report on an evaporative test on three Stirling Walthat the Wathan Pencoery and Dye Works Watham, Mass, mate on 4
M. D. P. Jones, voriners.
The General Electric Ca's new eatalogrue of electrio hanlage, power and mining machincry is the handpanv. It is someth esoed by that enterprising com pany. It \(3 s\) samething moore than a mere illustrated
catalogre. It is in fact a bonn! volume of illusirated articles on electrical mining machinery mpeinted from
 periodeals, together with a bargo amomint of , and other fer. Typographically it is very lime and is well worthy careful resding and preservaiton.
"Manilla Rope for Transmisskon and Hodeting" i the the of sn artiatic and interesting pobtication isobed unique publication and wae thas is of more than passng interest.
Treken the fine-t of f during any one month.

\section*{Book Review}

Tres Stom of \& Prece of Coas, by Eiward A. Martio, F. ©i. This is a small volume of los poges, bound in by the Messrs. D. Appleton \& Co, in the evrien known a very meritorions production, and we heartily twommend is to stadent- and others disirous of knowing something more of coal than the fact that they pay metail deacrs a high phice for a eluri lon of it The is eapecially good for so small a work, and those portions. on the tompasition of cal, and the afety lamp are well worth reading. The chapter on "The Ccal supplies of the World," makes the grievoas error of stating that Penneylvania anthracite is "in inexhanstible quantity." We wish it was. Again, in speaking of the bituminous seams, it is stated that "a remarkable ncam of coal bas given the town of Pittsburg its name." This slowld be reversed. Pittsburg was a town under its present name long before the cral seam was named, and it derived its name from the author's di-tinguished coantryman. Wm. Pitt, and the Pittsburgh seam is indirectly named after Gim. Otherwise the chapter is very good, and jodging from the preface the author is not responsible for thes any marked extent. It is a remerkably cheap book, being sold by the publishers for forty cents.
SLOVAK GRAMMAR, Fow Engiasn-Grakisg Sve Dewte 1by Charlton Dixon, Philipeburg. Tha Paper aver, 134 pages. Price, 81.25
This book is the production
has recognized the necessity of a mine foreman whi slovak language. On bis endeavoring to aet book reating on the sabject, he found that he could only get German works Feing a good Gierman scholar, lee parcuage, and tran-lated the necessary matter into English, ompsling sad arranging it in the most convenient man ner. Besides, he added a considerable amount of infor nation that came to him in the ocourse of his reseatclees which temb- to make the book complete. The book was Slammic Gandth, the leading Slovak paper in America. t is for sale by the autbor.
Taxariox, We have received from Mr. Gea A flinois, copios of the advance sheet- of the introdtuction and supplemental chapter of the second edition of the Eighth Biennnial Report. These sheets take ap the question of the precent mode of asseserments, and show
that great injustioc is done, particularly in large cities, by unequal taxation by which progressive business men, are unjustly diseriminated againal. The pames ment us are unjustly discrimimated agraina. The pages sent us endorsed by many of Chicago's most responsible hare ness men.
Fifyit Axsual Remoet of tee Behrae of Laboh
 of Talour and Insped by Mr. F. P. Clate, Commisaiober report when the difliculties under which Mr. Geste hoorsare taken intoconsideration it wanld be a wuch wore vuloable statistical document if she lans of Tenn© in-pector with the kame otatistics as the Pennsylranin inapectara reccise. These statistics are of a nature that we can see no reason for nome of the operators withholding.
 modara. Twestiert ANsuat Fepost, 1885. This mainly a dopol meporls of the Inspectors of Mines, and the Tyports of hie state Supervimers of Oil Inspection for the venus S994 amd 182i, and a paneren The Cmawfishes of Indiant by W. P. Hay, zoologiet It is an octavo, cloth bound volume, of over 500 pages
Jowa Geomoaral Senyey, Vol. V. Axmeal Remomet Fon vane Yeat 1825. This is a bandsome volume of over 000 quarto pages, isoucd by Prof. Samuel Calvin, A. M., State Geobogist, It is profusely and well illusirated, and as a whole is one of a series of reports that mill and as a whole is one of a series of reports that
eventually prove of great value to the state of Iowa

\section*{Resignation of Inspector J. E. Roderick.}

Mr. Jannes E. Roderiek of Hazleton, Pa, who was appointed mine inspector of the Fifth Anthracite District of Penngylvania, lart fall, has tendered his resignation, Mr. Noderick has resigis his successor can be selected. Mr. Loderick has resigned to accept the pooition of genHral esperintendent of Mr. A. \& Van Whekle's collieries. urprise amoog hi- friends and acquaintaners throughout the region, as the in the wecond time be has resignexd as inspector to accept a poeition with private parties. Kome years ago he resigned the inepectorehip to accept lie euprerintempency of Messrs. Linderman © Skner's codieries, a poeition which be filled with signal succees
op till las fall. During hi- fir-t incumbonvy of the op till las tall. During hi- firct incumbebey of the maspectorship her made a repord as one of the ablest and nost conscientions of the state's officials. His ability as a bining man and his evident fitness for an importMesere Lime poeition soon attracted the attention of Messer Linderman of Ekeer, who offered him a handsome increase over the calary the state paid bim, and naturally be accepted the offer. Last fall, being aware honex in few month. he became prohatily be abamdonerl in a fea tronths, te became a candidate for the fought comperive coxaminationigned, and after a hard the board of examiners ior appointment. He had only erved a few months of the term for which he was appointed, when Mr. Van Wickle, who is thoronghly catmitiar with lus ability as a mine manager made bim on afer whe the wiovty accepted In this change, the ity and general mining knowledge with any ingjector of ity and generna mining knowledge with any ingjector of
mines in the world. and Mr. Van Wiekle secures one of the nomet competent mine managers in America.

Mr. Gyras Robinonn has resigned as engineer abd Dranager of the mining department of the Jeffrey Mfg. a, of Columbus, Ohio, and accepted the position of in New York city. Men'" is the title of a leatlet issued by Charles Henry Men"' is the title of a leatet issued by Charles Henry
Davis, C E., and T. W. Sprague, 8, B., of 94 Cedar 8L, Yew York, who are consalting and supervising engineers making a specially of the thorough examination of mines mining properties and water powers and reporting on the best and most economical means for power transmission.
At the commenoement exerci-ses of the graduating Class of '96; from the Bteren's Institute of Technology, Dosolor of Engineving was conferred by the fegree of ruatepa of kleven's In-titute, upon Commodore Gienge W. Melville, Engineer-in-Chiel of the United States Xavy, in appeciation of the excellent engineering work performed by Commodore Melville for his eoontry atad lie adrancement of the science of steam engineering, well illastrated in the world wide famed "White gquadron." Only once belore in the I wenty-five years' Dostory of the steven's Institute has the degree of Toctor of Enginecring been conterred, and then upon erly occupied the chair of Vechanical Engincer in Steven's Institute, and is now director of Sibley College, Cormell Unirersity.
The Garfock Packing Co, of Palmyra, N. Y. and somes, fal, have cloed their olfice at Omaha, Neb and pened a new oftice and salestrom at 1713 Wasee sc., of the same, is well and fayorably known by the tmade and needs no intorataction at oar hands The principal ami needs no introduction at our bands. The principal sulesroons of the connpany are at Neu york, Chicago,
Philadelphia, Penver, At. Loais, Pittsburg and Boston. The Garlock Facking Ca. are manufactarers of bigh grade packings for steam, water, gas, ammonia, ete. They manofactore water proot bydraulic packing, also high pressure packing which is especially adapted for figh pexanre work on lowomotives, stationary and marine engines, and is designed to insure long pervico camples, catalogne and prices will be mailed on application. Address the nearest office.

\section*{Ventilation}

Elikor OWiery Engincer and Midal Mines
Sis :-Please insert the following quection in your valuable journal for answer by eome of your correepondents :
The upeat and downca-t of a mine are each \(1^{\prime} \times 12^{\prime} x\) 400 , connected by three airways, each \(6^{\prime} \times 5^{\prime} x 750^{\prime}\). The water grage is 1 inch. A fall occure in one of the air ways, closang off the current, the hore-poner retuaining onstant. What change will take place in the quantity pasaing and in the water gauge? foriss, etcl
June 3d, 189k
stedest, Uniontomin, Piz

\section*{Methods of Working. \\ Editur Colliery Enginers and Metal Niner}

San:-I nould be glad to hear from your correspondente as to the methods they nould adopt for working a cral
ceam where conditions are an follows. Dip, abuat ev to Z3degrees, regular, mith no basin. Seam, cut off by fault 2.iki ieet from outcrop Cial, 6 teet thek. Character of coal, hard bituminous. Bottom beneh of \(1 \geqslant\) inches, rather soit. Soof, 15 inches of draw slate, haud to hodd; above that, a sippy clate, treaclaetous. Eire-damp nestic eral markes, as it will not eoke, Yours, etc, May \(20,150 \mathrm{c}\). IV. M. 8. B., ILury Elleb, Nia.

\section*{Explosives.}

Eidifor Calliory Enginery und Mital Miner
Sin:-1 would be pleased if come of your able coniritutors would give toe sutne reason why dynamite will not explode under the folloning circumastances ; I bave
 nlick of syathe buttum of which Fried on The cap xploded, bat the dynamite did mok. I then took the dynamite out and triea it on the surface, and it exexploded all right. I then pat two eaps in one stiek and pue it in the well with the same resule as before; the cays exploded, but the dynamite did not. I also tried it on the surface, and it exploded all right. I then fixed up a cartridge of pouder, put it in the well without any dymamite, and it exploded all right. Now, the que-tion is, why would the dyoamite not rxplode, while The ponder and cape woold? W, A. Gissy,
May 2it, 1806 . Hore Creek, Ala.

\section*{A Question of Methods.}

Elitor Colficry Enginer and Metot Miner:
Sus:-In your May issue there are three eolutions to the tree problem, a geometrical, an algebraic, and anarithmetical eolation. The geometrical and algebraic hensible, except that Mr. Mr. hecasibic, except that Mr. MeTagears taight bave simple. and proceded with as ing ise unknown quantity ath proceded with \(x\), as it is solvable very easily with the last solution mubaitted fo. Mr. Tuncalty io Dunbar, Pa. Will you of Mr . Thancan kindly explain the arithmetical reason for dividing the difference of the equares of the perpendicular and base by twice the perpendicular? What matbematical nathority is there for solving the question this way? I think the formulas are
1. I Bace \({ }^{2}\) + perpendicular \({ }^{1}\) - hypothenuse.
2. I Hypotbebuec - Base - perpendicalar
3. I Hypothenase - - perpendicular = buse-

By what rule of arithmetical reanoning does Mr.
Doncan sulve this problem? His formmiais.

Why socs he divide the resule of the brackets by 120 , which is telice the perpebdicular? In ex-
planation will be gratefully appreciated by many of your planation will be gratefully appecated by many of your
realere, Yours, stnotely,
May \(27,1 \times 16\). Taylor, Pa.

\section*{Broken Shaft. \\ Sidtue Cidiary Engemer oul Nitol Nimer}

Fun:-Please publish the following as my volution of Mr. Noll's queetion regarding the broken sbait, in GIID-At ystem of haulage mith 2 in miles have an endless rope systetu of haulage nith 21 miles of crucible steel aire
rope worked with an cagine of the Litchtield pattern rope worked with an engine of the Litchlield pattern
with \(12^{\prime \prime} x 0^{\prime \prime}\) cylinders and a foot cog-whel, to which with 12 820 cylinders and an, foot cog-n heed, to whici is attached a 4 foot drum, Maced 3 feet twhind this
drum is another dram which is equipmed with Whallenes drum is another dram which is equipped with Walker's
slide rings. Thim drum is not emancted with the engine bat is morked by the rope passing from the forwind drum tack to the Walleer drum with tive lape, thenec to the tedeson wheel, and vor to the inside. The rhaft, which is a six-theh omos, has broken at two differvat
times within four months. What would cause the break age of such a large shaft, it being only 4 feet long Conld the variation- it the growvee of the
by the wear of the noge canse the Iractume? by the wear of the toje canse the fracture
If the drims were not set true with each ofher, wonld that canse the brenk ?
Avs.-The rope that palls the loads has the greater git raib, and will groove the drums deeper than the rope on the end that leaves the drums, thereby making the circumference of the dramestaalher on the end that receives
the mpes than they are on the other end (eapecially is the ropes than they are on the other end (especially is
this so if the drums are wood lagod). Tha forms a this so if the drums are wood lagrod). This forme a
gigantie differential palley, and the ropes must either gigantic differential palley, and the ropes most either
slip or the shaft mast break. There are five lape on the drums, making ten !" steel ropes, whose combined breakitg strats would be 200 tons for 7 strand rope
Hence, the shait whet break bufore the mope Hence, the shait must break before the rope-

May 22, 1896.
J. S. Case, What Cbeer, Ia

Algebra.
Edime Colliery Enginver and Nower' Miner
En:-Please publish the following in your next isone \(A\) and 15 dig a diteh loif fegt long ion
A and is dig a ditch lovifect long for 8100 . Each reoives suok0; but \(A\) receives 25 cen
B; how many feet does each dig?

Ans,-As A receives 25 cente per foot more than B, it followe that A will dig \(\frac{1}{2}\) of of 100 feet less than \(B\). Therefore, if we take \(\frac{1}{2}\) of \(\frac{1}{2}\) of 100 fevet from 50 feet / which is half the length of the ditch), we will then bave the amount of feet to be dug by A , which will be \(30-1 \frac{1}{2}\) of of 100) \(=43.9\) :3 foot. The amount per foot will be found by dividing fifty dollars by the amount in feet of the ditch dug. Therefore, the amonnt por foot that i will receive
will be \(\leqslant \operatorname{lom}+43955-\$ 1.13\) ive will be \(500,00+43.975-\$ 1.134\{31\) fer foot. Now, as If receiver 15 cents per suuare foot lese than N , it follows that he will dige of tof 100 feet more diteh than A
Therefore, the length of tliteln in feet dug by P will in Thercfore, the length of diteh in feet dug by B will be

Let \(x=\) number foet \(A\) diges,
\(300-x=\) number feet \(B\) digs
\(=\) dollars per foot A recoives.
50 =dollare jer foot B receives.
Then, sibce A receives 25 cents more than \(B\), the puation becomes
, IlL

Bracerille, IIL.
\(\frac{50}{x}-\frac{50}{100-x}=1\)
Clearing of fractsons,
Transposing and collecting, \(t^{2}=100 x-x^{2}\)
\(r=950=1+2,500\).
\(r=250=206.15+.8\)
\(r=406.15 \mathrm{ft}\), or 43.85 ft.
The first is visibly not right ; therefore,
\[
\begin{aligned}
& x-43.85 \\
& 100-x-5 t
\end{aligned}
\]
\(100-x=56.15 \mathrm{it}\)
\(\left\{\begin{array}{l}\text { A digs } 43.55+\mathrm{ft} \\ \text { B dige } 56.15+\mathrm{ft} .\end{array}\right\}\) Ansuer.
Respectfilly yours.
June 8, 1806.
Wilkes-Ibarre, Pa .
[We have aloo received a solution kamilar to the latter from W, S. Cope, McDowell, W: Vi.-ED.]

\section*{The Fifth and Higher Roots.}

Elifor Coltiery Engianer and Mota' Miur
Sins-To afford a comparison of the jractical value of the different methods of estracting the fifth noot, perbit me to tind. by the method I proposed in your March number, the fifth root of 21035 K , which moot has already Mannahn by the methods propared by Ajax and Mr. Hannah. Let \(b=\vec{\prime}-\) the tifth power of the trial roit. Then

Substituting this value of \(K\) in the following equation, ,
,

Again to tind the Joth ront of \(1,0 \mathrm{OL}\) Lee \(b=2 n\). Then, \(\kappa=\left[\begin{array}{l}i, m+m \\ m\end{array}\right.\)

subetituting this value of \(\mathcal{K}\) in the following, we have \(=1+\begin{gathered}K^{\prime} \\ 10\end{gathered}+1 \times 2 \mathcal{K}^{2} \quad 16+1 \times 2 \mathcal{K}^{3} 3 \times 10^{2}\)

\section*{1}

It will be seen that the tegree of accuracy attaimble by the foregoing methosi is much greater than can be had by the uve of a table of 6 ligure logarithms.
Your, te.
Jomem IT,
nucemi in

\section*{PRIZE CONTEST}

\section*{Prizes Given for the Best Answers to Questions Relating to Mining.}

For the best unswer to euch of the following questions, the value of \(\$ 1.00\) in any of the books in our book catslogue, or six monthe' subecription to Tur Colaziy woinees and Mgtal Mesels.
For the second bees ansuer to each question, the value of sol cents in any of the books in our book catalague or three months subscription to The Collimey Esgineek and Metal. Mingel.
Both prises for ansnery fo the some gacetion vill not be avriled to twy ane perean,

\section*{Conditions.}

Frer-Coupetitors must be subscribers to The ColGERY EvoINEER SND METAL MISER. foll of the contestant must te sagned to each anewer, and each answer mast be an a separate paper.
Thíd-Answers must be written in ink on one side of the paper innly.
Fumph-"Competition contest" must be written on the envelope in nhich the ansuers are sent to us.
Pift- One pereon may compete in all the questions.
Sioth-Our decision as to the merits of the answers shall be final.
Srwath-Ansuers must be mailed us not later than sne month after publication.
Eighth-The publication of the ansuers and names of persons to whom the prizes are awarded shall be consodered sufficient motitication. Successful competitors are requested to notify as as soon as possible as to what diuposal they wish to make of their prizes.

\section*{Competition Questions for July.}

Qubx. 295. Can you suggert some bew and improwd arrangement by which we can dispene with the wire gatee cylinder in our new sufety lamp? Do you think We comld subetitute for the meshes of the gauze an annular space between two short tubes? and if you do, show
how a thme pasing through a melatively long space of bow a flame passing through a relatively long space of
annular section wonld mone effectively quench a flame annular section woald mone effectively quench a flame than the line wires of a mesh.
Quis. 276. Please look at a map of the North Amerienn eontiment and find for the the longitude of Sx John's, sitnated on the easternmost coast of Newfoundland, and the longitnde of Cape Flatte, situated on the westernmost coast of the Tnited States; and laving foond the twe longitades, show what woold be the time of day at st. John's when it was 12 o'elock, noon, at
Cape Flatte. Mloase algo explain bow you calcolate Cape Flatte. Mosse also explain bow you calculate the time for St. John's.
of 1,000 weries of have contracted to work a large royalty it, except a small patch when we have sunk the shafis lies under a lake. The soam is 5 feet thick and pitches from the shafte in the direction of its greateat length at the rate of one foot vertical for every 50 feet horizontal. The rock above the seam is a noft slaty limestone, and admits much water, and on this account I hope you will repeat your fortuer acts of kinmite-s abd explain to me with the help of a diagram how you think I should work this coal to keep the working face dry and avoid much expence in the geneml drainage.
Qurs. 2is. What system of pumping would yom adopt, in working the seam mentioned in the former question, to discharge the water feeders of the mine into the sump at the bostom of the pumping shaft?
Qus, tas, It has been repeatedly ohserved that in a fectangular holsting shaft where the cages are neariy as ing ungines has to he increased in the proportion of the ing engines fis to the imereased in the proportion of the equare root of the cubes of the velocitars, instead of as example let \(r\) be the velocity, then the power required is in the proportioni of \(1^{3} \mathrm{c}^{3}\). Can you give roe a good reasonf tor the singular increasing reastance that ocours in hoisting with large cages in rectangular shafts?
\(11, \mathrm{con}\) berat a pound of coal, when burnt, develope 11,000 bext units, English. At what velocity, then, would this piece of coal have to move through space to sore up as moch mechanical energy in its mass as would
be exactly equal to the mechanacal equivalent of the brexactly equal to the mechanacal equivalent of the
beat units due to its combustion. State the reeult in beat units due
miles per howr.

\section*{Answers to Questions which Appeared in the May Issue and for which Prizes Have Been Awarded.}

Qune, 915 -In sarveying around the bottoon of a monatans, we made all the nece-vary levels and insets to determine the correct figare of a staly horizontal base that was just tomebed by the mestern side of an outcropping coal seam. From the plat wo found the bgure
to be practically that iof an ellipe, with its major axis comreing fram wonth to north 6,01? feet, and the minor inxis coonsing from cast to west for 2,842 feet. The mountain is 1,800 feet high. The coal seam is 4 feet thick, and is overland with a strong sandstone. We levelhed our transit at a distance of of feet cast ward of the caiternend of the minor axis, and with the center of the telessiver at an elovation of + feet 1 inch above the lien made an angle of elevation of \(2 \mathrm{~s}^{\circ}\) ity, and the distanee, bueasures in a stratht line from the plumb point on the ground to the bottom of the coul scam, was found to be 1,0as fext sow, I wish to know three thinge that 1 am sare voa will calculate for me
Sors- What is the pitch of the sum?
Thivd- What percentage of thiemoth omld be reasonably worked? Show with is sketsh low you lind the
jith.

We are sorry to say this question has again been rope, 12 inclies in diameter, with hemp center, is 305 attempted and all have failed One gentleman sent in a good zolution but be took the minor axis at 2,482
instead ot 2842 . Anotber gave the contents instead of instead of 2,842 . Amother gave the cont

Qux try.-In a mine shaft in course of being sunk an iron kettle full of water was boisted from the bottom at a mean velocity of 6 feet per second. The bettle was cylindrical in shape and 3.5 feet in diameter and 3.5 been cus, and by sotue unknown catse a round bole had ter of 3 inches. The resule was that the kettle left the sump in the shaft bottom full of water and arrived as the top of the shaft empsy, and by coincidence the discharge of water just ceawed at the moment the kettle deached the surface. Now, I will be obliged if you will dextuce for me, out of
Ass.-The contents of the kethle in cylindrical feet are lers 3 inches. The contents of the leettle in cylin\(42.875 \times 16=600\). The mean velocity of discharge is \(\sqrt{3.5 \times 14.4} 2 \times\) tis \(=6.5419\) feet jeer second.
The time of discharge is

\section*{tis6}
\(13.5+2 \times 6.4 \times .62=104.2246\) seconds.
The beight to which the kettle would rise to empty, or the depth of the sinking, is \(104.2246 \times 6-685,1 / 4\), 16 feet Scond Prizs, Monosix D. Rosokn, Kingston, Pa.

Qurse \(22 k-\) In trying to find out she combustible substance that would give the best results in generating the flame in our new safety lamp, I have fallen acruse the fraid that anv further attemper to molve the riddle would drive me to distraction, I will be obliged to you if you will show to me hon it securs that when tmo volumed of pure hydrogen combine with one volame of oxygen, more heat is given off than when one volume of marsh gas combines with two volumes of oxyyen. One thing 1 have noticed that may help you to hind an answer, arnd
that is, the hydrogen and oxycen prodnce water that is that is, the hydrogen and oxysen produce water that is
a tiguid, whereas the marsh gas and oxygen piodnce liquid water and a permament gas, and, strange to say, coal gas that contains a hivh peroentage of \(C_{0} H_{\text {, gives }}\) lamps, give off less beat per unit of weight than any of the gases under notiee, and yet we know that a large perorntage of energy is concealed somehow in burning these
hyino-cartoms, bat it is not fiven off as heat, bat I have hydro-carbons, but it is not given off as heat, bat I have no doubt ye
the mystery
Asw-The caloritic power of hydrogen is 34, 46e and pparts of \(A\) unite with 8 timses its weight of oxymen in
bmirning to steam whose specific luat is \(0 .+05\) Hence the maximum whome spectic conthastion of "heas given out" will be
\(34.462-(8+1)(51.95+597)=0.743^{\circ} \mathrm{C} . \quad(1)\)
\[
(8+1) \times 0+405
\]

In this a correction for the latent heat of steam \(27^{\circ} \mathrm{C}\), and for the difference between the specific heats of water and steam, 51.95 is made
The caloritic power of \(\mathrm{CH}_{4}\) is \((3 \times 8020)+34,462=\) \(14,678\left(C=\frac{16}{16+4}: H=\frac{4}{16+4}\right)\) and 1 part of \(C H_{4}\) unites with 3.2 parts of \(2 O_{4}(=4 \times 16=64)\) to form \(2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{1}\) in the relative weights of \((3.2+1) \times \frac{36}{80}=\) 2.01 , and \(4.2-2.01=2.19\), whose specific heats are 4806 and 0.2164.
Hence,
\(T=\frac{14,678-[2.01 \times(51.55+597)]}{2 \times[(2.01 \times .4805)-(2.19 \times .2164)]}=4,685^{\circ} \mathrm{C} .(2)\) Hence we see from (1) and (2) that hydrogen de-
velops the greater beat as stated.

Cuss Eb, Bonson, Tracy City, Tenn.
Qens. 224.-All the plants in the wegetahle kingdotu of life are grouped under four distinct divisions, as you, therefore name for me a single example in each youl, therefore, name for me a single example in each and aloo a single example in each division of plants that are living now in your state or country?
A \(\times s\)-The four great divieions of the vegetable king dom to which the question refers were repreented during the Carbonifcrous period by soch examples as are bere given:
\begin{tabular}{lc}
sid Kinglons. & Represestatior Phouts. \\
Thallogens. & Lichens. \\
Acrogens. & Calamites \\
Endogens. & Grases. \\
Exogene. & Coniferse.
\end{tabular}

The snb-kingdoms in the vegetable uorld are now the same as they were during the Carboniforous period, and the fuar representative examples required for this state
\begin{tabular}{|c|c|}
\hline Sub Kingtoms. & Reprocetatice Prosts. \\
\hline Thallogens. & Mushroom. \\
\hline Acrogene. & Harse Tails. \\
\hline Endogene. & Grames \\
\hline Exogens. & Pinee. \\
\hline
\end{tabular}

Mine Superintendent, Howopple, Pa .
Soond Prise, Cwse E. Bownox, Tracy City, Tenn.
Quac 2 - A mine shaft is 3,000 feet deep, and I wisb diameter, will safely carry in hoisting coal up this shaft. Axs-Weight of 19-wire strand plow steel boisting

\section*{pound per toot.
\(3,000 \times\) ith
25}

Breaking load is 110 tons and safe working load with factor of safecty \(=5\) is \({ }^{110}=22\) tons.
\(22-5.475=16.525\) tons gross weight cuge and lood. Scount Prize, A. W. Evaxs, Petros, Tenn
Quss 2bi-Will you explain to me, with a beat drawing, how it occurs that the borizontal planes as the two ends of a perfectly struight libe of sight are never par-
allel, althongh the teleapme is emt trnly level at the end in question? A gain, while yom are bose, wou might shou me how it is that we cannot get a "perfectly straight tier hou it is that we cannot ger a perfectly straight the divergence. Forther, make a bold finish by showing the reason n hy a sight made over a surface beated with the rays of the san can never be trasted for nceuracy
Axs-A line is said to be level (apparently), when if forms a right angle nith the cartho radins or is tangent doervio. That the plabes at the end of the line are The parallel is due to the spberisal shape of the earein depends upon the distance letueen them. When this dintance is small, the angle of divergence will deflect os little from the apporent level that che planes seem to be parallel, bat as a matter of fact, they are not.
The cause why a perfectly straight line of sight cannot be obtained is due to ther rays of light possing throngh tbe air betigg curved downward. The downward curva ture makes she point sighted to appear at a higher level than it actunlly oceupies and the result is a broken line that will be somewhat longer than the true line, and be longer the line of sight the greater the difference. The fason why a sight mate over a surface beated

parts of the surface become more heated than otherchus cansing unequal rarefaction of the air along th lime of sigtt and consequebtly irmgular refraction, that makes correct talculation impossible-

Jontr Versaz, Lacas, Iowa
Second Prise, A. W. Evasc, Petros, Tebn
Qux 297.-To work a valuable coal seam, we must deliver onto the nearest railway with a branch rond of our own, and as the surface is very uneven, and the pasking of cuttinga and embankments, we will deem in favor if you will advise ns aboat the hanlase we shoeld make to becheap in construction and efficient in miction and, if possible, plense support your conclusions by and, if pussible, please support your conclusions by
reference to actual cases; and be careful to note that \(m\) have decided against every kind of locomotive traction Axs-In this case, where the surface of the groand is very rugged in contovar, I would for cheapness of construction and efficiency in action advise the construction of the chife adyantapas of this double rope sysem, ome surmonating any grade. By nsing the Blechect syew yon have a regular service and tew stoppages for repain and no interruptions due to atmaspheric influencer or any interferences on account of sarface tratic. The expenser of operating are very low. Terminals can be established at the places most contenient for receiving and delivering. These facts just noticed prove the advantages of uire roge framuaye where the grading is very irregular. The Bi-Metallic Mining Co, of Granite Montana, has a trumway 9,250 feet in length, with a fal of 1,295 fees. The dessending load develops 14 horse power, which is used to run the crusber and elevator capacity 250 tons in 10 bours. Coet of tran-portation 3 Tie per ton per mile.
The Granite Mountain Mining Co. line nt Rumsey Sontana, is 8,750 feet long, with a fall of 1,297 feet and develops over \(1+\) horse-poner. There is a span of the
feet and from Fred Horr hill down to the mill at Romfeet and from Fred Bari hill down to the mill at Romsy, the grade is usmally so steep as to fall \(1 \%\) in 2
The Split Rock Cable Fooad Co of Synicuse, V ?
The Split Rock Cable Road Co. of Syrucuse, X. Y., has in operation a line 16,500 feet long. Drily capacity 750 tons.
Tbere exist- in nature hardly a suppeable dititiolly. which woald bar the introduction of this system of transportation. I would advise the owner of this valu able property to inaugurate a correspondence with the
Trenton Iron Co., Trenton, N. J., and tbe Lidgerwood Trenton Iron Co., Trenton,
W. Evaxs, Petras, Tenn:

Scond Prisc, Cuk E. Bomnox, Tracy City, Tenn.
Qun 22s-Sometimes in mining, where the seam is situated above the drainage level of the districs, water chaft in pipen to tho the work required in pumping, haul ing and ventilating. This ureat water power is applied through the medium of hydradic engines, in which a stream of high pressed water is projected onto reaction blades, whose sarfiaces are curved to secure total refiection instesd of simple dethection. Sow, to make sure that we all understand the explanation given, will you still further assist us by answering twa questions?
Fires-What are the curves that are given to the ineide sarfaces of the retlecting cops, of the reflex uater wheel Son thas could be secured with a deflection of \(90^{\circ}\) from the plane of the wheel' - rotation?

Axs-To obtain the higheat efficiency the water nust (1) enter and pass through the wheel withont loss by fretion and foam and \(/ 2\)) bust reach the tai-race withrupe which ame metelly milial cups which are merely radial "Hurdy-gurdy" shomn at \(A\), is detiected so to \(B\) and prosers a way with considerable vecorved vanes shown at \(c, c^{\prime}\), producing as much energy from its reaction as from its action or double that of the radial etraight vanes, their relativeefficiencies being as 40 to \(80 \%\) of the theoretical water poner, For complete reffection

Cuse En. Bounos.
Tracy City, Tens.

\section*{The Care of Mine Mules.}

Every mine toanager and oferator knows that notwithstanding the mule is a hardy and tough animal, he of alficted with certain distases, and is cether incapaciated for a time at least, of dies, entanling considerable loss. Lassides, many mane bules are totally imeapactated by injurues that if properly handled woold result only in temporary disabjement.
It is a recognized fact that in man, the lighest order of animat ole, the stomach is the nust important fattor in deternining the degree of bealib enjoyed, and that if ibe stomach and digesike orzans are in periect condition, the bodily lieatit of a man is goorl and he is physically able to do a large amount of labor. This same cobdition of the in moles and horsex. The kading stock breeders of the world reoognize this fact and profit by it.
We do not believe in advertising in this juamal any preparation or appliance that has not received unquatihed endorsemebt from some mine manager of ofher otficial in whom we have constence, as ne believe it is our provituer to not only publish such articles as are practical and uscuif to mimeg tere, hut to keep puar addverang lein Claracter: Refore zecepting an advertiscobent of "Nurioture, we fonnd that it hat heeb used nith exvellent the Mt. Jessup Conl Ca, the New York and Scranton Coal Co, and the Sterrick Creek Coal Co, all operating sines in clope proximity to Scrantos. Euch of these ompanies unqualifiedly endorse the preparation
vative and putritise tonic, name motice forl a reIt is intended to suply the - perfust fond auxilliary It is intended to supply the restorative elements gensatisly all the demands of the animal system. It thus improves the appetite, aids digeation, promotes asaimilafion, and increases the activity of all the functions of the animal counomy, so that the tone of the system is maintained in mormal condition, and possibilities of ronth and development intensified. It is a natural fornty for the petty ills of the animal symetilm ios storative action, and prevents the graver ills abd dieeases by keeping the system in condition whereby atorganic porisons, but it consists of parely vegetable and mineral substanees, which are so combined as to furnish the elements most needed to meet the demands of Nature 16 effect is soch, that breides curing the dis: cases of mules and horses, it tones up their syetems mo that wounds and injuries heal up in remarkably shori time. It may be administered in almost any quantity, ntelligence it is entrusted to any stableman ation be used as a supplement, or in addition to ordinary foome Nutriotone is manufactured by the Thorley Food Co, of \(40+2\) Franklin Street, Chicage, 111 , abd 302313 Kirk Building, syracuse, X. Y. In the Nortbern Anthracite Field, it is handled at pesent by the Weston Mill Co., Feckrile It Is a preparition tliat merits the attention of mine managers generally.

\section*{A Large Shipment of Electrical Mining Apparatus.}

One of the larpest single shipments of electrical appeatus was shipped recently by the Westinghoase Electric
 The shipment filled eight freight carr and the freight of that carmo to it- dee tination ammanted to \(\leqslant 4,000\)
The suachisery will be used by the Bneton abd Moar ana Consolidated Copper and Silver Mining Company in the refining of copper and silver, and it is the largest machinery of its kind fiver con-tracted for electrical retining parprees. The Boston and Moatana Compans is one of the largest copper mining concerns in the northwest.
Until a few yeary ago the copper produced in that country was not rotined, but the copper matte was sebi east, some of it to England, and then refined. Sinee the introduction of elestricity into the refining process, the The Anaconda N inghouse same time ago swen thio horse-power menerat ors, of an output of 3,80 amperes each at is moles. *ince these machines have been in operation the electrical process of refining has proved a great success. The machinery of the Diston Company will be driven by turbines from the waters of Great Falls
The generators will be directly connected with the arbine. There are two of them, the largest ever made. ach obe of 1,100 borse power, at an oatput of 4,500 amperes and 180 volts. These machines were slupped in four freight cars, while the others were filled with detail apparatus, such as ewitchboard applianees, etc.

\section*{LEGAL DECISIONS ON MINING QUESTIONS.}

Purchase by Cotenant of Mining Claims -1 tenant in common in a junior tnining clam cannot boy in the title of a senior conflicting mining locstion, amd aceert it against his cotenant in the junior claim.
Franklin Mining Ca, y O'Brien isupreme Ct., Cola 4. Iacitic Roporter, 1,016

Who are Not Fellow Servants.-The fureman of a stone quarry (or similar bosibees) owned by a corpoeAtion, whreer duthee require hims to exerciee a general gate roles for their goidance, is not a fellow servant gate rales for theif
with one of the men.
Fichmond Granite

> te Co. v. Bailey of S. F. Rep. \(2: 2\)

Foreign Corporations May Buy and Sell Mining Lands in North Carolina.-A foreign corporation ereated for the purpoer of mining and milling gold and other minerale in the state may, if not prevented by its charter, acguire and dispoee of real pro
therabee of the objects of its creation.
Farcello y. Hapgood, (supreme
Reporter, 124.
Measure of Compensation for Taking Mineral Lands for Public Uses.-Where, in proovedings to condemn a right of way across land, the evidence shows that part extent fo which that fact mould fend to increate ite market saloe is for the determination of the jury
Ranitary Dist., Chic v. Loughran (Supreare ('t. Its. 43, N. E. I. 35:
Trespass by Agent of Mining Company.-That the agent of a mining corpuration, is mining coal in certain land, acted noder the bollief that the cual was owned by title, there feing no mistake in the identity of the land. title, there being no mistake in the identity of the land.
doss not pevent thespass from being an intentional doner
ode,
sunnyside foal \& foke Co v. Reitz (ApR (7. Ind.
When Punitive Damages Will Not Be AllowedIn the abernce of evidence, in a pereonal damage -ait against a coal company, of matice of recklese conduct on
the part of the eampany indirating a parpose fo have the cmplose injured, of of a reckless dismogard of the
safety of the prran of the emplose, the jury sbould be sufety of the pereon of ther employe, the jury stooald be
confined. in cu-e they return a verdict again-t the exm-

Kep. 2ts.
Non-Liability of Coal Company for Injury to Em-ploye-An -mploger was but liahbe for the death of an rope, part of a boisting apporntus, which commenced to tighten up juet ae he was stepping oser it, where the ebphoycua- fally acquainter uith the mplaratus, and the employe liad been forbidden, and his duties did not reguire thiat he should eross the rope

C'Brien v. Staples Chal Co. (Sup, Jod. C1., Mases. 49
Injunction: Mining Claim-Where the showing made by a party desiring a preliminary injunction tended to prove that the otber party, as lessee of the
ownere of an intereat in certain mining claims, in which ow were of an interet in certain mining clains, in which
the complainant owns the largest interes, was working stelt clarms withont the conernt ant agatnst the wistect food fath, such showing is sufficien to justify the injunction, in the diecretion of the trial court, ot the ground that the acts of the other party conetitated an ground tiat the acts of the other party conetitated an
*xorising of exelusive ownership by one tenant in Red)

\section*{}

Engineer and Excavation Contract. -A contract for the exeavation of ground for the erection of an inclimed
plane, provishes that the work stould be dobe 'mecoeding to the directions and under the eupervision of the engineer in charge of the eonstraction of the incline"
and the work wes to be paid for at a cortain rate and the work uns to be paid for at a certain rate per
cubic yard. The Supeme Court of Pennsvlvanala held cubic yard. The Supreme Court of Pennsvlvania held
that, the cantractor has mo right of action, when the platios in the inctine were mo changed as to leave no carth excavation to be done, on acconnt of the bow of
possible profits, unlems such excavation was directed by poscible profits, unlems
the engineer in charge.

Hockentine s. Xtnnery Hiat Incline Plame Co. is
Location of Mining Claims in Town Limits.-The fact that laml on which di-covery and location of : mining flaim are mase is within the patent limits of a town will not affert the title of a locator, where it was known prior to the patent of the town that calnable
mineral Were made afterwards
In ejectment for a mining claim, wherv it appears that
the dievosery whaft- of both pertios are identical, dence that the di-coveriee wert walle on lands patented pibur to the datew of discovery of vither party shoult by mbtritted, and the jory instruetel if that faet were fontud,

Construction of Contract of Guaranty. -1 farty made a contract with anuflice by which he gave the lat
ter the sole ageney of the sale of the onfpat of a colter the wie ughory of the sake of the ounpot of a colbrancher and connections," and agreed to fill all orrler for coal subd loy stach party to any pernens at sach peints of the road ob coal docks leased the it arial under it-couiecol was within the costract, and thervfow within goaranty by a thiril party of payment by the geont
party of money becoming due thereunder, Also, that such contract coald not be limited by parol to a particulur kind of enal from said codliery Hutchineon r. Root Asup. Ci. App. Div. 1st Dept.
Deed of Trust on Mining Property.-Wbere the deed
 cover the fruats arising from the casom accure low the ippointment of a meceives, and be imercepted the apprame either directly or indiappied upon the martagge deve, cither abection of the
 popperty of every kind now owned or liereafter to be property of every kind, how owned or hetean with and acyume in for aee for the authorizing etic zrals, nut mortgage did nat cover the
 protits or procests of the basimsss of moming such as Ala. Nat. Aank v. Mary Lee Coal \& Ry. Co. (Sup. Ct

\section*{Ma. 19 So. Keporter, 404}

Illegal Combinations.- \(\boldsymbol{A}\) statute denouncing as void and prohibiting the enforcement at law or in equity of every contract whereby a combination of capptal, skili, "trade," or prevent competition in the sale or pur chase of "commodities," rebders void a lease by a ecal company of a saloon on it- property, in which the lemor covenants bot to permit the sale of liquor, to any one elee os ite lands, and to issue to its employes checks in payment of wages, and to redeem all checks which the kosse might take in payment for liquors in consideration of the payment as rent of two-thirde of the protits of the businees
Tesas \&P. Coal Co y, Lauson (Supreme: GT. Tex.
14 S W. Rep. 319
Fire in Mine: Contributory Negligence of Miner.Where a miner ater baving been motibed of the oul the diaft in salety, onneceevarily lingerd in the mine without notifying the then on the surface of his intension to do so, ami it appears it would have been proper wine, or koep it rumning accondingto the location of the fires a nomenil, on the ground of contributory becligence should te granted in in action to reconer for hive death as sad miner had to righe to asenme that thate it the jury alon find that the neglig-nce of the mining conpanc in stopping the fan wasone of the concarrent caues revolting in the dkath of ach mine:
Fugh v. Oregon Imp, (\%), (Supneme CL Manh,) it
Assignment of Lease of Coal Mine.- A lease of
 pariy any cont and to we of-rated dirime the life of the at attention with any other ming for derading his fimm rent depended upon the number of bashels mined. The lemee a-sigued hi- interests in the lease, and the us igneve soptght to restrain him from operatimg another bine an the groand that be was still bumed by the original leare. The supreme cobtt of lowa held that o)
 bey anguiral obly wich rights as their assignor hat obligations. An assigntuent of a leate of a coal mibe, with the good will of the trade, does not carry with is an obligation that the assignor will noe aeain engage in Fie same beribees in the vicinity.
Fidlay v. Gareon, thi X. W. Repogter, ive.
Mining Claim-Failure to do Assessment Work, etc The owner of a placor mineral claim dues nod forfeit his righit to -ame, son as to render it sulbject to relacation, by fallare to perform the reynired annaal aeeceevent work claring a time uben adverse pansessoion is lueld loy another, when he cotnme-
within the statutary time-
Where the owner of such a claten, which was exroneanaly included in a rale nnder a dectee of court, moved his effects from the clain, and ahsented hime-lf for twa vars, allowing the parchasers to wook it without objecy
fion, while he knew that their title was invalio, ime intending to elaim it only in case their developmoen rendered it profitable to do m , hi- acts will constitute an Trecaskit
Trevaskis v. Feard (Supreme CT. (al,) \(4+\) Pracitic Re
Hydravlic Mining.-An injunction, saye the Suprem Court of California, will mot be granted againet the use inction for carnime detrims fint, actoss the land of in the gromind of an itaproper and injurigas exercise of the casment, where it appars that the water in the plamant, fint did bot canse of threaten uny appreviahle danger. Almo, that in an action fo alsate, as a baicance
 all hydraulic mining is aluissible. And further that under the laws of the Tnited Statos, a patentee of min. ing bad, over which un aljoging owner had for owoera jears, by local condom, and from nevessity, waindained such diteli to a river, took subjert to the easement of right of the mining company to use the diteh for enels

Responsibility for Injuries in Coke Yard.-Wbere xirty uas employod in a coke yurd, and was directed t. clean the sprockes whect of a slack elecator by the fore to contros, complany, it being the duty of the foremas to confros, cmploy and deselarge -welo imon, and to hool order, and such party was ingured on woconnt of the
negligence of this foreman in failing to delay the starting of the machinery, and also in failing to detach the chain by which the elevator mas operated, the Appellate Court of Indiana says that such employe cannot reower for the injury, unless be shows that the foreman's neghgence was the omikaion of a duty owing by the company to the employe, the discharge of which duty va intrusted by the company to the toreman.

Rep. 270 .
Coal Lands-Agreement to Sell. Adverse Possession, etc.-The effect of the record of articles of agres. ment, howing the purchase of the coal on certain and not affected by the fact that the legal owner of the premises subsequently gives to the former wendor a deed premises subsequently gives to the former wend

The possession of the surface of the land is in no way drerse to the right of poscession of coal beneath the ariace by another ubder an agreement for the ask of face is not bound to take actual poesession in onder to face is not buant to
preserve bie fitle to it
press-rve hie tite trit.
A secol lom sale of a tract of land, and so of cual bencati the enrface of an adjoining tract, by the expuitable ow ner of sach properties, 88 not merged in
a subeequent deed of the latter tract by the legal ouner othe purchaser.
Lulay v. Barnes (Supreme Ct. Penna.) 34 Atlaotic Iteporter, 52.
Apportioning Interests in Mining Claims.-The 0ult ers of a certain mining claim and the owners of sundry adjacent claims between whom and the owners of the first claim there had been disputes as to their respective rights in certain locations, organized a mining company abd conveyed to it their various rights in the disputed locations, One half of the stock was ateigned to the ouners of the first claim. The other half was placed in trust for the owners of other claims, who oomld nue agreviupha a division of the strek, with an uoderfrom the several locations, and the procesds, after deflucting one-lalf for the owners of the first clam, should be paid to the erantors of the neveral claims subseguently, in a suit brought by third parties against the iesumed ownere of a mine on one of the dieputed claims. it was adjodged that an interest in the location belonged a sach third parties. The conrt bedd that in the atoence of some of the partios interested in the stock of sid mining company, beld in trast, the court conld not, in such sait upportion the stock so held, and direct a hone \(w>2\) tu auljudes that the the most that could be lispates mine slould tramufer assumed owners of the fornst as they hast in such stock to the partien found to bave un intericst in the lication.
Wheeler x. Hitlings (V, \&, (ir. Ce. App,) is Fideral
Reporter, 301.

\section*{Coal Production of the United States in 1895.}

Mr. E W: Parker, statistician of the Tnited Elater seolugical arvey, has completed the complation of the datindics of coal prodtuod in the United Ftates daring oas \(171,804,+42\) long tons, or \(192.400,411\) shogt tous having a tutal value at the minee of \(\$ 197,572,477\). This slows an increase over the peckluction in 1894 of about 19, 50,060 long tons, and an increase in value of about
 , increased from \(46,358,144\) long tons in \(1 \times 24\) to , iss, 22 long tons in 1sis, it gnin of ower suxu, from \(875,488,063\) to \(\$ 82,010,272\), showing that anthracite coal was cheaper in 1895 than is 1594.
The prodoct of bitmminone coal increased from 118, (20), 405 short tons of 2,001 poeands in 1894 to \(134,431,9 i+\) short tons in 1Mss, a gain of over \(15,600,00\) tons. The alue increased ubout \(84,000,000\), There was an in
creased production in all but fixe of the twentuvine oral producing states. Alabana and Pennsylvania boued phemomenal gains of more than 25 per cent, Alabama increasing from \(4.32 \pi, 178\) short tons in 1214 to s.in9, 776 tons in 1845 , with a valuntion of \(85,388,7 \%\) and Fenney leania from 30,912 , tia short tons to 50,017 , ifs shont tons, valued at \(\leqslant\) sis, ve, g78. The stated in whels a decreased prodoct mas shown wene Gieorgia, Kansas, North Dakota, West Virgimia and Wyoming. The principal loeer was Kaneas
The following table giver the prodaction of the ses ral states

\section*{DOORS IN MINES.}

\section*{THEIR EFFECT ON THE AIR CURRENTS.}

Their Use, Abuse, and the Extent to Which They May be Aveided.

\section*{Hy Jumex Miek, Inspector of Mincx}
 We have no definite knowledge of the time or place where mine doors wew lirst ued, bot in alt problabitity
they were introduced away back in the early history of mining operations, when the people were groping along
in the dark, teking knowledpe the bees may they conlif, to enable them to ventilate their mines ; aloo to tind out some method or appliance nhereby they conld procure
a light for use in the underground workings that wonld a light for use in the underground workings that would
not ignite the explosive gas, which was and had been not ignite the explotive gas, which was and had been
the miners' moet deadly enemy from the carliest period of coal mining, an enemy which they were unable to combat, having po means at hand wherewith to expel it from the mines or to deteet its presence in the mines untit its deadly blasts were upon them. Doubtless the pereon who inirodaced the first door into the mines con-
sidered (and rightly 80) that be bad performed an sidered (and rightly 80) that be bad performed an ment in mine ventilation, and that his nevly invented apparatus was tbe one thing needful, as by its applica-
ton the mine manager coold conduct the air current ton the mine manager could conduct the air current
throagh every part of the mine and sueep away the deadly gas, thereby removing the danger of explosions which the miners so mach dreaded, and which oftentimes suddenly came upon them, like a thief in the
night, vithout the least warning. Probably the mine night, nithout the least warning. Probably the mine door, the davy hamp, and the rentalating furmace uere the steam jec, all of which were vast improvements upon the most primitive methods of ventilating and lighting of the mines, the first of which consisted of the
vigoroas shaking of a canvas cloth at the entrance of the mine by some trong, luaty person employed for that parpose the second consisting of nothing better than a but a brighter day had at last dawned, the mists of but a orighter day had at last dawned, the misis of
ignorance were being pashed aside by intelligent action; the old piobeer miners were now enabled to prosecute their calling with a degree of safety never before experienced. Thisgave them confidenee in theirownability to
osereome and remove the many obstacles which had previonsly blocked their way to progress and prosperity, and had prevented them from extending their operationto such an extent that wookd satiefy the growing demands for their commodity; and howerer little valoe we
may place upon the mine door, Davy lamp, furnace, may place upon the mine door, Davy lamp, farnace,
and steam jet at the present day, yet we are compelled to admit and to tectify to the fact that the success of the old pioneer operatory and mibers mas in a very lange nocasure due to the introduction of the deviesa and apparatus before mentioned, and immedately tollowing
their introdoction the business of coal mining made rapid strides foruand; therefore we alfirm that the mine door as a means of condocting the air current around

and through the various ramifications of the mines was a great improvement upon what had gone before, and war a mosty inventbon which did valuable service in iting the destruction of many valuable lives and much property in those early days. At that time the mine workingy sere not extensive, and the employes in each mine were few, but since the mines have become deeper, more gaseons, and very extensive, in very many cass, employing large numbers of men, it is found that primifive methoxls and appliances which were useful and
beneticial in their day, are no longer satiefactory, efficient, of safe, and instead of being safeguards, they have for some time past been looked upon as man-trape, have for sotue time past been looked upon as man-trape, of trap door
Who gave it its new name and when and where it
received it I Inow not. but I suppose the change of
name was due to ite merits, and I feel bo inclination to attempt to controvert the assertion often made to the to the use of the trap door. It is impossible to arrive at a close extimate of the number of lives sacrificed and the value of property deetroyed by gas explosions in
mines by reason of the doors bing left standing open mines by reason of the doons being lett standing ofen,
for in nearly all large explosions the destruction is so complete as to render it imposible to useertain to a certsinty, ubether open or broken doors were the direct canse of the mischef or not; but there is gooll rawon to believe that were the evidence not so completely obliterated, the source of the truable in many cases conld have been traod to the ever presest trap door. By reviewing the history of mine dikasters ue find that in 1857 an explosion occurred in a mine located in Eugland by which ereral were host and the mine left a complete wreck recoverel ; we ano also inforsed that in this mine at the time of the explowion there were no less than 50 doom

in uee, and the presumption is very strong, indicating that one or perhaps severul of those doors were left opel at the same time, which cat off the ventilation for larze body of sas, which pas -uphend to hase bee ignited some di-tance from where it nas generuted, i having been moved thither by the air curent atter it was again directed though its proger channels by the Western Pennsylvania where loces of life has occuma through the dours having been left open, two cases in Fagetie conaty, in 18st, whereby 15 lives were kot; one caee in Weatmoreland, in 1 skT , Whereby one man loet
his lif. and the fourth case in Waslington connty, in ses, where one man was killed and another griopisly injured, and probably there are parties present who can re put the only evil effect manlting from the now doors, for it we go into any mine where they are used to execss we invariably find that the men are compelled to work in a stagnant, impare atmosploce to a greate multitude of dosm being in noe at ans mine is a ame in dication that such a mine is nos, and cannot at all times be properly ventilated. No matter uhat the pouve of the
ventilation or how great the volame of nir prodiced, it ventilation or how great the volome of air produced, it is next to impossible to maintain a steady, constant flow
of air throngh the \#orking- for pome one or mare of the of air through the workings, for sotbe one or more of the
doors in differeat parts of the mine must of neox-sity be doors is differest parts of the mine must of neewsity be open much of the time during working homrs, and in many cass the effects of even one door being open for
a thore time only, will result in the di-arrangement of a short time only, will result in the disarraggement of the ventilating current throughout a considerable portion
of the mine. I am aware that this could be avoided to a certain extent by the use of double sets of doors, so that the one would always be elosed before opening the
other, but this method entails a considemble item of otber, but this method entails a conssder
expense and is only adopted in rare cared
In view of the evil effects of trap doors in the past we may do well to pause and ask ourselves the question whether we have done our fall daty in seeking ways and means to supersede it with something better, of
whether we have been carelee, reeting sati-fied with whether we bave keen carelees, resting sati-fied with
things as handed down to uz , when me might have things as banded down to us, when me might have
adopted metbods more beerming of the advanced nge in adopted wetbods move becoming of the advanced age in
which we live. I fear par unswer to such aquestion must be somewhat unsatisfactory; for while it is true that our syetems of mining of late years bave bech on the ascendant, sill aby person with an extensive knowledge ad aer states at tho Oher states at the present time, will observe that the ferfices introduce by our ancetors, thought crude ioeficient, and inrebable, hargely preponderate as thi aped by skilliul eflicient manamer from whom we hav geight expet heter thigs Reverting amis to the subject of exp doars I may say that I regid there not subject of trip doors, 1 may say that regard thems not only as being a source of danger, but hikewise a neelese farties have for some time past been seeking ways and means to ventilate their mines on scientific prineiples, Mithout the use of doors, and with our present knou oar goide I see no ramong why we -hould Dot abolish our guice faved no reatoo why ue chould bot abolish so, and I think it can and has been fully demonstrated that new openings and some of our old mines, can be developed, operated and ventilated much more satisfactorily and at less oost without them (expecially in the mines, with few exceptions, have bresent time onf developed upon a system, or systems, requiring a ver liberal uee of trap doors, coneequently we must recognize the fact that in many cases under the best management gether, but in such cases we must nocept them as a neces.
sary evil, a hich must be tolerated for an indefnite period of tume, and their presence mili be a standing rebuke to remind us of our past shorssightedness and imperiect acquaintance with proper scientific methods of mining and
ventilation of coal fiedde, which nature has so abundantly lepoeited for our bebefit and well being. In Fig. 1 is dhown one of the prevailing double entry systems of mining and ventilating with noom turneet on each entry. wherein a liberal use of doors is necessary to condact the air current formard to the face of the workings, and are will obeerve that when one or more of those doms time being, and, as they are all open many times during the day, it can be readily seen that conslant flow of air brough the workings is next to impossable, for no soner is the curnent re-established by the closing of one door than it is again interrupted by the opening of tion in vogue in some localitios mach lexe sativfactory even than the one before mentioned; in this case single estries are driven and noms are opebed on each side of be entry, foory being plawell on exery room nock on one side of entry. The evil effects of this system are so pparent as to need bo comment at thir time, but this yotern is now almost unknown in the Pittsborg region kg , 2 represents a plan of ventilation on the treble ntry system, rootm being worked on the two outside entriss only; by this method a large number of men ean be employed and an abondant ant constant supply of resh uit can be furnished to all working parts, without the use of any door whatever and in case of an mergency occurring in any section of the mine, sach as a sudden inflow of gas, in additional amount of air direct from the inlet can be diverted at will to any eection where required. This eyetem has been adoped in several mines in Allegheny county and will in afl probability be introduced at other mines in the near future. The sketch itself will show the merits of this mode of operation and ventilation. I think it can and has been clearly demonstrated that, by the moption of this method of development, the expense to the operator is considerably reduced, the minert work in a pure atmos: phere and the mine manager need have no anxiety for lear of the evil consequences which may resalt from trap doors being left open or broken down. I may forther say that I incline to the opinion that the treble entry system can be profitably applied in almont uny territory (with the possible exception of very thin coal sams not generating explosive gas) bot it can probably be ured to the best adrantage where the coal seam is
nos kes than about foon feet thick and not moch boken not less than about fo
by catcropping lines.
In outcropping lines. digenssion which followed the reading of the paper Mr. Blick stated that the three entry system assile from the question of safety to the minere, would enable the operators to mine about \(\$ S\) feet of coal more
thancan be reaclied by the oplinary double entry system.

\section*{THE JUMBO AUGER}

\section*{An Improved Drill That Prevents Blown out Shots,} and Reduces the Amount of Slack.
A bright and intelligent miner of Blue Kapids, Kansas, who uppreciated the advantages that can be gamed by inereasing the diameter of a shoe hole at the back, bas invented a practical tool that will bore a large bole tock of a small one as eakily and with as much ocrtainty, 83 small hote can be bored in the bottomof a larger one. This apparent mochanical imposability is aceome plished by the "Jumbo" Anger which is manufactured
by the Hill-Fowher Manufacturing Company, of Bne by the Hill-Fow
Kapide, Kansak.
capids, Kan-ak, being able to place their powder in a lange conapact mass in the bottotm of a ronall, deep hole. The nowet ffective blast is the one in which the tamping does not spring and which breaks from the very bottom. This evalt is made possible by the Jumbe anger. It bottles up the change behind polid shoulders that bever give
way until the material in front is moved. It is the way until the material in front is moved. It is the
uncqualled record of the "Jumbo" that out of the cuegualled record of the "Jumbo" that out of the sounsless shots pat in with the thousands of thesee up-to
late drill. now in nse throaghoat the West not one blown cat has yet been poported. When there am bo 'blow -onts'" the powdier is doing its work and all flame is stifled behind the mass of material that is moxed and the poesibilities of dust and gas explosions ane and the poesibitities
reduced to a mimatam
Sucther important improvement that the Jambe auger effects is that it enables the miner to place the powder in a compact charge at the exact spot where it will do the mand moxd anil where it mill move the moot coal with the least hmakam. From actaal tebte and experiments it has been found that by using the Jumbo, instpad of a common drill, the percentage of slack is reduced more than one-half. It is strictly a lump coal maker.
When the Government reoently choce the bottlenecked cartridge with a very large powder chamber back of a 30 calibre hullet, it adopied the same principle that makes the Jumbo shot so remarkably effective
The "Jumbo" is a powder saver becanse it make* one round of exploeive do the work beretofore done by where the explosion should take place. It can tee nowed in may mine where tuist of rotating drills ane used and it is guaranteed by its makers to do its work perfectly and without failure. It takes no longer to bore a hole with it than it does with an old-style bit. It is simple in construction, being made of a sangle picce of stept It has neither springs, levers, nor locese parts, and it is practically unbreakable. It is self-cleaming, in up of practicaily unbreakable. it is ect-cleamis, in up of the same as other drills and wifl wear as long. It can be fitted to any rotating machine and operates equall well with air, electric or hand pow is. It is guaranteed to matomatically bore a \(42^{\prime \prime}\) powder chamber back of a "' bole, or in like proportion larger or emaller, to any

\begin{abstract}
depth，in coal．elay，salt，sypeum of uny other material mited statea and foreign countries and all rights will e maintained．
The augers are made in the fottowing combion sives anger to bote a \(3^{\prime \prime}\) bole back of \(2^{\prime \prime \prime} ; ~ s\) auger to bore a \(+!^{\prime \prime}\) hole back

212＂，and other sizes to orler．
To sum up，the Jumbo anger drill possesses thece points of superiority：Safety，effectiveness，somplicity
durability．cheaphees，econotny of labor，increase of lump coal，lesens the annount of slack，eoonomy explceivee，lalving the cost of mining．
We do not hesitate to recommend all mine workers， operators and owners to investigate the merit－of the complete revolution in the methods of drilling，charging and shooting coal and all other coft minerals．To the mine worker it will brime a larger incoune by increasing his outpat of ceal for powder used and labor expended．
To the mine owner it will save tbe loss entailed by dis－ notnous explosions，besides lessening the amount of slack atd increasing the amount of lump coal．
\end{abstract}

\section*{The Edw．Smith Coal Drills．}

In no class of work is the difference in results between the older and newer patterns of toote more noticeable han in coal drills．
A case has recently comse to cor notice where an expe－
fenced miner with a knowlelac of the ability of madern rienced miber with a knowlelge of the ability of modern tools and thethods of mining took charge of a mine
abandoned some years ano as unprofitable and worth－ abandoned some years ago as unprotiable and worib－ proposition．
About 100 miners are regularly employed，and all are making good wages and prospering．Instead of hand
drills，however，rotary drills are uod exclueively，we

are informed，and the ontpat per man is far above what it combld be with jumper if churn drills．The seam worked is only 36 inches in lveight
What has been done in one care can ubdonbedly be done in otbers if proper attention be given the matter In ung cave it is worth the while of every miner to gel presible．One matary drill which bas been uell reeeived posible．The rosary dill which bas been uell reeeven that illustrated berewith it is made by Eidw．Nmith，
Plymouth，Pa，and it will be advantagmas to miners Plymoth， Ha, and it will be advantageoas to miners
and operatore to send to the maker for circulars，prices， and operatore to send to the maker for circulars，prices，
etc．The advertisement of these drills nill be fognd on page xxix of this issue．

COAL HANDLING．
A Description of the Hauling and Dumping Plant at Pikeville，Tenn．

\section*{ \\ In the carly duys of coal mining in this state the main into the cars for shipuent，rigardleas of everything elee It uase al coal，whether lump or slack，so what matter If a car of limp contaibed a large pereyntage of stack，
due to rough treatment after sereening？If there mere due to rough treatuent ater sercezing 7 It here mere were large ewough for him to allow a retxte on it．Tip－ ples then were cobsed red the better，ast the if cons were typical structure，so built that the ocal had a clear drop ing competition cater demand for a lothr arsicle．Yoon from the Scrantec seant，soft and easily broken in band－ for coke，peneraily made from slack in the distind， Yalley Coal and Coke Compony，some tuo miles above coal tenderly at all prints and to clean it thomonghly，
The averats elevation of tho．S－wanes spam in this vicinity is 1,400 fect above tide ；bat the munth of the
critry is at \(i, 451\) ，in order to win epertain areas of low cool that uere reveaked by she prolimimary drilling bot 1 ，isi feet，and to attain this beight roquired a gradh of 4.05 per cent．The differeno of sixty－five feet betwoer
mine track and railroad «a－too great for the coal to in conveyel by a simgle chute ext－ruling from obe leve
w the other．sitech a plan would have rosolted in erri－ tus damage to the product．As power woold be reyuired in uny caser for the proper arceniog，it uas decided to
make the lump at a pount nuar the Level of the railroad and to clevate the not and the slack，eparating them
alone their respective hins．}
oo a trestle，twenty－five fiet above the railroad，by an Inclime with a grable of thurty－tuor keet to the handred teon＂dogs，＂that lower the loaded card and push op the empties，the operating power being furnished by the
excess in weight of the loads over the empties．Louded cate averug 2,20 pounds gross；empties， 555 ．A fire
cighthe inch Dodge chain with wearing blocke，six inch pitch，is used，working around tmo sprocket wheels at the top and bottom．To the shaft of one of the top
nheels in attached a flange polley with lever band aheels is attached a flange palley with lever babd
brake．it the bottom is a take up，with a play of cuenty－four inches．The chain works in a trough．The great advantage of the chain over a rope lies in its auto－
matic action．The cara iletach thembelves from the matic action．The cars detach themselves from the ＂doge＂the empties ranning to a position where the running some flity feet out on the trestle to a suiteh back，from whence they run to the tippler．
This is of the back tumbler rariety，the adrantages ver the ordinary front toping type being the reduction of the distance througth which the coal talls and the fact that the coal is checked by its delivery against the slope of the short chute just above the screens，and hence is
not shot upon the sreens with damaging force．The car，when emptied，returns to it－borizontal position， a foot lever releaees the catches，and the car ruas for－
nard from the tippler to the foot of the clain，ready for mare fext＂deg＂to start it up

The chute beneath the tippler is divided by a parti－ Won directing the coal to each of a pair of shaking screens，over which is made the lomp cal．The erreens
are each 20 inclies wide 12 leat long，made of X ． are each 28 inclues wide 12 feet long，made of No． 8 steel with circular perforations 1 inches in diameter．Their
slope is bus 1t in 12 or abant 74 drerees．Ther am slope is but 1f in 12，or about \(\% 1\) degrees．Tbey are
actuated by tro ecoentrics ot at iso degrees from each otber on the came shaft．The throw is 6 inches，and The epeed for fult capacity， 130 strokes per minute These screns were first hung by springs of S－l6x2l inch
flat steel，three on a side，the two sercens being kept apart by buffer irons．The eprings nere used with the idea of reducing the shock at the end of the cibrations placed by chains．The only alteration required was the placed by chains．The only alteration required was the is probar the claine xill to is protable the chains will be used permanently，They hate an advantage over the rigid contection in that the ［uickly at any time
The Jutop coal pasees from the screens to the lump ond chute，whel bsed hicd and has anal teel lini 2as degrees on sach a slope，with a zood steel lining this coal will just sldie slowly，The noee of this shining is full，the sliding chate is louered by means of a hand wheel norking a rack and pinion，the gate at the nose without having bad anywbere a direct drop of more than a few inclues Counterweighte render easy the retarn of the slading chate to its place realy for anothe lisad．As a result of this carcful handing und thorouph ably free from slack，and haw elicited faverable commernt from theec acquainted with the apperance of lomp coal， at uswally shipped from the semanee seam．
The coal passing through the apertures in the lamp is raised and delivered to a pair of eliaking screens This comevor riece 7 ，forlies to the foot is made of sheets of \(\mathrm{No}, 10\) steel， 11 iseluss wide at the bottum，with Haring sides．Flights are bix 18 inches，fitting the trough， and set is inches apart on a \＆inch Dodge chain．
The upper screens are \(1+\) feet in lenglh，with \(\frac{1}{2}\) inch Gircular perforations The sbeet－are corrugated．These corrugations run agross the ecrech，are 1 Thets high，and to check thecoul and give every chance for the complete separation of the slack from the nut．The inclination was at first 15 degrees atterwardes rednocd to atout 1－ steeper slope．These screntisare in of her respects similar to thase alrealy described．The nut and slack are formed in the bins over the railroad．
The pouer for operating the plant is furnished by a 10 a elark－fired foilor of locomotive type watad at 20 hatom WWer．
The nut coal makes an excellent steam fuel，and the dack，on account of its uniform fineteres，a atrong，qolid Golly os moal mat a heavy barden．This slack makes atuont of ash，which is matrarally someubat hisher in tie zercenitsgs than it uvold be in disintegrated run of
The perfonted mertal shaking sereens not only make elens article bat help the nume in amsther way－that Jow masing the percempage of nalaile coch．Bar mereeme thrugh the openmpe，nlike with the Rerforated sereong ing am ob ject to this in the leat，－ince，alithogh there are more The whole plabt，so fire as ithe worls yet done may levirnol for a capacity of 1,000 tome pr day of 10 bouns thit has never been tsod wifh anything like that quan－ lodging from the triul rums is sthould have bo diticuals in lhandling that anount
The find com，including ties，raily，and erading of inclime as well as erading for the buh－and towee，all labor of erection，was 84, doe In regular ponning，tive then aus a boy should do the nork irom the mouth of
the buine to the railroai car，at a daily cola，say，of sib
This nould give a low coel per con for hauslling，exen

\section*{EXPERIENCES OF A MINE MANAGER}

In Some of the Gascous Mines in the Connellsville， From the Same．

\section*{（Bend Infore Ohio Iustitnte Mining Engineers．）} （Beml infore Ohin lutitate Minisg Engioers．）\({ }^{\text {By the term＂Mines which generate fire－dump＂I }}\) mean thoee mibes containing light carbureted bydrogen gas，no matter whether it may issue from the coal iteell the flow，the roof，from clay veins，from faults of by do not wish to lead yoo to believe that mines contain－ pe fire－damp ame more dangerons than other mines，for uch is not necossarily the case．In fact I am poing to ry and demonstrate and ohservations，that the known presence of fire－damp in a mine is not so moch to be feared as the apparent and offentimes pranmed alweence of it．It is not so much a quection of fire－damp as it is a question of con－ litions，and it is the faiture to properly weigh these conditions and the inability or in some cases，the beglect，to make timely and adequate provisions for bem that briggs disaster．Fire－damp of itself never caused an accident，but conditions neglected or condi－ fions not foreseen，in conjonction with fire－damp do at cimes penlt in the destraction of cither life or pooperty and often both．Allow me to use an obmervation of every day life for an illustration of the point I now wish to make and impress upon yom A month ago I was away on a busibess irip and I went joat od the way by boat．Whilet on that hoat I saw the astaal notice that the ownere of the boat had complied with the law．The boat，its machinery，its various attachments and appli－ ances were of the kind and for all appearamoes juet in the condition the law called for．I further read a cer－ iffeate of inepection from which I learned that the boders of the boat nere atowed io earryw pessite of 160 pounds to the square inch．My stateroont was right over these boilers．Kight under the，whitet I slept，a tet－ rible and deadly force was in exisence，yes beither I nor any other pereon conld with reason say that that periectly satisfied it was safe．Why？Because the con－ ditions were such that they made it sate．There was The gaarantee of masonable suicty．Those boilers were of first－class workmanship．The material was the finest of steel，of sufficient thickners，rivet holes drilled，
longitudinal seamedouble rivetted，flues properly spaced and designed，the diameter of the boilers in proper pro－ portion and the boilers were furnixbed with ealety xce－sive force or precerme and the whole was is charg of competent men．This is but one example of the pumeroas dangerous forces man makes his moot power－ al levers and best servants，that the traveling poblic come in contact with every day，and with all of then bere is a reasonable，though perbaps not an ruvolute a－surance of salary． an ilnstration I mine that I am perfectly familiar with．This is a chaft mine over four handena feet in perpendienlar kpel In that mine fimedamp made its appearanco cw evond day after the conl was ent in turninir off the Trst heading or entry，and frome that day until ilis tire tamp has incossantly isoued from the coal，the roof and he tloor it times the fire－damp was so strong that the men were kept ont until it could be contrulled at other times lifomers were groek that roaned and hissed like excaping steam from a boiler，and at other times the fire－damp bas silently filled un the beadimes in one bour＇s time a divtance of 500 foet liorizontally．This mine bas been opened up \(t\) wo years and pocalaced 115.000 ionsef crat and daring thase two gears tiervific and deally power has incessantly manifested itself，yet the first accident and first damage to life or pooperty in that mine is yet to take place．With all this meming cridence of safoty and the non－appearance of dictater can we justly vay that mine is a danmerotse one？I say bo．Not any mone so than we conld condemn that －teambeat as dangeroas，and if I were to decide which was the best risk I monld say that coal mine was a bet－ UF risk than the bont．Now ulyy has that coal mine
 and the conditions being known，they were carcfally weighed，understond and provided for．It is not the somotor marked with a boky of the rock lying under that hiringe disilite and death to she mariner，bot is is the unkrown，the hididen rock that sanks his vessel nefore he even has time to reougnize danger and lift a hand to port his helm．
So it is in the mines，the recognized dangetr do not mecosarily britg dimater，for they are accopted as the petebt conscientious manumement epdeavors to antici－ pate these，and when he or they once know them，they boldly and unheritatingly grapple with them atid strain hoty berve for compler abd comicol them diliful man－ opernent accidents from fircodump can be made itupoe－ whle，for from the first breath we draw，we all kaw
that death is ever ready to lay hie clanamy hand on ass and there is mo anch a thimg as perfect satety in this uoth，but I will ray that many accidents conld have been prevented and possible onks may vet be prevented． 1 um not going to spin before youl terday any of thoee bemotiful，glittering and startling thootios that throw around the science of binning th halo of romance and

\section*{Pennsylvania，Region．With Deductions Drawn} biy F．C．kbighex，exposfows，Fh．
\(\qquad\)

The cars from the mine are taken from the lank le el

\section*{FIRE－DAMP}

相棈

號
intention to reason-to endeavor to deduce from what
has actaally occorred (in my own experience and under my own obscrvation) in the mines I am familiar with what conld have been done and
expect or presumed can be done
The first accident I will cite was the explorion at the Uniondale mine, Danbar, Fayette coanty, Pa, botne
nine or ten years ago. Pefore I go any forther let me say in this particular ease my acquaintabceship did not
begin until some four or five vears after the accident, but that accident or explosion was the means of furnishing the with the higrest tacele I ever lad with fire-
damp in my life, and in that way I becamequite familiar with that mine and the details and canses of the weei dent. I took out of the abondoned workings of that mine three and one-half million cubbe feet of fire-damp,
lut as that proceeding would furnish abondant material but as that proceeding would furnish abundant materia
for a paper of itself I must pass over it. The Uniondale mine was opened up on the crude system or methods in vogue in the Connell-sille coke region trenty years ago,
This mine was not an extenstive ons, neather was it what might be termed a fiery one. It mas a slope mine. The slope being driven on the dip of the coal, the tendency would be for that slope to drain off, to a great
extent, the litele fire-damp in the coal, if there was any. Adjoining the Ubiondale mime were the very exteraiv mines of a well known iron company and large areas of
waste workings from these mines existed aboat the Uniondale mine boundaries. These waste workings were filled with fire-damp. It is said that one of the
operators lad treepased, or in other words, had overoperators bad treepased, of is other uonds, had orer-
ran the boundaries, which one, it is neither my purpose or desire to docide or even intimate; however, let it be
cither one, the consequence of that trespaso was that one day a miner in the Uniondale mine sooldenly ctruck through into thoee naste workings. The hole was small one and the miner's naked lamp at that time gave
no evidence of the presence of fire-damp. Withont closing the hole thus made the miner left it to inform the mine boss of what bad taken place, and I anm
informed that this man fold the mine boes that there nas no firedany theres The mat donn to the hole with naked lights and an explosion
took place, burning them both severely but not fatally. This explosion pat out the lights of otber miners work the miners wboes lighs had been thas extingaikhed became anxioas to abcertain what had happened and he cravied in the dark out onto the slope and there struek men and burning others, fow what wae the canee of that accident " It is plain that fire-damp was the pouer
that deale the blow, but it was no more to blame for the accident than the pistol in the hands of an assassin. It was a clear case of conditions not anticipated, or anticipated that were not provided for. Sow what have
we? The following facta, viz. First, that one of the partied had irespaseed. socond, that acemrate surveys teen kept secret or some one failed to notice that a
trespass had been committed. This, then, was the real canse of the accident-unknown or neglected conditions. It is plain fire-damp was not guilty in this cuse. What could have had accurate surveys made and the asopded a trespase, or if the treepase had bees kbown to bim or party of the danger. The party driving towards th abandoned workings could have kept bore holes in advance of him. He could have ueed rafety lampe when be found that he wat approching waste workings. The cut, with his hat, coat of shirt and not returned to the bole until notice had been given to the other miners. The mine boss should have scented danger when ina cafety lamp before approaching the vicinity of the breach. Had any of these things been dove the firedamp would in all probability never have been ignited Farm mine disaster. This mine also was a slope opened up years ago (perhaps twenty years or more), When a hole in the ground aus a pair of brok
ing engines constituted a ooal mine.
It, like otber mines opened up in the Comellarille coke region ten, fifteen and twenty years ago, was
headed into the coal thongh occasionally t'other end went first) with nothing detinite in view but the chopping out of coal in tome way, chesp if posbibte, but between lieadings and rooms was that one had an iron track in it sometimes and the other had a wooden one,
This state of affairs existed for years, and thoogh at times some lire-damp lad bees seen. yet for some time previous to the fire or so-called explosion, little if any considered a fiery mine and both naked lamps and safety lamps were in use. After thi- mine had been worked
many yeary and became an elephant on the hands of many vears and became an elephant on the hands of
the ouners a change was made in the management. The mew manager was an able man and quick to see
that radical changes were necesoary-too many to make that radical changes were necessary-too many to make
in a sbort time; however, to my own knowledge, he took the matier up in good earnest, and one of the first thinga done was to bore a bole to take care of the water
with which the mine was greatly troabled and another bole was to have been bored it has since been done) in order to get rid of the steam line on theslope. I will
herestate that I have known the temperatare on that slope to reach \(1+0^{\circ}\) Fabrenheit whilst the steam line
was in use, \(\infty\) you can meadily underetand why the new management commenced improvement in that difvetion down, it struck a point in the coal seam 11 feet from the slope. The hole was completed on Friday bos not
tapped until the Sollowing Monday.
miner's piek struck into the hole and the water contained in the hole rusbed out with terrific furce and a
boud roar. The man norking there eecaped and his naked lamp did not fire the gas, A few minates later a
boy some distance up the sfope, with a naked light on his bead, heard the terrible uproar, and laboring under the impression that water had broken into the mine, rushed down the shope to warn the miners below. In passing the bore bole he ignited a blower of firedamp that came ont of the bore hole. This blower shot out a bong fimper of tlame that reached out acroes the slope to stage of the rive it might have easaly been checked by the tearing down and trampling of the brattice cloth, but it was either not thought of or perhaps overlooked
in the confusion and the flames as once began fo play on the confusion and the flames at oboe began to play
upon a irip of locded car- efanding on the shope. These cars were saturated with oil amd, standing right on the main air return, they so constricted the air passage that a high velocity was reached and this fanned the flames With frightfol vigor and in a very few minates the uhole of that part of the slope nas a secthing mass of flumes and dense smoke. Twenty-nine men were cut off from retreat by that fiery barrier and two more brave fellows
Inet their lives by attempting to force their way throngh

Thiriy-one pereons lont their livea by that fire, not b expmoana as commonly reported at the time, but throagh their inability to pass that fiery barries. They were hemmed in there until suffocated by the fumes, Now
what are the facts in the caee? Did fin-damp kill tboed men ? 1 ray mo. It was the conditions prevailing at the time that did the work. Firc-damp was the arrow and conditions the bow that drove it forward on its
deadly errand. Xeed that arrow to have left the bow? I say no, if the conditiona had been anticipated and provided for. Could these conditions have been fore-
sen? Could the deadly combination of circumstances have been prevented? It would seem upon reflection that they coald have been. The look coald have been tappred saturday evening or Sunday. Failing to tap it
then the men coold have been withdraxn on Jonday then the men coald have been withdrawn on Jonday
and kept out until the tapping had been done. It might bave been tapped is working homes with if reasonable degree of sanety it nothing bat safety lamps ham beeti ance in advance of the workmen, If the mine had bren properly opred ap and had a manway on emet
side of the slope or a brick overcast been built to connect both sides of the workings with the manway in exietencetest violence and seill not a man have boen lost. It was not the fire of itself that killed the men, but the fact that the fire was in the only avenue of esape. I mas a barrier with death on the one side and life on the
celier-lhow wen mere on tho side of death. Year-
 anconsciously set. It was the advance into the coa them back in and to safety nas not destroyed. It was planning or opening op a new mine, long reflect and be sare that he is not setting a trap that will some day clue its relentless faws upon those who were not only
not responsible for it, but who never surpected is exi-tence, Opening up a new mime is a serions undertaking and the plans need to be skillfalty drann, doeply ntudied and carefally carried out if foand to be drawi on safe and correct lines. The question will be asked, the time that bore hole opened in the manmer and a nas becanse the management anticipated no dangers, as bore holes had been tapped in a similar manner before nithout mishap. I am satisfied that if the mansecmeal had the planning and management five years prior to conditions could have taken place, for Mr. Hill would never have tolerated ruch slipsbod work as thas mhich ruined that mine. Mr. Hill was not captain untit the and he had to run before the gale, noe as he would, bout as be coald.

Now I cannot tell you all my experiences in the coke eretions, so I will take ap only one more mine that I know. That mine will be the Mammoth mine From what I experienced there I will conscientiou-ly endeanor to proint out tbe lecoon- to be learbed from that terrible disaber. I say hesson becanme every accident reveas
all of us something we did not know and understand before, and the mining law of the state of Pennsylvania lias reacbed its present efficiency by the meare of accidents, each of which traced with its bloody tinger the deficient clanses. The "Mammoth Mine Dhaster" was by a naked light. This fire-damp suddenly and unexpectedly gathered in the rib or pillar workinge and in all protability it issped immediately after the fire boos eval and not from overlying strata. Ireviogs to the explosion the Mammoth mines had always been remark-
ably free from fire-damp and open lights had always been ueed in all parts of the mines I cay mines becnuse there were two openinge-a slope and a shaft with
hoisting evgines at cach opening. I had taken charge of the Mammoth mines a little over 5 wo months befon
the explosion and up to the day of the explowion I newe the explosion and up to the day of the explosion I nevet
carrikd anything but a naked light, ass all others did with the excepeson of che fire bosses, who in their daily
morning examinations, of couree, towd the Davy safedy lamp. I hat traveled over the whole of that mine it eompany with the mine bess with nothing bat naked
lights, bat of course bever until after the fire botese had fime I never eithet saw ex heard of fimedorng that time 1 bever eithet saw or heard of fire-damp beimg
found. When I went there first I asked the mine loss assistant mine boss and the fire boss if they had seen any fire-damp is those mines. They said nos, witb the exception of a comple of ensil blowers that uete strack
ahich were long ago exhatated. The mine I had lat had charge of, before going to the Jammoth, was a very bery one and it wus worked with saicty lamps 16-ing aaked lighto the use of satety lampet but learning that nakiod lights hat always been used there and being assured by all and by my own observations that firedamp did noe exist in the workings and also knowing bat the mine inspector had not kaid anything about exclusion of naked lampe, I saw bo reason for comment on my part. My first intimation of danger nat the explosion itself. On the morning of the disuster, not more than ten minutes before the blast came, I went into the ebgine house and examined the fine bosse report and found it eigned as weual, with nog retaarke on its face beyond that the bine had bren examined at such an hour that mormang and found to be safe. After resding the report I pat it bock in the deok and was him that the ebgtuer for ar cage when I learned froen him that there had been a wreck on the truatle leding caseed the wreck and whilst standing within tuenty leet from the shaft 1 wat stariled by a rumbling noiee hanging ower the derriek like a hoge ballould of stmoke hanging ovef the derrick like a fage batcom. I at once got it slarted and the uater torned down the shaft, xpecting to see flames bext, but none cane, eo in about five minutes we stopped the pamp for no flames showed up. We next started the oagns to ranning and two merl and a boy came up. They coald tell us nothing though and towether nith tue call I went down the shait and foand all the stoppings and doass blown down. Could not find the sopjeg to the top of the shaft for more help and boands, noile tc In a few minutes I ment down arain wils the mine boot and some others to start bratising and exploring, and a short distance from the bottom of the shaft we found six Hungarians from the slope worlings alive and uninjured. These we sent ont and proceeded with the bratticing and exploring and from that time forwarc me found mothing but deblruction and dead bodies time for the and nithe mees had died in a bew mimates conally helped to remove not one was mutilated and I anderetiod from the ofler exploryr- that only two or three of the remaining sixty-three bodics mere mutilated, so it mould eeem that all or nearly all died from the effects of after-damp. The cause for all this very he main of lite was undocoled The the bir after the asplat son simply went down one compartinent of the shait and up the other until the bratticing was replaced which was of course the work of many hours time, than three hours time. Had the mine been properly laid out witbost doons at the very base of the intake orerosests, as it should have been, and as I planned loa the day before the explosion, very feu, if any, would have bos their livee I had just completed a new wendatou plan for the mine the aiternoch before the explosiofl. With the old system of ventilation the ofecilplane where all mar mas lugeted to the foot of the -haft, cut off all air to the shaft mine workings. On course that door was opened and shut for every trip of
loaded cars boisted and every trip of empties run down. and in case of a wreck that door nould lase to remain

Now what do we learn from this outline of that acci Fur. First we find, as in the of her cases cited, tha could this sudden intlux have been foreseen? Ithink if to doubefal in thas cate for the reason that only sifice the few days following the accident it in now thre years sance it happened, has fine-danp been detected in that mine and then it uas a rndden onthrest lasting bot few loure. This time no naked hights were in use, so if was not ignited. Conld the agnition of firedamp liave beco prevented? it coald in all probability if naked lights had becen excluded; bowever, it as a difficult mat her to defermine jost where safety lamps should be installed, and after my experience I would not wait for the appearance of fire-damp. I would favor the whe of uphill bacinees to introduce them and edacate the misers after naked tights have once bea bocd in bine. This I know as I introduced or inetalkel them at two mines and it was a bitter light in each case. Even matter to get the men to look upon the safety lamp matter to
with favor
A carefol examination of the mine by many experts fre-damp came from the floor of the mine, nhich is a fire-damp came from the floor of the mine, nhich is a
rather unusual circumatance in the Conpelisville coks rather unusual circumatance in the Conbelisville coke
negion, though 1 do know of another case where a sudden oathurst of firedamp came from the floor of one if the langest mines in the coke region, whist the fire boswes were just completing their morning examination,
preparatory to the lownring of the men into the mine iteparatory to the howring of the men into the mine
It 60 sodden and of such violence that the fire bosses had to hasten to the top of the slaft by way of the cage and the lire-damp reached the surface as stom
as they did. It took three days work with a constant eupply of 100,000 euhic feet of air per minute in circular
 Was sotue disposition on the part of the puble to charg neglect on the part of the fire bosk making the examinathat a flre bose wonld deliberately report the mine kafe foe found it otherwise, go ont to breakiast, then retarm death. which be did. The bre boss died at his poet and Det it in one of the most remote beadimgs of the mine, man intimately and I never mest a more able man in his
tine or calling, in inct I had such a high opintion of him ine or callige in mact thad suech a high opimion of hime opportunity
In the Mammotb mine disater you skain see the arealful consequences of untorsees eonditions and the
 the mine see that the mine nis properly opened up? Let me say that the owners as the time of the accident were not reaponsible for it - faulty develomment. They were not responeble for ite hamly deveholment from the lay they booght it until this sery day it has been a continalal eurcession of improvements. I was only there myself eleven months, yet during that time I used ov tove-00 red brick for overcate and stoppingex alone. mine spoiled in the beginning is a theklists thing to handle, and it takes years of incessant study, labor and expence to right its wroaps, and in the case of some ing is absolntely irreparable. Soch mines as those wear ogit the very sonl of the man in charge and an ordinary man can fight but one such battle in his lifetime, for by the time the get- a urecked mine in shape he las become a wreck himself. Again let me say to those opening up kill, for as the twig is bent so the tree will grow
Terhaps sotme nf yoll nould like to knous ulat kimd of t mine I would like to bandle. I will tell you. I will ake the geseous mine every time. I want bo more of your preatued aboolately bon-gaseous mines. With the aseons mine I know the danger and 1 know how to observant, carefol and ever keenly alive to the exietence and treachery of the enemy and it mever catches them leeping in bancied tecurity. With the non-geseonshat is the prenmed mon-gaseons mines-everything is happy go licky; the naked light hobinoks with the faming petrodewm torch, and the overflowing odoriferous petroleum can kicks up ite heels and followe in the procession that revels in the very pereetice of death, ane ight- the ghattly horrifying pyre. The new mining law of Pennsy)vania sits down heavily on the fuperat toret that feeds on petroleunt, sod I um glad that it does, for of all the fights I ever had in my life, the fight againet petrolerm in the mine was the mone bitter and bard, I suppose that as I have expreseed a desire for a thet mine you will next ask bow I woald open up un ficry
pot for anower I will sas with three shafts, und with pet. In an-wer I will say with three shafts, und with
two, thme, four and flve locsdings, as the circumstanceand conditions might demand of make justifiable With heavy shaft and lesaling pillare, the diviekon on the mitse into wetion-erach exetion protected with loeavy barrar pillare ; be cut throughs in the barriet pollars exeyping at section intersections; with split air
currents; the exclusjon of paked lights; fans in the currents; the exclusion of naked lights; fand in the duplicate; obe shaft for return excluovely, shafts eunk as far apart as powible ander the circumstances; con-
centratioll of worthing forces; drive the lowadings away centration of working forcer; trive the fiveadinge away and aim for a large output.

\section*{Mine surveying.}

The Importance and Value of Accurate Mine Maps.
Yrom Trunkactionts of the chio Institute of Misinz Eneineerol This is a very common subject to many people, bat the fact of its being common is like many other thingthat are conducted in old and narrow cliannels and for years and years make bo change in their form or usefulnecs, untal necenaty or common eense, the motber
of all invention, lead. them not in a new way io improvetnent, Xinety-two years ago the shen yours taid out this part of our grand state into sections and goarter
sections. They followed the magnetic needle through sections. They followed the magnetic needle through the debee foreats from sun-rise to sun-et. Since that
time the comnty surveyors have hunted for theee limes time the cominty surceyors have hunted for thoee limes
and divided those quarters while the bagnet varied from hour to bour, sometimes knowing they were right but frequently allowing a very wild goess
has long since dengergimeer the case is different. Ite hak long since departed from the gaidance of the needle. He has a different vewfira operomef in a different place a different work for a different parpose. And Jet toe say juat bere, that it is not my desire to write of other tates, but as to Ghio, a great amount of its mine surveys are boe creditable to the profereion. County surveyors and ratincal engitects lave mo love for the momers and little atfinity for the mines. This acoounts for the fact that so much mine work is done in a careleer and indiferent way, and when the work is platted

the law and to avoid lawsuits Mine inspectors pay little attention to surveys, and of course many operators regard them as
many are soch.

The writer has seen a number of mine mape of this class. One in my recollection was drawn with of thad pencil upon manilla paper. All that could be seen was the entries, or rather the stations taken with straight Tines drawn from one to the otber. The work coet the neod not go outside Jackson comnty to find this map and the man who made it. Another was platted upon vellum eloth. The work was correct, but several entry lines, which were the only ones shown, extended beyond the edges of the paper. These and a part of the boundary lines and buildings connected were the only things mapped. It cust the owner 823 , and if vieued by a stranger it conhl not be told from a part of the juagles of Africa. This chart was the work of one of the profession in Guernsey county. Many others cooald be mentioned, but these are sufficient. They belong to the cla-s which may be regarded as an expense; but rightly done. The value of a prod map can hardly the estimated.

A mine map should contain among many ofther features the following points of interest
1. The property lines of the territory and parts of the 2djoining lands

\section*{hat of the lands adjoining. \\ The loma}

The location of all roods, mailroads and baildings.
5. The formucrimg of at water courses and ravinet the elevation of important points incele the mine 6. The ooncet form and size of the underground

The surface lines are the first to demand the engineer's attention, and upon them depends not only the chape of the property, bot in many ca-es a division of The location be made acording to Their poathon according to the best evidence, the records of the pablio -arver-and the rulings of the Conmi-xioner of the General Land 9thice
Each varveyor has his own partiealar way of doing things and indeed the theasure of an enginecr's ability is in his being ready with a plan for anythang at any time, the bat way tulocate the property fines is to firm finid one corner. Then from the meonts take the bearing to the bext as mearly as can be ealenlated by known move buents of the needle, being sure there is no magnetie disturbance, and if there is, to turn it off
After deciding upon thie approxinate baring, litt the needle from ite gito and ramge the the by bes of tibe transit tekeecopes setting stakes, with tops flash with th gromnd, at important points and especially ut places where a wide view of the sarroandings can be taken in the future. No stake sbould be bid from vien from the neanet 1 wo. Measure the horizontal distance from the beginning to each stake and also the foll length of the reguind line, sotting as stake nt the end. From this the seoond corner can be located. Then take its bearing and distance to it. This new nurvey can be platted and the suo corners located upon the map when a otraght tue can be drawn from one to the other, thos tarking the first trac line of the survey. In a similar nay other lines may be ranged out and the corners bocsted, and when pat poon the map, will constitute the properiy lines, while the different stakee upon them
will serve in the future as references in obtabing the will ecrve in the future as references in obtabing the
focation of any point in the frae lines.
The crop limes are of muelt importance, because when Rghtly traeed they show the shape and size and the pessable extent of the ondergronmd workitek besides they serve as a gnide in laying out plans of mining, In surveying them it is well to 1 ee a combined transt and leveling inetrument. SThere are none better than thoce made by Heller \& Erightly, of Philadelphia, Fa. I The start should be at a mell known spot where the sean comes to the surface, or at the pit mouth of a drift mine at or above water level. After taking the beight of the instrument upon the rod, let it be carried forwand to a Gpot exactly on a level with the point of loginning. क lien real from the rod by the starlia wires. Thus will fillon read from the rod by the starlia wires. Thas will follon one course after anotber, checking up or down as the casc may require at any and at points where the seam the croppinges thronght the entire tract and as panct hat ase cropphing- firnaght the entire tract and as mbech mory number of points will be found on she paper by which number of points will be found on the paper by which
the line thay le drawn practically correct.

The focation of roads, railroods, buildings and water coures may be generally made by taking notes by the Lser of the stadia wires as the other work procceds, bat ying sirata which may be done by starting from a well known datum and by the needle, stadia rod and wires, reading the bearing, distance and elevation of every station along their eourses, and at all points where the tope and hottoms of all strata cectr, readings shoold be made, that the elevation and position of the overlying reck, when platted upon the map, will show to the mine manager where to locate his works in the futare. By this he can see at a glance where or in what direction to look for dipe and rises, and by the position of the ravines to avoid deluging the mine by letting in eome -tream of water. Lacation of fanlts in gotme cases may be made when no knowledve of them otherzise exists. Last but not least, the forms of relief may be conidered. This part of the survey can be nocomplished in the following manner: By stadia mesanrement tarting upon the former datum and from this and the points whoee elevations are known from the former work, take reading- for dislance, bearines and elevations to all points tbat may serve in getting the height at different places on the surface. Then extend this work to new points until a network extends over the entire territory. When this is platted, showing position and elevation of all the points, contours may be Irawn atnong them, thus showing the thickness of the verlying strata and the shaper of the hille and valleys. Xikch more could be eaid, bot not in this short paper and the author will coase by saying that the underground works should be traced eorrectly and extended at convenient periods and mapped in a separate color inside points, witl mefernice to the arrface datum, and rarkod upon the map in a different color from surface tigures.
Thus a mine map may be made that woald be of some ase to its owner. It would scrve him in making his calculations, and if the chart be constructed before he comboebces his work, it may save him a great nnnecessary outlay of capital and labor, for it is always best to know previous to any work, all that is poebible to knou, Let an exact copy of this plan be made, divided into convenient betions and numbered and then ent apart. Thi- eectional map can be carried, entire or in parts, into the mine or aboat the worles, where reference to it an be had nithont the trouble of going to the office and unrolling the large one

\section*{High Grade Coals.}

The Berwind-White Coal Mining Co, has received from the officials of the World's Columbian Expecition, bronee medal and diploma for an exhibit of three ections of typical coal exames worked by the company. No. 1 section was from Horatio, Pa. If coneisted of a tion wis from Anita. Ira. It consisted of a section of a steam coal seam 4 it. 8 in. Lhick. Na \(\$\) section \(\alpha \pm 2\) from Houtziale, Pa. It eob-t-ted of a eection of a steam onat seam 7 ft . thiel:
The oftheial analyses of the ecal yielded the following results

\section*{Climax Boilers Adopted.}

The Clonbrock Boiler Co. has contracted to ervet 90 A. P. Climax boflers in units of 300 H. P. each for the Foneram likat klation of the Ecobutny Light, Heat and with Meclave grates, and will have three independent stacks. They are to be completed by September 1et.

\section*{Classification of Coals-Correction}

In the table showing the physical and chemical prop"rlies of standard Connellsville Coke, on page 958 of the Thme ievie, the term- Wed and Dry uere transposed. The weights and measures therefore given for dry colke
should be for the wet, and twe trom.

CORRELATION TABLE,
Coal Measures of Western Pennsylvania Compiled for The Colliery Engineer and Metal Miner by Baird Halberstadt, Mining Geologist, Pottsville, Pa.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Uprer Coat Mesalifer} & Ciper harren Mtasure & \[
\left\{\begin{array}{c}
\text { Crivne Comaty Ciraup } \\
\text { an - } 160 \mathrm{f} .
\end{array}\right.
\] & XVII & | Wirsly Gap (\(\left.1^{\prime} 0^{\prime}-y^{\prime} \sigma^{\prime}\right)\), Ninevel (\(\left.1^{\prime} \sigma^{\prime}\right)\), Dunkard (1'0 \(\left.0^{\prime}-1^{\prime} s^{\prime}\right)\). \\
\hline & & Washibeton County Gruap
\[
\pi(n-s a) ~ f t
\] & XVI & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
Upjer Iroductive 3is)-420 10 \\
\begin{tabular}{l}
Kal Meanare \\
\hline 10
\end{tabular}
\end{tabular} & & XV & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline Lower Cas & Lower Ramm Mexans. (20)-60) ft. & \[
\left\{\begin{array}{c}
\text { Harren Keamures } \\
\text { 2si-64i ft. }
\end{array}\right.
\] & XIV & \\
\hline Measures & \[
\begin{gathered}
\text { Lomer Froplortive } \\
\text { Chol Menoures } \\
200 \text {-ine f. }
\end{gathered}
\] & \[
\left\{\begin{array}{c}
\text { Allgheny Hiver Series } \\
250-300 \mathrm{n} .
\end{array}\right.
\] & XIII & \\
\hline Millstone Girit & & \[
\begin{aligned}
& \text { \{ P'oftxville Conglomerate } \\
& 20-300 \text { f. }
\end{aligned}
\] & XII & \begin{tabular}{l}
 \\
iquakertown (1' \(f^{\prime}-2^{\prime}\left(f^{\prime}\right)\), sluaron (\(\left.1^{\prime} f^{\prime \prime}-4^{\prime} \alpha^{\prime}\right)\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Easy Lessons on Mining}

\begin{abstract}
This Department contains articles to assist ambitious Miners to educate themselves, and obtain Certificates of Competency as Mine Foremen, or to become Mine Superintendents.

The articles are written to be understood by the unlearned and the learned alike. Plain language is used, no obscure terms are employed, and each subject treated, is made as clear and easy to understand as possible.

Further: The Questions asked at the different Examinations for Mine Foremen and Mine Inspectors, are printed and answered.
en-The Series of Articlen "Chemistry of Mining:" "Mising Methods" and "Minine Machinery" was commenced in the sasue of
\end{abstract}

\section*{MINING ARITHMETIC.}

Arabic Numerals-Numeration-How to Add Eff-ciently-Arithmetical Signs.
The Arabic Namerals.-In this coune of lemenne only such insiruction will be given in the simple ruke at is noxuskary to draw attention to matters that ure low dent is expected to smpplement the exerciser that will be given in the four chaple ruber by examples of his leterness in hot having taken pains to master sutficiently as first the essential clements of the simple rules. We will therefore endeavor to present the facts that ought that the etady of them will neither meary nor perplex the learner.
Notation or the mode of nriting the figures, and Nua namber, will fime have attention, and to clearly dis-

tinguish the urcanings of the termas modation and sumerathon, we will reverse the coarte cobmonty takeb, and experience the practice of modation.
experience the practice in common use are suppeced to have originated in Arabia no India, and they mere at firet onfy mode pietures of the boul and pebble system of
 Fig. 1 is an illusiration of the ancient way of mameratFig. Is an itusiratoun of the were all alike in claracter asd value. The bowl and pebble syetem here shown was the forerunner of the Gircek and Potman absects and the present day Chinece cosnting trame, and therefore ite uex and history is in no sene myth cal. Three bowla and three groupre of
rebbles ane shown at \(/ I T\) Tand chon, and the proexss of numerating was as follow. If uas the units bowl and nene pelbles
were provided for it; for be it observed that a fenth frible wonld never fee en quired for it, as ten wis represented bs cue pebble in the secoul bowl, and just in precisely the kane way we now the sime liguresonly and the number ton is rejureeented by 10 or 1 eet before a cypher. sup pooe a pile of apples have to be numer
ated; then one prebble will have to be pmi into the units bowl for every aingle apph up to nine and for the teoth apple the nine pebbles have to be taken out of the \(\mathbb{C}\)
boul, and one pat into the 7 boul, anal is ten tens are a hundred, whes that number is reached instead of putting the tenth pebble into the \(?\) bowi nine tens are taken out of the \(T\) bowl, and one to repregent ten tens, of a hundred, is put
into 1 bee \(/ I\) bon), and in the event of there into the \(/ I\) bow, and in the event of there
being more than nine humalred- to numerbeing more than nine hundred- to numerate a fourth bowl is introlluced, with the recule that the numeration of the ancients,
by the decimal \(\alpha y m\) enm, was in every reby the decimal rystem, was in every re-
pect precieely the same as that practiced byect precisely the sathe as that pracy. It will be wen that the number mumeruted by the bowle before us is \(1: 10\)
Nothing, perhape, is more interesting than the pictorial system of notation, kaid to have been invented by an Arabian fishcroan, and still practiced by as, and it tigures in Fig. 2, as at first written by this Arabian with a piece of cbalk, or nith a stylas in sand Indeed, so little has the form of the figures beees altered that the original Arabie numerals can be identified with thoce we are writing now. It will be ecen that the unit tggure 1, is not altered, and we cannot wonder at this, becnuse it was the best picture that conkl be taken to represebt it, Two units were set down as iwo drawn lines, ami by contrinting them with the figures

\section*{Here we have an exercise in uldition in which the}
som of the numbers is given, to prevent hesitancy Drill one: Pegin and say five and wix anc cleven, sever and two are nime, etc, and practice this cery simple aldition untit yon can do it with perfect self relianee in
a eecond or two. Then talke drill \& ?

85936842
47087256
54675189
187702287
and after you find that you can make the auldition in atbot four seconds, make come examples for yourselt in

Toake the colnnans trake than three figures deep and onver increase the depth until yon ane very expert and The able to truist yourself in attempding a greatere efort The renes of sight, learing and feeting have all to be
coltivated, and therfore it in imperative that at finst you speak alond the additions you are making, and above
 tions are right or mrong in uny cose, bot tear away and nemember ilhat firith is the scres of suscem. and the exereises most be continued until you can trust Wour own self for aceuracy, while your npeed is pogreat That you have mos time to ihimet and hesitute Shwnest tancy in adding, and slownesen in tlivikion is the romit of besitancy in asding and sutsracting, and thereform we ought to fiml an immerliate cure by salmitting oureclves to a pooper systens of drill.

Arithmetical Signs.-Tbe useand correct meaning of the arithmetical signs shoutd be undentoond; in this
lerson three of thesn are introduced. The firxa is the lerron three of these are introluced. The fird is the
addition sign, written thon \(t\), and it is callesl ptus. The

secomb is the sign of enbtraction, and it is written thas-

 cate this condition with clearness, the cymality sign ? is set betreen the suale pans so as to render the use of the sign untuistakable; for with berinners the trouble is not so moch to taake then under-tand what you mean as to make them raliee the application of a principle, Now, we bave a 100 pannts weight on the pan, and a 120 pounds neight on the of pain, and we are sure 100 pounts eunnot balance 130 prousis; hut a wigeior wright of 38 poands is made lacoonteract at fite sxetes of meight on the d kan, and therefore the 100 puosaly on the d pan, after all, only balanocs its equivaent of 100 ponnds. Vinder there conlitions ue not the application and une of the signe, for \(100=130\) - 30 , \(\pi_{1}\) in word-, a 100 penule weight batanees 130 peonds consiler the +arth's attraction as a positive pull downuards, then any force aeting upwanf is myotion, or oppruards, then hay fore actug topwar earth's altraction, or an upward foree is negative to the earis'y atraction. By intralocing the pulley at e, 21 poomds at \(f\) are made to pall the left
 Here, then, we soe that forces activg downward are positive anal thoee acting upward are megative, or, to
 cirely or upwand, then wathing in equal to ane handrel minas one handred, of \(0=100-100\). The plas, of minas one handred, of 0 an anal \(\frac{1}{b}\), mecaning to say that the weights in the guns \(c\) and \(d\) are pulled by the ueight \(d\) is pulled upwand with a fore of 20 poands.

A still mare clear comprelicusion of the nee of the signo may be ohtained by a stody of Fig. + First, then, let as balance the forese by taking all the dounward otes as plas, or positive, and all the upward ones us minos, ir megative ; then,
\(165+11 ; 8-(15+9)=104+10-14\)
Here the morn downward force on each scale pan is 100 pounds ; but betore proving this, let ns oberre the weights and \(h\), when it will be noticed that aftomgh pulley to aet nergatively to the weights \(e, f\) and \(g\), yet i ind \(\delta\) are prositive to each other, and it is for this mason that in algetraic equations, we change the peeitive and negative signs of all the letters within a bracket when the first letter is a negative one; for see, we have written \(105+11+8-(15+9), n o t 155+11+8-15-9\). By
looking at the figure we methat is pesitive to N , or \(i i_{8}\) acting in the same way as \(h\) to pull the pan o opward, then is \(9=24\) or \(-(15-9)=-24\) and we now se that \(105+11+8-24=100\); and that \(104+10-14\) the pana is the same, and \(100 \stackrel{p}{=} 100\). The terms Iosi-
tive and negative are not confined to forces acting domnward and upward but to forces acting in simply oppasite directions.
In this case positive is downuand and therefore a, \(f\), \(q, l\), and \(d\) are 7 , that is positive or plas, and the
\(i\), \(h\), and \(c\) are -, that is ninus or begative forece.

\section*{MINING MACHINERY}

\section*{The Principle of Action of the Lift Pump-The Press-} ures on the Valves of a Lift Pump-The Interruptions That Occur in Pump Action-Recapitulation of Facts.
123. The Principle of Action of the Lift Pump. We necd not insist upon the importance of minens hav Wig a complete knouledge of the mode of action of the common lift pump, for in some form or other it is an ondispenoable appliance in mine drainage. We never feel so mach the valoe of knouledge as when we are confronted with a ditliculty that requires its askistance as for example, when a pmmp fails in its action through the fanlt and correct it. Let us, then, in this lesson first
metice the mode of action of a lift pmopon the upstroke.
 and to make the enbject clearly
understanhable. let ns call to onr undersabiable, let us call to onr
aid Fig. 1.h. The pump piston a
is adsuacing is akdvancing upwand, as indicated
by the arrou \(g\), and the valve is down on its eeat as the remolt of having the entire weight of the column resting on it. The state ment just made is correct, but are we sure that we have the right by the wonls "entire weight of the column"? 124. The Pressures on the
Valves of a Lift Pump. Then, let na suppree that in a mine sbaft pump pistom a is oqual is leugth to a vertical beight of 20 feet, then we may correctly conclads
that the "entime weirht of the that the "entire weight of the
colvon" will be expal to ? 300 \(02.4=14,00\) prounde, or \(18,0 \infty\) 9.int tons, assuming that the area of the pernp piston is I square -ay that the poncmare on the mapy say that the promore on the pump tons pre square foot. All this serbas to be right enough, but the column of water reding on the pump pieton is partly above and
 tebds in length from the surface of the standing water in the mine to the surface of the uater column at the eleration at ubich it is dis-
charged. We res, then, that if 20
Fin. t clarged. We se, then, ilat if 20
the of the yertical columis is be commonly use, "pestimp on," ought iroperly to be denowding on, for if the mesan beight of the puny poton above the water in the suopp is fump piston, and zal fect of column are reviag on the rump pistoll. such a distinction may appear to be ont if place, but if you desire to thorvaghly underis in place as itlustrating the puinciples involved. Clear veus are now withing our reach, as, for examples, we can invectigate how it happens that tbe 20 feet of the rettical columan are komging on the pamp pieton. As the pump pixton asoxnde it dimplaves a porion of the prees
an- of the atmosphen; for, supprose this presore to be equal to the weight of a vertical column of water if feet kong and also equal to 14 presoure of 14.7 pounds Fer guare inch, then the 20 feet of columb umber the piston marle by the piston, and this partial vacuust will be eypual to a pressure of \(14-20-14 \mathrm{fox}\) of colomn, or \(14 \times 14.7=6,0 \times 3\) proundsper square incls, but the under side of the patop pieton makes a depreveion below the (ner mpaare foot, or \(\frac{1,248}{2,008}\) - ind tons; therefore, we Weight rosiar on the pistou
Wetetht Aliking on the tiotat Teisht haming on the jeten
Totat weight dejerimiag on the piston
 In the valnes just given, the ames of the paiston The pion valve a is clomal by Hopere toot The pieton valve a is cloest by the wright of a colums Gion of the weight of a cilonan of 30 feet of water landiSon of the Weight of a culubin of 20 feet of water hangopen, and observe, the piston valve is always cloeed, and open, and observe, the piston valve is always closed, and the lift pump; but we should now know the reason n ly the suction ralve is open, and only one answer can to given to the inquiry; and that is, the valve is open
facanse the pron bcanse the presoure under it is greater than the prest
ure above it - then let us now find how this cocurn Take the pressure of the atuousphere bu this coccure of water colomn, und the height froms the surface of the water pomped at 20 feet of water colamn, and let it require a 1 foot water columin to lift the valve; then the pressure under the valve is equal to ith - \(20=14\) feed of
is equal to \(34-91-18\) fext of water colnma, then the pressare at A is equal to 13 feet of vertical exlumin, or
the amomnt of deprexion athonsphere is equal to a vertical colume of 21 feet. The stodent should here realixe the trase meaning of the terms employed, abd to do thas conevider that the

\section*{}

4 feet vertion
it feet weflica
Next lee us proceed to investignte what takeg place in
he down stroke of the purap piston. By reference to the down stroke of the pump piston. By reference to Fig. 15 we see the saction valve is down and resting on its reat as \(d\), while the pamp piston valve \(c\) is up, and the pamp paeton te said to he prongiay on the down to the weight of the colum, has ben transferred from the paston fative to the baction valve. Now vare curf -0 vertical feet above the piit boetom, and that the total the pit boctom, and that the total
vertical beight the water in lifted is then foed, as before: then let us find the wright nesitngen let us fud bie weight resting on, and
banging on, the suction valve of If it nopuires a vertical columen if it reyumes a vertical column then let us reckon thi-1 foat as Then let us reckon this 1 foot as
weight; then the total rertical colomen becomes 301 feet, and therefore, the total weight of the colamn is 501 \(12.4=18,7 \times 2\) ? pounds of \(18,7 \times 2.4=9.3912\) tons on a valve 1 square foot in area, abd therefore
The ueitht reeting on the
shaction valve is
The toms
 soction zallye is
 The pump piston is planging onto the water space \(1 B\), as klown by the arrow \(h\), and the mater arron foo the escaping to the upper side of the piston. On the down strake of a lifting promps we eere that the suction valve is cloeed and that the piston valv. is oper
t25- The Interruptions That Occur in Pump Action.-Intermpsions in the eflicient action of punn ps are of frequent occurrence, and as thex can al be classed under three lseads, we ought to be able to determine the cause in each specific case, and be presumeshere between the surface of the intake water and the pump piston; and to understand bow this is boough aboat, a bew facts regnire to be known. Firct, then, air does not enter the column bet ween the pump piaton and the upper surface at the head of discharge, becanse the a hole of the upper column las a static pocsante aboy that of the atmoephere; but all the colome bolow the saction value las a standing preveure fofow that of the atemesphere, and if them is any leakane at any of the joints of the \(\mathrm{p}^{\mathrm{j}} \mathrm{p} \%\), or athoald on of the lenaths in the column of pipes lee cracked, then air enters iredy, and in a peculiar way inter feres with the pump's eflicient action, abd smeh a cave ase this is slows by Fig. 15\%. Here, from some canse, air is entering the tail eolatan below the suction value and is scen lubbling up at \(c\), while it is displacing the water and reducing the depression under the ponup pi-ton, as at \(d\), and here we ree the water beal has fallen to e Noy this matter reguires investigation to find bow the air enters the lower, or tail coluon. Thie
inguiry is capable of an eas inquiry is capable of an easy
anawer, for, as has been shown answer, for, as bas been slown
the fonsoing column is, at exen point in ith length, at is presoure below that of the atmoepliere, and therefore every opening admite air ith and preower the water in, for hoth are subject to a compression of the outsice. Tbe camses of the entry of air may be a bad or booken joint or cracked pipe, or the water in the pump bay have fallen on Kow that air is entering the bottom end of the tail jipe with the water The entry of air, however, cal and the first is a escat reduction in the volume of the water diss
clarged. Thee ncomd in the mipin charged. The econd is the rapid
desent and suclden arnat of the descent and sulden arrest of the
pieton at half stroke, for the pamp pioton at half stroke, for the pump
rals descend through bulf of the stroke with the increased energy that is due to the entire weight of the colann resting on the piston. The third is the sound of the shoek prodnced
by the piston striking the nater. Kecond, the failare of by tue pison erriking the mater. Recond, the failare at
the pamp's action may arise from the lodgement of a piece of stick under the peston of the ruction valve, and as let us notice sach. When an stiek is indere ino cates val ve, the liability to a break op is eom-iderable berause tatwe, the habinty to a break op is considerable, becanse on the down stroke the entirv colonan of water is resting
on the pump piston, and therefore the piston's motion is dangermualy pocelerated for the water beiween flep ion is
salve and the saction valve freely escapes. When the stick is under the piston valve, the weight of the colnmn does not rest on the piston, and the pump works as if it hee mater ruats ind of the water, and the snoting soumd of pioton valve can be beard by placing your ear bexide the pioton valve can be beard by placing your ear bekide the
pump cylimder. Thind, a broken pamp rod removes all weight iff the engine for the worden mols, after being disengaged from the piston, practically float, and therefore the engine loses all weight on both the up and down trokes. We now find that all the peculiarities in a pump's action, when it is subject to any divarrangement of its working parts, can be acconnted for and corrected by the student who anderstands a pabap's mode of action when all the jarts harmonise in the execation of their functions. We have here taken, by may of example, the conduct of a large mine lift pump, but one net up for pumping a local standage of water in the workings.
Recapitulation of Facts.-Quss. 1. What are the poeltions of the valves of a lift pump on the up stroke?

Ass. The piston valve is down on its seat becanse the entire weight of the column is depending on it; and the ellition yalve is 1 何, becanse the prewerne of the atmose phere is at that time forcing the tail pipe column into a partial vacumb.
Quis. Explain the meaning of the terms resting on, hanging on, and depending on-
Ake lessting on refers to the weight of the vertienl column of water on the piston valve; langing on refers of the atmoxplere that liffe it into. the depresemon made by the pump piston! depending on refere to the total weight of the colamin, and is the sum of the weights resting on and hanging on the pump piston.
Quk 3 How do you explain the fact that the pump piston valve is open and the suction valve is shut on the down stroke of a lift peomp
Axs 0 On the down stroke of a lift peamp the whole weght of the vertical column depends on the suction calve and therefore it is shut, and the only pressin xerter on the poton valve is that doe to lifting it by phinging of the piston.
Quex 4. Under how many heads may the interroyouns of the efticient working of lift pumps be classed? Ans The falures in the effecient uorking of a lift Tump may be claseed under three beais, as follow First, the entry of air enmewhere below the piaton or suction valve
econd, the hulequent of a stick ninder the baeleet or Thind, a broken pamp nol or the uearing ont of the pump piston or suction value.

\section*{CHEMISTRY OF MINING.}

The Gauze Cylinder of a Safety Lamp-The Admission of Air to a Safety Lamp-The Ventilation of a Safety Lamp-The Flame of a Safety Lamp Affected by Ventilation-Restrict the Supply of Air to a Lamp-The Recapitulation of Facts.
111. The Gauze Cylinder of a Safety Lamp.-It is conmonty believed, that the llame of a lamp can be omple-ky ieolated with a gauze cylinder, when it con-
 not be maintained when it is subjected to the object

leseons of practical experience, for then we find that the ganze is only one of the factors of security in the construction of a rafety lamp. When testing safety lampes
to asceriain the extent of their reliability, we learn
much that does not aceord with popular ideas; is for example, if you were to propoee to make a hole in the ganze cylinder of a lamp by puncturing it with a nail, the prevaing thea is, that the ganee mould then be at with; but testing it in is slaghtlv explosive atmosphere, with a pancture made near the top and just under the cap as at \(t\) in that portion of Fig. 150 marked A, the flame does not elongate as the manlt of the punctures, bat remains of the same size us before. For every effect, there is a cause and that statement is certainly true here, for after the exercise of a litte thought we we that the hole \(t\) does not act as a port for the entry of an exira in-
flow of the explosive mixtare, but as a port of disclargo for the products of combustion. It is true that, if wi had to select one from two lamps to carry in an explowe misture, our feelinge would make ns partial th an unpuncturd gance, but vet the fact remains that a
puncture at \(/\), is not attended with the same risk as one puncture at. , is not attendlod with the same risk as one at 6 in \(E\), because an extra intlow at \(\delta\) fills the lamp with flame as at \(E\); bot noree than that, the sides of \(b\) are fou fur distended to chill a flame, and the meule is, a panze panctured at \(h\), fires at oure when set in an explosive
mixture. We we then, that if a ganze eylinder is mixture. We we then, that if a ganze cylinder is
panctared near the top its etficiency is mot impaired, bet punctared near the top its efliciency is mot impaired, but
when panctured near the bottom, its uee as a safety when panctured near t
appliance at once ceases
112. The Admission of Aif to a Safety Lamp.-The facts of the punctures, furnish some instraction that iof great valtue in the constraction of a safety lamps, for we now know that the admission of an excess of air,
 containing inflamable gas, into the bottom of
The lamp, is attemieal with immediate dangor, and that the free and murestricted dise
charge of burnt air from the top of the ganve does not in any may imperit the salety The question now before us then, is this How can we watrie the admiseion of nir
into the bottom of the lamp, and yet make such provi-ion as will
furnishoxygen emongh frrishoxygen ennagh
for the requirements of a grod illuminating lame? Before derid
ing on thi* womint, houing on this point, how
exer, other batters andombted importane must be discnsord, and the first abe is that of colamn to maintain teady and almost in to the flame. In mans othe fame for many of the bangre in use, the tirely dismgarded, and the inventors appar to
hawe been eoncernel about moshing bat how best to avert an explceion within the lamp. In this endeavor they were right, and, theretore, the delects dee attention. Before the intruduction of the lonnet, the ventilation of the safety lamp was like that show in in Fig. 151. The fountain of the lamp and the upper holes are parposely left oat of the figure, to make the details. of intereat, ind casier seen and undentond.
113. The Ventilation of a Safety Lamp.-The lamp before as is the type of theold Clanny without a bonnet, the lastom of the mavee, as shown by the armusea and tue lastom of the ganze, as shown by the arroura ami a, shell, while the hot grees from the flame will uscend through the eylinder ghecold air, but the loot air canme rive through the cold air without some amoknt of mixrive thonght thee coll air without sonme anosant of maxIng taking place, and the result is, a portion of the cold
nir mixes with the loot air and rises with it, and as a
consequence. of this consedpuence of this oectrrance, a larger volume of in
must enter at \(a\) a than is necessary to fext ther flame must enter at o a han is necessary to feed the flame
while at the same time, the mixing of the cohd air witl the loot air reduces the montive oulaman of the lamp' ventilation. Again, alowe the arrows \(a\) a, cobd air enters and mixes with the uscending hot air, as at and below column ; therefore, the mechanical actann of the ventilation of the lamp is sneh, that we are zstonished whes me find how little energy is necessary to blow down oufficient air to the flame to keep it alive. Should, bowever, the lamy be placed in an explacive mixture, the entry of fire-damp is so mueh aexieted that we cannot but conclade that the lamp under sach conditions is really as uncafe as experience has proved it to be All to discover that bait ventilation is a condition of unsafety, and, therefore, to make a kafe lamp, the prime condition required to secure this, is good ventilation.
Ventilatione Flame of a Safety Lamp Affected by utupply of air to mordnoe a mood light, but the inflow of air chould never be in excess, becaume every fraction of a cubic inch that is more than the ilame require, becomes a damper when the entering air contains inflamto mgenlate the ingoipl supply is a linited one, bat weshall show, further on, bow this can be done. A bonneted lamp is no doube a marked improvement on the old Clanny, bot still in many lampu
of thir type, the objectionable principle is retained of
admitting the nir at the bottom of the guaze cylinder as me see in Fig 352 ; bere the ascending bot interior columil of air is shown at d, while the outer shell of cold hand \(h\) Io reach the tlame at c and c, and to enter at the motive oolanm is lost between \(b b\) and \(e c\), but a dis finct column is maintained between \(b b\) and at at, so tha In this reaper, the lonnet secunes a true gain, but still bothing is done to restrict the supply of air to the net Fequirement of the flame.
115. Restrict the Supply of Air to a Lamp.-An when it contains inflammable gas it supplies foel the lamp and to maho The lamp; and fo make
this clear, let ns suppoee that the supply is ample Wat the supply as ample,
but restricted, and thai tow rearicied, and that
the entering air io an explesive mixtare; lowe entlicient to lourn bodh gas amd oul, and the resalt lamp, if it burns ever oo ferlity, will consume sulfieiont of the entering oxygen to make the chtering firedamp inexploaive We bere find that sanelhing more than a close attention in the construction of a sufcty lamp, and that a lamp devised in harmony with the re-quirement- of naturat lau safety far beyond what is obtaimed when the principles of action are not
correctly directed. When the bution colamen for the entry of air into a
lamp is mot safficient, the supply cammet be n-tricted withome, at the
 sume time, affocting the
feadiness of the light for if the entering air Contained even a moall pereentage of carbon dioxide the light would lecome dim, and the motive column would be reduced, and in some cases the flame wonld expare To secure a steady light in a truly sade lamp, we see the ll, that it is impernitively meqrosary that two thing slomald be dobe ; first, we mast restrict the supply of the entering air; and secund, to reatrict the oupply, the domuam of the restrictions mot be mantained; and to do that, we must have a good mostive colomin. Here i sill lie found that we have nsed a vague term, namely, "good motive column," bust in fature lessons the vagoemss will be romoved, for then we will lee able to deter
mine what is the nomerial value of what fa ber ealled mine what is the nomerical value of what bs bere called goof. To necure a maximatm length for the motive column the entering fresh air shoold not be made to take
the form of acylimlrical sheil, but should enter the lamp below the beated and lournt gases, for it is only in this

way that the minimin supply of air can be pri-
vided; and to assist in extablishing this comelnsion Fig. The is intron
darce. The fresh cold wir is here seen to enter the lamp beneath the
flame at products of combonstion are scen to leave the lamp if \(a, 0,0, a\), and as the lampis bonmetted the ho flame to the top of the ganze, do not doubs for
We one tmoment that some thing more than apertures are required to condhe lamp and immedi ately onder the flame; sion for thin will bo oft of the subjects of the fatare lessons, and there-
fore, for the prosent, let us decride that the air
thaslal by mome means I should by eome mears ts
introduced at \(e c\) with the intention of securing long motive column and a kteady How
116. The Recapitula. If a pancture is made with a nail just ondet an isolator of flamer

Ass, - \(A\) phacture bade just bander the cap of the ganae will not retuce the efticterncy of the ganze as an t-olator of tlame, bocause sweh a hole is not it port for the ebtry of at explosive mixtare, bet for the discharge if the products of combustion.
Ques. 2.-If a Dary lamp ganze is punctured with a hole at all affect the efficiency of this ganee as an ion lator of flame?
Ans.-Yes ; a liole or nail princture made near the
bottom of a Davy lamp ganze will redace the efliciency of the gunze as an isolator of flame, becanse the lofe nill be a port of entry for the admionion of an explosive mixture, and, therefore, an explosion within the gause will at ober ensibe,
Quex, 3.- What do yon
mulive column of a lanp? sequal in weimht length of a cold column of air that and hot colamon, whose. बhiserence is uegght, of a cold nean length of the hot air column; as for crampte sup jooe the greatest length of the hot nir colams to be six mehes, and the mean temperatare of this column to be \(0.00^{\circ}\) F., and the temperature of the cold colamn to be
\(00^{\circ}\) F., then the length of the montive column will lo. if ue take d to be equal to . S, that is, 6 inehes or . Sof a loot, \(\frac{(T-t) \times 5}{(4141+T)}=N C\), that is, \(\frac{\left(600^{\circ}-60^{\circ}\right) \times .5}{\left.(+10)^{\circ}+100^{\circ}\right)}=\) \(540 \times 5\)

KKXi -2547 of a foof, tw 3.054 inelues.
Qt-b, 4.-What oceurs when the motive column of a Asety lamp is too short?
oo short, all resistance must lo redeon a kafety lamp is tow shont, all resistance must be reduccd, and an excesresult that danger instead of stifety is promoted.
QLes. 5.- Where does the air enter and leave the gaxe Cins, o- Where does the air enter and case the gane Axs-The air enters the ganse cylimder of a Clanny hamp from the bottom opward to the underade of the gauze cap, but only the air entering the lower jortion
of the ganze zoes to feed the flame. The burnt air all leaves the ganme by passing through the meshes of the cap.
Qus, 6 -khould the supply of air to a lamp be
Nass-The supply of freah air to a lamp should be restricted, because every entic inch admitted in excess
of that required to maintain perfect combustion in the of that required to maintain perfect combistion in the
normal dame, reduces the protective or safety efficiency of the lamp.
Quss. 7.- What advantagers does the bonnet secure in promoting the etliciency of a safety lamp?
Ass. - The bonnet acis in the first place as a shield of -creen to prevent the air, in rapid carrents, blowing through the ganae, and in the second place, it contines the entry of air to the lower portion of the gause, and
thereby increaces the safety of the lamp. Quss, \(8,-0 \mathrm{~m}\) what principles should a satety lamp be
vonstructed? Ass.- A safety lamp shonkd be constructed in harmony with the natural laws that secure the bost light, with a minimum entry of air.

\author{
Th A (estiumal.)
}

\section*{MINING METHODS.}

Dust in Relation to Current Velocities-Wetting the Dusty Roads-Wetting the Suspended Dust with a Spray-Should the Intake or Return Air be Wetted?-Fine Dust is the Most Inflammable. The Agents that Supply Dust to the Air-Where Facts
ros. Dust in Relation to Current Velocities.-It was dhown in the lant lemon that the sizes of the dast parrelocities of the curconts that snpportex shem, and as ouch is the case, we ought to be just is able to determine the velocitios of a current by the sines of the larget 4 particles it suspende, as we are able to find the rines of the dast particled from the velocity of the carrent. Now the velocity of the carrent can netnally be found in the way suggested and the truth of the statement can oe fully established by an experiment with a eimple ppraratas, nuch as that illustrated by Fige. 142. Firs,
then make a wine frame 10 inches square and having oil the middle of one of its sides a soeket to fit on the uppere end of a stick, the bottom end of which is stack into the ground, as shown by the figane. The wine frame carries a shect of cotton cloth, and this is satorated with water when the arrangement is set up for a test. If at any time the air is highly charged with dust, the cloth quiekly becones blackened, and as we may expeet the time of blackening varies with the change of dost in the ourrent, and, therefore, the time required for discolora: foon is the index of the state of the air. The specels of the curmont are characterized by the presence on the shect of different ssimed particles and there can be peen with a good magnifying glase. To diatimguish the sizs, peculiar to the different carrent velocities, however, the ohevever reguines practice in collecting different samples with bis wet cloth. In the figure under consideration \(a\) is the wet cloth and it is seen to be supported by the etick \(s\), whose lower end is firmily ere in the gromml, and in this paeition a fod is suppecol to be in conse of being made. The nater used to saturate the cloth ougbt to contain a deliquessent substance in solution, such as carbonate of potash, for thir would prevent the evaporation of the water, or the drying of the cloth, and thereby axdd to the value of the fest. Although, this cloth is at the beat, only a rongh "' rule of thamb" gort of a gonge of the dust in suspension in an air currem, yet its simplicity of eonstruction, and adaptability for
maly application, make it at any rate a good index of ready application, make it at any rate a good index of
whether the air in a room is in a safe condition or not, in so far as coal dust is concerned, for the firing of shots. no6. Wetting the Dusty Roads.-The dangersarising rom the presence of coal dast in the air, immediately expreed to the flame given off by a shot during its expletabon, have been suddenly brought into nodice, abd, there-
fore, even the best informed men are affected with the
confusion that always cotnee with a anrprizc. There are certain facts, bowever, that have cotne acrose the Foth
 lay the Alom, " lome this stateromet of whie me doy, ant

 Therviforc, cyinot be raiscl by the ocoor of the wind
 the flowe. mof, uthe sailes of a mad affect the dust that is surpected" This bst que-tion requires, evrainly, mone compthemeive anewer than the former one; ant
mon than that, the anower can only In made vatiofactory with the lislp of sereral ribler- to the answer to quatify it. The prine answer then is this: All the par-
fieker of the are that constiontex thoe curn-nt ane, by the deflection- incm the mosf, the dlow and the sides of the
 bobls in saspe-nsinn all bwoume wetted and agghtinated, and by this means breobe tow licayy to thoat, ami there-
fore, sigk and leave the air clean. But another question ari-e vat of this, och as loww far most the carrent
travel for all the dist it contain- to be wetteif? and anotler question is, what weight of volatae of water
will be necessary to wet the road efliciently

Fieis 12
dian twe be coxier wetted and nowoved by a simpler and the answrow, wrans lappy to may, is yes
107. Werting the Suspended Dust with a Spray--
 that a lange volusme of water may be no mismeed as effect wry lithe gool, while a enall wolame may be ir in wetted with in water spray se, fime that the gar-tucle-g of water ane nearly as smatl as the partiocles of gallon of water than it coaldi lev uith ope bundred zal. lons ejected in larger particles ; or the one gallon of
water ejected in rardichors. that then thes wielly foest
 roof, floor und sithes of a rosal fir an air cumont saturated with duse must travel a logk jobarawy lefore the wet a high prosetur out of rery fine perforations tasy to
trade us fine as the water diset of comelengat steam, and toake us fine as the water da-t of condensed stowan, and
where hose cantont be appliced, a potiable vereel tuay to
 ev abtatned with comperesed air pomped into the water
tank, anal if even this appliance con not be need, then
 Irm of compireroel air into the vespel with is forcing patap
to8. Sbould the Intake or Return Air be Wetted?
 the air to wettevt lefom entering the locality of the wetienl on the refum, sind rond, and thow, amd niter be watcring io loe dome on the side shomg which the ait is
 any tlame pruluced by the rlow nill lor eat short on
fotering the elean air that containg mon foel for further combution, lat doring the thang that foel for forther
 plawe The elean air and make the danger us great as ever. We fee, then, that lithle goval can Io effected by
metting the bind neiting the btarn air, and therefore tho tlanw from a shof owght to le \(>0\) imalated nith elean sir, that, at the-
feriont when the shot is tired, wod only the locality of the Gles, but the air ebtering it, shoulfi lue entirely fice
 or then, woted

109. Fine Dust is the Most Inflammable. The fitu-t

Again, air parte with its greeser dinst the motaent the elocity of the curkent is reducrc, while the finest dust fact way beclassel as abager number two . lint fimedust esasy wetted amd purged out of air with a fine spray. and thi- comstitutes eafety namber one, while a kese volanw of water io nopuired for wetiong air with a vers time- puray than with a large volume of water inguoperly applied, and this furnislocs sofety number two. We if sospermbable slusd, for, while others think that the mote slangerone slast is saspembet in air cursents of
 varicties of inflambanhle do
in wir eurrents of lon ve
licit, and we num further
lecity, and we nom farther know that to parge the air
of it - dase ms misel nee a water duat in which the par-
tiches ane nearly as smatl us thoee of the dias they are 116 molel to mellom:
no. The Agents that Supply Dust to the Air.ion to the stady of the sas-F-nenon of din-t farticles and vieler where and how tho sopply of dast is farnirlusl. amil we shall fiml the lat(or exupniry is only secoul one. Thace to the former ofes. The sapply of das is
furnisbeal by thre agencies, and these ite she euting of the coal, the filling of
 the cras, and the hambage. Fin. 15 But fur the dhat given off by the shake af the care during their hanlage to the shaft, the ingoing corrent of the principal intake airauy nould be free from dust, and this state of purity wonld eontinue until the froth air regelied the first chamber of room ot be ventilated. We can the-n eev that the dost taken up in ma-pemaion by the air in the first chamber is horne forwand into the

 whea it entere the main return pirway in a highly changet vontition. The last fact that has engageof on! nitention soggests an important eonclusion, namely,
that the danges urising fonn the ignition of oal dust That the dangers urising from the ignition of oval dasi
are grvater in the last noom of a wries ventilated than arw grwater in the last noom of a eeries ventilated than
in the one that first receives the clean fre-h air, unles the air is firel joipgol with a waterespray. We can eve by an ingection of Fig. 14: that, if the air contering at brings mith it a charge of fine dust suspuendable in a carrent of low velocity that eames from a former mom, by the time this current arrives trehimi the brattice at e if mill have taken up a weoml clarge from ho unkes the chtering air is Ponged before emerging from
tit. Where Best to Apply a Water
 Whem ehoold we apply the spary to edfect flie bext resalt in parging ther air? In moswering this poase tiva, thonght and cantion muthot be exercised, lecanse probletier is the best difector in eneh importunt matters. If we apply the spray on the wible eible of the brattice,
 and ne bure time and exen then the air will never be
ctticienty pampol, beran-e the incoming aur will vouter it in higher velocity than that of the wide current in cuarse of teing operated on, and the resalt will be a continas mosing of the characed and purged air. We
eve then, that the air should be wettest and purged

 economieal Fcalts
on then face of all thi on tho face of all this, the foant will see that if coal dangers that are claimed for it, und perhape nose of us dombt the accaracy of the evidence, thene is a right
way of procesding to parge the air and reduce the dan-
ger ter at minimum. There are tuv thibg:
that nejuire attention with that rejuire attwhion with regard the coal dant in air
atid the tirimg of stiots. The first is, we require sume lesting tor fimi if the dest of prosent in shat if the duse is procent in slangrowes pro-
partions, for if it is not, flewn We may dirjurn-e aith the Wee of the spary; and on the theer hanal, if the prijorreally dangenas, then ue
krow that it wogld not besafe fot fire a shot until the air is pargot. The great thing to In done, houever is
 was cuttom clofh bay be taken as lefter than moteat, chargal. Wh any rate indicate when the air is lecavily

 bus to be tired in. the Bejghborbond of \(b\) the clean air norkine face, and porace dust-chmged sir alo of the prolamgation of the flame of a shot. Another afatter thosciated with thin figum- mquiral attention, ans! it is this, if the air ought for le -foruyed hefore vntering a roum when it sloot has in In fined, the same moe should
r is likely to be suturated with fine inflammable dast. Recapitulation of Facts, Qubx 1. Does watering
 Ava A fine water spray at once dreneloss the duet partime and canses them to aggintimate and gravitat out of the air, whereas when the mof, floor and sides of a road are waterex the ecurrent has to travel over a greai length before she dust is arreeted
Guk 2 shonld the ingning or return air be metted a whe mater xuray
When the imgomg air, or the air entering a locality dren a choc lask to be fired, shomld be purged with water spay, for then if the work is well done ni explosion can ocenr by the irnition of the inflammable coal dust in the nir.

\section*{A Large Electric Mining Plant}

A few monthes se we descritad the interegting power Iranstaission plant installed by the Genenal Eleetric Company at the niver lake Mlines of DIr. E. G. stodery at Silverton, (who. The intrubluction of electricity into the operation of the mines hat rewolfel in ecomemy se noticeable that an imerease in the plant is now being mabe to proviste for an extenaten of the system in thi minesami to rintorce the water power which is mot statficient to furnishall the pouer mquired thronghont the year. Two crues compmand torlies engimes, with eytinders
 being eet up, tugetber with water tabe boilers, mechani-
cal -toker-, coaf and ash, convevor-, foel water heaters,
 what will be the twoet thoroughly menkern sleam plant The the state.

The difference betueen the cost of coal ut the power bocoee and its coot at the mine, which is at greater elevation by gome 250) feet, is ruch that the saving effected, even when steam jower is noed for potherating jurpuese, will insure an ample return on the imvettment, while the economy indneed by the nee of the water power is considerably greater. Str. Soiber, therefore, feels that in adopting clevtricity for the operation of his mines be
har mowe than con-iderably siminished the sost of hat more than
whifing them.
The jresent plant now in operation conetets of two (5) K. W. Gencral Electric thme phase water drives

 for the pamp; one 1 II. IB, monfor for a blower and in-
eandescont lights sattered thronglont the etation, mill endescont ighits suattered throngloust the etation, mill
and mine. The additional phant will consist of two 150 K , W. Gemeral Slectric peneratows, one Jovill. I. motor
 wo 10 II I. motors for blowere, formese and miscellame ons machinerv, and to evontoally matise to the full the capacity of the stewn and water jower plantes adhi tional and langer evererators will be set np.
Hat aldue leas interveling feature of this installation, that athough the ebtire ontpat of electrical encrgy is to Be used in the operation of a single mining property, it
will be, when completed, the langest electric power will be when eompleted, th
plant in the Ktate of Colorido.

\section*{Cahall Boilers.}

The Farncgi- Stoel Cotupany, bearly two years ago being faxombly impressest with the dorign of the Cahail to itw merits, hum boter, made an imverggation as in is meris, the nesult of which imdoced them to phe Heis Their gav- pomping plant at Bagolim, Ma. The perform-
ance of the lontura at Raghad was and a marked im. peovetuent wer the (exteral boriler practice of to-day that they about a year later pat four of these boilers at their Biguar Thomson Steel Works. They vers camefully watcloed and tested the boilers at Pigar-Thomenn under varying combitions, with the monlt that they have been so wofl satistied witb the work done by thoee foar that they have mande arrangoments to tese oat all the obd styfe boilens at farnaco - 1, 15 and 4' at the Edgar-Thomson steel Works, abd have purchased seto horse-power
of the Cahall vertical mater thbe builers to bue installed at these furmaces in place of the onew they will remove

\section*{Water for Steam Purposes.}

The dry sasme, with the accompanying scarcity of water for steam prirgower at many eval mitios, is again upon us, abi any sheroctuman as (o) at remedy for the troable we feyl sure will be appreciated by our readers Nhas compsiny tas hid thare tronble fron this soure Than the Philadelphia and Rending Coal atal Iron Co. and the officink of that evompany have spared nethet ome bor expense in ebkevoring to ntilize water mone The groal of -1acol with mame water for steam purposess.
 of Noh, when they first tried and then adopted the
Pittsburg Ihaler scale. ISesolvent, an economical and ellicient pequaration that pervents lath seale and oarm T
This pteparation is madk by the Pittsburg Boiler Scale
 tminiug compethios of Imerica

\section*{English Wire Rope}

Musers favorge Craboek \& Co., of Wakpoedd, Einglani, extensive mannfacturiss of wire mope, whoed
 loat is no longer connteted with them in any way, and to communicat. land. Mesors, Cradock \&f (\%, are clexirous of acciring

\section*{Miscellaneous.}

There is also another circumstance which it vennetimes apt
 provat the staknet from readily intentifying the cuperb otece
 that Pata soust be smoght at the lower part of the field. This walled plain is sitnated on the const bine of a magmif
cent lunar sca, namody, the Mare Imbrium, which may, per

 stretebed abong tbe dark central floor, an they to when the
san is in such pooition that it moald just appear tole risits san is in such a poeition that it woald just appear to be risite
to the lumar inhalifast ulow was stationel in the neighbor
 enhance the becinty of our honar picture from a spectarsala
joint of vieu, but they have another insportabce. They pre went to the asemomoer the only means which he pooscsees fou
 its eleration atove the surface cannot le attaibed lig difox mesusurments

 whiels loads into the Mare Nerenitatio.
1y ing vut in the Jfare Jmborium. The smalles of those is the Antatycus, Direfly helow that is the larzer ring known as
Aristillus, which is it mile in aliameter It- rampore riee "puand of tuo miles shove the surrumndint plain, while the
 mosantain peak assewiting from the ovnter. The thirit of the threerraters which form this noterorthy aroup lien far out in
 Archimesks Thir srater is mot guite so large as listos but Innar observers.

Beturning, however, to the Detghbering coasts from our
 the splemisd ramee of the lumar Appesines. The dyects a
called an lay far the most masnitioent range of muantain

for 317 fove, passel through an unfinisherl chamber, amil ended sixty feet further in a blind passuge In from the tooy
block of granite was foumd which shat from view an other pasogrs. This detacle beine powed, there come an ranning into a limsotone chamber in the center of the
 polislual amt finely wromght tlat we are told it whes tlitlicule Abother dificulty mone pose tov karmamentel. The final basage lessling to the chataler of the saroyphagus mas dowal ivised in cruml spoweo by foar partitions of Eranite, whish equleloe waskmint to ke a granite ebamber 19 foct hizh, 3
 baider of the first (aciopling to Hecolotnu) retaina wose of
its corigimat cising at the torn; and mount the thind, the fool 1y ramil of Menkara, where it is supposed orec lay the tovly with the noey-clucked Rbalopes, the fircok fiverite of Kims

\section*{ONE OF NATURE'S PROVISIONS.}

\section*{WHY SAND FLOATS ON WATER}

It is quite uell known that small, iry jartiolec of sul,
 larer than the farticle, this has the shme reante as if th - exife gravity of the garticle bat been slerraed The

 "The towsing after my arrical, the river uav foumb to be
rasing, absl, as 1 stomi im the lank, at the point where w conred our water kapply, 1 notionl a consalerable froth anm
\(\qquad\)
 lalf-post mise of ter-the water cupported a latse namber of toserent soname intues, all xoepealonge by the current,
 the stream in saptb quantitio that the satml fats astually
 guite as apparent in the case of iodated prains ax in that of
vatelnex I reciall ose instancr ulwre the deprosokon, of NeTy

\section*{A WORD WITH THE DOCTOR.}

 sary bot only to \({ }^{\text {a }}\)

 tota vow with dry dothe fors , while to pwownt having teasponfuls if tine alt mixed ina tothe make in exoellen
 wrist, if alow revorametuicl.

A gool buschold renuly fur lumberan be make by mixing Amertor
 affetel momber
 wart will entirsty di
quire mo long a time:

Dal you ever notio the way a physician pregares the couri

 the coart plaster out that, ant sut the slashod piceos at obple

P-fective bearing is a fromble that many chilitrea faker

隹 Gilscerine amt uarm water is cyual parts isa mixtare that

 the carc taw to the suelling and intlasmastinn of tow gume

\section*{HOW DO YOU DO}

 Thur in partime to the rare of chut The Aberione amb the

\section*{COLOR-BLINDNESS.}

Feranns may be born with color-blimines, of ther may axpure it in after lise In the bornier case color.bindnese is \(\mathrm{c}=\) colet ister life is sizniticant of many diseases of the exe (irth, may he of any decree tap to an inalinity to rewesta ny colar whatever, so that the whole external worlit look fray, like an eqgravine Cour of this extreme kind are rare, Eroup uf colore are fropuent covosh
The esientificexplamation of coloe blindness is easaly umber-
 the fundamental or primary colores. Perception of ney ome of these primary colors arise from the stimalation of the
oirreponting nerve hy the lizht which is reflected from the chor Sensatios to the remaining culors orecinates throagh
 one of the necves to vorregpant to pryper stimulation; an ondistimgui-ha a particnlar colof,-fow, preet, or yiolet, as the rave may lee-vat makes him "Blind "
We ase not to sappose, bowerer, that the affected nerves arv matirely insensible, for that woold imply thas the colorel tess. Each ut the rroupsof merex of nhich we have spokes
 of rays from rel objects, less so bo yellow, still leos by grent
 mure tromely
 like that of the tailor who wasted to mend a black coat uith The fault is groons nolyine wiob con neter he curco, althuagh mam?

\section*{THE FRONTIERSMAN'S RIFLE.}

Ancold-time phaineman, uriting ahont the gool points of Ahe old-style ritb, xays: The modern ritfemen do not appre thaniel Ehoone thought perfect. Thereuas no such plorase for the frontierman as "nccurate enough for huntime." which is kas to bee one he could hed his life on and win. It mast be
 to hit it amit fol an arm or car. Up fo jownarils the ancarame of the chl weapon, the pen ritie, bas mot boon excelled, anil In
In thes daysof pamp guns, which thmow har leat ont of hrow on to the wimbe If the first shot misace, why, a socomid atci another is reasy. Not so with the encezte kaser. The
 ng this the coll-tinge hanters dfew down and shot for ment They did nad pmll nhon the sights were in lime uith a leg of
 whip-track of the weapuen oftener mesant theath to
than the riporor slam of a me-bern repating fifte
A man who wialil use a shotzon for gitne in these day.

USES OF A PIECE OF STRING.
 - most valuable xome sportsmen pot a pieve of strime it

 all others, lersuse it is much strobare, if progerly ast , and
the wosalom is very etrength. Where the hisle of thim lee chts a broasl strip:
 rocorfing to the sien and many a skim boot is sewoll wifl.

 ti, press into, the ariery, and a string to tie tighe oret the

\section*{HOW TREATIES ARE MADE \\ tive-the negotiations with foreign Guvernturnts lealing up
to an agrocment, ant the troming of the articles of the Sreaty -1s with the exceutive. The Ketate has mo parl in the mat.
 tive has aywol with nay foregen power upner a thaty, atal il
}
and is considered there in secret seston. Whatever may be said as to the mindoen of necessity of seree sessions for otber purpares it is mamasty negssary ina many came be kem in She conffitence of theoe elharged with coorluding them, until they are cobleluded!

Thoseh all the attempts in the Constitutional conrentson Mgive the lloase of Bogrocontatives a part iv the making of
maties fialod, it is sill true that many. impoetant traty Sigulations degrail fur turar exeration upon the actine of the Howe If a treaty stipulates for the poyment of money by the Uitid states the mobey cumot be taken from the treas
ary withuat an apyopriation. It may he xaid that as a ander the meiney nocsars to carin it into eflect; und that in the makings of the appropriation the Hosese has no rieth to cunsiter the questinn of the value
of propricty of the treaty. Bat, all the same if the apporo priation is mot male the treaty fails. Venally apporo priations to carry out a treaty have bern piven freety by the isfeat ithe treaty. As to treatics invalying our nevgme lave the hoase-having hy the Combitution the sole powez to
originate reveluse hill

\section*{REALITY IS THE GREAT EDUCATOR.}

Dr. Farklurst asserts that "theme is a certain keenmes and vigor of disephine that can come to a man ouly as lie live
out in the mild of thinmand heomes himself 0 part of the worthl and of the "event- with whirh the world is wowlitle pocked Thome to n hum my words ate particularly aldresed are youse noth who are anxines to make thensedve felt in
the worli, and to stoth it peeds to te said that we heot leara how to to by doing. A sene of oprortunity, a forling of
 os with th pawire of a fine dieciplite nat a strang ispora tson. The sulitity of the lourden that is evirried hell ws ti: odialify the man who carriss it. Problems tomble carily

 truth in black and white, bat in the cantwhh of crent we see truth at work; and it is only when trath is basy, and when karn to know of ormangly mixet up in its uetivities, that we ly vhich thase capabilities can le madeover into efliet. If no young man, then. of xirit and parpuoe te dimasoul hy
 amb will rearabte ta its pepois all in the way of vigor

\section*{INTERESTING FACTS REGARDING DIVERS.}
 dothings then follows the droxitedf, meighins it the, boots.

年 at which

 the elephant in crowing a diep river. a hen he sratus bemeuth Te mater elovaling his trunk toy which methool he breathes slinsine thrm in sueb it manuer that they can bo coerils

 goalified The foxe xhips is the fritish nary carry edeht

\section*{HISTORY IN A TREE}

In the liritish Mueum of Natural Mi-fory there is a ection
 yeara nbl nhen it was rut down in imes. The foct that about
 kozether in a remarkable manner, imbinates that darimg
 correqualent fouml that, barly at the time when the tree

 that powality the trowdel rimes in the truak of the tree mas atkeding unimal anil veetahle 1ife at that time in Sorth And mathos, nal he slums that if the tree had reached its

\section*{THE COLOR OF WATER.}

The fart is generally known that pure rater appers bine men light is tramem.
 in a serp, oppape roxptum lo like the lasin of a lake or the

 thumparebt layers alom Thik, it is suges-tel, explains the fort that fredh water lakios ure more trantarint in winter
than in sumaer, herase in winter carmats of heatol vater

\section*{New Inventions.} STEAM BOILER.
 drums, conmextel by five sets of mater tules. The foul water is delivered into the " feoldrum " \(R\), umler the plate 6 , which
 from \(B\) to the mond drum \(A\), thenee thonght the tabes \(p e\) to
the front drum \(F\), them throakh the tules fo to the steam

Irume Here the steam and water sparate, anel the water part of the flow from the mud dram goce directly spward to the sterm drume throupt the tatre ie The hurnine gave
 of particms out ine arrows. A wry eflivive application of the boat is ly the arron
thus suared

\section*{PUMP}
 fion through one cylibder of of win or daplex partip. The plunger \(R\) is double acting, being packed in, the midale at 4.
The kland Fa prolonged hy a xlowe C , which projects isto The Eland as prolonged the a slowe Cr, which prejerts into
the thak end 3 of the water cylinder, and is made water-

 remoned at any time br pashing the phunger to the forsand
 Ev. 557,285 .

\(i\)
artanged that all of them may be removel by taking of leak froen the telivery sile to the raction. The suction raves 5 will paso upwand throagh the seat holes of the delivery valves 16, and oulars on the fower end of the stems 7 serve as stojer to limit the lift of the saction valrea. The
nalve scats are fitted into taper lioto and are peresed home nive seats are fitted into taper ho
water tight by the water presoure.

\section*{SAFETY LAMP}

No. 637 Sos Kalmi Bmocces, M. Orreava, Aevreas. ParFig. 3 is a croes wection oe the line \(Y^{\prime} Y\) of Fig of the lamp; section on the line \(Z Z\) of the same; and Fig, 6 is as section
Berose the andocking toot. This lamp is constructed to birn Iwnaine, but can be easily adspted to burn kerosene if desired The wick may be round, flat or tubular. The upper part of
the lamp is provitul with two gaume cetinders f and ? These toc lamp af provived with two gause extinders \(f\) and 2 . These end of the glass cylinder by means of a coilod xpring of whirh
is beld in place by the middle ring d. The lower end of the (flive cy limber rets upen the flange of the oone W, which sur-
counds the barner. The wiek is sexuret to a shoet sliding tube \& which can be moved up or down ly the sernw \(Z\). The
wick is ignited lyy meaus of an exploder \(N\), which is Joscles with a moil of slofonatimg material. The igniter is ofstatcel able from the lamp lasect, and is secured in plame hy a lock

riug A. This ring is prorided with a mumber of spring latilnex i, whish catch into botches in the lamp base. The

 the lamp frome. \(F\) is a filling tuber, provited with in sprime cbosel valve by means of which the fonat may be filled. when detached, without permitting the sapor of the lenaime
to erajue into the oir to evajue into the air

\section*{SUPERHEATING STEAM BOILER.}

 supronated steath.
Beferfing to Fi. 1, a is the boiler, nost in' the heating-tubes of the same, Sual tube are arranged aroand a large oentrai
flae o' extersling upwaml from the furnace \(A\) Saial fue mis partly or wholly be closed by a lid ve pover \(6^{2}\). The boiler a
居 1

rel of the water is conotantly higher than the upper enals of the heating-tules \(a^{\prime}\). The lattor are therefore constantly surrounded by water throughout their whole lemgth, and ar
weured ngaingt harning ecured againot burning,
Thas stlpehocater
Tranged alowe the consists of a series of horizontal coil and an inner casing \(f^{\prime}\). One ent of said superhester is com perted with the dome of the roservoir if. The steamescaping from the latter and flowing throagh the coils of the sajer

 comparatively much exhansted by the large area of sarfaci offerel by the beatine tubes, and the dearee of superlomatin: will than: le lexs than if a smaller or greater jortion of said gises is allownd to escape through the flue \(V\). There is thas afforded a means of regulating the degree of superheating of
tbe sfeam.

\section*{MINING WEDGE.}

Na, 307,143 . Wiblasy A. MeKintay, Denver, Culo, Papmachine in place: Fis. 2 is a sectional side riew of the same,

Fig. 3 is a pernpective view of otise of the sheils and Vis. 4 hows the ecotral wedge and roil. A seetion thronght the we interpand the sbelis \(x\), is shown them and when the rom \(J^{\prime}\) is pallect
 and \(E\), and spmail the shelbs apart with great foree. The

neverary pouer to ogerate the werlse is applied by means of
 of the cylinders rost against tubular blocke or thotane pieres If, which extend to the shells \(E\) : To use the marhine it is mosertel in the drill hole, with all the parts in the pusition doows in Fig. 2: water is then pamped into the eylibdors A, foncing the pistone \(A\) ontward, thas puiling the har \(f\) forFard and forcing the shells aport. The machine is very
compart, amd in practioe it rupports jt-if witheot any adde COAL AUGER

 hrough the hit clamps; and Fig. is is section along the woter line. The boaly of the auger is mate with a domble ist ansl a ceratral core. The cutting ent is provided with

\section*{Fso 2 \\ }
(two remuwable cutters, 6 abd 7, which are hehe in place by
 reversible, atel is letht at a slight imelination to that the rear enil will clear the side of the hole. It is claimesh that the ceni-
 chips from the bode.

AUTOMATIC FIRE EXTINGUISHER.

 bre by chesmical morors, A tank \(f\) iv partly falled uith
suitable gas making clemicals, the acint losing containol in a

glase buttle \(J\). The premises to be profected are provisidel antomatic sprinklers now in common use for fire protection.

 levers, then lilernitige the wright II: What the weizht falls.

 thas es the gas presomere rists to the porper thegree it burst

\section*{APPARATUS FOR BURNING COAL DUST.}

 crenut onat is fol into a hoiquer No No particalar jotins twai broken uy, by bran- of a vilerating -butterd, which is opetaed

by a cam touth on the chaft \(j\), and clomed with a showk by the tirime Tow material which pacos by the sbutter falle to It through the opening eo into the forime So grates sere the damperk. The loushis miale of sted uirsa, which are eo chaptic that they throw the fine font a sufticient ti-tance

MINING MACHINE

 crecoction on the line efe Thi- marlome emplows twe

 The whote frome whicti sppouts the celter fare ibit convey

\section*{SAFETY LAMP CLEANER}

 and quikky, withme injuring or seforming them. The

 C. The twe tu-lise \(/ /\) and Nare them mered dhwowanl he

 c limeter.

\section*{MINING MACHINE}

tairs of nevolving cutting whocle 1 and \(n\), which are carriet

\section*{COAL GRINDER}

 evtiomat view of a gart of the grimbling varfac: The volls i

\section*{TUNNELING MACHINE}
 work vutting a tunnel. The wafking part of the mache at

 In this machime the cutter har is momitel at the onter enal of

mawhine is centereal atul stratival hy mume of a lange thlmbiar
 makimg a vincuit It ik operated by it mitios \(E\) Which engates a grove it the larmecam plate 62 . With s cmm plate io

```


[^0]:    
    
    
    
    

